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Benchmarking exchange-correlation potentials with the mstar60 dataset: Importance of the
nonlocal exchange potential for effective mass calculations in semiconductors
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The accuracy of effective masses predicted by density functional theory depends on the exchange-correlation
functional employed, with nonlocal hybrid functionals giving more accurate results than semilocal functionals.
In this article, we benchmark the performance of the Perdew-Burke-Ernzerhof (PBE), Tran-Blaha modified
Becke-Johnson (TB-mBJ), and the hybrid Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functionals
and potentials for the calculation of effective masses with perturbation theory. We introduce the mstar60 dataset,
which contains 60 effective masses derived from 18 semiconductors. The ratio between experimental and
calculated effective masses is 1.70 ± 0.20 for PBE, 0.76 ± 0.04 for TB-mBJ, and 0.99 ± 0.04 for HSE06. We
reveal that the nonlocal exchange in HSE06 enlarges the optical transition matrix elements leading to the superior
accuracy of the hybrid functional in the calculation of effective masses. The omission of nonlocal exchange in the
transition operator for HSE leads to serious errors. For the semilocal PBE functional, the errors in the band gap
and the optical transition matrix elements partially cancel out in the calculation of effective masses. The TB-mBJ
functional yields PBE-like matrix elements paired with realistic band gaps leading to a consistent overestimation
of effective masses. However, if only limited computational resources are available, experimental masses can be
estimated by multiplying TB-mBJ masses by a factor of 0.76. We then compare effective masses of transition
metal dichalcogenide bulk and monolayer materials: we show that changes in the matrix elements are important
in understanding the layer-dependent effective mass renormalization.
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I. INTRODUCTION

The effective mass is an important parameter in materials
design and selection. It serves as an indicator of the car-
rier mobility, conductivity, and the thermoelectric figure of
merit and is often included in high-throughput computational
material studies [1–5]. The effective mass can be obtained
from experimental measurements such as cyclotron reso-
nance, Shubnikov–de Haas oscillations, and angle-resolved
photoemission spectroscopy (ARPES).

The effective mass m∗ is inversely proportional to the en-
ergy band dispersion. In the nearly free electron model, the
energy dispersion of a free electron is described by a parabola:
E = h̄2k2/(2m0). In crystalline materials, the electron is no
longer free as it interacts with the periodic potential of the
ionic lattice. To describe the energy dispersion of the nearly
free electron near a band maximum or minimum of interest in
crystalline materials, particularly semiconductors, the mass of
the electron m0 in the parabola is replaced by an effective mass
m∗ that acts as a scaling term to adjust the band curvature.

The standard procedure for theoretically calculating the
effective mass is to fit the band of interest with a parabola
and obtain the effective mass from the curvature. An elegant
alternative is to use perturbation theory. From perturbation
theory, we calculate the inverse effective mass (m∗

αβ,n)−1 for
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nondegenerate bands at a certain k point as the following
(Appendix E of Ref. [6]):

m0

m∗
αβ,n

= δαβ + 1

m0

∑
l �=n

p(α)
nl p(β )

ln + p(β )
nl p(α)

ln

En − El
, (1)

where m0 is the electron rest mass, α and β indicate directions
in Cartesian coordinates (x, y, z), δαβ is the Kronecker delta,
and the summation is over the band index l but excludes the
band of interest n. En and El denote the band energies and
pln the optical transition matrix element. The k-point index is
omitted for simplicity.

This equation helps us to develop some intuition about the
factors influencing the effective mass: The larger the interband
energy difference term En − El , the less the interaction be-
tween the bands contributes to the band dispersion. As a result,
the larger the band gap the heavier is normally the effective
mass. The larger the matrix element term (the numerator of
the sum), the larger the contribution to the band curvature
will be. Also, the wave functions of two bands can only
couple if symmetry selection rules are fulfilled. Otherwise,
the transition is not allowed and the matrix element pln is zero
(Chap. 2.6.1 of Ref. [7]). For interatomic transitions, i.e., from
cation to anion, the effect of the matrix element on the band
curvature can be understood in the tight-binding framework
(Refs. [1,8,9] and Chap. 2.7 of Ref. [7]). The squared ma-
trix element describes the probability of the transition and is
thus related to the two-center hopping or overlap integral of
tight-binding theory. Increased overlap between neighboring
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orbitals leads to greater band dispersion. We should also note
that bands lower in energy than n make a positive contribution
to the band curvature, while bands higher in energy than
n make a negative contribution due to the negative energy
difference (Chap. 2.6.1 of Ref. [7]).

The effective mass of charge carriers can be predicted with
density functional theory (DFT) [10] which is a ground state
theory. Still, DFT is commonly used to calculate excited state
properties. Density functional approximations using semilo-
cal exchange-correlation (XC) energy functionals such as the
local density or generalized gradient approximation (LDA or
GGA) are known to underestimate the band gap of semicon-
ductors significantly (Chaps. 6.3.1 and 9.2.4 of Ref. [11]).
This leads to errors in the band curvature and effective masses.
Corrections from many-body theory change the band dis-
persion (Chap. 16.1.3 of Ref. [11]) and thus also cause an
effective mass renormalization for many materials.

The most obvious renormalization after the band gap
correction comes from a relative change in the interband
energy difference term En − El in Eq. (1). This has re-
cently been illustrated for InSe in a comparison of LDA and
GW calculations, where Li and Giustino [12] showed that
the out-of-plane electron effective mass was corrected three
times more strongly than the in-plane mass as a result of
the band gap correction in GW. This effect was explained
by symmetry selection rules that ruled out a transition ma-
trix element pcv between conduction and the valence band
edge for the in-plane mass, thus engaging deeper valence
states (pc,v−1) whose energy position relative to the con-
duction band edge is less affected by the correction of the
fundamental band gap. However, what remains overlooked in
Ref. [12] is that not only the band gap but also the pln matrix
elements are renormalized as we transition from LDA to a
higher level of theory. The latter will be a central topic of
this paper.

