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Topological chiral currents in the Gross-Neveu model extension
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We unveil an interesting connection of Lorentz-violating quantum field theories, studied in the context of
the standard model extension, and Hubbard-type models of topological crystalline phases. These models can
be interpreted as a regularization of the former and, as hereby discussed, explored with current quantum
simulators based on ultracold atoms in optical Raman lattices. In particular, we present a complete analysis
of the Creutz-Hubbard ladder under a generic magnetic flux, which regularizes a Gross-Neveu model extension
and presents a characteristic circulating chiral current whose nonzero value arises from a specific violation of
Lorentz invariance. We present a complete phase diagram with trivial insulators, ferromagnetic and antiferro-
magnetic phases, and current-carrying topological crystalline phases. These predictions are benchmarked using
tools from condensed matter and quantum-information science, showing that self-consistent Hartree-Fock and
strong-coupling Dzyaloshinskii-Moriya (D-M) methods capture the essence of the phase diagram in different
regimes, which is further explored using extensive numerical simulations based on matrix-product states.
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I. INTRODUCTION

The standard model (SM) of particle physics is one of the
big triumphs of theoretical physics, as it provides simultane-
ously an accurate and economic description of nature [1]. The
SM introduces a reduced set of quantum fields and, building
upon elegant and simple symmetry principles, it fixes the form
of their interactions and precisely accounts for all fundamental
particles observed to date. However, existing difficulties in the
incorporation of gravity to the SM suggest that this model
could be a low-energy limit of a more fundamental theory that
describes physics at a much higher scale, the Planck scale.
In these theories, fundamental symmetries such as Lorentz
invariance may be broken, as occurs in string theory [2]
and noncommutative field theories [3]. The remnants of this
Lorentz violation can be included in the so-called SM ex-
tension, an effective quantum field theory (QFT) in a larger
parameter space that includes all possible Lorentz-violating
terms with new bare couplings [4–6]. A wide variety of exper-
iments [7], including recent quantum-information-enhanced
interferometry [8], establish tight bounds on these couplings
and, so far, have shown no evidence of the violation of Lorentz
symmetry.

There is, however, an alternative arena where Lorentz in-
variance is not an exact symmetry but, instead, appears in
the infrared long-wavelength limit [9]. In condensed-matter
physics, many microscopic theories are formulated in terms
of nonrelativistic quantum field theories [10] and, yet, Lorentz
invariance and relativistic effects can appear in effective de-

scriptions of low-energy phenomena. The standard scenario
where this happens is that of phase transitions [11], where
the physics around some critical points can be described by
Lorentz-invariant QFTs, and the renormalization group allows
us to understand why Lorentz-breaking microscopic correc-
tions become irrelevant at low energies [12,13]. Indeed, the
dialogue between condensed-matter and high-energy physics
has proved to be extremely fruitful in this context, see, e.g.,
Refs. [14–16] or [17–19]. An alternative scenario where the
emergence of Lorentz invariance has turned out to be relevant
is in graphene [20], Weyl semimetals [21], and topological
insulators and superconductors [22].

In recent years, this fertile dialogue has broadened its
scope, as Lorentz invariance has also become manifest as an
effective symmetry in systems of atomic, molecular, and op-
tical (AMO) physics [23,24]. Building upon Feynman’s idea
of a quantum simulator [25], there has been a number of ex-
periments targeting Lorentz- and gauge-invariant QFTs using
ultracold atoms [26–31] and trapped ions [32–34] (see, e.g.,
Refs. [35–39] for recent reviews). To the best of our knowl-
edge, however, quantum simulations of Lorentz-violating
extensions of the SM of particle physics have not been con-
sidered yet. Although Lorentz-breaking terms should, in fact,
be the rule rather than the exception, since one starts from
a nonrelativistic model that accurately describes these AMO
systems, the difficulty lies in tailoring those systems so the
Lorentz-violating terms that survive in the long-wavelength
limit correspond precisely to those considered in the standard
model extension (SME) [4]. This may change the role of the
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SME, which has routinely provided a framework for some
of the most precise null experiments to date [40]. Instead,
if successful, AMO quantum simulators have the potential
to turn the SME into a framework of experimentally testable
analog physics beyond the SM. In this paper, we follow this
route for a particular case, unveiling interesting connections
between Lorentz-violating quantum field theories and lattice
models of correlated topological phases of matter that display
a persistent chiral current. We show that the latter provides a
lattice regularization of a specific matter sector of the SME
including, in addition, four-Fermi Gross-Neveu (GN)-type
interactions. Moreover, we also discuss how these models
can be implemented in experiments of ultracold atoms with
synthetic spin-orbit coupling [41,42].

This paper is organized as follows: In Sec. II, we start
by reviewing the physics of Hubbard ladders, which are the
minimal fermionic lattice models that allow for the effect
of external (background) gauge fluxes and may support a
circulating, so-called chiral current. This sets the stage to in-
troduce a particular lattice regularization of low-dimensional
Lorentz-violating QFTs, the cross-link Creutz-Hubbard lad-
der for generic magnetic flux θ . We argue that this model can
host a current-carrying topological crystalline phase (TCP),
which is simultaneously described by a nonzero topological
invariant and a circulating chiral current. A short summary of
the main results of this work is then presented. In Sec. III,
we explicitly construct the continuum limit of this ladder
and show that it corresponds to a Gross-Neveu model ex-
tension (GNME) with a particular Lorentz violation that has
been explored in the SME. This gives a neat perspective on
the appearance of the persistent chiral current, which coex-
ists with a nonzero topological invariant and can be used
to chart the phase diagram via the associated susceptibility,
as discussed in Sec. IV. In Sec. V, using a self-consistent
mean-field approach analog to a large-N limit of the GN
model, we study how this chiral current can be used to
characterize the robustness of the TCP as the strength of
the four-Fermi interactions are increased and discuss the full
phase diagram of the model. We benchmark the mean-field
predictions using tools developed by the condensed-matter
and quantum-information communities, i.e., tensor-network
variational techniques based on matrix-product states (MPSs).
As discussed in the text, these quasiexact numerics confirm
qualitatively the mean-field prediction of the phase diagram
and correct the typical shortcomings of mean-field treatments.
Finally, in Sec. VI, we present a proposal for a potential exper-
imental realization with spin-orbit-coupled ultracold atoms.
In this way, models of high-energy physics considered in
the context of the SME could be accessed with table-top
experiments of nonrelativistic neutral atoms at ultralow tem-
peratures.

II. THE CREUTZ-HUBBARD LADDER
WITH ARBITRARY FLUX

In this section, we describe the model under study: the
cross-linked Creutz-Hubbard ladder under an arbitrary mag-
netic flux. Let us start, however, by reviewing briefly the
context of strongly correlated behavior in ladder compounds,
which has a long and fruitful history in condensed matter.

A. Previous studies on Hubbard ladders

In ladder models, the particles are arranged on a lattice
composed of N� chains with Ns sites each. Typically, these par-
ticles have nearest-neighbor couplings along the vertical and
horizontal directions resembling a rectangular ladder struc-
ture of N� legs [see Fig. 1(a)]. These systems interpolate
between 1D and 2D as one increases the numbers of legs
N� → Ns and, sometimes, can host unexpected phenomena.
For instance, in the context of Heisenberg ladders and their
connection to the high-Tc cuprates [43], the parity of the
number of legs determines the gapped/gapless nature of the
model [44,45], drawing a neat connection to the Haldane
conjecture of spin chains and the interplay of topology and
constrained QFTs [46,47]. Through an analog of the superex-
change mechanism [48], these Heisenberg ladders can be seen
as the strong-coupling limit of a half-filled Hubbard ladder,
where electrons interact via a strong local density-density cou-
pling, the so-called Hubbard interaction [49]. Being quasi-1D,
ladders yield a neat playground to generalize analytical meth-
ods [50–53] developed for one-dimensional systems [54].
Moreover, Hubbard and Heisenberg ladders can be explored
numerically [55,56] using efficient and very accurate numeri-
cal schemes [57,58].

Getting closer to the subject of the present paper, we note
that the rectangular ladders are the minimal lattice structures
that can be pierced by an external magnetic flux and have a
well-defined thermodynamic limit [see Figs. 1(b)–1(d)]. By
increasing the number of legs, these ladders yield a clear
route toward the integer [59] and fractional [60] quantum Hall
effects. For the two-leg ladder, the presence of a magnetic flux
modifies the fermion tunneling in a Hubbard ladder via the
so-called Peierls’ substitution [61] depicted in Fig. 1(b). This
in turn leads to a rich phase diagram that contains Luttinger
and Luther-Emery phases [62], depending on the magnetic
flux and the specific filling factor. In the case of spinless
fermions, on-site Hubbard interactions must be exchanged for
nearest-neighbor ones [see Fig. 1(d)], the interplay of which
with the magnetic flux can also give rise to various strongly
correlated effects. While in the absence of the magnetic field,
these finite-range interactions typically stabilize charge- and
bond-density wave patterns depending on the particular fill-
ing, the situation becomes much richer as the magnetic field
is switched on. For instance, one may find staggered flux
phases with a pattern of local currents along the vertical and
horizontal links, encompassing alternating circulations (i.e,
vortices) in the plaquettes [63,64]. Moreover, one can also
find kinks/antikinks that interpolate between the two possible
symmetry-broken patterns of vortices, each of which hosts
fractionally charged excitations in analogy to fractionalization
phenomena in QFTs [65] and polymers [66,67].

The remarkable progress of ultracold atoms in optical
lattices has stimulated renewed interest in the physics of
the bosonic counterparts of these ladders [see Fig. 1(c)]. In
particular, recent experiments [68,69] have realized a Bose-
Hubbard model [70,71] in a two-leg ladder under an external
magnetic flux. As discussed in previous theoretical works
[72], this bosonic model can host liquid phases analogous
to the Meissner and vortex phases of superconductors. These
states of matter can be distinguished by a circulating chiral
current, which has actually been measured in experiments
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FIG. 1. Hubbard ladders pierced by a magnetic field. (a) Diagram of N�-leg ladder with open boundary conditions. Particles move across
the ladder hopping along horizontal and vertical links that join the different lattice sites. (b) Rectangular two-leg ladder for spin-full fermions
subjected to an external magnetic flux θ . The fermions can hop along the legs and rungs with strength the±iθ/2 and tv, respectively, and
interact through a repulsive local Hubbard interaction U↑↓ depending on the spin. (c) Rectangular ladder for spinless bosons subjected to an
external homogeneous magnetic field. The tunneling strengths are arranged similarly to (b), and U represents the interaction strength when
two bosons meet at the same lattice site. Exploiting the gauge freedom, one can arrange the Peierls’ phases in the tunnelings along the vertical
directions maintaining the same flux, such that the bosons pick an Aharonov-Bohm phase proportional to the flux θ when tunneling across
a plaquette. (d) Rectangular ladder for spinless fermions subjected to an external magnetic flux θ , here depicted through an anticlockwise
directed circle. The one-site Hubbard interaction is forbidden by Pauli exclusion, and only nearest neighbors Vv and Vh can contribute. (e)–(g)
Same as (b)–(d) but for a cross-linked, so-called Creutz-Hubbard ladder. Here, the tunneling between neighboring chains occurs diagonally
instead of vertically tv → td, forming a crossed-linked pattern. In this case, particles hopping along two possible trapezoidal plaquettes gain an
Aharonov-Bohm phase proportional to the magnetic flux θ .

[68]. This current quantifies a boson flow with a natural con-
nection to the edge states and skipping orbits of quantum Hall
samples as the number of legs is increased [73]. However, as
the microscopic particles are bosons, the nature of the phases
differs, and one can find unique Meissner- and vortex-type
ground states. In the Meissner phase, the bosonic chiral cur-
rent plays the role of the screening current in superconductors
(i.e., it flows in a different direction so as to screen the external
magnetic flux). Alternatively, in the vortex phase, currents run
along the ladder rungs, leading to vortices where the magnetic
flux is not fully screened, which draws a clear analogy to
type-II superconductors. More recently, this distinction has
also been identified as one increases the Hubbard interactions,
where one finds Meissner and vortex-type Mott insulators
[74,75], as well as the so-called vortex lattices [76,77]. Let
us also remark that the chiral current can also be used to
unveil a quantitative connection of these quasi-1D ladders,
both bosonic and fermionic, with the topologically-ordered
phases [78] of the fractional quantum Hall effect [79,80].

Once the relevant literature on fermionic and bosonic Hub-
bard models on rectangular ladders has been reviewed, let us
describe the literature on cross-linked Hubbard ladders. In
this case, the particles can tunnel between neighboring chains,
forming a crossed-linked pattern, as depicted in Figs. 1(e)–
1(g). This ladder geometry was discussed by Creutz [81,82] in
the context of domain-wall fermions [83–86] in lattice gauge
theories [87,88]. The presence of the external magnetic field
changes considerably the band structure, and can even lead
to completely flat bands in the π -flux regime [89], yielding
an instance of Aharonov-Bohm cages [90] with fermions
locked to the plaquettes due to destructive interference [81]. In
fact, this so-called Creutz ladder is an archetype of flat-band

physics [89]. In addition to these localized bulk states, there
are additional edge states exponentially localized to the left-
and rightmost boundaries of the ladder. These states can be un-
derstood as lower-dimensional versions [81] of domain-wall
fermions [83], and correspond to the edge states of a topolog-
ical insulator [22] in the symmetry class AIII/BDI [91,92]. The
persistence of these topological features at finite temperatures
[93,94] and adiabatic [95] or sudden [96] dynamical quenches
has also been discussed in the literature. Moreover, the Creutz
ladder also yields a neat scenario to explore the phenomenon
of topological charge pumping [97].

Let us now briefly review some recent works exploring the
strongly correlated physics of this cross-linked ladder in
the presence of Hubbard-type interactions. As occurred for the
rectangular ladder, there has been recent interest in studying
the phases of a Bose-Hubbard model in this cross-linked ge-
ometry [see Fig. 1(f)]. Here, a flat-band-induced frustration
can change the standard condensation of bosons [98] and lead
to new phases of matter even for weak interactions. Depend-
ing on the filling per site, the contact interactions can lead to
valence bond crystals, quasisuperfluids of paired bosons, or
supersolids that arise from bound pairs of domain walls that
interpolate between two valence-bond orderings [99,100]. We
note that, in addition to the cold-atom quantum simulators,
the bosonic Creutz-Hubbard ladder has also been discussed in
the context of microwave photons in superconducting circuits
[101], photonic waveguide arrays [102], and superradiant
tight-binding lattices in momentum space [103]. Moving on
to the spinful fermionic case of Fig. 1(e), this model yields
a neat playground to understand correlation effects in topo-
logical phases of matter [104]. For instance, for attractive
interactions and in the context of flat-band superconductivity
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[105,106], one can find an exact Bardeen-Cooper-Schrieffer
(BCS) ground state and emerging SU(2) symmetries [107].
In this case, a crossover between such BCS superconductor
and a superfluid of tightly bound pairs for attractive Hubbard
interactions has also been found [108,109]. The competition
of BCS pairing and repulsive Hubbard interactions was dis-
cussed in Ref. [110] and shown to yield an interesting phase
diagram with topological superconductors characterised by
Majorana edge states. The interplay of flat-band interac-
tions and disorder has also been explored for the fermionic
Creutz-Hubbard ladder [111,112] in connection to many-body
localization [113].

