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The optical properties of monocrystalline, intrinsic silicon are of interest for technological applications as
well as fundamental studies of atom-surface interactions. For an enhanced understanding, it is of great interest to
explore analytic models which are able to fit the experimentally determined dielectric function ε(T�, ω), over a
wide range of frequencies and a wide range of the temperature parameter T� = (T − T0 )/T0, where T0 = 293 K
represents room temperature. Here, we find that a convenient functional form for the fitting of the dielectric
function of silicon involves a Lorentz-Dirac curve with a complex, frequency-dependent amplitude parameter,
which describes radiation reaction. We apply this functional form to the expression [ε(T�, ω) − 1]/[ε(T�, ω) +
2], inspired by the Clausius-Mossotti relation. With a very limited set of fitting parameters, we are able to
represent, to excellent accuracy, experimental data in the (angular) frequency range 0 < ω < 0.16 a.u. and 0 <

T� < 2.83, corresponding to the temperature range 293 K < T < 1123 K. Using our approach, we evaluate the
short-range C3 and the long-range C4 coefficients for the interaction of helium atoms with the silicon surface.
In order to validate our results, we compare to a separate temperature-dependent direct fit of ε(T�, ω) to the
Lorentz-Dirac model.
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I. INTRODUCTION

Because of its enormous technological importance, the
optical properties of monocrystalline, undoped silicon, some-
times referred to as intrinsic silicon, have been investigated in
great detail over the past decades [1–25]. The determination
of an appropriate analytic model for the frequency-dependent,
and temperature-dependent, dielectric function also is of
prime interest, especially because it may give insight into
the physical mechanism that generates the response of the
medium [21,22]. In general, it is of obvious interest to find
a satisfactory representation of the available data for the di-
electric function of silicon, using the most simple analytic
functional form possible. The aims of our paper are as follows:
(i) We explore the applicability of simple functional forms,
which we refer to as the Clausius-Mossotti and Lorentz-Dirac
models (which include radiation reaction damping terms) for
the frequency- and temperature-dependent dielectric function
of silicon. (ii) We aim to describe the temperature dependence
of the dielectric function of intrinsic silicon, using an effi-
cient model, i.e., using a small number of fitting parameters.
Finally, (iii) we aim to demonstrate the applicability of the
functional forms of the temperature- and frequency-dependent
dielectric function for the calculation of a practically impor-
tant quantity, namely, the short-range (C3) and long-range (C4)
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coefficients of the atom-surface interaction for a few simple
atomic systems interacting with intrinsic silicon.

We have carefully examined available data sets for the
real and imaginary parts of the dielectric function of silicon
and base our investigations on Refs. [13,14,19,20,23] (see
also a pertinent comprehensive discussion in Appendix A
1). For these data sets, which cover the temperature range
293 K < T < 1123 K, we attempt to find a uniform, simple,
temperature-dependent analytic model for the dielectric func-
tion of monocrystalline (intrinsic) silicon. Our motivation is
twofold. First, such an analytic model could be of interest
for practical applications, and second, the most appropriate
functional form for the description of the dielectric function
might otherwise give insight into the physical mechanism
underlying the optical response of the medium. In Ref. [21],
it is pointed out that a two-resonance analytic model of the
Lorentz-Dirac (LD) type can successfully describe the experi-
mental data for the Si dielectric function over wide frequency
ranges. A physical interpretation and justification for the func-
tional form used in Ref. [21] is given in Refs. [22,25]. This
justification [21,22,25] is based on the so-called Lorentz-
Dirac force (see Sec. 8.6.2 of Ref. [26] and Appendix A 2).
A second fitting method, which we also apply here, tries to
augment the Lorentz-Dirac approach using a functional form
inspired by the Clausius-Mossotti (CM) relation. The aim of
the latter approach is to take into account the local-field effect
inside the crystal. The dual fitting method has been used in
Ref. [27] where it has been shown that the Lorentz-Dirac
and Clausius-Mossotti functional forms (without the radiation
reaction term) can be mapped onto each other on the basis
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of a simple resonance frequency shift detailed in Eq. (12) of
Ref. [27]. (We note that the Clausius-Mossotti functional form
is referred to as the Lorentz-Lorenz formula in Ref. [27].)
Here, we aim to explore if similar conclusions can be drawn
when the model is augmented by a radiation reaction term in
the numerator of the resonance functional forms, and in an
application to the dielectric function of a real material rather
than a model problem. A further motivation for our study
comes from the fact that a number of density-functional theory
(DFT) and Bethe-Salpeter based approaches [28–33], time-
dependent density-functional theory (TDDFT) [29–31,33], as
well as QED-TDDFT frameworks [34–37] suggest that the ex-
citonic mechanism governing the dielectric function of silicon
supports a functional form of the type explored here.

In order to ramify the motivation for our investigations,
let us mention two additional aspects originating in funda-
mental physics. The first is the potential use of silicon in
gravitational wave detection experiments, where an accurate
understanding of the optical properties is crucial to gauge
the achievable interferometric contrast [24]. The second is
the use of monocrystalline silicon as a substrate for atom-
surface studies, notably, at the Heidelberg Spin-Echo Atomic
Beam Apparatus (see Refs. [38–40]). We here evaluate the
temperature dependence of the Casimir coefficients C3 (short-
range) and C4 (long-range), which represent the asymptotics
of the atom-surface interaction energy, for helium (and other)
atoms interacting with monocrystalline silicon. Helium has
been of prime experimental interest and takes a very special
role in atom-surface studies [41–44], and we devote special
attention to the helium system here. Details of other atoms
are relegated to Ref. [45]. We can anticipate that our two
fitting methods lead to consistent numerical results for the
short-range C3, and long-range C4 coefficients.

The paper is organized as follows. In Sec. II, we discuss the
fitting of the dielectric function of intrinsic silicon to conve-
nient functional forms. Specifically, in Sec. II A, a functional
form (a “master function”) is indicated which will be used for
our fitting in the following. (The physical justification of the
“master function” is discussed on the basis of the Lorentz-
Dirac equation.) In Sec. II B, we discuss an approach to the
fitting of the temperature-dependent dielectric function of sil-
icon, which we refer to as the Clausius-Mossotti approach.
This approach is based on the comparison of a specific ratio
involving the dielectric function, to a generalized Lorentz-
Dirac functional form, with complex oscillator strengths. The
latter functional form constitutes our “master function.” In
Sec. II C, we discuss, for comparison, an alternative approach
to the description of the temperature-dependent dielectric
function based on the Lorentz-Dirac approach. In Sec. III, we
perform the evaluation of the coefficients C3 and C4 for helium
interacting with silicon. Conclusions are presented in Sec. IV.
SI MKSA units are used throughout the paper.

II. DIELECTRIC FUNCTION OF SILICON

A. Lorentz-Dirac and master function

In Refs. [21,22,25], the authors advocate to fit experimental
data for the dielectric function of a reference material via a
functional form of the Lorentz-Dirac type, which is essentially

equal to the Sellmeier form [46], but with a complex am-
plitude parameter (which could be understood as a complex
oscillator strength), which takes the radiation reaction into
account. Details of the derivation of the functional form have
been discussed at length in the literature, and they are recalled
for the convenience of the reader in Appendix A 2 where
we lay special emphasis on the sign of the imaginary part of
the numerator term. As a result of these considerations, we
are motivated to define the functional form f (T�, ω), which
we refer to as the Lorentz-Dirac master function, as follows:

f (T�, ω) =
kmax∑
k=1

ak
(
ω2

k − iγ ′
kω

)
ω2

k − ω2 − iωγk
, (1)

with the dimensionless temperature parameter

T� = T − T0

T0
, (2)

where T0 = 293 K. In Eq. (1), the resonance energies ωk , the
radiation reaction damping constants γ ′

k and level widths γk ,
and the amplitudes ak all depend on T�. The functional form
given in Eq. (1) has a propagator denominator equal to that
of a damped harmonic oscillator while the numerator (the
oscillator strength) has a nonvanishing imaginary part. The pa-
rameter kmax terminates the sum over the generalized damped
oscillator terms; as we will show, the sum over oscillators
leads to a satisfactory representation of the dielectric function
with only a few terms, resulting in kmax being a small integer.