To predict more accurate effective masses with DFT, we
should first find ways to correct the band gap inexpensively.
This can be done using the semilocal Tran-Blaha modi-
fied Becke-Johnson exchange-correlation potential (TB-mBJ)
[13,14]. Interestingly, effective masses obtained with TB-mBJ
are consistently heavier than the experimental result [8,15–
17]. The more expensive hybrid functionals on the other hand
result in excellent agreement of effective masses with ex-
periment [8]. Kim et al. [8] alluded that to obtain accurate
effective masses, corrections beyond a semilocal potential
will ultimately be required. If the band gap is almost cor-
rect in TB-mBJ, then the transition matrix element must be
underestimated. The role of the matrix element pln for the
renormalization of calculated effective masses has not yet
been investigated in detail.

In this work, we benchmark the accuracy of effective
masses calculated with several exchange-correlation poten-
tials for a new dataset that we call mstar60. Our dataset
comprises standard sp semiconductors, d semiconductors,
and monolayer materials. Effective masses are calculated
with a perturbation theory approach. We show the extent of
renormalization of effective masses caused by changes in the
transition matrix elements. We explain the role of the nonlocal
exchange potential V NL

x concerning these renormalization ef-
fects. On average 30% heavier masses are predicted with the

hybrid functional if incorrect transition matrix elements—that
do not include V NL

x —are used.

II. OPTICAL TRANSITION MATRIX ELEMENTS

For the calculation of optical properties, the nonlocality of
the potential becomes important when the transition matrix
elements are calculated. The matrix elements can be evaluated
in the velocity gauge or the length gauge (Chap. 20.1.1 of
Ref. [11]). Assuming the dipole approximation, the coupling
of electrons with an external electromagnetic field is described
by E · r in the length gauge and A · p in the velocity gauge
(Chap. 5-1 of Ref. [18] and Refs. [19,20]). Charge conserva-
tion and gauge invariance require the equivalence of the two
interaction terms [20,21].

In the length or longitudinal gauge, the position operator
r is used for the calculation of the optical transition matrix
elements (in atomic units) [22]

pnl = lim
q→0

q−1(El,k+q − En,k )
〈
ψl,k+q

∣∣eiq·r∣∣ψn,k
〉
, (2)

where ψl,k is the single-particle wave function and q is a small
momentum vector shift.

In the velocity gauge (also called transverse or Coulomb
gauge) transition matrix elements are calculated from the ve-
locity operator (in atomic units) v̂ [23]:

pnl = 〈ψl,k|v̂|ψn,k〉. (3)

The velocity operator is expressed as the commutator of the
Hamiltonian and the position operator v̂(r) = i[H, r] = p̂ +
i[V NL(r, r′), r]. For local potentials V (r), the velocity operator
v̂ is equivalent to the momentum operator p̂. Therefore, in
many cases the velocity matrix element 〈ψl,k|v̂|ψn,k〉 is sub-
stituted by the momentum matrix element 〈ψl,k| p̂|ψn,k〉 in the
velocity gauge. However, for nonlocal potentials V NL(r, r′)
the position operator no longer commutes with the nonlocal
potential and the velocity operator is no longer equivalent
to the momentum operator. As a result, in order to calcu-
late transition matrix elements from nonlocal potentials in
the velocity gauge, the velocity operator has to be used or
else a nonlocal correction to the momentum operator needs
to be applied ( p̂ + i[V NL(r, r′), r]). Otherwise the gauge in-
variance is violated [20,21,23]. In other words, for accurate
optical matrix elements, the nonlocal potential must not be
neglected. In the length gauge, nonlocal potentials are treated
correctly automatically.

The nonlocality in the potential stems from the fact that
the full-electron Hamiltonian is replaced by an approximate
Hamiltonian in the independent-electron approximation with
an effective potential that reintroduces electron-electron inter-
actions in the Kohn-Sham equations (Chap. 2 of Ref. [24]).
There are several sources by which nonlocality may be intro-
duced in the effective Hamiltonian [11,21,25]: an incomplete
basis set, local field effects due to abrupt changes in the charge
density (spatial inhomogeneity), nonlocal pseudopotentials,
and nonlocal exchange-correlation potentials or quasiparticle
self-energies.

The importance of using the nonlocal correction in the
velocity gauge has been widely discussed for nonlocal
pseudopotentials [25–27]. It was shown that neglecting the

045204-2



BENCHMARKING EXCHANGE-CORRELATION POTENTIALS … PHYSICAL REVIEW B 106, 045204 (2022)

nonlocal term in the velocity gauge leads to inaccurate ma-
trix elements, especially for transitions that involve localized
d electrons [28]. Also, several works have investigated the
nonlocal effects of the self-energy operator on transition ma-
trix elements from many-body GW calculations [20,21,29].
At the DFT level, Rhim et al. [22] calculated optical matrix
elements including nonlocal exchange with the screened-
exchange LDA functional (sX-LDA). They showed that to
obtain the correct band dispersion, opening the band gap with
a scissor operator is not enough and the full calculation of
the matrix element effects is necessary. Further, Paier et al.
[30] showed that including nonlocal exchange via hybrid
functionals yields more accurate static and dynamic dielectric
functions in comparison with semilocal functionals. In this
work, we focus on the nonlocality introduced by a nonlocal
hybrid exchange-correlation potential and its effect on the
accuracy of calculated effective masses.

III. METHODS

A. Dataset

The dataset contains 14 bulk and 4 monolayer materials
with a total of 60 effective masses. Materials considered
include sp semiconductors and d-element semiconductors
containing one transition metal. We include both three-
dimensional and two-dimensional (layered) structures. The
materials considered cover a wide range of effective masses.
For the creation of the effective mass dataset, we collected
experimental effective mass data from the available literature.
Most experimental data were taken from existing compila-
tions in the Landolt-Börnstein database [31]. We also included
several individual entries from the literature for layered and
monolayer 2D materials. Wherever multiple experimental val-
ues of one effective mass were available, we took the average
for comparison with our computational data. For the compi-
lation of the database, we had to exclude materials for which
the experimentally reported effective masses differed widely,
as this rendered comparison with computational results un-
profitable.