The inclusion of various hyperfine states in cold-atom
gases in optical lattices opens another perspective for quan-
tum simulations, as one may use the internal states as a
synthetic dimension [114–116], as recently demonstrated in
quantum simulators of quantum Hall ladders [117–119] or of
spin-orbit coupled interacting wires [120–122]. In this con-
text, the s-wave scattering that gives rise to SU(N ) Hubbard
models [123,124], can be understood as nonlocal interactions
along the synthetic dimension of a rectangular ladder [see
Figs. 1(b)–1(d)], giving rise to a family of models with a rich
interplay between interaction-induced strong correlations and
flux-induced kinetic frustration [80,125–130]. As discussed
in Ref. [131], the synthetic ladders are not restricted to rect-
angular geometries, as one can exploit Floquet-engineering
techniques [132] to induce cross-link tunnelings, giving rise to
the subject of this paper: the synthetic Creutz-Hubbard ladder,
which we now describe.

B. The synthetic Creutz-Hubbard ladder

We consider a system of spinless fermions that can be
created (annihilated) at the sites of a two-leg ladder by the
operators c†

i,� (ci,�), which are labeled by i ∈ {1, · · · , Ns} and
� ∈ {u, d}. The cross-link geometry of the ladder, as displayed
in Fig. 1(g), is determined by the tunneling terms of the lattice
Hamiltonian,

HC = −
∑
i,�

(
the−i

s�θ

2 c†
i+1,�ci,� + tdc†

i+1,�ci,�

− s��ε

2
c†

i,�ci,� + H.c.

)
, (1)

where we have introduced the horizontal (diagonal) tunneling
strength th (td), the energy imbalance �ε, and the notation
s� = {+1,−1} and � = {d, u} for � = {u, d}, respectively.
Finally, we note that the complex Peierls phases of the tun-
nellings lead to a nonzero Aharonov-Bohm phase θ when the
fermions tunnel across the trapezoidal plaquettes depicted in
Fig. 1(g). Accordingly, the parameter θ can be understood as
the magnetic flux �B of a background magnetic field Bbg =
∇ × Abg that is directed perpendicularly to the plaquette S,
θ = e

h̄

∮
γ

dl · Abg = 2π e
h

∫
S dS · Bbg = 2π�B/�0, expressed

in units of the flux quantum �0 = e/h.
As advanced in the previous section, the θ = π -flux limit

is obtained when half a flux quantum pierces each plaquette
�B = �0/2, the tunnelings have equal strengths th = td, and

the imbalance vanishes �ε = 0. This leads to an Aharonov-
Bohm destructive interference and a pair of flat bands ε±(k) =
±2th, such that particle or hole excitations do not propa-
gate vg = ∂kε±(k) = 0, where k ∈ BZ = [−π/a, π/a) is the
quasimomentum of the reciprocal lattice for lattice spacing
a. Moreover, these flat bands are topological, as they can be
characterised by a nonzero topological invariant γ± = ∓π

[131], the so-called Zak’s phase γ± = ∫
BZ dkA±(k) [133],

where we have introduced the Berry connection A±(k) =
〈ε±(k)| i∂k |ε±(k)〉 [134]. As discussed in Ref. [131], the
Berry connection in this π -flux limit is actually homogeneous
A±(k) = ∓1/2 which, in higher dimensions, would lead to
a vanishing Berry curvature and one would speak of a topo-
logical flat-band structure. Let us also note that, by switching
the energy imbalance �ε 	= 0, the bands (connection) will no
longer be flat (homogeneous), but the topological invariant re-
mains quantized for |�ε| � 4th. According to the underlying
symmetries [135,136], this imbalanced Creutz ladder hosts an
AIII topological insulator.

The interplay of topology and interactions can lead to ex-
otic phases of matter in topological flat-band systems [137]. In
the context of synthetic dimensions in the cold-atom scheme
[131], as discussed in more detail in Sec. VI, the upper and
lower legs of the ladder actually correspond to two different
hyperfine states of the ground-state manifold. Therefore, a
contact Hubbard interaction due to the s-wave scattering of
the ultracold atoms can be interpreted as a nearest-neighbor
interaction along the vertical direction connecting the legs of
the synthetic ladder [see Fig. 1(g)]. This leads to the following
quartic term:

HCH = HC + Vv

2

∑
i,�

c†
i,�

c†
i,�

c
i,�

c
i,�

, (2)

where Vv > 0 represents a repulsive interaction strength. As
shown in Ref. [131] using various analytical and numerical
techniques, the noninteracting AIII topological insulator is
adiabatically connected to a correlated topological insulator
in a wide lobe of parameter space (Vv,�ε), the tip of which
corresponds to (Vv,�ε) = (8th, 0). This symmetry-protected
topological phase is surrounded by a correlated trivial band
insulator and an orbital ferromagnet. This symmetry-broken
phase is characterized by the magnetic order parameter My =
〈T y

i 〉 	= 0, where T y
i = i(c†

i,dci,u − c†
i,uci,d )/2 can be under-

stood as a spin-1/2 operator when the upper and lower leg
components are interpreted as the two spin projections.

Interestingly, this π -flux regime has a direct connection to
a Wilson-type discretization [138] of the GN model [139], a
QFT of self-interacting fermions in (1 + 1) dimensions that
shares some features with higher-dimensional non-Abelian
gauge theories [88]. The GN model belongs to the family of
four-Fermi field theories, originally introduced in the context
of nuclear interactions by Enrico Fermi [140,141]. Specifi-
cally, it can be understood as a low-dimensional version of
Nambu-Jona-Lasinio (NJL) models [15,16], and allows to ex-
plore chiral symmetry breaking by dynamical mass generation
and asymptotic freedom in a renormalizable framework [139].
As discussed in Refs. [142,143], the π -flux synthetic Creutz-
Hubbard ladder can be unitarily mapped onto a Wilson-type
discretization of the GN model, which is described by the
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following lattice Hamiltonian:

HGNW = a
∑
x∈
s

[(
−�(x)

(
iγ 1

2a
+ 1

2a

)
�(x + a) + �(x)

(
m

2
+ 1

2a

)
�(x) + H.c.

)
− g2

2N
(�(x)�(x))2

]
, (3)

where �(x) = (ψ1(x), · · · , ψN (x))t contains N flavors of
the two-component Dirac spinors ψn(x), �(x) = �(x)†γ 0 is
the adjoint, and γ 0, γ 1 are the gamma matrices in a (1 +
1)-dimensional space-time {γ μ, γ ν} = 2gμν , where gμν =
diag(1,−1) is the flat Minkowski metric. For the synthetic
Creutz-Hubbard ladder Eqs. (1) and (2), one needs to set
N = 1, ψ1(x) = 1√

a
sin(π j/2)(c j,u, c j,d )t with x = ja ∈ 
s,

and chose the gamma matrices γ 0 = σ z, and γ 1 = iσ y. The
correspondence between the microscopic parameters is

θ = π, td = th, ma = �ε

4th
− 1,

g2

2N
= Vv

4th
, (4)

and the topological insulator lies in the BDI class. We note
that digital quantum simulations of the GN model, including
other discretizations such as the staggered-fermion approach,
have also been discussed recently [144–146].

This connection yields interesting insights. On the one
hand, it shows that the pseudoscalar condensate �0 =
〈�(x)iγ 5�(x)〉, where γ 5 = γ 0γ 1 = σ x, corresponds exactly
to the order parameter of the aforementioned orbital ferromag-
net �0 ↔ My. This condensate acquires a nonzero value in
the parity-breaking Aoki phase [147] and also plays a role in
lattice discretization of quantum chromodynamics [148,149].
Accordingly, the numerical results of Ref. [142] show that the
existence of the Aoki phase, typically predicted in the basis
of a large-N expansion [147], actually survives down to the
ultimate quantum limit of N = 1. Moreover, from the per-
spective of the phase diagram of the Creutz-Hubbard ladder,
this Aoki phase is not an artifact of the lattice scaffolding of
the continuum fields but rather a physical phase that delimits
the correlated BDI topological insulator. On the other hand,
the connection between these two models also shows that the
standard continuum limit, where one recovers the continuum
GN field theory [139], a → 0 and g2 → 0, is actually the
critical region separating the trivial and correlated topological
insulators, and that it can be used to understand the strongly
coupled features of the topological phase diagram [143].

As can be seen in Eqs. (4), however, the connection to the
GN field theory and the interplay of topological phases and
lattice discretizations Eq. (3) only apply to the π -flux regime
of the synthetic Creutz-Hubbard ladder. It thus remains open
to (i) explore the full phase diagram of the model Eqs. (1)
and (2) for arbitrary magnetic flux θ , (ii) find experimentally-
accessible observables to characterise it, and (iii) unveil its
connection to phenomena discussed in a high-energy context.
In this paper, we pursue this threefold goal and find the results
summarized in the following subsection.

C. Summary of the results

We have found that the Creutz-Hubbard ladder for arbitrary
magnetic flux θ Eqs. (1) and (2) has interesting connections
between correlated topological phases of matter and Lorentz-

violating QFTs in the SME. Interestingly, both the topological
invariant that characterizes these phases and the coupling
strength of the Lorentz-violating terms, can be controlled by
modifying the value of the magnetic flux that pierces the
ladder. As discussed in Sec. III, in the absence of interac-
tions and for a particular set of bare microscopic couplings,
the band structure of the model describes a semimetal with
a single Fermi point at momentum k+ = π/2a or, other-
wise, at k− = −π/2a. The dispersion relation has a different
propagation speed for right- and left-moving excitations,
which clearly breaks the emergent Lorentz invariance that
appeared in the π -flux model [131]. Remarkably, we find that
this Lorentz-breaking mechanism corresponds to a particular
Lorentz violation of the SME, which also breaks parity and
time-reversal symmetry [4]. In combination with Hubbard
interactions, we show that the continuum limit is described
by a Lorentz-violating GN model with four-Fermi terms that
couple the Dirac spinors around each of these two Fermi
points. We refer to this continuum limit as a GNME.

In Sec. IV, we discuss how the Lorentz violation in the
GNME brings in a new feature. Whereas the π -flux Creutz-
Hubbard ladder cannot support persistent currents in the
groundstate, the breaking of Lorentz invariance due to the
asymmetry in the speed of left- and right-moving particles
can be responsible for a net current. In particular, in the non-
interacting limit, we show that the ground states can simul-
taneously display a nonzero topological invariant and a large
chiral current circulating around the ladder, both of which are
consistent with inversion symmetry. Using the susceptibility
associated to this chiral current, we chart the phase diagram of
the model and identify wide regions of parameter space with
a current-carrying topological crystalline ground state. In the
limit of very strong Hubbard interactions, the half-filled ladder
is described by an effective spin model that corresponds to the
XY model with Dzyaloshinskii-Moriya (D-M) superexchange
and subjected to a transverse field. Depending on the value
of the magnetic flux, one can either find ferromagnetic or
antiferromagnetic phases and second-order phase transitions
that separate them from a disorder paramagnet (PM) that is
preferred for sufficiently-large transverse fields.

In Sec. V, we show that the TCPs with a nonzero Zak’s
phase disappear in favor of these magnetic phases for suffi-
ciently strong interactions. As a visual aid for the following
discussions, we present a qualitative sketch of the phase dia-
gram containing the various results in Fig. 2. In the parameter
regime �ε/4th ∈ (−1, 1) and θ ∈ (−π, π ), we find that the
Creutz-Hubbard ladder displays four distinct phases: a PM, a
ferromagnet (FMy), an antiferromagnet (AFMx), and a TCP.
By using a mean-field reasoning in the effective GNME of
the continuum limit, we understand how the effect of interac-
tions contributes to various mass terms for the effective Dirac
fermions, which provides a qualitative understanding of the
fate of the topological phases when the four-Fermi interac-
tions are increased. We make this discussion quantitative by
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FIG. 2. Schematic phase diagram for arbitrary fluxes. Qualitative
phase diagram of the Creutz-Hubbard ladder as a function of the
Hubbard interactions Vv, the energy imbalance �ε, and the magnetic
flux θ . At |θ | = π , the topological phase in red is protected by a
sublattice symmetry and belongs to the AIII class of topological
insulators, which is surrounded by a topologically trivial paramag-
net (PM) in white and a symmetry-breaking ferromagnet (FMy) in
blue, and delimited by second-order critical lines. For |θ | � π , the
sublattice symmetry is broken, and the topological phase is instead
protected by inversion symmetry, representing a topological crys-
talline phase (TCP) which, in contrast to the π -flux limit, supports
a large circulating chiral current. As the magnetic flux is decreased
further toward θ ≈ 0, the TCP phase is also surrounded by a new
symmetry-broken phase, an antiferromagnet (AFMx) in yellow. We
also depict shaded planes in parameter space where detailed numeri-
cal results are presented in the main text.

finding the mean-field parameters self-consistently, and ex-
ploring the full phase diagram in detail. Although the specific
critical lines are not accurate, we show that the structure of
the phase diagram predicted by this self-consistent mean field
agrees with that obtained from a quasiexact density matrix
renormalization group (DMRG) method. For weak interac-
tions Vv  th, we show that the system has two topological
lobes in parameter space (Vv, θ,�ε). This topological phase
is protected by inversion symmetry and can thus be identified
with a correlated TCP that is surrounded by a trivial band
insulator or by a symmetry-broken phase with ferromagnetic
(antiferromagnetic) long-range order for large (small) fluxes
|θ | ≈ π (θ ≈ 0). Within these two lobes, the chiral current
has a large absolute value and, despite the Lorentz-invariance
breaking, the topological invariant remains to be nonzero γ =
±π . The topological nature of this correlated phase is further
confirmed by showing a twofold degeneracy of the entangle-
ment spectrum, as calculated with our DMRG numerics. As
one increases the interactions, the topological lobes become
smaller and there is a SSB process where the crystalline
topological phase disappears in favor of the magnetic phases.
Finally, for Vv � th, we show that the DMRG results agree
very well with those obtained from the effective spin model
with anisotropic XY couplings and a Dzyaloshinskii-Moriya
superexchange.

An important aspect of the current paper is that this in-
terplay of topological phenomena, persistent chiral currents,
and correlations in regularized Lorentz-violating QFTs can
be realized in experiments of ultracold atoms in optical lat-
tices. We show that by modifying recent schemes of synthetic
spin-orbit coupling using Raman optical lattices, one can re-
alize the Creutz-Hubbard ladder with an arbitrary flux, the
latter being tunable by adjusting the propagation direction
and the frequency of the Raman beams. This scheme avoids
the use of state-dependent optical lattices or Floquet-assisted
tunnelings in interacting Fermi gases, in this way minimiz-
ing the effective heating due to residual photon scattering
from the auxiliary excited states. In light of recent experi-
mental progress with Raman optical lattices [150–153], we
believe that the current scheme opens another direction in
the realization of strongly coupled QFTs that incorporate
Lorentz-violating terms of the SME, such as the GNME
studied in this paper. Additionally, the particular lattice reg-
ularization explored in this paper would allow exploration of
the interplay of these relativistic models with current-carrying
topological phases.