Before we discuss the actual fitting procedure, it is in-
structive to ask how the specific form of f (T�, ω) can be
justified from first-principles theory. The ab initio calculation
of the dielectric function of a material is a two-step process:
first, the electronic band structure is obtained, either using
DFT or Green’s function based approaches [28,32]. In the
second step, the band structure is taken as input to obtain the
optical excitation spectrum of the material via linear-response
theory. To reproduce the double-peak structure of the optical
absorption spectrum of Si, it is essential to capture excitonic
effects. This can be accomplished using the Bethe-Salpeter
equation [28,32] or TDDFT [29–31,33]. In both approaches,
one first constructs a noninteracting response function and
then builds in dynamical many-body effects, most notably
the screened electron-hole interactions. The noninteracting
response function features energy denominators of exactly
the same form as in Eq. (1). It is customary to choose em-
pirical line broadening parameters (corresponding to our γk)
on the order of 0.1–0.2 eV to obtain optical spectra in good
agreement with experiment. This simulates the lifetime broad-
ening caused by phonons, disorder, or finite quasiparticle
lifetimes [47].

Standard Bethe-Salpeter or TDDFT calculations of the
optical absorption spectra of solids do not include any radia-
tive reaction forces, and the resulting oscillator strengths are
purely real [30]. To formally justify the parameter γ ′

k in Eq. (1)
one needs an ab initio approach in which the dynamics of
the electrons and the photon field are coupled and treated on
an equal footing, either at the classical level using Maxwell’s
equations, or using QED. For the latter case, a coupled QED-
TDDFT framework has been developed in the past few years
[34–37]. More relevant for the context of our work, Schäfer
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and Johansson [48] recently proposed a TDDFT formalism
that includes dissipation due to classical Abraham-Lorentz-
type radiative reaction forces, and presented applications to
plasmonic systems. The functional forms employed here are
consistent with the mechanisms underlying the DFT, TDDFT,
Bethe-Salpeter, and QED-TDDFT frameworks employed in
the investigations which lead toward an ab initio under-
standing of the dielectric function. While at present, to our
knowledge, there exist no first-principles calculations of the
optical spectra of periodic solids including classical radiative
reaction forces or QED; given the progress in the field, such
results may emerge in the near future.

In Refs. [27,49], inspired by the Clausius-Mossotti rela-
tion, the dielectric ratio

ρ(T�, ω) = ε(T�, ω) − 1

ε(T�, ω) + 2
.= f (T�, ω) (3)

was fitted to the Lorentz-Dirac functional form, for α-quartz.
(The fitting to the functional form is indicated by the

.= sign.)
In this paper, we propose to combine the advantages of the
approaches outlined in Refs. [21,22,25,27], namely, the inclu-
sion of radiation reaction, and the advantage of the approach
chosen in Refs. [27,49], which is the dense-material effect
encoded in the Clausius-Mossotti relation. To this end, we first
take experimental data for the temperature-dependent dielec-
tric function of silicon, on the basis of which we calculate the
dielectric ratio ρ(T�, ω), which we then fit with f (T�, ω). The
resulting expression for the dielectric function is

εCM(T�, ω)
.= 1 + 2 f (T�, ω)

1 − f (T�, ω)
. (4)

This will be referred to as the Clausius-Mossotti (CM) fit. The
more direct fit

εLD(T�, ω) − 1
.= f (T�, ω) (5)

will be referred to as the Lorentz-Dirac (LD) fit. The quantity

δε(T�, ω) = |εCM(T�, ω) − εLD(T�, ω)| (6)

measures the dependence of the fitted dielectric function on
the fitting procedure. Of course, the quantity δε(T�, ω) does
not include experimental uncertainty pertaining to the input
data [13,14,19,20,23]. For the statistical uncertainties of the
fitting parameters of our model, we refer to Tables I and II of
Ref. [45].

A brief discussion is in order. While one could argue that
the CM fit is favored by physical considerations [49], one
should note the lack of experimental uncertainty estimates in
the input data provided in Refs. [14,19,20]. As a byproduct
of the alternative fits ρ(T�, ω) ≈ f (T�, ω) and ε(T�, ω) −
1 ≈ f (T�, ω), we are able to estimate the uncertainty on
the basis of Eq. (6). Two remarks are in order. (i) Both
εCM(T�, ω) as well as εLD(T�, ω) fulfill the Kramers-Kronig
relationships for εLD(T�, ω), this has been shown explicitly in
Ref. [22], while for εCM(T�, ω), this follows from the relations
Re[εCM(T�, ω)] = Re[εCM(T�,−ω)] and Im[εCM(T�, ω)] =
−Im[εCM(T�,−ω)]. These relations allow us to invoke the
formalism outlined in Sec. 6.6 of Ref. [26]. (ii) In the

asymptotic limit of large ω, in view of the limiting process

ρ(T�, ω) = ε(T�, ω) − 1

ε(T�, ω) + 2
ω→∞−→ ε(T�, ω) − 1

3
, (7)

for ω → ∞, one has ε(T�, ω) −→ 1 + 3ρ(T�, ω). So, in the
asymptotic limits, the two fitted functional forms f (T�, ω)
become equivalent up to the addition of unity, and a multi-
plicative factor three.

B. Clausius-Mossotti model

In the context of the current investigation, our aim is to
find a simple and consistent fit to the dielectric function of
monocrystalline (intrinsic) silicon. In the current section, we
attempt to fit the dielectric ratio ρ(T�, ω) defined in Eq. (3)
to the master function given in Eq. (1). Let us first recall
a few essential formulas. We denote the real and imaginary
parts of the complex index of refraction by n(ω) and k(ω),
respectively. These quantities are related to each other by the
Kramers-Kronig relations (see, e.g., Chap. 6 of Ref. [26]). The
same is true for the real and imaginary parts of the dielectric
function ε(ω), which is given as ε(ω) = [n(ω) + i k(ω)]2. We
introduce a phenomenological description of the dielectric
function by simply assuming a temperature dependence of
the individual parameters in Eq. (15). This approach has been
taken in Refs. [19,50,51]. We thus write the temperature-
dependent dielectric functions as in Eq. (3),

ρ(T�, ω) = ε(T�, ω) − 1

ε(T�, ω) + 2

≈ ρCM(T�, ω) = εCM(T�, ω) − 1

εCM(T�, ω) + 2

=
kmax∑
k=1

aCM
k (T�)

[
ωCM

k (T�)
]2 − i γ ′CM

k (T�) ω)[
ωCM

k (T�)
]2 − ω2 − i ω γ CM

k (T�)
,

(8)

where k counts the number of resonances and we have indi-
cated the place where we employ the fitting procedure by the
“≈” sign.

The temperature-dependent real and imaginary parts of
ρCM(T�, ω) can thus be written as follows:

Re[ρCM(T�, ω)]

=
kmax∑
k=1

aCM
k (T�)

× ω2
[
γ CM

k (T�) γ ′CM
k (T�) − [

ωCM
k (T�)

]2 ] + ω4

(
ω2 − [

ωCM
k (T�)

]2)2 + ω2
[
γ CM

k (T�)
]2 , (9)

while the imaginary part is

Im[ρCM(T�, ω)]

=
kmax∑
k=1

aCM
k (T�) ω

× ω2γ ′CM
k (T�) + {

γ CM
k (T�) − γ ′CM

k (T�)
}[

ωCM
k (T�)

]2

{
ω2 − [

ωCM
k (T�)

]2}2 + ω2
[
γ CM

k (T�)
]2 .

(10)
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TABLE I. Coefficients resulting from Clausius-Mossotti fitting,
as described in Eqs. (9) and (10), are given for the first resonance of
monocrystalline silicon over a range of temperatures 0 < T� < 2.83.
Here, Eh is the Hartree energy and h̄ is Planck’s constant.