B. DFT functionals

To benchmark our dataset, we computed the effective
masses using three different exchange-correlation potentials
and compared the calculated effective masses to experimental
data. The potentials represent different levels of theory, and
were chosen with the purpose of estimating how the effective
masses are affected by the nonlocal potential which is repre-
sented differently with each functional.

The first level of theory was the Perdew-Burke-Ernzerhof
(PBE) [32] GGA exchange-correlation functional, which is
semilocal in its treatment of exchange and correlation and thus
does not include a nonlocal exchange potential.

We also computed the effective masses with the Tran-
Blaha modified Becke-Johnson (TB-mBJ) [13,14] potential
which corresponds to the second level of theory. The TB-mBJ
potential

V mBJ
x,σ (r) = cV BR

x,σ (r) + (3c − 2)
1

π

√
5

6

√
tσ (r)

ρσ (r)
(4)

is also a semilocal approximation. It is based on the
Becke-Roussel [33] potential V BR

x,σ (r) which models the
Coulomb potential of the exchange hole. σ denotes the spin.
Besides V BR

x,σ (r), the TB-mBJ potential includes a term pro-
portional to

√
tσ (r)/ρσ (r), where tσ is the kinetic energy

density and ρσ is the electron density. This root term can be
interpreted as a screening term [34]. While semilocal in its
approach, TB-mBJ mimics nonlocal effects. The parameter c
can be determined self-consistently. To estimate the prediction
power of the TB-mBJ potential, we first determined the c
parameter self-consistently to calculate the effective masses
of our dataset. Additionally, to estimate the effect of nonlocal
contributions, we adjusted the c parameter to reproduce the
experimental band gap to eliminate an additional source of
data scattering when comparing effective masses with exper-
iment and hybrid functional calculations. The band gap was
fitted with a maximum error of less than 2%.

On the third level of theory, we used the Heyd-Scuseria-
Ernzerhof hybrid functional (HSE06) [35] to compute effec-
tive masses. In a hybrid functional, a percentage of nonlocal
Hartree-Fock (HF) exchange is mixed with the local PBE
exchange-correlation functional. For HSE, the exchange is
divided into a short-range (SR) and a long-range (LR) contri-
bution. Only for the short-range exchange, a part of the PBE
exchange is replaced by the exact Hartree-Fock exchange. The
long-range exchange is entirely taken from the PBE func-
tional. The HSE functional takes the form

EHSE
xc = aEHF,SR

x (ω) + (1 − a)EPBE,SR
x (ω)

+ EPBE,LR
x (ω) + EPBE

c , (5)

where ω denotes the range separation between SR and LR.
There are various hybrid functionals that are distinguished by
their inverse screening length or range separation ω: PBE0
(ω = 0), HSE06 (ω = 0.2 Å−1), HSE03 (ω = 0.3 Å−1). The
parameter a specifies the share of SR Hartree-Fock exchange
included. It is typically set to 0.25.

Because of the inclusion of a part of the exact nonlocal ex-
change, nonlocal exchange effects are considered explicitly in
hybrid functionals. Hartree-Fock exchange is unscreened. The
mixing of the nonlocal Hartree-Fock exchange with the local
PBE exchange-correlation amounts to an effective screening
of the nonlocal exchange by the local exchange-correlation
[36], leading to a very good agreement with experiment for the
electronic structure of semiconductors. Due to this artificial
screening, the HSE approach can be seen as an approxi-
mation to the GW approach (Chap. 9.2 of Ref. [11]). GW
includes the dynamically screened exchange W in a physically
correct way.

In our work, we first estimated the prediction power of
the standard HSE06 (a = 0.25) potential by calculating the
effective masses and comparing them to experimental data.
Then, we fitted a for each material to reproduce the exper-
imental band gap with less than 2% error. This allowed us
to directly compare HSE and TB-mBJ effective masses with
the goal of analyzing nonlocal effects on the optical matrix
element. Effects of different values for the range separation
(i.e., by using PBE0 and HSE03 functionals) are discussed in
the results section. To exclude the nonlocal exchange potential
during the optical matrix element calculation, we switched
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to the PBE potential during the optical calculations while
using HSE wave functions (see Supplemental Material [84]
for the detailed workflow). As an alternative to using the PBE
potential, HSE calculations can be performed with the fraction
of the exact HF exchange set to zero for this step. The effective
masses obtained from the two methods are identical with a
difference of less than 1%. From this we conclude that the
imperfect model PBE exchange hole in HSE does not affect
our results.

C. Computational details

Density functional calculations were performed with the
Vienna ab initio simulation package [37,38] (VASP), which
uses projector-augmented waves [39] as a basis set, imple-
mented by Kresse and Joubert [40]. The plane wave cutoffs
were taken from the values recommended in the pseudopo-
tentials distributed with VASP. The number of valence and
semicore electrons included for each element was chosen
according to the values recommended by the Materials Project
database [41]. For molybdenum and tungsten we included
additional semicore states (14 valence and semicore electrons
in total). The Brillouin zone was sampled with 
-centered k
grids. Table S1 of the Supplemental Material [84] lists the k
grids used for each material.

Experimental lattice parameters were used for all bulk sys-
tems, allowing only atomic positions to relax using the PBE
functional with a force convergence criterium of 0.001 eV/Å.
Experimental structure data were obtained from Wyckoff [42]
unless otherwise specified in Table I. The monolayers were
obtained by theoretical exfoliation from the corresponding
bulk material. To avoid interactions between periodic images
of a monolayer, we included more than 25 Å of vacuum in
the out-of-plane direction. Subsequently, the monolayers were
fully relaxed on the PBE level.