III. THE GROSS-NEVEU MODEL EXTENSION
IN THE CONTINUUM LIMIT

We start by discussing the continuum limit of the Creutz-
Hubbard ladder Eqs. (1) and (2) for arbitrary flux θ ∈
(−π, π ]. In the rest of this paper, we will set td = th and
consider half-filling conditions. One can diagonalize the
noninteracting part Eq. (1) by a Fourier transform c j,� =∑

k∈BZ eika jck,�/
√

Ns, which yields

HC =
∑
k∈BZ

∑
�,�′

c†
k,�

h��′ (k)ck,�′ , h��′ (k) = ε0(k)I2 + d(k) · σ,

(5)
where we have introduced the scalar and vector functions

ε0(k) = −2th cos

(
θ

2

)
cos(ka),

d(k) = 2td cos(ka)ex +
(

�ε

2
− 2th sin

(
θ

2

)
sin(ka)

)
ez, (6)

and σ = σ xex + σ yey + σ zez. Accordingly, the band struc-
ture is determined by diagonalizing the corresponding matrix,
which yields the following two bands:

ε±(k) = ε0(k) ± |d(k)|. (7)

In the θ = π -flux regime, and setting �ε = 4th (�ε = −4th),
the band structure describes a semimetal with a single Fermi
point at k+ = +π/2a (k− = −π/2a). As one modifies the
flux θ 	= π and, simultaneously, adjusts the imbalance to
�ε = ±4th sin(θ/2), the band structure still contains the sin-
gle Fermi points at the same points of the Brillouin zone
[see Figs. 3(a) and 3(b)]. Since the low-energy properties
are controlled by particle/hole excitations around those Fermi
points, the continuum limit is obtained by a long-wavelength
approximation around them, where we define a spinor field

ψ (x) = 1√
a

(c j,u, c j,d )t ≈ eik+a�+(x) + e−ik−a�−(x), (8)
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FIG. 3. Band structure and Lorentz-violating Fermi points. Dispersion relations ε±(k) Eq. (7) for the two bands of the imbalanced Creutz
ladder for different fluxes θ ∈ [π/2, π ] (see the coloring labels of the insets). (a) The flux is set such that �ε = −4th sin(θ/2), and one can
see that the low-energy properties are controlled by a massless Dirac fermion at k− = −π/2a. (b) The flux is set such that �ε = 4th sin(θ/2),
and one can see that the low-energy properties are controlled by the massless Dirac fermion at k+ = π/2a. The left- and rightmost insets show
that the corresponding Dirac cones have different propagation speeds for right- and left-moving excitations, which read v±

R and v±
L .

and separate the rapidly oscillating parts eikηa from the
slowly varying operators �η(x) for each of these Fermi
points η ∈ {+,−}. These operators satisfy the desired anti-
commutation relations in the continuum limit a → 0, where
{�η,�(x), �†

η′,�′ (x′)} = δη,η′δ�,�′δ j, j′/a → δη,η′δ�,�′δ(x − x′).
To obtain the QFT that governs this continuum limit, we

use Eq. (8) and perform a gradient expansion for the fields
�η(x ± a) = �η(x) ± a∂x�η(x) + O(a2) to find the follow-
ing lowest-order expressions:

ψ†(x)Ô(ψ (x + a) + ψ (x − a)) ≈ 2ia
∑

η

η�†
η (x)Ô∂x�η(x),

ψ†(x)Ô(ψ (x + a) − ψ (x − a)) ≈ 2i
∑

η

η�†
η (x)Ô�η(x),

(9)

for any operator Ô acting on the spinor degrees of freedom.
Using these expressions, together with Eq. (8) and introducing
the Hubbard interactions, we find that the continuum limit of
the Creutz-Hubbard ladder Eqs. (1) and (2) can be expressed
as

HCH =
∫

dx

(∑
η

�η(x)
(−i

(
cγ 1

η + c̃ηγ
0
η

)
∂x + mηc2

)
�η(x)

)

−
∫

dx
g2

2

(∑
η

�η(x)�η(x) + (−1)
x
a �η(x)�η(x)

)2

.

(10)

The first line of this equation can be interpreted as the Hamil-
tonian QFT of a massive Dirac field for each of the species η ∈
{+,−}. These correspond to the so-called fermion doublers
in the context of lattice gauge theories, which always yield an
even number of species in the continuum limit [154,155]. The
corresponding gamma matrices are

γ 0
± = σ z, γ 1

± = ±iσ y, γ 5
± = ±σ x, (11)

which shows that the continuum limit around each doubler
carries an opposite chirality. The effective speed of light and
mass of the Dirac fermions reads

c = 2tha, m±c2 = �ε

2
∓ 2th sin

(
θ

2

)
. (12)

As customary in a Wilson-type discretization [138], the
masses of the fermion doublers are no longer equal. This
effect is not specific to the generic flux, as it also occurs in
the π -flux model [131], where it underlies the existence of
topological phases of matter. The result in Eqs. (12) shows that
one can achieve different Wilson masses for any flux θ 	= 0,
and that we can use the external flux to tune their relative
values. In Fig. 3(a), we see that when the flux is set such that
�ε = −4th sin(θ/2), only the Dirac fermion at k− remains
massless, which agrees with the predictions in Eqs. (12). On
the other hand, for �ε = +4th sin(θ/2), it is the massless
Dirac fermion at k+ which controls the low-energy properties
as depicted in Fig. 3(b), which again agrees with Eqs. (12).
Note that to use the natural units typical of relativistic quan-
tum field theories, one must set th = 1/2a above.

As one departs from the π -flux regime, a new term appears
in the continuum limit Eq. (10) with the new coupling con-
stant:

c̃± = ±2tha cos

(
θ

2

)
. (13)

This coupling introduces an explicit violation of Lorentz sym-
metry, which actually corresponds to a specific term in the
SME [4]. Before discussing the origin and consequences of
this new term, let us comment on the second line of Eq. (10),
which contains the coupling

g2

2
= Vva

2
= Vv

4th
, (14)

and is consistent with Eqs. (4) in the single-flavor limit N = 1.
We can see in Eq. (10) that this interaction term introduces, in
addition to four-Fermi terms for the separate species, mixing
terms due to the back- and Umklapp scattering that connect
the two Fermi points of the original band structure. The ap-
pearance of these terms is standard in other 1D models at half
filling [54]. We note that these interaction-induced couplings
between the two doublers play a key role in determining the
renormalization-group flows of the microscopic parameters,
which can be used to understand the shape of the phase dia-
gram at θ = π [143]. We thus expect an analogous behavior
for generic fluxes, albeit leading to more complicated flow
equations and a richer phase diagram.
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TABLE I. Parameters and observables. The correspondence be-
tween parameters and observables for the lattice Creutz-Hubbard
model in Eq. (2) and its continuum limit, the fermion-doubled Gross-
Neveu model, defined in Eq. (15).

Parameters and observables

Creutz-Hubbard Gross-Neveu
model model

Vv/4th g2/2
2tha c
�ε/2 ∓ 2th sin(θ/2) m±c2

± cos(θ/2) cμν
±

〈�̄(x)iγ 5�(x)〉 My

〈�̄(x)�(x)〉 �n

Summarizing, we see that besides the new term Eq. (13),
the continuum limit of the synthetic Creutz-Hubbard lad-
der for arbitrary flux corresponds to a fermion-doubled GN
model, albeit with microscopic couplings that depend on the
external flux θ (the correspondence between the parameters
and the observables of these two models is shown in Ta-
ble I). It turns out, however, that this additional term Eq. (13)
changes the physics considerably, allowing us to explore some
sectors of the SME. To unveil this connection, let us find
the corresponding action SCH = ∫

d2x(
∑

η �η∂0�η − HCH),
where the canonical momenta for each of the species are
�η(x) = ic�η(x)γ 0

η and lead to

SCH =
∫

d2x

(∑
η

�η(x)
(
ic�μ

η ∂μ − mηc2
)
�η(x)

)

+
∫

d2x
g2

2

(∑
η

�η(x)�η(x) + (−1)
x
a �η(x)�η(x)

)2

,

(15)

where we use Einstein’s summation convention for repeated
space-time indices μ, ν, τ ∈ {0, 1} and have introduced the
modified gamma matrices for each of the doublers:

�μ
η = γ μ

η + cμν
η gμτ γ

τ
η . (16)

In the context of the SME, cμν is a traceless tensor that
contains the dominant corrections to the collisions of unpo-
larized electrons and positrons due to the violation of Lorentz
invariance [6]. As discussed in the Introduction, these terms
may arise as an effective microscopic coupling from more
fundamental theories at the Planck scale, such as string theory
and noncommutative QFTs [2,3]. It is remarkable that these
terms arise naturally in the long-wavelength limit of the lad-
der. In the present context, we get one of these terms cμν

η for
each doubler species η ∈ {+,−} as a direct consequence of
the θ 	= ±π flux of the regularization Eq. (1). In fact, we find
that

cμν
± =

{± cos
(

θ
2

)
if μ = 1, ν = 0

0 else,
(17)

which becomes nonzero away from the π -flux regime, such
that �0

η = γ 0
η , and �1

η = γ 1
η + η cos( θ

2 )γ 0
η . We note that, be-

sides breaking Lorentz invariance, this term also breaks parity
and time-reversal symmetry, although CPT is conserved [6].
As advanced previously, we refer to this continuum limit as a
particular type of GNME.

A neat picture of the Lorentz violation caused by this
term can be obtained by inspecting the band structure of
Eq. (7) for generic fluxes, as depicted in Figs. 3(a) and 3(b).
As already discussed in the previous section, when setting
�ε = ±4th sin(θ/2), one obtains a semi-metal with a Fermi
point at k± = ±π/2a. A closer inspection of the bands [see
the left- and rightmost insets of Figs. 3(a) and 3(b)] shows
that the corresponding Dirac cone has a different propagation
speed for right- and left-moving excitations, which reads as
follows:

v±
R = 2tha

(
1 ± cos

(
θ

2

))
, v±

L = 2tha

(
1 ∓ cos

(
θ

2

))
.

(18)

This clearly breaks Lorentz invariance, as �ε =
±4th sin(θ/2) implies that the corresponding mass Eqs. (12)
vanishes, and the fermion should thus be traveling at the same
speed c Eqs. (12) in both directions, regardless of the velocity
of the frame of an inertial observer. However, for nonzero
cμν
η , inertial observers moving to the right or left will see

the particle traveling at different speeds, such that Lorentz
symmetry is broken.

This velocity difference suggests that there might be
nonzero currents in the ground state, as particles move faster
in one direction than in the other. As shown below, when the
ladder has periodic boundary conditions, this flow of parti-
cles corresponds to a persistent chiral current that circulates
in a specific direction set by the sign of the magnetic flux.
For open boundary conditions, the persistent chiral current
attains a fixed nonzero value at the bulk of the ladder and gets
attenuated as one approaches the left and right boundaries.
Moreover, as also discussed below, this chiral current can be
used to probe the full phase diagram.

IV. CHIRAL CURRENTS AND CRITICAL PHENOMENA

As discussed previously, the specific type of Lorentz vi-
olation that controls the low-energy properties Eq. (15) of
the model predicts a different propagation speed for right-
and left-moving particles Eqs. (18). In the underlying lattice
discretization, this can yield a net circulating chiral current
across the ladder:

Jc =
∑

j

(
ithei θ

2 c†
j+1,uc j,u − ithe−i θ

2 c†
j+1,dc j,d + H.c.

)
. (19)

This current measures the difference of the right- and leftward
fermion flows in the upper and lower legs of the ladder Jc =
J→

u − J←
d , where J→

u and J←
d are defined as

J→
u =

∑
j

(
ithei θ

2 c†
j+1,uc j,u + H.c.

)
,

J←
d =

∑
j

(−ithe−i θ
2 c†

j+1,dc j,d + H.c.
)
. (20)

This gives rise to a sense of circulation/chirality (i.e., 〈Jc〉 >

0 clockwise circulation and 〈Jc〉 < 0 anticlockwise) that
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connects naturally with the current-carrying edge states of the
quantum Hall effect as one increases the number of legs [73].

To avoid possible confusion, let us note that this circulating
chiral current is not related to the axial current of continuum
QFTs [1], which is also referred to as the chiral current, and is
the Noether current associated to axial rotations. Note that for
N = 1 [142], the four-Fermi term of the extended GN model
Eq. (3) can be rewritten as

g2

2
(�(x)�(x))2 = g2

4
((�(x)�(x))2 − (�(x)γ 5�(x))2),

(21)

such that the lattice model Eq. (3) including the Lorentz-
violating term becomes invariant under continuous axial
rotations �(x) �→ eiαγ 5

�(x), ∀α ∈ R. In the continuum limit,
the Noether current associated to this symmetry is the afore-
mentioned axial current jμA = �(x)γ 5γ μ�(x), which has a
conserved axial charge given by

QA =
∫

dx j0
A =

∫
dx�(x)γ 5γ 0�(x). (22)

If we calculate the continuum limit of the circulating chiral
current Eq. (19) using the fermion bilinear expressions of
Eqs. (9), we find that the leading-order contribution is

Jc = 2th cos

(
θ

2

) ∫
dx�(x)�(x) + O(a), (23)

which clearly differs from QA. We see that away from the
π -flux regime where the above expression Eq. (23) vanishes,
the expectation value of the chiral current is proportional to
the so-called scalar condensate �0 = 〈�(x)�(x)〉, the value
of which marks the chiral symmetry breaking by the dy-
namical mass generation of the standard GN model [139].
Therefore, this circulating current cannot be directly related to
the axial current or to the chiral anomaly due to a background
gauge field [156,157]. In spite of this difference, given the
transparent interpretation of two chiral windings, namely, the
anticlockwise and clockwise circulations, it is customary to
refer to this current as the chiral current.

In the following subsections, we will identify the phase dia-
gram of the model in the noninteracting regime and the strong
coupling limit. In particular, in Sec. IV A, we will characterize
the phase of the model for Vv = 0 using the circulating chiral
current and its associated susceptibility, combined with the
values of the topological invariant. Instead, in Sec. IV B we
will present a strongly coupled effective theory (Vv � th) of
the model to chart its full phase diagram.