ωCM
1 γ CM

1 γ ′CM
1

T� aCM
1 (Eh/h̄) (Eh/h̄) (Eh/h̄)

0.000 0.004943 0.1293 0.01841 0.1306
0.273 0.004856 0.1277 0.01973 0.1392
0.444 0.004564 0.1266 0.01964 0.1474
0.614 0.004715 0.1264 0.02030 0.1403
0.785 0.004508 0.1258 0.02059 0.1440
0.956 0.004647 0.1256 0.02075 0.1355
1.126 0.004586 0.1249 0.02139 0.1405
1.397 0.004903 0.1247 0.02221 0.1284
1.468 0.005163 0.1243 0.02287 0.1173
1.638 0.005588 0.1237 0.02529 0.1179
2.321 0.007875 0.1242 0.03141 0.0614
2.833 0.008155 0.1231 0.03376 0.0608

Following Refs. [4,5], the coefficients ak (T�), ωk (T�), and
γk (T�) are approximated by quadratic functions in the tem-
perature,

ak (T�) = aCM
k,0 + aCM

k,1 T� + aCM
k,2 (T�)2, (11a)

ωk (T�) = ωCM
k,0 + ωCM

k,1 T� + ωCM
k,2 (T�)2, (11b)

γk (T�) = γ CM
k,0 + γ CM

k,1 T� + γ CM
k,2 (T�)2, (11c)

γ ′
k (T�) = γ ′CM

k,0 + γ ′CM
k,1 T� + γ ′CM

k,2 (T�)2, (11d)

where T0 = 293 K. In Tables I and II, we show the Clausius-
Mossotti dielectric ratio coefficients for intrinsic silicon,
obtained by fitting data taken from Refs. [14,19] to Eqs. (9)
and (10), for the first two resonances. We find that fits
with kmax = 2 lead to satisfactory results. Coefficients from
Tables I and II are then fitted by assuming a quadratic temper-
ature dependence according to Eq. (11), to obtain a dielectric
function for silicon ε(T�, ω) which is a function of tempera-
ture and frequency. The coefficients from this fit are given in
Table III. In Fig. 1, the CM fit defined in Eq. (4) is plotted

TABLE II. We present the analog of Table I for the second
resonance of monocrystalline silicon.

ωCM
2 γ CM

2 γ ′CM
2

T� aCM
2 (Eh/h̄) (Eh/h̄) (Eh/h̄)

0.000 0.7709 0.3117 0.0990 0.0971
0.273 0.7739 0.3135 0.1066 0.1057
0.444 0.7761 0.3135 0.1173 0.1176
0.614 0.7766 0.3133 0.1191 0.1193
0.785 0.7780 0.3138 0.1242 0.1247
0.956 0.7783 0.3129 0.1293 0.1307
1.126 0.7796 0.3136 0.1336 0.1351
1.397 0.7804 0.3130 0.1363 0.1381
1.468 0.7815 0.3122 0.1424 0.1447
1.638 0.7847 0.3128 0.1333 0.1295
2.321 0.7869 0.3072 0.1194 0.1121
2.833 0.7949 0.3117 0.1159 0.1016

TABLE III. We present coefficients associated with the Clausius-
Mossotti model given in Eq. (11), found from fitting the coefficients
in Table I and Table II as functions of temperature, for monocrys-
talline silicon.

k aCM
k,0 aCM

k,1 aCM
k,2

1 4.870 × 10−3 −8.936 × 10−4 7.854 × 10−4

2 7.722 × 10−1 5.984 × 10−3 5.586 × 10−4

k ωCM
k,0 (Eh/h̄) ωCM

k,1 (Eh/h̄) ωCM
k,2 (Eh/h̄)

1 1.289 × 10−1 −4.571 × 10−3 9.421 × 10−4

2 3.129 × 10−1 6.405 × 10−4 −6.527 × 10−4

k γ CM
k,0 (Eh/h̄) γ CM

k,1 (Eh/h̄) γ CM
k,2 (Eh/h̄)

1 1.875 × 10−2 9.274 × 10−4 1.651 × 10−3

2 9.742 × 10−2 4.814 × 10−2 −1.518 × 10−2

k γ ′CM
k,0 (Eh/h̄) γ ′CM

k,1 (Eh/h̄) γ ′CM
k,2 (Eh/h̄)

1 1.387 × 10−1 1.161 × 10−2 −1.543 × 10−2

2 9.505 × 10−2 5.607 × 10−2 −1.948 × 10−2

alongside experimental data [14,19], using the coefficients
from Table III and temperature-dependent parameters given
in Eq. (11). The similarity of the plots from Figs. 1 and 3 indi-
cates that the CM fit and the LD fit both accurately reproduce
the experimental data using different methods, demonstrating
that the conclusions of Ref. [27] are more generally ap-
plicable. A unified three-dimensional representation for the
dielectric function of silicon is given in Fig. 2. Based on fits
of the functional form given in Eq. (11), we obtain the fits
presented in Fig. 1, for individual temperatures. A unified
three-dimensional representation for the real and imaginary
parts of the temperature- and frequency-dependent dielectric
function εCM for silicon is given in Fig. 2.

C. Lorentz-Dirac model

As discussed in Sec. II A, we now turn to the second
method of fitting the dielectric function of the reference sub-
strate, monocrystalline silicon, which is based on a direct fit
of the experimentally determined dielectric function ε(T�, ω)
to the Lorentz-Dirac master function Eq. (1) with free pa-
rameters. We introduce a phenomenological description of
the dielectric function by assuming a temperature dependence
of the individual parameters, and write the temperature-
dependent dielectric function in terms of a functional form
inspired by the master function given in Eq. (1), but with
temperature-dependent parameters,

ε(T�, ω) ≈ εLD(T�, ω) = 1

+
kmax∑
k=1

aLD
k (T�)

{[
ωLD

k (T�)
]2 − i γ ′LD

k (T�) ω
}

[
ωLD

k (T�)
]2 − ω2 − i ω γ LD

k (T�)
,

(12)

where we employ a fitting procedure during the step that is
marked with the ≈ sign. The temperature-dependent real part
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FIG. 1. Real (top row) and imaginary (bottom row) parts of the dielectric function εCM(T�, ω) are plotted as functions of the angular
frequency ω, for monocrystalline (undoped, intrinsic) silicon for various temperatures. Experimental data [13,23] (dotted) are shown to be in
agreement with the CM fit (blue) defined in Eq. (4) for temperature-dependent parameters given in Eq. (11) and coefficients in Table III. Note
that the quantity h̄ω/Eh is equal to the angular frequency expressed in atomic units. Eight additional temperatures, between T� = 0 and 2.83,
namely, the values T� = 0.273, 0.444, 0.614, 0.785, 0.956, 1.297, 1.468, and 1.638, are considered in Ref. [45].

of ε(T�, ω) can thus be written as follows:

Re[εLD(T�, ω)] = 1 +
kmax∑
k=1

aLD
k (T�)

ω2
[
γ LD

k (T�) γ ′LD
k (T�) − ωLD

k (T�)2
] + ω4

(
ω2 − [

ωLD
k (T�)

]2)2 + ω2
[
γ LD

k (T�)
]2 . (13)

The imaginary part is given as follows:

Im[εLD(T�, ω)] =
kmax∑
k=1

aLD
k (T�) ω

ω2γ ′LD
k (T�) + {

γ LD
k (T�) − γ ′LD

k (T�)
}[

ωLD
k (T�)

]2

{ω2 − [ωk (T�)]2}2 + ω2
[
γ LD

k (T�)
]2 . (14)

FIG. 2. Real (a) and imaginary (b) parts of the Clausius-Mossotti dielectric function εCM(T�, ω) as described by Eq. (4) are plotted as
functions of the reduced temperature T� and driving frequency ω, for monocrystalline silicon with parameters given in Eq. (11) and coefficients
in Table III. This plot shows agreement between the CM fit shown here and the LD fit shown in Fig. 4.
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TABLE IV. Coefficients resulting from the LD fit, according to
Eqs. (13) and (14), are given for the first resonance of monocrys-
talline silicon over a range of temperatures 0 < T� < 2.83. We recall
that Eh is the Hartree energy and h̄ is Planck’s constant.