All systems were treated as nonmagnetic. Spin-orbit
coupling was included in all calculations. Additional system-
dependent calculation parameters are recorded in Table S1 of
the Supplemental Material [84]. Table S1 lists the experimen-
tal band gaps (Refs. [43–49]) that were used to fit the HSE and
TB-mBJ band gaps, the fitting parameters, and the number
of bands included in the optical calculations. We performed
optical calculations in VASP to compute the transition matrix
elements. In VASP, the longitudinal gauge [see Eq. (2)] is
implemented for the calculation of the transition matrix ele-
ments [27]. In this gauge, nonlocal potentials are evaluated
correctly.

Effective masses were calculated with the mstar code [17]
which uses a perturbation theory approach based on Eq. (1)
and its extension for degenerate states. The perturbation ap-
proach includes a sum over all bands and therefore many
empty bands have to be included for accurate effective mass
calculations. This is especially true for heavy effective masses
and band edges that interact with high-energy orbitals. For
the optical calculations, we included empty bands of up to
7 Ry (96 eV) above the Fermi level to ensure an accurate
calculation of the effective mass. 7 Ry suffices for most ma-
terials but not for all, as we will discuss later. In contrast to
Fourier expansion methods for calculating effective masses
(as implemented in the BoltzTraP code [50]), the perturbation

approach does not require a dense k grid to accurately capture
light effective masses.

D. Statistics

For the statistical analysis, we determined the mean er-
ror (ME), mean absolute error (MAE), mean relative error
(MRE), and the mean absolute relative error (MARE) of the
computational effective masses with respect to experimental
values. The standard deviation of the error (STDE) and the
relative error (STDRE) were also calculated. For benchmark-
ing our dataset with regard to prediction power of effective
masses, we plotted the calculated effective masses over the
experimental effective masses on a log-log scale. We calcu-
lated the linear regression, holding the slope constant at unity.
From the intercept of the linear regression, we obtained the
scaling factor between calculated effective masses and exper-
iment. Only materials for which data for all functionals were
collected were included in the statistical analysis. Errors with
a z score of more than 3.5 were treated as outliers.

IV. RESULTS AND DISCUSSION

Table I shows the results for 60 effective masses of 14 bulk
and 4 monolayer materials obtained with the PBE, HSE06,
and TB-mBJ exchange-correlation potentials. To keep with
the convention, the sign of the valence band effective masses
is inverted; that is, a valence band curving downward yields
a positive effective mass. Negative values denote an upward-
bent valence band or a downward-bent conduction band.

A. Accuracy of the method

First, we establish the accuracy of our method. We compare
the perturbation theory results at the PBE level with band cur-
vature fits for which the band of interest was fitted in an energy
window of 25 meV (the thermal energy at room temperature)
with a fourth-order polynomial and extracted the second-order
coefficient. For GaAs we compared mn, mp,hh, mp,lh, and mp,so

and found that perturbation theory results agreed within an
error of 1% with the band curvature fit. For Si, mp,hh, mp,lh,
and mp,so agreed within 2.5% error. For 1L MoS2 at the K
point the band curvature yields an effective mass which is 15%
smaller than the perturbation theory result. The conduction
band effective mass from the band curvature is 7% larger than
the perturbation theory result.

For some monolayer effective masses at 
 (Table I), reli-
able PBE-derived effective masses could not be obtained with
perturbation theory as the result differed by more than 30%
from the band curvature fit. For effective masses at the K
point, the errors with respect to the band curvature were in
the range of 5%–16% which is significantly larger than for sp
semiconductors. This is due to challenges with representing
d states using perturbation theory with DFT pseudopoten-
tials. All monolayers considered in our study are transition
metal dichalcogenides for which the band edges are composed
mainly of the d orbitals of the transition metal. When it
comes to the prediction of d states, many high-energy bands
are required to converge the perturbation sum. Two factors
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TABLE I. Calculated and experimental effective masses m∗ (m0). mn denote effective masses of the conduction band, mp effective masses
of the valence band. hh, lh, and so stand for heavy hole, light hole, and split-off band, respectively. Locations and directions in the Brillouin
zone are indicated. The space group number of each material is given in parentheses.

Experiment PBE HSE06 TB-mBJ

Si (227) mn,⊥ (CBM) 0.191 0.193 0.186 0.213
mn,‖ (CBM) 0.916 0.943 0.914 0.944
mp,hh (
) [100] 0.46 [68] 0.267 0.259 0.324
mp,lh (
) [100] 0.171 [68] 0.193 0.189 0.229
mp,so (
) 0.262 0.230 0.224 0.274

GaAs (216) mn (
) 0.066 0.028 0.062 0.091
mn,⊥ (X6) 0.23 0.233 0.223 0.255
mn,‖ (X6) †a 1.3 −0.534 −0.812 −0.293
mn,⊥ (L6) 0.075 0.102 0.110 0.134
mn,‖ (L6) 1.9 1.66 1.66 1.72
mp,hh (
) [100] 0.395 0.324 0.309 0.379
mp,lh (
) [100] 0.09 0.034 0.077 0.114
mp,so (
) 0.16 0.107 0.157 0.212

GaN (186) mn,‖ (
) 0.2 0.158 0.183 0.216
mn,⊥ (
) 0.2 0.175 0.202 0.239

InP (216) mn (
) 0.079 0.054 0.086 0.123
mp,hh (
) [100] 0.565 0.469 0.421 0.543
mp,lh (
) [100] 0.12 0.073 0.114 0.164
mp,so (
) 0.21 [69] 0.142 0.189 0.259

CdS (186) mn,⊥ (
, A exciton) 0.192 0.133 0.174 0.261
mn,‖ (
, A exciton) 0.168 0.123 0.159 0.236
mp,⊥ (
, A exciton) 0.675 0.245 0.299 0.469
mp,‖ (
, A exciton) †a 5 2.30 1.73 2.50

CdTe (216) mn (
) 0.093 0.051 0.90 0.141
mp,lh [100] (
) 0.13 0.058 0.104 0.165
mp,hh [100] (
) 0.72 0.431 0.403 0.507