A. Chiral flows and topological phase transitions

Using the Hellmann-Feynman theorem, the expectation
value of the chiral current can be expressed as the correspond-
ing derivative of the total ground-state energy:

〈Jc〉 = 2

〈
∂HCH

∂θ

〉
= 2

∂Egs

∂θ
. (24)

This quantity contains useful information about the phase
diagram, which can already be seen at the non-interacting
level. In this case, Egs = a

2π

∫
BZ dkε−(k) is obtained by filling

FIG. 4. Chiral current in the synthetic Creutz ladder. The main
central panel presents the chiral current as a function of the magnetic
flux for different imbalances �ε, using a coloring scheme that is
specified in the index. In the upper and lower panels, we depict the
particle flow clockwise (counterclockwise) 〈Jc〉 > 0 (〈Jc〉 < 0) for
positive (negative) flux θ > 0 (θ < 0), and also draw the analog of
the skipping orbits for fermions in a quantum Hall sample.

the Ns lowest energy states of Eq. (7), yielding

〈Jc〉 = −2th cos

(
θ

2

)∫ π

−π

dq

2π

�ε
2 sin q − 2th sin

(
θ
2

)
sin2 q∣∣d( q

a

)∣∣ ,

(25)
where we have introduced q = ka. Additionally, we shall also
be interested in the chiral susceptibility

χc =
〈
∂Jc

∂θ

〉
= 2

〈
∂2HCH

∂θ2

〉
= 2

∂2Egs

∂θ2
= ∂〈Jc〉

∂θ
, (26)

which can be thus obtained by taking derivatives of the above
integral Eq. (25) with respect to the flux.

In the main panel of Fig. 4, we represent the dependence of
the chiral current with the magnetic flux for various positive
values of the imbalance �ε > 0. We observe the characteristic
behavior of a screening current, as also found in fermionic
[64] and bosonic [72] rectangular ladders: the particles flow
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FIG. 5. Bands for the Creutz ladder for vanishing flux. Disper-
sion bands of the imbalanced Creutz ladder for θ = 0 for different
imbalance �ε, with a coloring specified in the inset. For θ = 0
and �ε = 0 (red solid line), the band structure contains a flat and
cosine-type band in which the two Fermi points have equal velocities
v+

R = v−
L for right- and left-moving excitations.

clockwise (counterclockwise) 〈Jc〉 > 0 (〈Jc〉 < 0) for positive
(negative) flux θ > 0 (θ < 0) and, if charged, would thus
induce a magnetic field that tends to screen the external one.
In the bosonic case, this connects to the Meissner effect of
a superfluid, while in the fermionic case it mimics the skip-
ping orbits and edge states in quantum Hall samples (see the
upper and lower insets of Fig. 4). This is consistent with the
difference in the velocities of right- and left-moving particles
v+

R , v+
L in Eqs. (18), which control the low-energy dynamics

in the vicinity of �ε = 4th sin(θ/2), which is the relevant case
for the positive imbalances displayed in the figure.

We also see in this figure that the chiral flow stops at
the time-reversal symmetric points θ ∈ {−π, 0, π}, which is
again consistent with both right- and left-moving excitations
traveling at the same speed. Note that for a vanishing flux
θ = 0, the band structure Eq. (7) for �ε = 0 contains a flat
and a cosine-type band, such that one has to consider the two
Fermi points with equal velocities v+

R = v−
L for the right- and

left-moving excitations (see Fig. 5). The low-energy theory, in
this case, is thus not given by Eq. (15) with Eq. (17) for θ = 0,
but rather by the standard Lorentz-invariant Luttinger liquid
for a cosine band, which displays no circulating currents [54].
Accordingly, in both cases θ ∈ {−π, 0, π}, there is no chiral
current and we recover the effective Lorentz symmetry.

For the rectangular Hubbard ladders, the circulating chiral
current has a different behavior. Its dependence with the flux
displays a cusplike behavior that marks the onset of a Lifshitz
transition where the number of Fermi points changes [62,64].
Moreover, as one modifies the filling, the chiral current shows
a linear dependence prior to the Lifshitz transition that can be
used to extract information about an underlying ladder ver-
sion of the Laughlin state in fractional quantum Hall phases

[79,80]. Although we do not find this exact phenomenology
for the cross-linked ladder, the chiral current still carries infor-
mation about phase transitions, albeit of a different nature. To
see these effects, we now study the dependence of the chiral
susceptibility with the magnetic flux. It turns out that the chiral
susceptibility shows a clear divergence as Ns → ∞ that coin-
cides with the values of the imbalance �ε = ±4th sin(θ/2),
where the masses of the Dirac fermions Eqs. (12) vanish. This
divergence shall thus mark the onset of a gap closure and a
second-order phase transition instead of the aforementioned
Lifshitz one.

In Figs. 6(a) and 6(b), we show the contour plots of the
chiral current and the chiral susceptibility, respectively, as
a function of (θ/π,�ε/th). The chiral current shows much
larger absolute values within the two lobes [see Fig. 6(a)], and
the maxima of the susceptibility serves to delimit the lobes
and mark the phase transition [see Fig. 6(a)].

To better understand the nature of this phase transition, we
now discuss the values of the Zak phase [133] for arbitrary
magnetic fluxes. This topological invariant, briefly discussed
in the Introduction, serves to characterize the topological
phases of the Creutz ladder in the π -flux regime [131]. For
generic fluxes, we find that the additional term ε0(k) break-
ing particle-hole symmetry does not contribute to the Berry
connection, such that

γ± = ∓
∫

BZ
dk

ey · (d(k) × ∂kd(k))

2|d(k)|2 (27)

only depends on the Brillouin-zone vector field d(k) in-
troduced in Eqs. (6). We note that the contribution of the
Berry connection to this topological invariant is actually con-
centrated around the two Fermi points k± = ±π/2a around
which we performed the long-wavelength approximation
Eq. (10). This allows us to calculate the integrals analytically,
yielding

γ± = ∓π

2

∑
η=±

ηsgn

(
�ε

2
− η2th sin

(
θ

2

))
, (28)

which is the difference of the signs of the two fermion masses
in Eqs. [(12), γ± = ±π

2 (sgn(m−) − sgn(m+)]. This expres-
sion is analogous to the results found for higher-dimensional
domain-wall fermions [85] and leads to the following critical
lines that separate topological from trivial band insulators in
the half-filled ladder:

γ− =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if �ε > 4th
∣∣sin

(
θ
2

)∣∣
π, if 0 < �ε < 4th

∣∣sin
(

θ
2

)∣∣
−π, if 0 > �ε > −4th

∣∣sin
(

θ
2

)∣∣
0, if �ε < −4th

∣∣sin
(

θ
2

)∣∣.
(29)

Our results show that, in spite of our departure from the π -
flux limit, and the associated breaking of Lorentz-invariance
Eq. (16) and (17), one can still find a topological phase with a
quantised nonzero Zak’s phase in certain regions of parameter
space.

This phase hosts edge states localized to the left/right
boundaries of the ladder. In the π -flux limit [131], where
the single-particle Hamiltonian Eq. (5) belongs to the AIII
class {h(k), σ y} = 0, the edge states are constrained to be

045147-10



TOPOLOGICAL CHIRAL CURRENTS IN THE GROSS- … PHYSICAL REVIEW B 106, 045147 (2022)

FIG. 6. Phase diagram of the noninteracting Creutz ladder. (a) The persistent circulating chiral current 〈Jc〉 in Eq. (25) is represented by a
contour plot and clearly displays a large nonzero value inside two lobes that touch at θ = 0, surrounded by a region with a vanishingly small
particle flow. (b) Contour plot for the chiral susceptibility χc in Eq. (26), the maxima of which show a divergence with the number of sites Ns

that delimits the lobes with a large nonzero chiral current, and marks the onset of a quantum phase transition. (c) Contour plot of Zak’s phase in
Eq. (28) as a function of the flux and imbalance. We see that the two lobes with a large chiral flow correspond to the regions where the system
is a topological crystalline phase with γ± = ±π , here represented by yellow/blue colors. The phase diagram thus consists of two regions with
a topological-crystalline state that supports a large persistent chiral current except for |θ | → π , surrounded by a trivial band insulator with a
vanishingly small chiral current. The dashed black line of (a) shows the transition points from the topological to the trivial phases marked by
the change of Zak’s phase Eq. (29), which agrees perfectly with the points where the chiral susceptibility diverges.

zero-energy modes. In the present case, the underlying sub-
lattice symmetry is broken, as {h(k), σ y} 	= 0 for θ 	= π . As
a consequence, the topological phase is no longer within the
AIII class, such that the edge states are no longer restricted to
have zero energies. Even if no global symmetry is responsible
for the protection of this topological phase, one can find a
pointlike inversion symmetry,

ci,u �→ cNs−i,d, ci,d �→ cNs−i,u, (30)

under which the Hamiltonian remains invariant HCH �→ HCH.
Accordingly, ground states with a quantized Zak phase can
be understood as instances of a TCP [158–160]. Note that
the above circulating chiral current Eq. (19) is also preserved
under this ladder inversion Jc �→ Jc. The ground state can
thus simultaneously display a nonzero topological invariant
protected by inversion symmetry and a nonzero persistent
circulating current, departing in this way from other topo-
logical crystalline insulators. Note that, in contrast to the
two-dimensional quantum Hall effect, this circulating current
is not carried by the edge states, which remain localized at the
left/right boundaries. In Fig. 6(c), we represent the contour
plot of Zak’s phase Eq. (28) as a function of (θ,�ε/th). By
comparing to the contour plot of the chiral current in Fig. 6(a),
we see that the two lobes with a large circulating chiral flow
correspond to regimes with nonzero γ± = ±π , in which the
ground state is a topological phase. As θ → 0, the topological
insulator regions give way to a trivial band insulator with a
vanishingly small current. On the other hand, as θ → ±π

toward the other time-reversal configurations, the circulating
chiral current vanishes while the ground state still supports a
nonzero Zak’s phase that ultimately yields the π -flux results
of Ref. [131]. In the following sections, we explore how this
picture gets modified as we include Hubbard interactions,
starting from strong interactions.

B. Dzyaloshinskii-Moriya superexchange

In this section, we discuss the nature of the phase dia-
gram in the strong-coupling limit Vv � th [i.e., g2 � 1 in

the language of the GN model Eqs. (4)]. As mentioned in
the Introduction, in the strong-coupling regime, the half-filled
rectangular Hubbard ladder for spin-full fermions can be de-
scribed in terms of an effective antiferromagnetic Heisenberg
ladder, where the origin of the spin-spin interactions can be
understood as a superexchange mechanism [48]. As shown
in Ref. [131], the strong-coupling limit changes considerably
for the cross-linked geometry in the π -flux limit. Here, one
obtains ferromagnetic Ising interactions with a Z2 symmetry
instead of the SU(2)-invariant Heisenberg couplings. In the
Ising case, one finds a symmetry-broken ferromagnet with
magnetization My 	= 0 or, equivalently [142], a pseudoscalar
condensate �0 	= 0 in the language of the GN model. In
both cases, there is a spontaneous symmetry breaking (SSB)
process where the corresponding AIII topological insulator
gives way to this long-range-ordered phase that breaks the Z2

symmetry. Since we have shown above that a current-carrying
topological phase also appears for generic fluxes θ 	= 0, it
is interesting to explore if there is a similar SSB where it
disappears in favor of a long-range order.

In the strong-coupling regime, due to the nature of the
synthetic Hubbard interactions, the low-energy subspace will
be spanned by fermion configurations that avoid double
occupancies of two vertically-neighboring sites of the lad-
der, as these doublons pay a large energy penalty. The
leading-order dynamics comes from second-order processes
O(t2

h /Vv) where fermions tunnel back and forth virtually
populating these doublons. At half filling, all the possible
second-order processes can be written in terms of orbital spin
operators:

T x
i = 1

2
(c†

i,uci,d + c†
i,dci,u),

T y
i = i

2
(c†

i,dci,u − c†
i,uci,d ),

T z
i = 1

2
(c†

i,uci,u − c†
i,dci,d ). (31)
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The second-order superexchange processes lead to the follow-
ing effective Hamiltonian of coupled orbital spins:

HDM =
∑

i

(
J (1 + ξ )T x

i T x
i+1 + J (1 − ξ )T y

i T y
i+1

)
+

∑
i

(
D · (T i × T i+1) + hT z

i

)
, (32)

where we have introduced the couplings

J = 4t2
h

Vv
cos θ, ξ = sec θ, D = −4t2

h

Vv
sin θez, h = �ε.

(33)
The first line of Eq. (32) represents the so-called XY
model [161,162] with spin-spin coupling strength J and
anisotropy parameter ξ given in Eqs. (33). The second line
of Eq. (32) contains a so-called Dzyaloshinskii-Moriya inter-
action [163,164], which contains an antisymmetric superex-
change with the coupling D given in Eqs. (33). Additionally,
there is an external transverse field h also defined in Eqs. (33).

Let us note that in the π -flux regime θ = π , the
Dzyaloshinskii-Moriya coupling and the xx interactions van-
ish D = 0, J (1 + ξ ) = 0, while the yy interactions J (1 − ξ ) =
−8t2

h /Vv lead to the aforementioned Ising coupling, which
favors a ferromagnetic long-range order along the y axis,
which coincides with the results of Refs. [131]. Conversely,
for vanishing flux θ = 0, it is D = 0, J (1 − ξ ) = 0 which
vanish, while the xx interactions J (1 + ξ ) = +8t2

h /Vv favor
an antiferromagnetic long-range order. We thus expect that,
as one varies the external magnetic flux, the direction and
character of the long-range order within the xy plane will be
modified.

Fortunately, the effective model turns out to be exactly
solvable via Jordan-Wigner [165] and Bogoliubov [166] trans-
formations. The first one allows us to express the orbital spin
model in terms of a chain of spinless fermions, which in
momentum space yields

HDM =
∑

k∈HBZ

χ†
k (ε̃0(k)I2 + d̃(k) · σ)χk . (34)

Here, we have introduced the Nambu spinor χk = ( f †
k , f−k )t,

which is expressed in terms of the new creation-annihilation
operators of the Jordan-Wigner fermions within the halved
Brillouin zone HBZ = [0, π/a]. The quadratic Hamiltonian
in Eq. (34) depends on the scalar and vector functions

ε̃0(k) = 4t2
h

Vv
sin θ sin(ka),

d̃(k) = 4t2
h

Vv
sin(ka)ey +

(
�ε − 4t2

h

Vv
cos θ cos(ka)

)
ez,

(35)

which play an analogous role to those defined in Eqs. (6)
for the noninteracting limit of the Creutz-Hubbard ladder.
Note, however, that the number of spinless Jordan-Wigner
fermions is not conserved, as the transformed spin model is
not invariant under U (1) symmetry. Applying now a Bogoli-
ubov transformation yields two energy bands analogous to

Eq. (7):

ε̃±(k) = ε̃0(k) ± |d̃(k)|. (36)

The ground-state energy, in this case, will be determined by
filling all the momenta for which ε̃±(k) < 0, which need not
be Ns fermions as occurs for the original half-filled ladder
with U (1) symmetry. Therefore, the presence of a gap-closing
phase transition can be predicted by finding the set of mi-
croscopic parameters that allow for ε̃±(k0) = 0 for some k0 ∈
HBZ. One can only find a solution of this equation for a spe-
cific momentum k0 ∈ {0, π/a} if for �ε = ∓(4t2

h /Vv) cos θ .
Accordingly, we identify two lines of second-order phase
transitions at

�εc(θ ) = ±4t2
h

Vv
| cos θ |. (37)

Let us now discuss the different phases that are delim-
ited by these critical lines. In addition to the aforementioned
SSB ferromagnetic and antiferromagnetic phases, the limit
h � |J|, |D| can be easily understood. In this case, the or-
bital spins align in the opposite direction of the transverse
field Eq. (32), which can be understood as an orbital PM in
which the original fermions are localized to the sites of the
lower leg of the ladder. In Fig. 7, we present some observ-
ables that allow us to understand how these three different
phases are arranged in this strong-coupling limit: (i) an an-
tiferromagnet (AFMx ) aligned along the x axis occurs for
�ε < �εc(θ ) and θ ∈ (−π/2, π/2), (ii) a ferromagnet (FMy)
aligned along the y axis occurs for �ε < �εc(θ ) and θ ∈
[−π,−π/2) ∪ (π/2, π ], and (iii) a PM with all spins anti-
aligned with the transverse field appears for �ε > �εc(θ ) for
any flux θ ∈ [−π, π ] for sufficiently large transverse fields.
In Fig. 7(a), we represent the two-point correlations functions
〈T x

1 T x
Ns

〉 in the ground state of the orbital spin model, which
tend to the AFM order parameter in the thermodynamic limit
|〈T x

1 T x
Ns

〉| → 〈T x
1 〉2 = M2

x , which clearly displays a nonzero
value in the inner yellow lobe. In Fig. 7(b), we represent the
two-point correlations functions 〈T y

1 T y
Ns

〉 in the ground state of
the orbital spin model, which tend to the FM order parameter
in the thermodynamic limit |〈T y

1 T y
Ns

〉| → 〈T y
1 〉2 = M2

y , which
clearly displays a nonzero value in two yellow lobes that
touch the AFMx phase at θ = ±π/2. Finally, in Fig. 7(c), we
represent the transverse magnetization |〈T z

i 〉|, which becomes
larger in the PM regions around the orbital magnets.