T� aLD
1 ωLD

1 (Eh/h̄) γ LD
1 (Eh/h̄) γ ′LD

1 (Eh/h̄)

0.000 2.817 0.1254 0.01243 0.05791
0.273 2.713 0.1248 0.01305 0.05348
0.444 2.674 0.1245 0.01335 0.05094
0.614 2.568 0.1241 0.01348 0.04748
0.785 2.899 0.1240 0.01545 0.04800
0.956 2.790 0.1236 0.01508 0.04536
1.126 2.643 0.1233 0.01448 0.04078
1.297 2.607 0.1227 0.01491 0.03939
1.468 2.813 0.1224 0.01610 0.03600
1.638 2.967 0.1212 0.01794 0.03360
2.321 3.164 0.1194 0.02062 0.02098
2.833 4.423 0.1190 0.02750 0.01212

In full analogy with the approach outlined in Refs. [4,5] and
in Sec. II B [see Eq. (11)], the coefficients ak (T�), ωk (T�),
and γk (T�) are approximated by quadratic functions in the
temperature,

ak (T�) = aLD
k,0 + aLD

k,1 T� + aLD
k,2 (T�)2, (15a)

ωk (T�) = ωLD
k,0 + ωLD

k,1 T� + ωLD
k,2 (T�)2, (15b)

γk (T�) = γ LD
k,0 + γ LD

k,1 T� + γ LD
k,2 (T�)2, (15c)

γ ′
k (T�) = γ ′LD

k,0 + γ ′LD
k,1 T� + γ ′LD

k,2 (T�)2, (15d)

where T0 = 293 K. In Tables IV and V, we show the
Clausius-Mossotti dielectric ratio coefficients for intrinsic
silicon, obtained by fitting data taken from Refs. [14,19] to
Eqs. (13) and (14), for the first two resonances. Coefficients
from Tables IV and V are then fitted by assuming a quadratic
temperature dependence according to Eq. (15), to obtain
the dielectric function for silicon ε(T�, ω) as a function of
temperature and driving frequency. The coefficients from
this fit are given in Table VI. The accuracy of the fits can be
seen in Fig. 3 where the LD fit defined in Eq. (5) is plotted

TABLE V. We present the analog of Table IV for the second
resonance of monocrystalline silicon. Coefficients resulting from the
Lorentz-Dirac fit, according to Eqs. (13) and (14), are given over a
range of temperatures 0 < T� < 2.83.

T� aLD
2 ωLD

2 (Eh/h̄) γ LD
2 (Eh/h̄) γ ′LD

2 (Eh/h̄)

0.000 7.844 0.1545 0.02994 0.00792
0.273 8.245 0.1529 0.03115 0.01272
0.444 8.325 0.1520 0.03151 0.01589
0.614 8.588 0.1520 0.03247 0.01768
0.785 8.344 0.1515 0.03245 0.01880
0.956 8.410 0.1507 0.03275 0.02136
1.126 8.537 0.1501 0.03284 0.02421
1.297 8.749 0.1495 0.03407 0.02427
1.468 8.601 0.1490 0.03422 0.02528
1.638 8.709 0.1475 0.03592 0.02379
2.321 8.873 0.1455 0.03825 0.02284
2.833 7.789 0.1453 0.03648 0.02526

TABLE VI. Coefficients associated with the Lorentz-Dirac
model given in Eq. (15), found from fitting the coefficients in
Tables IV and V as functions of temperature, are given for monocrys-
talline silicon.

k aLD
k,0 aLD

k,1 aLD
k,2

1 2.892 × 100 −6.339 × 10−1 3.890 × 10−1

2 7.864 × 100 1.121 × 100 −3.754 × 10−1

k ωLD
k,0 (Eh/h̄) ωLD

k,1 (Eh/h̄) ωLD
k,2 (Eh/h̄)

1 1.255 × 10−1 −2.154 × 10−3 −9.91 × 10−5

2 1.544 × 10−1 −4.408 × 10−3 3.685 × 10−4

k γ LD
k,0 (Eh/h̄) γ LD

k,1 (Eh/h̄) γ LD
k,2 (Eh/h̄)

1 1.308 × 10−2 −3.701 × 10−4 1.819 × 10−3

2 2.980 × 10−2 4.011 × 10−3 −4.602 × 10−4

k γ ′LD
k,0 (Eh/h̄) γ ′LD

k,1 (Eh/h̄) γ ′LD
k,2 (Eh/h̄)

1 5.732 × 10−2 −1.261 × 10−2 −1.211 × 10−3

2 8.672 × 10−3 1.688 × 10−2 −4.117 × 10−3

alongside experimental data [14,19], using the coefficients
from Table VI and temperature-dependent parameters given
in Eq. (15). The similarity of the plots given in Fig. 3 to those
in Fig. 1 reveals that the CM fitting and the LD fitting both
accurately reproduce the experimental data using different
methods. A unified three-dimensional representation for the
dielectric function of silicon is given in Fig. 4.

For the LD fits, one particular point is worth mentioning: if
one searches for the best fit parameters (in the sense of a least-
squares approach) for the fitting procedure εLD(T�, ω)

.= 1 +
f (T�, ω), with unrestricted fit parameters ak , ωk , γk , and γ ′

k ,
then one may incur, for certain temperatures, fitting functions
for εLD(T�, ω) whose imaginary part, for small and positive ω,
turns slightly negative. This behavior is unphysical. We have
therefore implemented the condition

∂

∂ω
Im[εLD(T�, ω)]

∣∣∣∣
ω=0

=
kmax∑
k=1

aLD
k (T�)[

ωLD
k (T�)

]2

(
γ LD

k (T�) − γ ′LD
k (T�)

)
> 0 (16)

in the nonlinear fitting procedure [52] via additional deriva-
tives. We observe that, as we ensure that the first derivative
of the fitted imaginary part at zero frequency is forced to be
positive, the entire fitted imaginary part consistently assumes
positive values over the entire frequency range 0 < ω < ∞.

III. ATOM-SURFACE POTENTIALS

The transition of the atom-surface potential from the short-
range to the long-range region has been discussed at length
in the literature (see, e.g., Refs. [49,53–55] and references
therein). It is well known that the atom-surface potentials V (z)
mediated by the exchange of virtual photons change from a
1/z3 short-range asymptotic behavior to a 1/z4 long-range
asymptotic behavior (z is the atom-wall distance). The 1/z3

short-range asymptotic behavior persists for z � a0/α, while
the 1/z4 long-range asymptotic behavior is relevant for long
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FIG. 3. We present the analog of Fig. 1 for the LD as opposed to the CM fitting procedure. Again, real (top row) and imaginary (bottom
row) parts of the dielectric function εLD(T�, ω) are plotted as functions of frequency ω, for monocrystalline silicon for various temperatures,
but here, for the LD fitting procedure. Experimental data [13,23] (dotted) are found to be in agreement with the LD fit (red) defined in Eq. (5)
for temperature-dependent parameters given in Eq. (15) and coefficients in Table VI. For the LD fit, eight additional temperatures, between
T� = 0 and T� = 2.83, namely, the values T� = 0.273, 0.444, 0.614, 0.785, 1.126, 1.297, 1.468, and 1.638, are considered in Ref. [45].

range, z � a0/α, where a0 is the Bohr radius and α is the
fine-structure constant. The asymptotic forms are

V (z) = −C3

z3
= −(C3)a.u.

Eh

(z/a0)3
, a0 � z � a0

α
, (17a)

V (z) = −C4

z4
= −(C4)a.u.

Eh

(z/a0)4
, z � a0

α
. (17b)

Here, we denote the numerical value of the C3 and C4

coefficients, measured in atomic units, by (C3)a.u. and (C4)a.u.,
respectively.

The C3 and C4 coefficients are, in a natural way,
temperature-dependent, as they depend on the dielectric func-
tion of the substrate material [54,56–58]. Hence, there is a
functional relationship C3 = C3(T�) and C4 = C4(T�). It is

FIG. 4. We present the analog of Fig. 2 for the LD fit, as opposed to the CM fit of the dielectric function. Real (a) and imaginary (b) parts
of the dielectric function εLD(T�, ω), as described by Eq. (5), are plotted as functions of the reduced temperature T� and driving frequency ω,
for monocrystalline silicon with parameters given in Eq. (15) and coefficients in Table VI. We find good agreement of the LD fit shown here
and the CM fit shown in Fig. 2.
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TABLE VII. Short-distance coupling parameters CCM
3 and CLD

3 of
the Casimir-Polder potential are given for helium interacting with a
monocrystalline silicon surface. Results are given for the CM and the
LD fitting procedures given in Eqs. (4) and (5), respectively. The nu-
merical values are obtained using the integrals given in Eqs. (19) and
(20). The data are plotted in Fig. 5, as a function of the temperature.