PbS (225) mn,⊥ (L) 0.08 0.013 0.096 0.131
mn,‖ (L) 0.105 0.011 0.135 0.221
mp,⊥ (L) 0.075 0.013 0.084 0.114
mp,‖ (L) 0.105 0.011 0.148 0.249

PbSe (225) mn,⊥ (L) 0.04 0.057 0.055 0.075
mn,‖ (L) 0.07 0.061 0.114 0.184
mp,⊥ (L) 0.034 0.058 0.054 0.071
mp,‖ (L) 0.068 0.064 0.124 0.203

PbTe (225) mn,⊥ (L) 0.022 0.003 0.031 0.033
mn,‖ (L) 0.215 0.047 0.265 0.316
mn,⊥ (L) 0.023 0.003 0.034 0.035
mp,‖ (L) 0.273 0.050 0.329 0.410

SiC (216) mn,‖ (X) 0.662 0.652 0.613 0.665
mn,⊥ (X) 0.244 0.225 0.218 0.251
mp (
) [100] 0.45b 0.603 0.523 0.620

BN [70] (194) mp (K̄, 
̄-K̄ direction) †a 0.49 [71] 0.971 0.805 1.196

bP (64) mn (Y) [010] 1.027 [72] 1.15 1.16
mn (Y) [001] 0.128 [72] 0.122 0.138
mn (Y) [100] 0.083 [72] 0.056 0.042
mp (Y) [010] 0.648 [72] 0.668 0.809
mp (Y) [001] 0.28 [72] 0.276 0.319
mp (Y) [100] 0.076 [72] 0.053 0.041

MoS2 [73] (194) mp (
̄, 
̄-K̄ direction) 0.67 [74] 0.775c 0.649 0.873
WS2 (194) mp (K̄, 
̄-K̄ direction) 0.35 [75] 0.354d 0.300 0.372

mp,VB−1 (K̄, 
̄-K̄ direction) 0.43 [75] 0.495e 0.431 0.536

1L MoS2 mp (
, 
-K direction) 2.2 [74,76] −f 3.08g

mp (K, 
-K direction) 0.52 [76,77] 0.603h 0.488i

mn (K) 0.69 [77,78] 0.402j 0.342k
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TABLE I. (Continued.)

Experiment PBE HSE06 TB-mBJ

1L MoSe2 mp (K, 
-K direction) 0.66 [62,79,80] 0.672l 0.536
mn (K) 0.8 [81] 0.468m 0.393

1L WS2 mp (
̄, 
̄-K̄ direction) 1.55 [82] −n 1.91
mp (K̄, 
̄-K̄ direction) 0.425 [82,83] 0.358o 0.305
mp,so (K̄, 
̄-K̄ direction) 0.6 [82,83] 0.517p 0.447

1L WSe2 mp (
, 
-K direction) 4.2 [80] −q 2.28

aexcluded from the statistical analysis.
bspecifics of the valence band and direction of the experimentally obtained effective mass are unclear.
cPerturbation theory (PT) result has an error of 14% with respect to the band curvature fit.
dPT result has an error of 5% with respect to the band curvature fit.
ePT result has an error of 7% with respect to the band curvature fit.
fConverged PT result could not be obtained. The band curvature fit gives an effective mass of 3.73m0.
gPerturbation theory result has an error of 13% with respect to the band curvature fit.
hPT result has an error of 15% with respect to the band curvature fit.
iPT result has an error of 10% with respect to the band curvature fit.
jPT result has an error of 7% with respect to the band curvature fit.
kPT result has an error of 8% with respect to the band curvature fit.
lPT result has an error of 16% with respect to the band curvature fit.
mPT result has an error of 8% with respect to the band curvature fit.
nConverged PT result could not be obtained. The band curvature fit gives an effective mass of 2.93m0.
oPT result has an error of 5% with respect to the band curvature fit.
pPT has an error of 8% with respect to the band curvature fit.
qConverged PT result could not be obtained. The band curvature fit gives an effective mass of 4.46m0.

are important, the number of bands and the energy of the
bands. First, the results have to be converged carefully with
respect to the number of bands included. The need to sum
over many empty states in the perturbative expansion can
elegantly be overcome with the Sternheimer approach [51].
Second, we have to determine the limits of the pseudopotential
for predicting high-energy states accurately. Many pseudopo-
tentials represent coupling to high-energy states incorrectly.
It is possible to address this issue by including high-energy
local orbitals (HELOs) to augment the basis set. This feature
available in the WIEN2k code [52,53] was shown to improve
effective masses derived from the perturbative expansion
[17]. Details about converging perturbation theory calcula-
tions for materials with d states can be found in Sec. B of
the Supplemental Material [84] (Refs. [54–58] are cited
therein).

Previous effective mass calculations at the PBE level
agree well with our results. For example, for the con-
duction band effective masses of silicon, our results agree
well with the ones obtained by Zhong et al. [59] and Yu
et al. [60] (in parentheses), respectively: mn,‖ = 0.943 (0.950;
0.95) and mn,⊥ = 0.193 (0.197; 0.19) (all effective masses
in units of m0). For GaAs, our values agree well with the
results reported by Kim et al. [8] (in parentheses): mp,so =
0.107 (0.108), mp,lh = 0.034 (0.036), mp,hh = 0.324 (0.320),
and mn = 0.028 (0.030). For monolayer MoS2 our data at the
K point show satisfactory agreement with the results of Wang
et al. [61], Kormányos et al. [62], and Wang et al. [63] (in
parentheses), respectively: mp(K) = 0.603 (0.59; 0.56; 0.54),
mn(K) = 0.402 (0.5; 0.47; 0.47). Overall, our perturbation
theory results are accurate with respect to band curvature fits
and agree very well with previously published data, especially
for sp semiconductors.

B. Statistical analysis

Monolayer materials and black phosphorus were excluded
from the statistical analysis due to incomplete effective mass
data as explained below. Furthermore, the following effective
masses were excluded from the statistical analysis as outliers
with a z score above 3.5: GaAs mn,‖ (X6), CdS mp,‖ (
, A
exciton), and BN mp (K̄). The outliers are marked with † in
Table I. In total, 42 effective masses of 12 materials were
included in the statistical analysis.