As noted at the end of the previous section, the TCPs sup-
porting a persistent chiral current at zero interactions should
disappear in favor of orbital magnetic phases as one increases
the Hubbard interactions. The current strong-coupling analy-
sis shows that these orbital magnets correspond to an AFMx

or FMy depending on the magnetic flux. Additionally, the
trivial band insulators that appear in the noninteracting limit
should be adiabatically connected to the PM phases, as they
both describe a limiting case in which all fermions occupy the
sites of the lower leg for a very large energy imbalance. The
questions that will be addressed in the following section are
how these two limiting cases are connected, what the nature
is of the quantum phase transitions that appear along the
way, and how the chiral current/susceptibility can be used to
characterize them.
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FIG. 7. Phase diagram of the Creutz ladder for strong interactions. Phase diagram displaying three different phases: ferromagnetic FMy,
antiferromagnetic AFMx , and paramagnetic PM phases. The horizontal axis represents the flux per plaquette, whereas the vertical axis
corresponds to the ratio of the energy imbalance to the superexchange strength J . (a) The correlator 〈T x

1 T x
Ns

〉 is represented by a contour plot,
quantitatively distinguishing a central yellow lobe where this correlator displays AFMx long-range order. (b) We also represent the correlator
〈T y

1 T y
Ns

〉, which instead captures two lateral yellow lobes displaying FMy long-range order. (c) The contour plot of the magnetization along
the z direction |〈T z〉| captures the paramagnetic phases, here represented by the yellow surrounding regions. The red lines correspond to the
critical line in Eq. (37), and perfectly delimit the regions where the above observables characterize the various phases.

V. PHASE DIAGRAM: SELF-CONSISTENT
HARTREE-FOCK METHOD AND VARIATIONAL

MATRIX-PRODUCT STATES

To address the question raised at the end of the previous
section and explore the full phase diagram of the model in
the {�ε, θ,Vv} volume, we use two different methods: (i)
a self-consistent mean-field approximation [167] and (ii) a
variational method based on MPSs [58].

With regard to the first one, we start from the Hubbard
interactions Eq. (2) and perform the Hartree-Fock decoupling

1

2

∑
�

c†
i,�

c†
i,�

c
i,�

c
i,�

≈ 〈c†
i,uci,u〉c†

i,dci,d + 〈c†
i,dci,d〉c†

i,uci,u

−〈c†
i,uci,d〉c†

i,dci,u − 〈c†
i,dci,u〉c†

i,uci,d,

(38)

where we have neglected a c number that will contribute
equally to the energies of all possible eigenstates of the mean-
field Hamiltonian. After this Hartree-Fock decoupling, the
Hamiltonian Eqs. (1) and (2) is expressed as the sum of
quadratic terms

Hmf
CH =

∑
i,�

(
the−i

s�θ

2 c†
i+1,�ci,� + tdc†

i+1,�ci,� − s��ε

2
c†

i,�ci,�

+ 1

2
ε�({ni,�})c†

i,�
c

i,�
+ t�({bi,�})c†

i,�
c

i,�
+ H.c.

)
.

(39)

Here we have introduced a shift of the on-site energies ε�

that depends on the local fermion numbers ni,� = 〈c†
i,�

c
i,�

〉,
together with a vertical tunneling term t� that depends on the
bond densities bi,� = 〈c†

i,�
c

i,�
〉. The former, which is always

a real number, will play an important role when the fermions
distribute differently along the two legs of the ladder; whereas
the latter, which can be a complex number, shall determine
how the fermions delocalize over the vertical links of the
ladder. These parameters are both proportional to the Hubbard

interaction:

ε�({ni,�}) = Vv〈c†
i,�

c
i,�

〉, t�({bi,�}) = Vv〈c†
i,�

c
i,�

〉. (40)

The on-site energy shifts will renormalize the energy im-
balance, changing in accordance with the extent of the
noninteracting phases. In addition, the vertical tunnelings can
change the physics considerably, as they modify the effective
connectivity of the ladder. In the noninteracting case, interleg
tunnelings can only occur via cross-link hoppings whereas, in
the presence of interactions, these mean-field terms can allow
for such hoppings occurring vertically.

We note that the mean-field approximation requires the ob-
servables {ni,�, bi,�}N

i=1 to be determined self-consistently, and
we must deal with a number of self-consistency equations that
grows linearly with the number of sites. The self-consistent
loop consists in the following steps: (i) We start by setting an
initial configuration of densities {ni,�} and bond densities {bi,�}
for different phases. With regard to the AFMx ordering, we
have chosen a pattern of real numbers with alternating signs
for bond densities {bi,�} and alternation of 0 and 1 for {ni,�}
such that

∑
i(ni,u + ni,d ) = Ns. Instead, when the target is the

TCP or the FMy, it is better to start from a translationally
invariant pattern of complex numbers for {bi,�}. Moreover,
for the PM phase, we start from a translationally invariant
pattern of real numbers for {bi,�} and we fixed ni,u = 1 and
ni,d = 0 ∀i. (ii) Given these initial seeds, we diagonalize the
fermionic tight-binding model defined in Eq. (39) and get
another estimate of the mean-field parameters Eqs. (40). We
then iterate this process until the self-consistent parameters
and the energy converge with an error of 10−8 for lattices up
to Ns = 64.

Let us now discuss these different mean-field configura-
tions at the level of the continuum QFT Eqs. (9). Assuming
a translationally invariant half-filled ground state, one finds
that an occupation imbalance on the legs �ni = ni,u − ni,d =
�n, ∀i shifts the Wilson masses in Eqs. (12) as follows:

m±c2 �→ m̃±c2 = �ε − Vv�n

2
∓ 2th sin

(
θ

2

)
. (41)
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This can readily be interpreted as the aforementioned renor-
malization of the energy imbalance �ε → �ε̃. A positive
bare energy imbalance �ε > 0 favors the occupation of
fermions on the lower leg �n < 0, which in turn increases
the renormalized energy imbalance �ε̃ = �ε + Vv|�n| in
Eq. (41). Consequently, the critical lines where one of
the Wilson masses Eq. (29) gets inverted will be shifted
toward smaller values of the bare energy imbalance �ε

when the Hubbard interactions are increased, such that the
self-consistent topological regions shrink in favor of the
mean-field trivial band insulator.

Motivated by the strong-coupling results of the previ-
ous section, another possibility for a translationally invariant
ground state is that of a purely imaginary bond density bi,u =
〈c†

i,uci,d〉 = −bi,d = iMy, ∀i. Such arrangement of bond den-
sities corresponds to the orbital ferromagnet FMy found in the
previous section for sufficiently strong couplings and fluxes.
This type of order is induced by the mean-field vertical tun-
nelings Eqs. (40) and, in the continuum QFT Eqs. (9), leads to
a unique mass term:

mηc2�η�η → m̃ηc2�η�η + ηVvMy�ηγ
5
η �η. (42)

These two self-consistent masses are renormalized by the
imbalance and bond densities, which correspond to the afore-
mentioned scalar and pseudoscalar condensates of the GN
model with a Wilsonian regularization [142]. If the inter-
actions are strong enough, the ferromagnet will be formed
My 	= 0, such that the Zak’s phase will no longer be quantized
Eq. (29) as a consequence of the two nonzero masses. More-
over, the long-range order is incompatible with the protecting
symmetries, and the ferromagnet fully expels the TCP via a
SSB phase transition.

Again motivated by the strong-coupling results, we should
consider a bond-density wave that breaks translation invari-
ance. This is given by a purely real alternating bond density
bi,u = 〈c†

i,uci,d〉 = bi,d = (−1)iMx, ∀i, corresponding to the
orbital anti-ferromagnet AFMx, which was found for suf-
ficiently strong couplings and small magnetic fluxes (see
Fig. 7). In light of this order parameter, we see that in the
limit Mx → 1, fermions delocalize along the vertical rungs
of the ladder with an alternating symmetric/antisymmetric
pattern. Such an alternating pattern leads to a different long-
wavelength term, as it effectively couples the two species of
Dirac fermions by the following Umklapp term:

mηc2�η�η → m̃ηc2�η�η − VvMx�η�η. (43)

At zero magnetic flux, where the band structure in Fig. 5
displays a flat band and a cosine band, one may form a mass-
less Dirac spinor from the right- and left-moving components
at k± = ±π/2a, such that the gap-opening Umklapp term
corresponds to yet a different mass term. Although at the
mean-field level [13], the massless Dirac fermion is unstable
toward the alternating bond-density wave for arbitrary-small
interactions, the presence of the flat band and the correlations
beyond mean-field may change this simple picture. In any
case, if this bond-density wave is formed, the topological in-
variant will no longer be quantized Eq. (29) and the associated
antiferromagnet will fully expel the topological phase.

Let us note that this self-consistent mean-field method is
equivalent to a large-N limit of the equivalent GN model,
where one introduces auxiliary bosonic fields via a Hubbard-
Stratonovich transformation [168] and sends the number of
fermionic species N → ∞. In the π -flux limit, it suffices
to introduce a couple of auxiliary fields, the nonzero ex-
pectation values of which lead to the onset of the so-called
scalar and pseudoscalar condensates discussed in Sec. II B.
We have checked that our self-consistent mean-field approach
provides numerical results that are in complete agreement
with the large-N prediction of the π -flux limit presented in
Ref. [142]. As one modifies the magnetic flux, the large-N
approach should be generalized to include an additional aux-
iliary field, the condensation of which would be connected
to the AFMx order. Instead of following this approach, which
requires solving a new set of coupled nonlinear gap equations,
the current self-consistent mean-field is sufficiently general
so it can directly encompass any type of ordering, and such
an order can be efficiently found by a suitable choice of the
initial seed.

In any case, both the mean-field and the large-N methods
do not take the interparticle correlations in full account. For
this reason, we benchmark these results with MPS methods.
In particular, we use the DMRG based on MPSs, which is
becoming a very useful tool to explore lattice discretizations
of quantum field theories [36,169]. This can be considered
as the most stringest test of the validity of the mean-field
approach. We consider lattices up to Ns = 128 sites and virtual
dimension up to χ = 200. Our DMRG code is based on MPSs
and uses a two-site optimization scheme. It is built implement-
ing the Abelian symmetries such as a particle conservation.
Indeed, we fix half-filling and open boundary conditions.

A. Weak and intermediate interactions

In this section, we analyze the effect of correlations in the
phase diagram of the Creutz-Hubbard ladder under a generic
magnetic flux, focusing on the regime of weak interactions.

We start by setting Vv/th = 1.0 and Vv/th = 2.0, which cor-
respond to the red and green shaded planes of the schematic
phase diagram of Fig 2. Our numerical results for the
phases of matter that appear in these planes are presented
in Fig. 8, where we have used self-consistent mean-field
and DMRG methods. The lines represent the critical points
where the topological and SSB phase transitions occur, either
obtained with a DMRG method based on finite MPS with
bond dimension χ = 200 (red stars) or by the self-consistent
Hartree-Fock method (yellow dashed lines). As can be ob-
served in the figure, for weak interactions, the Hartree-Fock
and DMRG critical points separating the TCP and PM regions
yield two critical lines that are very similar to each other.
The main differences appear in the critical lines separating
the AFMx and PM phases, as the mean-field method predicts
a smaller AFMx. Let us now analyze this figure in more detail
and describe the methodology used to extract these critical
points.

In analogy with the noninteracting case Eq. (1), the ground
state of the weakly interacting Creutz-Hubbard ladder Eq. (2)
contains a TCP as one departs from the π -flux limit. As
discussed qualitatively around Eq. (41), one of the expected
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FIG. 8. Phase diagrams for weak interactions. (a) Vv/th = 1,
(b) Vv/th = 2: The phase diagrams display two regions hosting a
topological crystalline phase (TCP), a long-range-ordered antifer-
romagnetic phase (AFMx), and a paramagnetic phase (PM). The
horizontal axis represents the magnetic flux, whereas the vertical
axis corresponds to the ratio of the energy imbalance to the tunneling
strength. The red stars (yellow dashed lines) show the critical points
found from DMRG (self-consistently mean-field) numerics. These
points are plotted on top of the contour plot of the chiral current,
obtained by calculating Eq. (19) using DMRG.

effects of interactions is to shrink the size of the TCP lobes
in favor of the trivial band insulator. Note that the trivial
band insulator is adiabatically connected to the orbital PM
when the energy imbalance is increased, and we refer to
them interchangeably. This shrinking can be readily observed
by comparing the vertical extent of the TCP lobes in the
noninteracting and interacting cases (compare Figs. 6 and 8).
Moreover, as shown in Sec. V C, the entanglement spectrum
on these lobes is twofold degenerate—see Fig. 15 a hallmark
of symmetry-protected topological phases [170]. This shows
that the noninteracting TCPs discussed in Sec. IV A are adia-
batically connected to these correlated TCP lobes. Comparing
Figs. 8(a) and 8(b), we also see that the shrinking of the TCP
in favor of the PM increases with the strength of the Hubbard
interactions, which is a direct consequence of the interaction-
induced renormalization of the Dirac-fermion masses Eq. (41)
in the continuum QFT.