Helium on silicon
Short-range C3 coefficient

T� CCM
3 (a3

0Eh) CLD
3 (a3

0Eh) % difference

0.000 0.04906 0.04950 0.91
0.273 0.05013 0.05068 1.10
0.444 0.05128 0.05132 0.08
0.614 0.05143 0.05173 0.57
0.785 0.05198 0.05253 1.04
0.956 0.05247 0.05276 0.54
1.126 0.05295 0.05297 0.04
1.297 0.05321 0.05311 0.18
1.468 0.05376 0.05317 1.09
1.638 0.05254 0.05274 0.38
2.321 0.05066 0.05123 1.13
2.833 0.05022 0.05021 0.03

thus clear that, for atom-surface interaction studies, it is con-
venient to have analytic models for the temperature-dependent
dielectric function of a material; we here consider the case
of intrinsic silicon. The temperature dependence of the co-
efficient C3(T�), which governs the short-distance behavior
of the Casimir-Polder potential, can be written as follows
[49,53–55]:

C3(T�) = h̄

16π2ε0

∫ ∞

0
dω α(iω)

ε(T�, iω) − 1

ε(T�, iω) + 1
. (18)

Based on the two fitting procedures given in Eqs. (8) and (12),
we can define the coefficients

CCM
3 (T�) = h̄

16π2ε0

∫ ∞

0
dω α(iω)

εCM(T�, iω) − 1

εCM(T�, iω) + 1
, (19)

for the Clausius-Mossotti fit, and analogously

CLD
3 (T�) = h̄

16π2ε0

∫ ∞

0
dω α(iω)

εLD(T�, iω) − 1

εLD(T�, iω) + 1
(20)

for the Lorentz-Dirac fit. In order to calculate C3(T�), we
need the dynamic polarizability of the atom α(ω). In Ap-
pendix B, we describe a rather universally applicable scheme
for the calculation of the dynamic polarizability of an arbitrary
atom, based on tabulated oscillator strength for a limited set
of transitions, augmented by a matching (at high energy)
against the Thomas-Reiche-Kuhn (TRK) sum rule [59,60].
The method uses the fact that, at a purely imaginary argu-
ment, the dynamic polarizability is a smooth function which
avoids the singularities of the integrand at the resonance
frequencies. We have applied the method to both atomic hy-
drogen as well as helium, neon, argon, krypton and xenon.
For helium interacting with a silicon surface, results are given
in Table VII. Results for helium interacting with silicon are
also shown in Fig. 5. A remark is in order. The numerical
results given in Table VII correspond to the parameter fits
for individual temperatures, as outlined in Eqs. (4) and (5),

FIG. 5. Short-distance coupling parameters CCM
3 (T�) and

CLD
3 (T�) of the Casimir-Polder potential, are plotted as functions

of T� for helium interacting with a monocrystalline silicon surface.
Data points (black dots) are taken from Table VII. The blue curve
corresponds to the Clausius-Mossotti fit, given in Eq. (19), while the
red curve corresponds to the Lorentz-Dirac fit, given in Eq. (20).
The data points are taken at T� = 0.000, 0.273, 0.444, 0.614, 0.785,
0.956, 1.126, 1.297, 1.468, 1.638, 2.321, and 2.833.

and in Tables I and II. The smooth curves in Fig. 5 (and
analogously in Fig. 6) constitute the results of plotting Eqs. (4)
and (5) using the smooth temperature-dependent model out-
lined in the coefficients given in Tables III and IV. For
room temperature, these are in agreement with those recently
presented in Ref. [61]. A separate least-squares fit using a
quadratic polynomial in T� yields the following result for the
temperature-dependent C3 coefficients for helium on silicon:

CCM
3 (T�) ≈ CCM

3 (0) {1 + cCM T� + dCM(T�)2}, (21)

where CCM
3 (0) = 0.04905, cCM = 0.10569, and dCM =

−0.034338. Analogously, one obtains

CLD
3 (T�) ≈ CLD

3 (0) {1 + cLDT� + dLD(T�)2}, (22)

FIG. 6. Long-distance coupling parameters CCM
4 (T�) and

CLD
4 (T�) of the Casimir-Polder potential, are plotted as functions

of T� for helium interacting with a monocrystalline silicon surface.
Data points (black dots) are taken from Table VIII. The blue curve
corresponds to the Clausius-Mossotti fit, given in Eq. (26), while the
red curve corresponds to the Lorentz-Dirac fit, given in Eq. (27).
The data points are taken at T� = 0.000, 0.273, 0.444, 0.614, 0.785,
0.956, 1.126, 1.297, 1.468, 1.638, 2.321, and 2.833.
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TABLE VIII. Long-distance coupling parameters CCM
4 and CLD

4

of the Casimir-Polder potential are given for helium interacting with
a monocrystalline silicon surface. Results are given for the CM and
the LD fitting procedures given in Eqs. (4) and (5), respectively.
Values are compared with Eqs. (26) and (27) in Fig. 6.

Helium on silicon
Long-range C4 coefficient

T� CCM
4 (a4

0Eh) CLD
4 (a4

0Eh) % difference

0.000 15.32 15.40 0.55
0.273 15.37 15.49 0.76
0.444 15.41 15.50 0.61
0.614 15.42 15.55 0.82
0.785 15.44 15.57 0.84
0.956 15.45 15.56 0.70
1.126 15.47 15.55 0.51
1.297 15.49 15.60 0.70
1.468 15.52 15.62 0.63
1.638 15.59 15.69 0.65
2.321 15.67 15.78 0.69
2.833 15.83 15.82 0.04

where CLD
3 (0) = 0.04923, cLD = 0.09939, and dLD =

−0.033309.
For the other atoms under investigation, the C3 coefficient

read as follows. For H, we obtain, using the Lorentz-Dirac fit,
in atomic units, at room temperature, a result of 0.1042, while
for Ne, Ar, Kr, and Xe, the results for C3, in atomic units, read
as 0.1080, 0.3914, 0.5853 and 0.9157, respectively.

Let us now investigate the long-range asymptotic behavior,
as described by Eq. (17b), and let us consider the temperature
dependence of the C4 long-range coefficient. Indeed, the C4

coefficient governing the long-distance behavior z � a0/α of
the Casimir-Polder potential can be written as [49,53,54]

C4(T�) = h̄c

2π

3

8
α(0) φ(T�), (23)

where α(0) = α(ω = 0) is the static polarizability of the
atom. The emergence of α(0) in the result illustrates the fact
that, for large atom-wall separation, the interaction is medi-
ated by very low-energy virtual photons. The φ function in
Eq. (23) is given as an integral, as follows,

φ(T�) =
∫ ∞

1
d p

H (ε(T�, 0), p)

p4
, (24)

where the H function reads [49,53,54]

H (ε, p) =
√

ε − 1 + p2 − p√
ε − 1 + p2 + p

+ (1 − 2p2)

×
√

ε − 1 + p2 − p ε√
ε − 1 + p2 + p ε

. (25)

The C4 coefficient can be calculated on the basis of the
Clausius-Mossotti fit described in Sec. II B,

CCM
4 (T�) = h̄c

2π

3

8
α(0) φCM(T�), (26a)

φCM(T�) =
∫ ∞

1
d p

H (εCM(T�, 0), p)

p4
, (26b)

or the Lorentz-Dirac fit, described in Sec. II C,

CLD
4 (T�) = h̄c

2π

3

8
α(0) φLD(T�), (27a)

φLD(T�) =
∫ ∞

1
d p

H (εLD(T�, 0), p)

p4
. (27b)

An analytic result for φ, expressed with logarithms, reads as
follows:

φ(T�) = 2

[
2ε(T�, 0)3 − 4ε(T�, 0)2 + 3ε(T�, 0) + 1

4(ε(T�, 0) − 1)3/2
L1

+ ε(T�, 0)2

2
√

ε(T�, 0) + 1
{L2 − L3} + 1

6(ε(T�, 0) − 1)