For the statistical analysis of the dataset, we included only
materials for which effective masses were obtained with all
three functionals. In spite of being very effective for most
solids, the TB-mBJ potential (as well as its local version
[64] designed for materials with vacuum) was unable to open
the band gap beyond PBE for monolayers of MoS2, MoSe2,
WS2, and WSe2 as also noted by Patra et al. [65] and further
explained by Tran et al. [66]. As a result, we did not calculate
masses in monolayers with TB-mBJ and excluded them from
the statistical analysis. Black phosphorus was also excluded
because representative effective masses could not be obtained
with the PBE functional. At the PBE level, the conduction
band of black phosphorus is lower in energy than the valence
band, leading to a metallic ground state with band inversion
and band mixing around the band edges. This causes effective
masses of inverted sign and magnitude in two directions. A
proper band order is restored at a higher level of theory (HSE,
TB-mBJ).

C. Benchmarking the prediction power of PBE, TB-mBJ, and
HSE06 with the mstar60 dataset

Now we turn to benchmarking the PBE, TB-mBJ, and
HSE06 functionals with the mstar60 dataset.
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(a) (b) (c)

FIG. 1. Experimental effective masses versus calculated effective masses plotted for data entries of the mstar60 dataset included in the
statistical analysis. (a) PBE, (b) TB-mBJ, (c) HSE06. The line and coefficient obtained from linear regression are also shown. HSE06 results
show the best agreement with experiment with a coefficient of 0.99 ± 0.04 between experimental and HSE06 effective masses. Colors represent
the main contribution to the orbital composition of the band: s orbitals (red), p orbitals (black), and d orbitals (blue).

Figure 1 shows experimental effective masses versus cal-
culated effective masses obtained with PBE, TB-mBJ, and
HSE06. The colors represent the main contribution to the
orbital composition of the band. The figure also shows the lin-
ear regression fits and the scaling factors derived from them.
The linear regression includes all data entries of the mstar60
dataset included in the statistical analysis. The scaling factor
is the coefficient of the experimental and calculated effective
masses and thus gives an estimate of the effective mass pre-
diction power of a particular functional. The effective mass
ratio of Exp./PBE is 1.70 ± 0.20. The ratios of Exp./TB-mBJ
and Exp./HSE06 are 0.76 ± 0.04 and 0.99 ± 0.04, respec-
tively. Comparing the ratios, we see that HSE06 has the
best prediction power, followed by TB-mBJ. Thus, if only
limited computational resources are available, experimental
masses can be estimated by multiplying TB-mBJ masses by a
factor of 0.76.

The superiority of the hybrid functional is also seen in
the summary statistics. Table II shows the summary statistics
for the mstar60 dataset. Effective masses calculated with the
TB-mBJ potential show the largest errors, with a mean abso-
lute relative error of 45% and a mean relative error of 39%.
The positive values of mean error and mean relative error
suggest that effective masses are in many cases overestimated.
This is also reflected in the Exp./TB-mBJ effective mass
coefficient being smaller than 1. Effective masses calculated

with the PBE functional also show large errors, with a mean
absolute relative error of 38% and a mean relative error of
−27%. The negative values of mean error and mean relative
error suggest that effective masses are in many cases under-
estimated. However, the scattering of the error is large as
indicated by the standard deviation of the relative error of
40%. Effective masses calculated with the HSE06 functional
show the best agreement with experiment with a mean abso-
lute relative error of 21% which is about half that of masses
obtained with the PBE and TB-mBJ functionals. The mean
relative error of 5.1% is much smaller than the mean absolute
relative error for HSE06 which shows that there is no clear
trend for over- or underestimation of the effective mass using
HSE06.

The main conclusion of the benchmarking of the PBE,
TB-mBJ, and HSE06 exchange-correlation potentials is that
HSE06 gives by far the best agreement with experimen-
tal effective masses. On the other hand, PBE often yields
lighter effective masses, while TB-mBJ generally overesti-
mates them. These trends are in agreement with the results
of Kim et al. [8].

D. Analysis of nonlocal effects

Having confirmed that HSE06 gives the best results, our
objective is to comprehend with greater clarity the properties

TABLE II. Summary statistics for the error in the calculated effective mass for the bulk materials of the mstar60 dataset. The statistics are
based on 42 effective masses of 12 materials. In the right columns, summary statistics of tuned functionals to reproduce experimental band
gaps (BG fit) are given.

TB-mBJ HSE06 HSE06 V NL
x off

PBE TB-mBJ HSE06 BG fit BG fit BG fit

ME (m0) −0.054 0.033 −0.028 0.012 −0.035 0.034
MAE (m0) 0.075 0.07 0.052 0.055 0.044 0.066
STDE (m0) 0.100 0.087 0.095 0.087 0.090 0.100
MRE (%) −27 39 5.1 15 −4.9 22
MARE (%) 38 45 21 21 11 26
STDRE (%) 40 49 29 21 16 22
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that make hybrid functionals so successful in reproducing
experimental effective masses. As stated earlier, the main
difference of the hybrid functionals with respect to semilocal
functionals is the addition of a nonlocal component via the
introduction of a fraction of HF exchange. Effective masses
are influenced by the nonlocal component in two ways: First,
by adding nonlocal exchange, the band gap opens up, which
increases the effective mass. Second, nonlocal effects influ-
ence the optical transition matrix elements pln. The opening
of the band gap can be reproduced with the TB-mBJ potential,
but the errors in the effective masses are still much higher
than with HSE. The larger errors with the TB-mBJ potential
despite the band gap correction suggest that the optical tran-
sition matrix element is the key to accurate effective masses
with hybrid functionals.