Let us also recall that, as argued in Sec. III, the violation
of Lorenz symmetry in the continuum QFT Eqs. (15) and (16)
can be associated to a different propagation speed for right-
and left- moving particles (see the insets of Fig. 3). This dif-
ference can give rise to a net circulating chiral current, serve
to characterize further the phases of the model, and may act
as a good indicator to predict the critical lines [see Figs. 6(a)
and 6(b)] In particular, we recall that the noninteracting TCP
supports large values of this permanent chiral current away
from the π -flux limit [see Fig. 6(a)]. In the background of
Figs. 8(a) and 8(b), we present the expectation value of the
chiral current 〈Jc〉 in Eq. (19) in the presence of interactions,
as obtained by the DMRG numerics. We see that, as the TCP
lobes shrink in size due to the Hubbard interactions, the area
with a large chiral current also decreases. Therefore, the cor-
related TCPs can still support large chiral currents around the
ladder.

The critical points delimiting the TCP lobes in the phase
diagram are estimated via the chiral susceptibility χc =
∂〈Jc〉/∂θ Eq. (26). We recall that, in the noninteracting limit,
this susceptibility presents a divergence at the critical points
[see Fig. 6(b)]. In Fig. 9(a), we display the chiral suscep-
tibility for ladders with a different number of sites per leg
Ns ∈ {16, 32, 64}, fixing the energy imbalance �ε = 0.4th
and interaction strength Vv = 2th, and varying the external
magnetic flux. These numerical results clearly show a peak
at two symmetric values of the magnetic flux with respect to
the zero-flux axis. The finite size scaling (FSS) of the chiral
susceptibility maxima as a function of N is displayed in the
inset. As one can see in the inset, the peak of the chiral
susceptibility diverges with the size of the ladder, and fitting
the maxima of θc to θc(N ) = θc(1 + aN−1 + bN−2), we can
delimit the TCP lobes and locate the phase transitions. In
Fig. 9(b), we show the contour plot of the chiral susceptibility
with the corresponding peaks, which clearly shows how the
critical lines separate the TCP from other phases. Comparing
to the noninteracting case in Fig. 6(b), we clearly see that these
critical points are moved towards smaller imbalances, which
underlies the shrinking of the TCP lobes.

So far, our numerical benchmark has focused on the TCP
phase, and revolved around quantities related to the circulating
chiral current. An alternative way of identifying this phase
boundary is by studying the occupation leg imbalance:

�n = 1

Ns

∑
j

(〈c†
j,uc j,u〉 − 〈c†

j,dc j,d〉). (44)

The occupation imbalance is induced by a nonzero energy
imbalance �ε, which motivates the definition of an imbal-
ance susceptibility χ�n = ∂�n/∂�ε that proved to be a good
indicator of the quantum phase transition in the π -flux limit
[131], and can be easily calculated using our DMRG code. In
Fig. 9(c), we show the imbalance susceptibility for ladders
with a different number of sites per leg Ns ∈ {16, 32, 64},
fixing the magnetic flux to θ = 3π/4, the Hubbard interac-
tions to Vv = 2th, and varying the energy imbalance �ε. Once
again, this susceptibility shows a pair of peaks that are sym-
metric with respect to the zero-imbalance axis. A FSS shows
that this peak actually diverges in the thermodynamic limit
and allows us to locate the position of the critical point. The
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FIG. 9. Chiral and imbalance susceptibilities. (a) The peaks of the chiral susceptibility χc with growing system size Ns ∈ {16, 32, 64} allow
us to locate the critical point for a cut of phase diagram at Vv = 2th and �ε = 0.4th. (b) The contour plot of the chiral susceptibility for system
size Ns = 64, delimiting the TCP lobes from other phases phases. (c) The peaks of the imbalance susceptibility χ�n with growing system size
Ns ∈ {16, 32, 64} allow us to locate the critical points also around the π -flux regime. (d) The contour plot of the imbalance susceptibility for
system size Ns = 64.

critical points obtained through this analysis are represented in
a contour plot in Fig. 9(d). As can be seen from these results,
this susceptibility is more effective than the chiral one in the
critical regions around π flux, which is to be expected since
the chiral current vanishes in these regions.

The main difference brought up by the interactions occurs
in the region of small magnetic fluxes, where the Umklapp
term Eq. (43) may dominate over the other gap-opening
mechanisms. This term is expected to stabilize a bond-
ordered-wave with fermions delocalized along the vertical
bonds of the ladder in alternating symmetric/antisymmetric
orbitals, resembling an orbital AFMx. Our numerics show that
there are additional critical lines that separate this small-flux
region from either the TCP lobes at higher flux or the orbital
PM at higher energy imbalances (see Fig. 8). As supported by
the numerical results presented in the following paragraphs,
this intermediate region hosts AFMx long-range order due
to SSB of a global Z2 invariance. To accurately extract the
critical points between the AFMx and PM, we calculate the
staggered magnetization

Mx = 1

Ns

∑
j

(−1) j (〈c†
j,uc j,d〉 + 〈c†

j,dc j,u〉), (45)

which corresponds to the order parameter of the alternating
bond density wave. The advantage of the strong-coupling per-
spective Eq. (32) is that one identifies the energy imbalance as
the transverse magnetic field Eq. (33), and one can readily de-
fine the antiferromagnetic susceptibility as χMx = ∂Mx/∂�ε.
In Fig. 10(a), we present the staggered magnetization Mx for
different system sizes. The crossing of the lines in the main
panel serves to obtain the critical point of the model for weak
fluxes. As proved by the data collapse shown in the inset of
Fig. 10(a), the critical exponents correspond to those of the
(1 + 1) Ising universality class.

Moreover, we also want to address if the strong-coupling
AFMx phase, which appears for vanishingly small fluxes, also
sets for arbitrarily small values of the interaction strength
Vv , or if a PM sets in before the AFMx order takes on.
For this aim, we will study the phase diagram sketched in
Fig. 2 fixing the flux θ , and varying the imbalance �ε and
the interactions Vv , that permit us to explore different planes
also the correlation effects at intermediate interactions. We
set θ = 0.25π and θ = 0, which correspond to the green and
brown shaded planes of the schematic phase diagram of Fig. 2.
Our numerical results for the phases of matter that appear in
these planes are presented in Fig. 11, where we have used the
self-consistent mean-field (yellow dashed line) and DMRG
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FIG. 10. Staggered magnetization and magnetic susceptibility.
(a) Staggered magnetization for fixed interaction strength Vv = 2th

and flux θ = π/10, and different number of sites per length Ns ∈
{16, 32, 64}. As the length increases, the systems develop a nonzero
expectation value only within a symmetric region around zero im-
balance. (b) The magnetic susceptibility χMx for the same parameters
shows a couple of peaks that increase with the system size and allow
us to locate the critical points.

methods (red stars) to determine the critical lines. In the
background, we present a contour plot that serves as a guide
to the eye to identify the different phases. As shown in the
figure, the red stars obtained with a DMRG method based on
finite MPS with bond dimension χ = 200 yield a much better
estimate of the critical lines that separate the different phases.

Let us start discussing the case of θ = 0.25π shown in
Fig. 11(b). Here, one can distinguish three different phases:
TCP, PM, and AFMx. As can be observed in the figure for
weak interaction, the Hartree-Fock and DMRG critical points
separating the TCP and PM regions yield two critical lines
similar to each other, although differences arise as the inter-
actions are increased. Moreover, the weak-coupling limit can
be understood as a ferromagnetic coupling between the two
chains in the spin model description (as shown in Appendix).
Along this line the central charge c is equal to 1.

FIG. 11. Phase diagram in the plane (Vv, �ε) for fixed flux.
(a) The phase diagram for θ = 0.0 displays two regions hosting a
long-range-ordered antiferromagnetic phase (AFMx), and a param-
agnetic phase (PM). (b) The phase diagram for θ = 0.25π displays
a region hosting a topological crystalline phase (TCP), a long-range-
ordered antiferromagnetic phase (AFMx), and a paramagnetic phase
(PM). The horizontal axis represents the ratio of interaction to the
tunneling strength, whereas the vertical axis corresponds to the ratio
of the energy imbalance to the tunneling strength. The red stars
(yellow dashed lines) show the critical points found from DMRG
(self-consistently mean-field) numerics. These points are plotted on
top of the contour plot of the difference between the ferro and
antiferro order parameters for (a) and of the chiral current for (b).

We now move to the θ = 0 case, which is represented in
Fig. 11(a). In this case, one can readily observe that there
is no TCP phase, but that the SSB AFMx sets in at zero
imbalance for vanishingly small interactions. This result is
consistent with the qualitative phase diagram of Fig. 2, and
has very interesting consequences. While magnetism in stan-
dard Hubbard ladders only appears for small superexchange
couplings, making its detection with cold atoms rather chal-
lenging due to the required temperatures, the AFMx order in
the Creutz-Hubbard ladder for small fluxes appears at much
stronger scales, those set by the bare tunneling. This can be a
very interesting starting point to introduce a nonzero doping
and explore the interplay of magnetism and hole mobility in
connection to fermionic mechanisms of superconductivity.
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FIG. 12. Phase diagram for strong interactions. (a) Vv = 10th

and (b) Vv = 12th. The phase diagram displays a long-range ferro-
magnetic phase (FMy), an antiferromagnetic phase (AFMx), and a
paramagnetic phase (PM). The horizontal axis represents the flux,
whereas the vertical axis corresponds to the ratio of the energy
imbalance to the tunneling strength. The red line shows the transition
points Eq. (37) of the effective spin model with D-M interaction in
strong coupling limit Eq. (32). The yellow stars show the critical
points found by DMRG. Instead, the shaded yellow lines show
the critical points from the self-consistently mean-field. The back-
ground contour plot represents the difference between the ferro- and
antiferro-order parameters.

B. Strong interactions

In Sec. IV B, we introduced an effective spin model
Eq. (32) with Dzyaloshinskii-Moriya couplings in the limit
of very strong interactions. This model is exactly solvable and
allowed us to predict a pair of critical lines Eq. (37) separating
the orbital FMy, AFMx, and PM. We remark that these pre-
dictions are strictly valid in the limit where Vv/th → ∞, and
we should explore when these predictions are valid for large,
yet finite, interactions. In Fig. 12, we present the ground-state
phase diagrams as a function of θ and �ε for two values of
the interactions Vv = 10th and Vv = 12th, which correspond
to the green- and magenta-shaded planes of the schematic
phase diagram of Fig. 2. The red line, in both phase diagrams,
represents the analytical critical line Eq. (37), whereas the
white stars stand for the DMRG critical points and the yellow
dashed lines represent the mean-field predictions. One can

see that the agreement of the strong-coupling critical lines
with the DMRG data improves as the Hubbard interactions
are increased, whereas the mean-field results overestimate the
regions with long-range order. Note also that, by comparing
Figs. 12(a) and 12(b), one can see how the PM region grows
significantly as the interactions are increased, to the detriment
of the long-range ordered phases, which is a consequence of
the scaling of the superexchange and Dzyaloshinskii-Moriya
couplings Eq. (33) with the inverse of the Hubbard interac-
tions. Let us now discuss in detail how we have characterized
these phases and extracted the critical points.

In the background of Fig. 12, we present a contour plot
for the difference of the orbital ferromagnetic and antiferro-
magnetic order parameters. Let us note that, in analogy to
the antiferromagnetic case Eq. (45), one can define the orbital
ferromagnetic parameter as

My = 1

Ns

∑
j

i(〈c†
j,uc j,d〉 − 〈c†

j,dc j,u〉), (46)

which attains nonzero values for a purely imaginary arrange-
ment of bond densities. Note that such an arrangement is
reminiscent of a set of alternating fermionic currents that flow
vertically between the legs of the ladder. However, in contrast
to the circulating chiral current Eq. (19), the corresponding
vertical bare tunnelings are absent from the original Hamilto-
nian Eq. (1), and we would thus lack a continuity equation for
such fermionic currents.

To avoid numerical problems due to the incomplete sym-
metry breaking of the magnetic order parameters Mx, My, we
instead determine instead the corresponding structure factors

STyTy (k) = 1

N2
s

∑
i, j

eika(i− j)
〈
T y

i T y
j

〉
,

STxTx (k) = 1

N2
s

∑
i, j

eika(i− j)
∣∣〈T x

i T x
j

〉∣∣, (47)

where the orbital spin operators are defined in Eqs. (31). The
zero-momentum component of these structure factors yield
the desired magnetizations in the thermodynamic limit My =
(STyTy (0))1/2, Mx = (STxTx (0))1/2. In the insets of Figs. 13(a)
and 13(c), we show the two My, Mx order parameters, which
attain a nonzero value for small energy imbalance and for
large θ = 0.65π and small θ = 0.1π magnetic fluxes, respec-
tively. To locate the corresponding critical points delimiting
the phase boundaries, we calculate the respective suscepti-
bilities χMy = ∂My/∂�ε, and χMx = ∂Mx/∂�ε, which again
show peaks whose FSS should determine the critical lines
accurately. In the main panels of Figs. 13(a) and 13(c), we
can see how the susceptibilities peak at symmetric values of
the zero-imbalance axis, and how these peaks grow with the
lattice size. The numerical results shown in Figs. 13(b) and
13(d) show that the susceptibility peaks agree considerably
well with the analytical predictions already for these finite
interactions and ladder lengths.

In Fig. 14, we show that the correlated FMy and AFMx can
still support large chiral currents around the ladder. In fact, the
ferromagnetic and antiferromagnetic long-range order phase
supports persistent chiral current for small imbalance �ε, and
it disappears in the orbital magnetic phase. This suggests that
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d

FIG. 13. Magnetic susceptibilities for strong interactions. (a) the divergence of χMy with growing system size indicate the phase transition
between FMy and PM phases for a cut of phase diagram at Vv = 10th and θ = 0.65π . (b) The contour plot of χMy for system size Ns = 64
distinguishes two FMy lobes. The red line shows the analytical critical points Eq. (37) of the effective spin model (32), strictly valid for
infinitely-large Hubbard interactions. (c) the divergence of χMx with growing system size indicates the phase transition between AFMx and
PM phases for Vv = 10th and θ = 0.1π . (d) The contour plot of χMx for system size Ns = 64 delimits the AFMx phase. The red line shows the
analytical critical points (37).

the correct indicator for the phase transition FMy-AFMx is
the chiral susceptibility. Moreover this phenomenon is related
to the Chiral Mott insulator phase introduced for quasi-one-
dimensional systems [76,171,172] and for two-dimensional
systems [173–178]. In Fig. 14(a), we show the numerical
results of the chiral current in function of the flux θ for
different imbalance interactions. In Fig. 14(b), we present
the contour plot of the chiral current. It shows an inversion
around the critical line predicted by the Eq. (37). To locate the
critical points delimiting the phase boundaries, we calculate
the chiral susceptibility χc. In Fig. 14(c), we can see how
the chiral susceptibility symmetric peaks at symmetry values
of the zero-θ axis. Moreover, the numeric results shown in
Fig. 14(d) show that the susceptibility peaks agree well with
the critical line predicted by Eq. (37) for the FMy-AFMx phase
transition.