× [
6ε(T�, 0)2 − 3ε(T�, 0)3/2 − 4ε(T�, 0)

− 3
√

ε(T�, 0) + 10
]]

. (28)

Here, the logarithmic terms are

L1 = ln

(√
ε(T�, 0) − √

ε(T�, 0) − 1√
ε(T�, 0) + √

ε(T�, 0) − 1

)
, (29a)

L2 = ln

(√
ε(T�, 0) + 1 − 1√
ε(T�, 0) + 1 + 1

)
, (29b)

L3 = ln

(√
ε(T�, 0) + 1 − √

ε(T�, 0)√
ε(T�, 0) + 1 + √

ε(T�, 0)

)
. (29c)

Our result for φ(T�) is in agreement with the result given in
Eq. (23) of Ref. [54], but differs in its functional form; we
attempt to reduce the complexity of the functions involved.
The term in square brackets in Eq. (28) approximates unity
in the limit of a perfectly conducting surface, ε(T�, 0) → ∞.
The correction terms about the limit of large ε(T�, 0) can be
expanded in a series in inverse half-integer powers of ε(T�, 0).
The first two correction terms lead to the expression

φ(T�) = 2

[
1 − 5

4
√

ε(T�, 0)

+ 22

15ε(T�, 0)
+ O

(
ln[ε(T�, 0)]

ε(T�, 0)3/2

)]
. (30)

Numerical values for C4(T�) are calculated for each value of
T�, for both the CM fitting procedure [according to Eq. (26)]
and the LD fitting method [according to Eq. (27)]. Results for
helium atoms interacting with a silicon surface are given in
Table VIII and Fig. 6.

Conversely, a fit using a quadratic polynomial in T� yields
the following result for the temperature-dependent C4 coeffi-
cients for helium on silicon:

CCM
4 (T�) ≈ CCM

4 (0) {1 + fCM T� + gCM(T�)2}, (31)

where CCM
4 (0) = 15.32, fCM = 0.0076444, and gCM =

0.0014732. Analogously, one obtains

CLD
4 (T�) ≈ CLD

4 (0) {1 + fLDT� + gLD(T�)2}, (32)

where CLD
4 (0) = 15.40, fLD = 0.013560, and gLD =

−0.0013667.
The relative discrepancies between the CM and LD fits

for C4 are commensurate with those for the corresponding C3
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coefficients, as listed in Tables VII and VIII. This is consistent
with fact that the C4 coefficients are determined by the static
value ε(T�, ω = 0) of the dielectric function, which can be
determined to roughly the same accuracy as the integral over
all frequencies, which enters Eq. (18). Note, also, that the
static value of the helium polarizability is well known from
Refs. [62,63]. A further remark might be in order. The relative
difference of the numerical values for the C4 coefficients,
obtained from the CM and LD fits, is smaller by about a
factor of five than the relative difference of the static dielectric
function ε(T�, 0), obtained from either fit. This somewhat
surprising observation finds a natural explanation when one
considers the numerically small variation of the φ function
with respect to the value of ε(T�, 0), in the relevant range
ε(T�, 0) ≈ 11.5. In consequence, the C4 coefficients are de-
termined to much better accuracy than the static dielectric
function.

For the other atoms under investigation, the C4 coefficient
read as follows. For H, Ne, Ar, Kr, and Xe, the results for C4,
in atomic units, read as 49.99, 29.52, 122.9, 182.8, and 303.0,
respectively (at room temperature).

IV. CONCLUSIONS

We have found a unified description of the temperature-
dependent and frequency-dependent dielectric function
ε(T�, ω) of intrinsic (monocrystalline) silicon, using the LD
and CM functional forms, augmented by radiation-reaction
terms, with only two generalized oscillator terms entering the
master function given in Eq. (1). For intrinsic silicon, we find
that both the CM function [ε(ω) − 1]/[ε(ω) + 2] as well as
the LD function [ε(ω) − 1] itself can be fitted very well to
experimental data. This conclusion is fully consistent with
the observations made in Ref. [27], where a model without
radiation reaction was considered. The R2 values are greater
than 0.99 for either fit, for all temperatures studied here, as
evident from Fig. 2 of Ref. [45]. The CM fit is able to represent
experimental data marginally better than the LD fit, consistent
with its ability to model the local-field effect. The temperature
dependence of the coefficients of our model is well described
by simple quadratic forms.

Our fitting, as described in Secs. II A and II B, is suc-
cessful, and leads to the temperature-dependent parameters
listed in Tables III and VI. These lead to a satisfactory
representation of the dielectric function of intrinsic silicon
in the temperature range 0 < T� < 2.83, i.e., 293 K < T <

1123 K. The entire problem is of considerable interest, and
the investigation of a uniform representation of the dielectric
function over a wide temperature range requires a careful
evaluation of available experimental data (see Appendix A
1). The fact that a unified model with analytic coefficients is
able to describe the temperature-dependent, and frequency-
dependent dielectric function of intrinsic silicon over wide
ranges of the parameters, could be interpreted as supporting
the self-consistency of the experimental data for the dielectric
function, obtained by various different groups over the past
two decades [13,14,19,20,23].

We employ the results of our fitting in the temperature-
dependent evaluation of the short-range, and long-range,
asymptotics of the atom-surface interaction potential for he-

lium atoms interacting with intrinsic silicon (see Sec. III). We
find that the C3 and C4 coefficients given in Eqs. (17a) and
(17b) exhibit a moderate temperature dependence depicted
in Figs. 5 and 6. Our approach allows us to determine tem-
perature dependence C3 and C4 coefficients with a relative
accuracy which we would like to conservatively estimate as
5%, due to the intrinsic uncertainty in the experimental data,
even if the relative difference of the C3 and C4 coefficients
given in Tables VII and VIII is smaller than 5%. This esti-
mate is supported by an error propagation calculation based
on computer algebra [52], which propagates the uncertainty
estimate for the fit parameters given in Ref. [45] to the de-
termination of the C3 and C4 coefficients. Interestingly, our
calculations imply the existence of a manifest temperature
dependence of atom-surface interactions, which goes beyond
the “thermal discretization” of the frequencies of the virtual
photons that mediate the atom-surface interaction, in terms of
the Matsubara frequencies [64,65].
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APPENDIX A: INTRICACIES OF THE DIELECTRIC
FUNCTION

1. Brief review of published data

A very brief review of the available experimental data for
the dielectric function of intrinsic silicon might be in order.
The subject is interesting because of a significant dependence
on the sample preparation, with tiny surface impurities having
a potentially detrimental effect on the accuracy of the ob-
tained data. In view of apparent discrepancies among some
published data, which will be discussed in the following, we
here prefer to use rather recent compilations of optical prop-
erties of silicon; it is hoped that potential issues with previous
measurements may have been addressed in the more recent
compilations. Specifically, our sources for experimental data
of silicon at room temperature are Refs. [13,20,23]. Our main
sources of temperature-dependent data are Refs. [14,19]. We
use Ref. [19] as a source for the experimental measurements
of silicon at 298, 523, 773, 973, and 1123 K. For com-
pleteness, Ref. [14] is used as a source for experimental
measurements of silicon at 293 K (additional data for room
temperature), 373, 423, 473, 523, 573, 623, and 723 K. As
a side remark, we can add that the room temperature data
(293 K, from Refs. [13,14,20,23]) differ only very slightly
from the data obtained for 298 K in Ref. [19]. The data
for 298 K cover a smaller frequency range as compared to
the data for 293 K; the discussion of the data available for
298 K is relegated to Ref. [45]. We also mention Ref. [20]
for a discussion of the temperature dependence of the di-
electric function of silicon, where the linear term of the
coefficients (as a function of the temperature T ) is taken into
account.
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Now, for completeness, let us briefly discuss some ap-
parent discrepancies among other data sets. For example, in
Ref. [16], it is pointed out that “recent measurements [13,17],
at both the ultraviolet and infrared ends of the spectrum have
considerably improved the accuracy of silicon optical data
at these wavelengths, rendering past tabulations [8–10] and
assessments [15] largely obsolete.” Along the same direction,
in Sec. IV b of Ref. [18], it is pointed out that the compilation
of silicon (Si) optical data in Ref. [8] relies on two sets of
silicon absorption values based on the intensity transmission
measurements originally reported in Refs. [1,3]. Yet, it is
pointed out in Sec. IV b of Ref. [18], that the values reported
in Ref. [3] spanning 1.2–2 eV were obtained from very thin
epitaxial films on sapphire and there is a mismatch by a factor
of 5 at 1.28 eV as compared to the values reported in Ref. [1].