Therefore, we want to investigate how the calculation of
the optical matrix element is affected by the nonlocal ex-
change potential V NL

x present in hybrid functionals. For that,
we need to control the other factor, which is the size of the
band gap. We fitted the HSE06 and TB-mBJ functionals for
each material to reproduce the experimental band gap with
less than 2% error. This allowed us to directly compare HSE
and TB-mBJ effective masses and optical matrix elements.
Overtuned functionals can lead to qualitatively incorrect band
structures in some cases. To test for this error, we plotted
the band structures of several materials, including indirect-
gap materials and monolayer 2D materials which needed the
largest tuning to reproduce the quasiparticle gap. We found
that the tuning of the functionals did not affect the quality
of the band structures. Caution must be exercised for bands
close in energy (on the order of 10 meV) as we found that the
tuning may cause a change of band ordering in some cases
(e.g., the conduction band minimum of WS2 monolayer). The
band ordering (spin up/down) was not crucial for our results
and thus did not affect them.

Table II lists the summary statistics for the fitted function-
als next to the standard functionals (the individual effective
mass data of the fitted functionals are given in Table S3 of
the Supplemental Material [84]). The gap fitting consider-
ably improves the accuracy of the TB-mBJ derived masses,
reducing by half the relative error and its standard deviation
as well as the mean relative error. For the HSE06 functional,
the magnitude of several errors is also reduced, most notably
the mean absolute relative error which is reduced by half.
Still, after correcting for band gap effects, the relative errors
of effective masses obtained with the HSE06 functional are
significantly smaller than that of TB-mBJ.

In order to get an idea about the effect of the nonlocal
exchange potential V NL

x on the optical matrix element, it is
instructive to switch off the nonlocal exchange contributions
in the optical calculation step. We achieve this by switching to
the PBE potential when calculating the matrix elements while
using HSE wave functions. As an alternative to using the PBE
potential, the fraction of the exact HF exchange can be set to
zero in this step. The effective masses obtained are identical
with a difference of less than 1%. As a result of switching
functionals, HSE eigenfunctions and band gaps are conserved
and only the matrix element is calculated without nonlocal
exchange effects. This allows us to decouple the band gap
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FIG. 2. Effective mass of the conduction band of GaAs at 


versus the band gap for different settings of the exchange-correlation
functional. There is a linear relationship between the effective mass
and the band gap for all exchange-correlation functionals that do not
include nonlocal exchange. Effective masses obtained from hybrid
functionals considering nonlocal exchange deviate from that linear
relationship. Only upon including nonlocal exchange both the exper-
imental band gap and experimental effective mass can be reproduced
correctly in the calculation. Lines are a guide to the eye.

increase and the matrix element change that are both caused
by the nonlocal exchange.

Switching off the nonlocal exchange contributions to the
matrix elements leads to a systematic overestimation of the
effective masses (see Table II; individual effective masses are
given in Table S3 of the Supplemental Material [84]). With
respect to the full HSE06 calculations, the error is on average
30% when nonlocal effects are neglected in the calculation of
the matrix element. This must be a consequence of the abso-
lute matrix element being smaller when calculated without the
nonlocal exchange potential.

To discuss the nonlocal exchange contribution to the ef-
fective mass in more detail, we now consider the example of
the conduction band effective mass mn of GaAs at 
. Often,
interactions between many bands influence effective masses
and these effects are difficult to trace. The conduction band of
GaAs, however, is nondegenerate and at the Gamma point its
interactions with other bands are well confined. Contributions
to the effective mass are almost entirely determined by in-
teractions between the conduction band and the three highest
valence bands. This makes mn of GaAs at 
 a simple system
and an excellent example to understand the principle behind
the nonlocal exchange effect.

Figure 2 shows the effective mass of the conduction band
of GaAs at 
 versus the band gap for different settings of the
exchange-correlation functional. For this graph, the electron
effective mass was approximated as

m0

m∗
n

≈ 1 + 2

m0

∑
v

|pcv|2
Ec − Ev

, (6)
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where the c and v indices stand for the conduction band and
valence bands, respectively. In GaAs, the effective mass of
the conduction band at the 
 point is isotropic and therefore
the matrix element contribution can be expressed as 2|pcv|2.
In the sum, we included the heavy-hole, light-hole, and split-
off bands as valence bands. As not all bands are included in
the sum, this is an approximation. The matrix elements are
calculated in the length gauge using VASP.

In Fig. 2 we observe a linear relationship between the
effective mass and the band gap for all XC functionals that do
not include nonlocal exchange. This is a consequence of the
fact that

∑ |pcv|2 changes very little, and thus the change in
effective mass depends only on the change of the band gap. Ef-
fective masses obtained from hybrid functionals considering
nonlocal exchange deviate from that linear relationship. They
lie on a curved line that is given as a guide to the eye. We also
included data obtained with hybrid functionals with different
screening lengths (HSE03 and PBE0) in Fig. 2. We find, that
these datapoints, too, fall onto the curved line, suggesting
a consistent relationship between the optical matrix element∑ |pcv|2 and the band gap size.

Only upon including nonlocal exchange both the exper-
imental band gap and experimental effective mass can be
reproduced correctly in the calculation. Figure 2 thus shows
the importance of including the nonlocal exchange on the HSE
level for calculating accurate matrix elements and thus ac-
curate effective masses when employing perturbation theory.
The same matrix elements are also used in the calculation of
dielectric properties, which explains the superior accuracy of
HSE for the high-frequency dielectric constant of semicon-
ductors and small-gap insulators [30].

The deviation from the linear relationship indicates that∑ |pcv|2 changes when the nonlocal exchange potential V NL
x

is included in the calculation of the matrix element. Thus,
the matrix element is the key parameter we need to consider
whether we want to explain the superior accuracy of HSE
effective masses, especially compared to TB-mBJ results.

Figure 3 shows the sum of the squared matrix elements∑ |pcv|2 that enter into Eq. (6) versus the band gap for dif-
ferent settings of the exchange-correlation functional for the
conduction band effective mass of GaAs at 
. Again, the sum
displayed on the vertical axis includes contributions from the
transitions between the conduction band and the heavy-hole,
light-hole, and split-off valence bands.