C. Entanglement spectroscopy

Thus far, we have used a conventional condensed-matter
approach to characterize the phase diagram of the model,
which is based on exploiting currents, susceptibilities, and
correlation functions to identify phases with long-range order

or symmetry-protected topological phases. In this section,
we follow an alternative approach based on the ground-state
entanglement to understand the phase diagram of the model.

Among the various existing measures of entanglement on
a bipartite scenario [179], we compute the entanglement spec-
trum and the entanglement entropy that enjoy a privileged
status within the realm of quantum many-body system [180].
With regard to the first one, we define a bipartition of the sys-
tem and write the ground state as |ψg.s.〉 = ∑

n λn|ψn〉L|ψn〉R,
where L and R are two subsystems and {λn} are the corre-
sponding Schmidt coefficients. The entanglement spectrum is
defined as the set of all the Schmidt coefficients in logarith-
mic scale εn = −2 log(λn), and it can be directly extracted
from the MPS calculations. As originally pointed out in
Ref. [181], in the context of the characterization of the Hal-
dane phase of Heisenberg-type magnets, the degeneracy of the
entanglement spectrum identifies the symmetry-protecting
topological phase.

It has been established that the entanglement spectrum
is degenerate for symmetry-protected topological phases
[170,182,183]. In particular, this degeneracy is robust against
symmetric perturbations as long as the many-body gap of the
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FIG. 14. Chiral flows for strong interactions. (a) Chiral current as a function of the magnetic flux for different energy imbalances �ε and
Vv = 12th. (b) The contour plot of the chiral current qualitatively distinguishes the two phases. The red line shows the transition points of the
effective spin model with D-M interaction in strong coupling limit Eq. (32). (c) Divergence of chiral susceptibility for different imbalance �ε

that indicates the phase transition between FMy-AFMx phases. (d) The maximums of χc that delimit the FMy and AFMx lobes.

system remains open. In Fig. 15(a), we present the entangle-
ment spectrum degeneracy for the Creutz-Hubbard model in
function of (θ/π,�ε/th) for different values of interactions

strength Vv. The dark blue region represents the region where
the AFMx and PM are sited and the entanglement spectrum is
trivial. Instead, the two lobs represent the TCP phase in which

FIG. 15. Entanglement spectrum and entanglement entropy. (a) Degeneracies of the entanglement spectrum in the (θ,�ε) plane for
different interactions. We show that the region in which the entanglement spectrum shows an exact twofold degeneracy, and thus corresponds
to the topological crystalline phase, gets reduced by increasing the interactions. (b) Low-lying eigenvalues of the entanglement spectrum for
the different phases. For a ladder of length Ns = 128, and for a half-chain bipartition of the chain. Only the TCP phase displays an exact
twofold degeneracy. (c) Entanglement entropy for l-sites block reduced density matrix ρl obtained from a ladder of length Ns = 128. The blue,
red, and yellow crosses correspond to the data for the critical points. The solid lines correspond to the fittings with the conformal field theory
predictions Eq. (49), where c is the central charge. The fitted central charges are c = 1.02 (for the TCP-PM transition), c = 0.503 (for the
TCP-AFMx transition), c = 0.49 (for the FMy-PM transition), and c = 0.45 (for the AFMx-PM transition), respectively.
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the entanglement spectrum is fully degenerate. The effect of
the interactions shrinks the two TCP lobes. In fact, as shown
in Fig. 15(a), the spectrum degenerate region is reduced. As
shown in Fig. 15(b) (yellow column), the entanglement spec-
trum in the TCP phase is clearly doubly degenerate, whereas
in the PM, FMy, and AFMx phases, such a degeneracy of all
eigenvalues is lost (green columns). This supports our claim
about the topological nature of the wide region of the phase di-
agram labeled as TCP, and demonstrates that the TCP survives
to considerable strong interactions. In particular, in the left
panel of Fig. 15(b), we present the entanglement spectrum for
weak interactions for different values of the imbalance �ε and
fluxes θ . We consider a bipartition in the middle of chain, for
�ε = 0 and θ = 0.5π . Increasing �ε and decreasing θ , we
enter in the AFMx or in PM phase, and the entanglement spec-
trum is trivial and almost completely degenerate, as shown in
the green columns.

With regard to the block entanglement entropy, it is defined
as

S(l ) = −Tr(ρl ln ρl ), (48)

where ρl = TrNs−l (|εg.s.〉〈εg.s.|) is the reduced density matrix
of the left block with l sites for the bipartition of each leg
of the ladder of Ns sites. Remarkably enough, not only the
block entanglement serve as a probe of criticality due to its
divergence at phase transition, but its scaling with system size
also reveals the central charge c of the conformal field theory
underlying the critical behavior [184–186]. For a critical sys-
tem with open boundary conditions, the block entanglement
entropy scales as

S(l ) = c

6
ln

(
2Ns

π
sin

π l

Ns

)
+ C, (49)

where we introduce a nonuniversal constant C. Since such
entanglement entropy can be easily recovered from our MPS
results, calculating the central charge of the different critical
lines of our phase diagram can serve as an additional con-
firmation of our previous derivations. To explore the scaling
region of the quantum phase transition between topologi-
cal and trivial band insulators, we represent in Fig. 15(c)
the critical entanglement entropy as a function of the so-
called chord length D(l, Ns ) = (2Ns/π ) sin(π l/Ns), along the
critical lines in five representative cases. For the TCP-PM
transition, the central charge value agrees with c = 1. This
result can be understood well in the weakly interesting limit.
In this regime, the Creutz-Hubbard model for generic flux
can be understood as two coupled Ising chains, as shown in
Appendix. In the limit of π flux, the model is mapped to a
couple of Ising chains in transverse magnetic field. Accord-
ingly, the corresponding CFT should have central charge of
c = 1/2 + 1/2 = 1 such that we would expect the scaling
S(l ) = (1/6) ln[(2Ns/π ) sin(π l/Ns) + a]. In Fig. 15(c), we
also show that predictions are also confirmed for a various
fluxes.

For the strongly interacting regime, we showed in previous
sections that the FMy-PM and AFMx-PM transitions can be
accounted for by an XY model with Dzyaloshinskii-Moriya
(D-M) interaction. In the limit of θ = π , or θ = 0, the model
becomes a single Ising model in a transverse field. Accord-
ingly, the corresponding CFT should have a central charge

of c = 1/2, and S(l ) = 1
12 ln[( 2Ns

π
) sin( π l

Ns
)] + C. In contrast to

the previous case, the critical phenomena is governed by the
CFT of single Majorana fermion with central charge c = 1/2.

Finally, in the intermediate interacting regime we argue
that the relevant physics to understand the TI-FM phase
transition is by approximating a complicated non-SM. In
Fig. 15(c), we show the entanglement entropy between the
N-physical sites in the original basis and therefore measure
S(l ) = 1

12 ln[( 2Ns
π

) sin( π l
Ns

)] + C for a system of length Ns with
a central charge of c = 1/2.

VI. COLD-ATOM RAMAN LATTICE SCHEME

As outlined in the Introduction, despite the fact that laser-
cooled gases of neutral atoms move at velocities well below
the speed of light [187], these systems yield an ideal platform
for the quantum simulation [25] of relativistic QFTs [37].
Following the perspectives of lattice field theories, one need
not look for cold-atom quantum simulators directly described
by continuum QFTs (15), but instead look for a lattice model
with critical points around which a long-wavelength descrip-
tion coincides with the target relativistic QFT. In this section,
we describe a scheme based on cold atoms in optical Raman
lattices for the quantum simulation of the Creutz-Hubbard lad-
der under an arbitrary flux (1)-(2). As emphasized previously,
such a quantum simulator would provide the first experimen-
tal realization of Lorentz-violating terms (16) studied in the
context of the SME [4–6], and combined with four-Fermi
interactions of the GN type.

We note that the fermionic Creutz ladder has been recently
realized in experiments with two-orbital ultracold atoms in
shaken optical lattices [188,189]. In principle, interaction ef-
fects could be explored by including more hyperfine states.
Note, however, that such interacting models would likely
correspond to a spin-full version of the Creutz ladder with
short-range Hubbard-type interactions [see Fig. 1(e)], which
is different from the target model Eqs. (1) and (2). To build the
desired quantum simulator, the scheme proposed in Ref. [131]
exploits the idea of synthetic dimensions [114] by mapping
the ladder legs to a couple of hyperfine atomic states from
the ground-state manifold [91,95]. The attractive feature of
this scheme is that the interactions along the vertical direction
Eq. (2) in Fig. 1(g), the so-called synthetic dimension, are
mapped onto contact Hubbard interactions, which are readily
implemented by the s-wave scattering of two ultracold atoms
trapped in the same site of the optical lattice [71,190].

Synthetic dimensions have been successfully exploited for
the quantum simulation of rectangular ladders under a back-
ground magnetic field. The associated magnetic flux across
the square plaquettes of the ladder can be simulated by
a local Raman transition between the two hyperfine states
[115,117,118], which induces a Peierls-substituted vertical
tunneling that connects the upper and lower legs of the ladder
[see Fig. 1(c)]. For the Creutz ladder, the situation is com-
plicated further due to the cross-link nature of the interleg
tunnelings [see Fig. 1(g)]. As proposed in Ref. [131], these
cross-linked terms could be implemented by a Raman-assisted
tunneling scheme [191] that activates a spin-flipping tunneling
against the energy penalty of a linear lattice tilt. Note that as
the cross-link tunnelings take place in both directions, i.e.,
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FIG. 16. Scheme of the optical Raman potential for the quantum simulation of the Creutz-Hubbard ladder. (a) A cloud of atoms, represented
by a pink shaded sphere, is subjected to three pairs of counterpropagating laser beams with mutually orthogonal polarizations, here depicted
with blue arrows, which create a cubic optical lattice. A fourth laser beam, represented by a red arrow, propagates in the xy plane with an
angle α with respect to the x axis, sharing the polarization with the standing wave along that axis ε4||ε1. The interference of the standing and
traveling wave drives a two-photon Raman transition between two hyperfine states when the beat note is tuned close to the resonance of the
latter �ω = ω1 − ω4 = ε↑ − ε↓ − δ = ω0 − δ by virtually populating a highly off-resonant excited state δ  ω0  � [see the inset of (b)].
As shown in (b), due to this interference, this Raman term VRam has a doubled period with respect to the static optical lattice Vac. The atoms
trapped at the minima of this optical lattice do not see any intensity of the Raman beams and there is no local transitions. On the other hand,
the overlap between neighboring Wannier functions of opposite spin mediated by this Raman potential can lead to a spin-flipping tunneling of
strength t̃1 with a site-dependent phase ϕ, which is controlled by the tilting angle α.

(u, i) → (d, i + 1) and (d, i) → (u, i + 1), the scheme does
not require the use of state-dependent lattices as occurs for
the simulation of the Hofstadter model [191], minimizing in
this way the expected heating due to residual spontaneous
emission in the fermionic Raman couplings. The implemen-
tation of the horizontal tunnelings [see Fig. 1(g)] requires a
different mechanism to assist the spin-conserving tunneling
while imprinting an effective Peierls’ phase. In the scheme of
Ref. [131], this is provided by an additional shallower lattice
potential with a doubled wavelength, the intensity of which
is periodically modulated. This allows for a Floquet-assisted
tunneling mechanism with the desired Peierls’ phase, mimick-
ing the role of the external magnetic flux.

We note that the combination of Floquet-assisted tunneling
with Hubbard interactions, as would be required for this full
quantum simulator of the Creutz-Hubbard ladder [131], may
present limitations due to a heating mechanism where the
atoms get excited by resonantly absorbing quanta from the
periodically driven radiation [132,192,193]. Although there
has been promising progress in the minimization of this heat-
ing in specific optical-lattice implementations [194–197], it
would be desirable to come up with a different scheme that
implements the Peierls phases in the cross-linked geometry.
The goal of this section is to present such a scheme.

We show that recent progress in synthetic spin-orbit cou-
pling with cold atoms in so-called optical Raman potentials
[42] can be exploited for the full quantum simulator of the
Creutz-Hubbard ladder Eqs. (1) and (2). In these schemes, one
combines periodic ac-Stark shifts from a standing wave with
Raman potentials that stem from the interference of lasers in
standing- and traveling-wave configurations. As discussed in
more detail below, when the beat note of the standing- and
traveling-wave laser beams is tuned close to the spin-flip tran-
sition frequency, the Raman cross terms do not drive local spin
flips [198–202] but instead assist a spin-flipping tunneling
that can be used to simulate spin-orbit coupling [150–153].
Although these Raman schemes may also be limited by resid-

ual photon scattering from the off-resonant excited state, the
associated heating is not as severe as that of fermions trapped
in state-dependent lattices since, if the available laser intensity
is not the limiting factor, this heating can be minimized by
working with larger Raman detunings � with respect to the
excited state [see inset of Fig. 16(b)]. In any case, one may
also consider using lanthanide [120,203–205] or alkali-earth
[121,122,153] atoms to minimise it further.

Let us now describe in detail how these periodic optical
potentials can be exploited for the specific quantum simula-
tion of the Creutz-Hubbard ladder Eqs. (1) and (2), and how
to tune the value of the synthetic magnetic flux θ . In contrast
to the scheme that realizes Rashba- or Dirac-type spin-orbit
coupling [42], we consider a configuration where the traveling
wave does not propagate orthogonally to the x-axis standing
wave but instead at an angle α [see Fig. 16(a)]. In addition,
we consider two additional standing waves with orthogonal
polarizations along the remaining spatial directions, which
will lead to periodic optical potentials along the y and z axes.
In the regime where the lasers are far detuned with respect to
an excited state, this creates a periodic optical potential for the
atoms in two hyperfine states σ ∈ {↑,↓}, namely,

V =
∑

α

V0,α

2
cos2(kα · x)I2

+ Ṽ0

2
cos(k1 · x)ei(k4·x−�ωt )σ+ + H.c., (50)

where σ+ = |↑〉 〈↓|. Here, V0,α are the amplitudes of the
ac-Stark shifts induced by pairs of counterpropagating laser
beams along each of the axes kα = kαeα with α ∈ {1, 2, 3} ≡
{x, y, z}. These pairs of laser beams have mutually orthog-
onal polarizations, such that the interference patterns along
each axis in the first term of Eq. (50) can be tuned indepen-
dently, and thus correspond to a standard cubic optical lattice.
Additionally, Ṽ0 is the amplitude of the two-photon Raman
transition, whereby the spin state gets flipped by virtually
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populating an excited state. As shown in the inset of
Fig. 16(b), this transition involves absorbing a photon from
the traveling wave, which propagates along k4 = k4 cos αe1 +
k4 sin αe2, and subsequently reemitting it in the standing
wave. This leads to a beat note of frequency �ω = ω4 − ω1

that can drive the spin flips when tuned close to the resonance
�ω ≈ ω0. A crucial aspect of these types of schemes, which
can already be appreciated at this stage, is that the period of
the spin-flipping potential is doubled with respect to that of
the static optical lattice [see Fig. 16(b)]. As such, the atoms
residing at the minima of the latter do not see any Raman
intensity that would drive local transitions but it is only in the
spin-flip tunneling where this Raman term contributes.