In Ref. [18], near the start in the Introduction, it is pointed
out that “However, even though silicon is one of the most
heavily studied and well-understood materials, the accuracy of
reported optical constant spectra for crystalline silicon is still
an issue. The original spectroscopic ellipsometry results for
silicon obtained by Aspnes [7] have been questioned (espe-
cially for energies less than 3.4 eV by the work of Jellison [13]
using a two-channel polarization modulation ellipsometer).”
Furthermore, in Ref. [18], near the start in the Introduction, it
is also pointed out that the measurements reported in Ref. [7]
were complicated both by the difficulty of stripping residual
oxide without roughening the sample and by acquisition of
ellipsometric data at an angle of incidence which pushed the
measured ellipsometric values at smaller photon energies into
a sub-optimal region for the rotating-analyzer ellipsometer
(RAE) used. It is also pointed out that in Ref. [13], a careful
oxide layer removal procedure was profiting from a separate
intensity transmission measurement used in order to establish
the overlayer thickness.

Finally, we should also mention that we have made several
unsuccessful attempts to fit the data given in Ref. [8] over the
frequency range 0 < h̄ω < 5 eV with functional forms that
fulfill the Kramers-Kronig relations. An inspection reveals
that data for the imaginary part of the dielectric function given
in Ref. [11,14,19], exceeds the values given in Ref. [8] in the
frequency range 1 < h̄ω < 2 eV by almost a factor two. The
newer data given in Refs. [14,19] are amenable to a fit using
a consistent functional form, as detailed in this current study.
Furthermore, we note that no actual data pairs of frequency
and real and imaginary part of the dielectric function are given
in Ref. [11]. However, a quantitative inspection of the curves
given Figs. 2– 4 of Ref. [11] leads to the conclusion that the
data on which the Ref. [11] is based, are in agreement with
the analysis presented in the current investigation.

The availability of convenient, consistent, simple func-
tional forms to describe the frequency-dependent and
temperature-dependent dielectric function of intrinsic silicon,
as derived here, should thus be of considerable interest to the
community.

2. Lorentz-Dirac model

Let us start from Eq. (2) Ref. [22], which describes the
acceleration 	a on a charge carrier particle of charge q in terms

of the Lorentz-Dirac formalism,

	a = 1

m
	Fext + t0 	̇a. (A1)

The latter term describes radiation reaction. A discussion
of the Lorentz-Dirac equation can be found in Sec. 8.6.2
of Ref. [26]. The radiation reaction time is [see Eq. (3) of
Ref. [22]]

t0 = q2

6πε0mc3
. (A2)

One defines a characteristic acceleration 	ac and a characteris-
tic time scale tc through the formulas (see Eqs. (4) and (5) of
Ref. [22])

	ac = 1

m
	Fext, 	̇ac = 	ac

tc
, (A3)

where 	Fext is the external force. Then, according to Eq. (6) of
Ref. [22], one defines

tlight = sq/c (A4)

as the time it takes light to travel a characteristic distance sq

which could be chosen as the size of the charge distribution,
or, from a classical point of view, as the classical electron
radius obtained by equating the electron rest mass with the
electrostatic self-energy of the electron’s charge distribution,
taken as centered on a sphere of radius sq. Then, according to
Eq. (7) of Ref. [22], one has

m ∼ mem ∼ q2

4πε0sq
, (A5)

where mem is the self-energy (self-mass) of the electron.
One assumes a not-too-fast change in the acceleration, i.e.,

a not-too-abrupt dynamical change,

tc � tlight. (A6)

Under the observation (see Eq. (9) of Ref. [22]) that t0 ∼ tlight,
one derives the condition (see Eq. (10) of Ref. [22])

t0 ∼ tlight � tc, t0/tc � 1, (A7)

under which the authors of Ref. [22] arrive at the following
formula (see Eq. (25) of Ref. [22]) for the polarization density
	P in the sample,

d2 	P
dt2

+
(

2� + t0 ω2
r − q2t0N

3mε0

)
d 	P
dt

+
(

ω2
r − q2N

3mε0

)
	P = q2N

m
	E + q2Nt0

m

d 	E
dt

. (A8)

From Ref. [22], one can see that � is the damping rate as-
sociated with the frictional force between atoms, ωr is the
natural frequency of the restoring force, N is the number of
atoms per unit volume, and q is the charge of the electron.
The transformation to Fourier space proceeds by writing

	P(t ) =
∫

dω

2π
e−iωt 	P(ω), (A9)

so that, in Fourier space, one replaces d/dt → −iω.
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Setting 	P(ω) = ε(ω) ε0 	E (ω), one then arrives at the fol-
lowing formula:

ε(ω) = ε∞ + a0 − iω a1

b0 − ω2 − iω b1
. (A10)

With reference to Eqs. (A8) and (27) from Ref. [22], the
parameters are identified as follows:

b1 = 2� + t0 ω2
r − q2t0N

3mε0
, b0 = ω2

r − q2N

3mε0
, (A11a)

a0 = q2N

m
, a1 = q2t0N

m
. (A11b)

In Eq. (A10), the signs of the terms multiplying a1 and b1

are inverted as compared to Eq. (28) of Ref. [22], presumably
due to a typographical error in Ref. [22]. Note that, upon using
the functional form (A10), a1 and b1 are obtained as positive
rather than negative quantities in our fitting procedure, for
silicon, supporting the functional form indicated in Eq. (A10)
(with positive terms a1 and b1). This finding also is in line
with the functional form used in Ref. [21].

APPENDIX B: DYNAMIC POLARIZABILITY

1. General algorithm

We aim to delineate a rather general algorithm here which
allows one to calculate the dynamic polarizability of an atom
at imaginary driving frequency, α(iω), based on the knowl-
edge of the oscillator strengths of a few low-lying transitions,
and additional input from the known asymptotic behavior
of the polarizability for large driving frequency, to be de-
rived from sum rules. The algorithm should be accurate to a
few percent over the entire frequency range 0 < ω < ∞ and
thus sufficient for the calculation of atom-surface interactions,
where the dominant source of uncertainty comes from the
dielectric function (see Sec. III).

The approach is to first collect, from databases [50], the
transition energies and oscillator strengths of a few low-lying
transitions. This collection immediately allows to describe
the frequency dependence of the dynamic polarizability for
low excitation frequency argument. In order to model the
contribution of the continuum states of the atom, we add one
more virtual transition to a “pseudolevel,” which is energeti-
cally positioned in the continuum. The oscillator strength is
matched against the Thomas-Reiche-Kuhn (TRK) sum rule
[59,60] sum rule, and the energy of the pseudolevel is adjusted
so that the correct overall low-frequency (“static”) limit of the
polarizability is recovered. Because we only consider imag-
inary frequencies, we are far enough away from any atomic
resonance that we do not need to worry about the decay width
of the state, i.e., about the imaginary part of the energy that
otherwise enters the polarizability.

The atomic polarizability is defined as (see Refs. [49,62])

α(ω) =
∞∑
n

e2 a2
0 Eh fn0

E2
n0 − (h̄ω)2 , (B1)

where fn0 is the oscillator strength of the atom, measured
in atomic units, and En0 ≡ En − E0 is the energy difference
between the virtual and exited states |ψn〉. We note that the os-
cillator strength is used, in atomic physics, as a dimensionless

quantity (for an excellent overview of pertinent conventions,
see Ref. [66]). The sum is carried out over all of the discrete
states as well as the continuous spectrum.