∑ |pcv|2 is around
0.6 atomic units for all XC functionals that do not include
nonlocal effects, irrespective of the band gap. We included
data obtained with the all-electron DFT code WIEN2k [52,53]
at the PBE level to ensure accuracy of pseudopotential cal-
culations. We also calculated the matrix elements from the
semilocal SCAN [67] functional, which gives the same matrix
element as TB-mBJ and PBE in spite of the band gap being
intermediate between PBE and TB-mBJ. When the nonlocal
exchange potential V NL

x is considered in the calculation of
the matrix element,

∑ |pcv|2 increases with increasing HF
proportion and increasing the band gap. The change of the
sum

∑ |pcv|2 is the key that leads to the deviation of full
HSE results from the linear pattern of Fig. 2. Interestingly,
the increase of

∑ |pcv|2 is strictly proportional to the increase
of the HF percentage included in the functional.
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HSE06 0.1, 0.2, 0.25, 0.306, 0.4, 0.5, 0.6, 0.7HF
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FIG. 3. Sum of the squared matrix element |pcv|2 [see Eq. (6)]
versus the band gap for different settings of the exchange-correlation
potential for the conduction band effective mass of GaAs at 
.∑ |pcv|2 includes contributions from the transitions between the
conduction band and the heavy-hole, light-hole, and split-off valence
bands.

∑ |pcv|2 is roughly a constant for all exchange-correlation
functionals that do not include nonlocal exchange, irrespective of the
band gap. When the nonlocal exchange is considered via the V NL

x

term in the calculation of the matrix element, the sum increases with
increasing HF proportion and increasing band gap. This graph shows
the importance of including the nonlocal exchange at the HSE level
for calculating accurate optical matrix elements.

Having analyzed the effect of the nonlocal exchange on
the transition matrix element, we can interpret the gen-
eral trends observed for effective masses in Fig. 1 and the
summary statistics of Table II. Starting with TB-mBJ cal-
culated effective masses, the clear trend for overestimation
comes from the too-small absolute matrix elements. This is
the same for HSE effective masses for which V NL

x was ne-
glected in the calculation of the matrix element. On the other
hand, for PBE calculated effective masses, no clear trend is
apparent. For some PBE effective masses, e.g., Si mn,⊥ and
mn,‖, the agreement with experiment is surprisingly good.
This is because the PBE band gap does not reproduce the
experimental band gap correctly. As a result, errors in the
effective mass due to an underestimated band gap and due
to the underestimated matrix elements partially cancel out.
This error cancellation is not systematic as seen by the high
standard deviation of the relative error. Therefore, no clear
trend for the error of PBE effective masses can be found.

Transitions between bands with highly localized states
(often d states) are more affected by the exclusion of the
nonlocal potential [28]. Therefore, it is reasonable to test
whether the error of the effective mass correlates with the
orbital composition of the band of interest. To visualize that,
we plotted the effective masses in Fig. 1 where the color
indicates the dominant orbital type. We can conclude that the
prediction power of the functionals benchmarked in this study
is not sensitive to the orbital composition of electronic states
for which the effective mass was evaluated.
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Finally, we look at the experimental effective masses for
the transition metal dichalcogenide monolayers recorded in
Table I. We observe that the bulk MoS2 hole effective mass
at 
 is much lighter than the 1L MoS2 effective mass. To
explain this effective mass renormalization, we can consider
two factors [drawing on Eq. (1)]: the band gap change and the
change of the matrix element. The band gap at 
 opens up
from 2.08 eV in the bulk to 2.84 eV in the monolayer MoS2 at
the PBE level. Looking into the matrix elements, we observe
that the coupling of the lower-lying conduction bands with the
valence band at 
 contributes significantly to the band disper-
sion. Thus, an increase of the band gap affects the strength
of the contribution of these interactions to the band curvature.
However, the band gap renormalization accounts for only less
than half of the effective mass renormalization. This means
that also the matrix elements themselves change: In 1L MoS2

the sum of these matrix elements is only about half of that in
bulk MoS2. In other words, the oscillator strength between the
valence band (VB) at 
 and the lower-lying conduction bands
is much weaker in the monolayer than in the bulk. As a result,
the band dispersion of the VB at 
 is flatter in 1L MoS2 and
the effective mass is larger.

V. CONCLUSION

In conclusion, we benchmarked the performance of three
exchange-correlation potentials for the calculation of effective
masses. Our results show that the hybrid HSE06 functional
yields by far the most accurate effective masses with re-
spect to experiment, followed by the TB-mBJ functional. We
found the following ratios between experimental and calcu-
lated effective masses: 1.70 ± 0.20 for PBE, 0.76 ± 0.04 for
TB-mBJ, and 0.99 ± 0.04 for HSE06.

We investigated the reasons behind the superior accuracy
of hybrid functionals in the calculation of effective masses.
After excluding band gap effects by using fitted functionals,

we focused on the impact of the nonlocal potential on the
calculation of the optical matrix element. We show that the
nonlocal exchange in HSE06 enlarges the sum of the tran-
sition matrix elements which proves to be the key to the
superior accuracy in the calculation of effective masses. The
omission of the commutator between the nonlocal XC poten-
tials and position when calculating optical matrix elements
in HSE06 leads to serious errors (about 30% underestimated
p2

cv). For the semilocal PBE functional, the errors introduced
by the band gap and the transition matrix elements partially
cancel out for the calculation of effective masses. For the
TB-mBJ functional, PBE-like underestimated matrix ele-
ments paired with nearly experimental band gaps lead to a
consistent overestimation of effective masses. Finally, we dis-
cussed at the example of transition metal dichalcogenide bulk
and monolayer materials that changes in the matrix elements
are important in understanding the layer-dependent effective
mass renormalization. In this, our analysis goes beyond the
standard discussion that focuses on the interband energy dif-
ference. Our results show that changes in the matrix elements
may not be ignored in the discussion of effective mass renor-
malization effects.
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