In order to approximate the atomic polarizability with our
model polarizability, α(ω) ≈ αm(ω), we divide the infinite
sum in Eq. (B1) into two parts,

α(ω) ≈ αm(ω) = αd (ω) + αc(ω), (B2)

in which αd (ω) is the sum over the terms from the first q
discrete (bound) states

αd (ω) =
q∑

n=1

e2a2
0Eh fn0

E2
n0 − (h̄ω)2 , (B3)

where we neglect the width of the virtual states, anticipating
that our final aim will be to evaluate the polarizability at
imaginary driving frequency (where the decay width terms are
negligible for our purposes).

Let us denote by αc the contribution of the continuum
states. We model the contribution αc(ω), using a pseudolevel,
as follows:

αc(ω) = e2a2
0Eh f∞

E2∞ − (h̄ω)2 . (B4)

The oscillator strength of the additional “continuum” level f∞
is found by requiring that sum over all oscillator strengths
obey the TRK sum rule which in SI mksA units can be ex-
pressed as ∑

n

fn0 = N, (B5)

where N is the total number of electrons in the system, and
n runs over all virtual levels (discrete and continuum). There-
fore the matching condition for the oscillator strength of the
continuum pseudolevel is

f∞ ≈ N −
q∑

n=1

fn0. (B6)

The energy position of the additional “continuum” level E∞
can be found by requiring our ansatz to reproduce known
numerical values of the static polarizability,

E2
∞ = f∞

α(0) − αq(0)
. (B7)

This algorithm will be applied to hydrogen, before being
generalized to other atoms.

2. Hydrogen

Because the dynamic polarizability of hydrogen can be
calculated analytically [67–70], a comparison of the complete
result to that found using the algorithm described above can
be used as a measure of the validity of our ansatz. We start
from the analytic solution for the dielectric function for the
ground state of hydrogen as a function of ω as described in
Refs. [67,69,70],

α(ω) = e2 h̄2

α4 μ3 c4
[Q(ω) + Q(−ω)], (B8)
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TABLE IX. Energy differences are given En0 = En − E0 be-
tween the reference 1S ground state of hydrogen (H) and excited
states (nP). The fine-structure and Lamb shift are not resolved. We
also list corresponding oscillator strengths fn0 for the first 10 excited
states. The data include the reduced-mass correction (the oscillator
strength scales with the first power of μ/me, where μ is the reduced
mass of hydrogen, and me is the electron mass.) All entries are in
agreement with the data compilation given in Ref. [71].

n En0 (Eh ) fn0 (e2a2
0Eh )

2 0.37480 0.41640
3 0.44421 0.07914
4 0.46850 0.02901
5 0.47974 0.01395
6 0.48585 0.00780
7 0.48954 0.00482
8 0.49193 0.00319
9 0.49356 0.00222
10 0.49473 0.00161
11 0.49560 0.00120

where μ is the reduced mass of hydrogen, α is the fine-
structure constant, c is the speed of light, e is the elementary
charge, and h̄ is Planck’s unit of action. The matrix element
Q = Q(ω) is given as follows:

Q(ω) = Eh

e2 a2
0

〈
1S

∣∣∣∣	r 1

HS − E1S + ω
	r
∣∣∣∣1S

〉
, (B9)

where 1S denotes the ground state of hydrogen, the scalar
product is understood for the position operators 	r, HS is the
Schrödinger-Coulomb Hamiltonian, and E1S is the ground-
state energy,

The Q matrix elements are dimensionless and can be ex-
pressed in terms of the dimensionless photon energy variable

t = t (ω) =
(

1 + 2h̄ω

Eh

)−1/2

(B10)

and

Q(ω) = 2t2

3(1 − t )5(1 + t )4
[3 − 3t − 12t2 + 12t3

+ 19t4 − 19t5 − 26t6 − 38t7]

+ 256t9

3(1 + t )5(1 − t )5 2F1

(
1,−t, 1 − t,

(
1 − t

1 + t

)2)
,

(B11)

and it is understood that t ≡ t (ω). Here, 2F1 is the Gaussian
hypergeometric function. In Table IX, we collect oscillator
strengths for the first ten dipole-allowed hydrogen transitions
from the reference ground state to excited nP states, with
n = 2, . . . , 11. One can verify that the oscillator strengths, for
general n, obey the following general formula:

fn0 = 256n5

3(n2 − 1)4

(
n − 1

n + 1

)2n

, (B12)

which can be derived starting from Eq. (6.133) of Ref. [26].
The angular integral in that expression can be calculated di-

FIG. 7. The dynamic polarizability of atomic hydrogen is plotted
as a function of the imaginary driving frequency. The exact solution
given in Eq. (B8) (red curve) is compared with the approximation
given in Eq. (B2) (blue-dotted curve), which is based on the oscillator
strengths listed in Table IX. The static polarizability of hydrogen is
α0 = 9/2e2a2

0/Eh, which is 9/2 in atomic units. The relative differ-
ence between the exact values and the approximation can be found
in Fig. 8.

rectly while Eq. (7.414.7) of Ref. [72] can be used to evaluate
the radial integral. The Gaussian hypergeometric function that
appears in the result can be expressed in closed form. The
result given in Eq. (B12), upon the inclusion of reduced-mass
effects, reproduces all data collected in Table IX, originally
collected from Ref. [71].

The panel in Fig. 7 shows the numerical results for the
dynamic polarizability as a function of ω. Numerical results
from the proposed algorithm for the first ten energy dif-
ferences and oscillator strengths fn0 collected in Table IX
(blue-dotted line), are nearly identical to those from the an-
alytic solution in Eq. (B8) (red-dotted line). A closer look, as
described by Fig. 8, reveals a peak in the relative difference
χ (ω) of the exact dynamic polarizability of hydrogen given in

FIG. 8. The relative difference χ (ω), described in Eq. (B13),
between the exact expression for the dynamic polarizability of hy-
drogen given in Eq. (B8) and the discrete model given in Eq. (B2), is
plotted as a function of the driving frequency. Here q is the number of
discrete oscillator strengths included in the discrete model, as given
in Table IX.
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FIG. 9. The relative difference ξ (T�), defined in Eq. (B16),
between the short-distance Casimir-Polder parameter C3 evaluated
using the exact expression for the dynamic polarizability given in
Eq. (B8) and the discrete model given in Eq. (B2) is plotted as a
function of temperature for hydrogen interacting with silicon. Note
that the plot range on the ordinate axis is restricted.

Eq. (B8), and the model polarizability given in Eq. (B2),

χ (ω) = αm(iω) − α(iω)

α(iω)
, (B13)

at a driving frequency of about one atomic unit. However, the
peak relative difference occurs in a region where the absolute
value of the polarizability has already dropped to about one
tenth of its static value (see Fig. 7), and is thus less than 1%
when divided by the static polarizability. Note that the plot
pertains to imaginary driving frequencies, so that the bound-
state poles remain invisible.

Let us compare, for the Lorentz-Dirac fit (at room tem-
perature), the result for C3, for hydrogen interacting with

silicon, evaluated in terms of the model polarizability (B2),
to the result obtained using the exact polarizability, given in
Eq. (B8). We define

C(m)
3 (T�) = h̄

16π2ε0

∫ ∞

0
dω αm(iω)

εLD(T�, iω) − 1

εLD(T�, iω) + 1
,

(B14)
as the result obtained from the model polarizability, and

C(e)
3 (T�) = h̄

16π2ε0

∫ ∞

0
dω α(iω)

εLD(T�, iω) − 1

εLD(T�, iω) + 1
, (B15)

as the result obtained using the exact polarizability. Then, the
relative difference is

ξ (T�) = C(m)
3 (T�) − C(e)

3 (T�)

C(e)
3 (T�)

, (B16)

and it is plotted in Fig. 9. The difference of about 1% is
negligible on the level of the uncertainty in the determination
of C3 implied by the dielectric function.

3. Other elements

Just as for hydrogen, the atomic polarizability of helium
may be calculated according to the algorithm outlined in
Sec. B 1. The static polarizability of helium is α(ω = 0) =
1.383 e2 a2

0/Eh [62,63], which is equivalent to a numerical
value of 1.383 in atomic units. For helium, extensive cal-
culations are available (see Refs. [73–78]). Data for other
elements can easily be found in the NIST database, which is
available online (see Ref. [50]). Furthermore, additional data
on oscillator strengths are available for other atoms of interest,
from Refs. [79–83].
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