As noted at the beginning of this section, these systems can
be described by the following nonrelativistic QFT:

H =
∫

d3x
∑
σ,σ ′

�†
σ (x)

(
−∇2

2m
+ 〈σ |V (x) |σ ′〉

)
�σ ′ (x)

+
∫

d3x
∫

d3x′ ∑
σ,σ ′

�†
σ (x)�†

σ ′ (x′)
2πas

m

× δ(x − x′)�σ ′ (x′)�σ (x), (51)

where m is the mass of the atoms, and as the s-wave scatter-
ing length for the low-energy two-body collisions. We have
introduced the fermionic field operators �†

σ (x),�σ (x) that
create-annihilate an atom at position x with internal state σ .
Note that these fields differ from the relativistic ones Eq. (10),
which will be recovered in the long-wavelength limit of the
lattice model. To obtain such a lattice description, we consider
the regime of deep optical lattices V0,α � ER,α = k2

α/2m,
where the atoms are tightly confined to the minima of the
periodic blue-detuned optical lattice [see Fig. 16(b)]. The
lattice sites thus correspond to x0

i = ∑
α

λα

2 (iα + 1
2 )eα , where

λα = 2π/kα are the wavelengths of the standing-wave laser
beams, and iα ∈ ZNs . We now express the fields in the Wannier
basis

�σ (x) =
∑

i

w
(
x − x0

i

)
fi,σ , �†

σ (x) =
∑

i

w
(
x − x0

i

)
f †
i,σ ,

(52)
where w(x − x0

i ) are the Wannier functions localized around
each minima x0

i of the optical potential and f †
i,σ , fi,σ is a set

of dimensionless lattice operators that describe the creation-
annihilation of fermions in the lowest band of the optical
lattice. Substituting these expressions in the QFT Eq. (51),
one obtains a lattice model with parameters that depend on the
overlaps of these Wannier functions. These parameters decay
exponentially fast with the distance and are typically restricted
to on-site and nearest-neighbor terms [71,190].

This lattice model is composed of spin-conserving terms

Hsc =
∑

i

(∑
σ,α

(−tα f †
i,σ fi+eα,σ+ H.c.

) +
∑
σ 	=σ ′

U↑↓
2

ni,σ ni,σ ′

)
,

(53)

where ni,σ = f †
i,σ fi,σ , and we have introduced the tunnelings

tα = 4√
π

ER

(
V0,α

ER

) 3
4

e
−2

√
V0,α
ER , (54)

assuming that the standing waves have the same wavelength
λα = 2π/kα = 2π/k, ∀α and ER = ER,α, ∀α. Likewise, the
Hubbard interaction reads

U↑↓ =
√

8

π
kasER

(
V0,1V0,2V0,3

E3
R

) 1
4

. (55)

By setting V0,2,V0,3 � V0,1 � ER, the tunnelings along the y
and z axes Eq. (54) are inhibited t2, t3  t1, and we obtain
an effective Fermi-Hubbard model in one spatial dimension.
Note that, in addition to these spin-conserving terms, there
will also be local terms corresponding to on-site energies
that can be approximated by an overall quadratic trapping
potential.

In addition to these contributions, we have the spin-flipping
Raman potential Eq. (50) that stems from the interference of
the standing and traveling waves along the x axis and will lead
to spin-flipping terms in the lattice model. In this case, the
local terms are not simply an on-site potential, as discussed in
the previous paragraph but instead describe processes where
an atom tightly confined to a minimum of the optical po-
tential experiences a Raman transition that flips its internal
state |↑〉 ↔ |↓〉. This type of term can indeed be exploited
to implement the synthetic dimensions discussed in the Intro-
duction [115,117,118]. Note that these terms correspond to a
vertical tunneling within the synthetic ladder and would thus
spoil the cross-linked nature of the Creutz-ladder of Fig. 1(g).
Fortunately, the corresponding Wannier integrals vanish since
the Raman potential is odd with respect to each lattice site
while the Wannier functions are even [see Fig. 16(b)]:∫

d3xw
(
x − x0

i

)Ṽ0

2
cos(k1 · x)eik4·xw

(
x − x0

i

) = 0. (56)

The leading spin-flipping terms are thus described by tunnel-
ings along the x axis that stem from the following overlaps:∫

d3xw
(
x − x0

i

)Ṽ0

2
cos(k1 · x)eik4·xw

(
x − x0

j

)

≈ Ṽ0

2
e− 1

4 mν|x0
i − x0

j |2

× cos

(
1

2
k1 · (

x0
i + x0

j

))
e

i
2 k4·(x0

i +x0
j ), (57)

where we have performed a Gaussian approximation around
the minima of each lattice site, where the lattice potential
can be approximated by a harmonic oscillator of frequency
ν = 2

√
V0,1ER. As occurs for the spin-conserving terms, these

tunnelings decay rapidly with the distance, such that we can
restrict to nearest neighbors. In this case, the overlaps display
a crucial alternation of the sign, cos ( 1

2 k1 · (x0
i + x0

i+e1
)) =

exp{iπ (i1 + 1)}, which has been exploited to simulates syn-
thetic spin-orbit coupling [150–152]. The uniqueness of our
scheme is that the nonorthogonal propagation of the traveling
wave shown in Fig. 16(a) allows us to pick up an arbi-
trary phase factor that shall also play a crucial role, namely,
exp{ i

2 k4 · (x0
i + x0

i+e1
)} = exp{iη̃(i1 + 1)}, where

η̃ = k4

k1
cos α. (58)
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Note that there is also a dependence of this phase factor on
the particular lattice site along the y axis, but the negligible
tunnelings along this direction allow us to gauge it away
without changing the dynamics.

Let us now tune the Raman beat note slightly of resonance
with respect to the internal transition �ω = ω0 − δ, where the
detuning is constrained to δ  ω0. Considering the discussion
in the previous paragraph and working in a rotating frame,
we find that the Raman potential leads to the following spin-
flipping tunnelings and energy imbalance:

Hsf =
∑

i

t̃1
(
eiϕ(i1+1) f †

i,↑ fi+e1,↓ + e−iϕ(i1+1) f †
i,↓ fi+e1,↑

) + H.c.

+
∑

i

δ

2
( f †

i,↑ fi,↑ − f †
i,↓ fi,↓), (59)

where we have introduced the following parameters:

t̃1 = Ṽ0

2
e
− π2

4

√
V0,1
ER , ϕ = π (1 + η̃). (60)

The final step to define our quantum simulator is to map
the fermionic operators of the Creutz-Hubbard ladder Eqs. (1)
and (2) via a synthetic dimension to the cold-atom operators,

ci,u = e−i ϕ

2 (i+1) fi,↑, ci,d = e+i ϕ

2 i fi,↓, (61)

such that the cold-atom lattice model in Eqs. (53)–(59) maps
directly onto the Creutz-Hubbard ladder Eq. (1)and (2) with
the following identification of microscopic parameters:

th = t1, td = −t̃1, �ε = δ, θ = ϕ, Vv = U↑↓. (62)

Note that the various observables discussed in our study of the
Creutz-Hubbard ladder may be modified by virtue of the U (2)
gauge transformation Eqs. (61). One should thus identify the
correct cold-atom operators that contain the relevant infor-
mation about the ground-state phases of the Creutz-Hubbard
ladder.

It follows from our discussion that all of these parame-
ters can be tuned independently. The horizontal tunneling is
controlled by the intensity of the standing-wave lasers via
Eq. (54). If, on the other hand, one modifies the intensity
of the traveling-wave laser, only the spin-flip tunneling will
change Eqs. (60), which translates into a modification of
the cross-link tunneling of the Creutz-Hubbard ladder [see
Fig. 1(g)]. To modify the synthetic magnetic flux indepen-
dently, Eqs. (58)–(60) show that one must either modify the
angle α of propagation of the traveling wave. Similarly, the
energy imbalance is controlled by the beat-note detuning,
which can be readily modified by changing the frequency of
traveling-wave laser. Finally, the Hubbard interactions can be
tuned by exploiting a Feshbach resonance in the scattering
length Eq. (55).

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have described the connection between
Lorentz-violating four-Fermi QFTs and models of correlated
TCPs. By focusing on the Creutz-Hubbard ladder for arbi-
trary magnetic flux, we have presented a thorough analysis
based on analytical and numerical tools, showing that, as a
consequence of the violation of Lorentz invariance, persistent

chiral currents can coexist with strong correlations in the
topological crystalline phase. We have discussed in detail the
phase diagram of the model and the nature of the phase tran-
sitions, showing that the chiral current and its susceptibility
provide relevant information, which can be complemented
with other observables and entanglement-related quantities.
We have also discussed an experimental scheme based on
ultracold Fermi gases in tilted Raman lattices for the quantum
simulation of these phenomena. We refer the reader again
to Sec. II C, where all results have been summarized. We
would like to conclude by noting that our paper constitutes an
example of the useful dialogue and exchange of ideas between
the high-energy physics, condensed matter, quantum infor-
mation, and quantum optics, hopefully stimulating further
cross-disciplinary efforts in the future. From the above results,
we are convinced that the synthetic Creutz-Hubbard ladder
with generic flux can become a work horse in the theoretical
and experimental study of correlated topological phases of
matter, connecting high-energy physics and condensed matter,
and proving a clear path to for its implementation via ultracold
atoms. This would provide an experimental realization of
Lorentz-violating QFTs within the SME.

As an outlook, it would be very interesting to exploit these
cross-disciplinary approaches to understand the physics of the
Creutz-Hubbard ladder at generic flux, and thus the GNME,
as one moves away from half filling and thus explores finite
fermion densities in the continuum QFT. It would also be in-
teresting to explore real-time dynamical effects in this model,
in particular, in connection with anomalies, the circulating
chiral current and the underlying violation of Lorentz sym-
metry. This would require us to upgrade flux θ to a dynamical
variable with its own dynamics described by a U (1) lattice
gauge theory, following a similar gauging as in the case of a
Z2 gauge group [206]. As discussed for other lattice models
in Refs. [207,208], ZN discrete gauge groups could also be
explored as a proxy for the U (1) ladder gauge theory. It would
be very interesting to study the interplay of this gauge theory
with the topological crystalline insulator and its associated
edge states. We note that both the finite-density and real-time
phenomena provide very challenging problems where the ad-
vantage of the quantum simulator could be exploited. Finally,
it would also be interesting to explore how other terms within
the SME can be incorporated in a lattice model, and how this
model could be realized in experiments of ultracold atoms.

ACKNOWLEDGMENTS

M.L. group acknowledges support from ERC AdG
NOQIA; Agencia Estatal de Investigación (R&D
Project No. CEX2019-000910-S, funded by No.
MCIN/AEI/10.13039/501100011033, Plan National
FIDEUA No. PID2019-106901GB-I00, FPI, QUANTERA
MAQS No. PCI2019-111828-2, Proyectos de I + D + I
Retos Colaboración No. RTC2019-007196-7); Fundació
Cellex; Fundació Mir-Puig; Generalitat de Catalunya through
the CERCA program, AGAUR Grant No. 2017 SGR
134, QuantumCAT No. U16-011424, cofunded by ERDF
Operational Program of Catalonia; EU Horizon 2020 FET-
OPEN OPTOLogic (Grant No 899794); National Science
Centre, Poland (Symfonia Grant No. 2016/20/W/ST4/00314);

045147-24



TOPOLOGICAL CHIRAL CURRENTS IN THE GROSS- … PHYSICAL REVIEW B 106, 045147 (2022)

Marie Skłodowska-Curie STREDCH Grant. No. 101029393;
La Caixa Junior Leaders fellowships (No. ID100010434)
and EU Horizon 2020 under Marie Skłodowska-Curie Grant
Agreement No. No 847648 (No. LCF/BQ/PI19/11690013,
No. LCF/BQ/PI20/11760031, No. LCF/BQ/PR20/11770012,
and No. LCF/BQ/PR21/11840013). A.B. acknowledges
support from the Ramón y Cajal Program No. RYC-
2016-20066, CAM/FEDER Project No. S2018/TCS-4342
(QUITEMADCM), and No. PGC2018-099169-B-I00
(MCIU/AEI/FEDER, UE).

APPENDIX: WEAK INTERACTIONS
AND COUPLED ISING CHAINS

In this Appendix, we discuss more in detail the week inter-
acting limit th � Vv of the Creutz-Hubbard ladder for generic
flux, and in particular we will show how in this limit we can
map the Creutz ladder as spin ladder.

We start from the free part of the Creutz-Hubbard Hamil-
tonian Hc defined in Eq. (1). Introducing the spinor notation
and performing the transformation c j = (−iσz ) j c̃ j , we obtain
that the hopping along the two legs becomes now identical
at the price of having site-dependent diagonal hopping terms
that connect neighboring sites in opposite legs of the ladder:

HC =
∑

j

c̃†
j

[
−thI − td cos

(
θ

2
(2 j + 1)

)
σx

+ td sin

(
θ

2
(2 j + 1)

)
σy

]
c j+1 + �ε

4
c̃†

jσzc̃ j + H.c.

(A1)

Introducing the following rung operators:

r̂ j,1 = i j

√
2

[ic̃ j,u + (−1) j c̃†
j,d],

r̂ j,2 = i j

√
2

[c̃ j,u + (−1) j c̃†
j,d],

(A2)

Under this canonical transformation, the Hamiltonian is trans-
formed onto

Hc =
∑

jn

[
−th

(
r̂†

j+1,nr̂ j,n + H.c.
)

+ td
(
(−1) j+1iei θ

2 (2 j+1)r̂†
j+1,nr̂†

j,n + H.c.
)

+ �ε

4
(2r̂†

j,nr̂ j,n − 1)

]
(A3)

In this particle-hole rung basis Eq. (A2), we identify two inde-
pendent subsystems which no longer display particle number
conservation, but instead have parity conservation. A Jordan-
Wigner transformation [209], namely,

r̂†
j,n = �i< j

(−σ z
i,n

)
σ+

j,n = (r̂ j,n)† (A4)

reveals the Ising nature of the two subsystems, and leads to
a Hamiltonian that can be understood as a two-leg quantum
spin ladder

Hc =
∑

jn

[
−th(σ+

j+1,nσ
−
j,n + H.c.)

+ td
(
(−1) j+1iei θ

2 (2 j+1)σ+
j+1,nσ

+
j,n + H.c.

) + �ε

4
σ z

j,n

]
.

(A5)

We now consider the model with Hubbard-like interactions
for the first time. In particular, we take a look at the regime
of small interactions Vv < t and study how these interactions
alter the results of the non-interacting model. Applying the
series of transformations presented above we obtain that the
interaction term reads

ĤHub = Vv

2

∑
j

(r̂†
j,1r̂ j,1 + r̂†

j,2r̂ j,2 + ir̂†
j,1r̂ j,2

− ir̂†
j,2r̂ j,1 − 2r̂†

j,1r̂ j,1r̂†
j,2r̂ j,2). (A6)

For half filling we have 〈r̂†
j,1r̂ j,2 − r̂†

j,2r̂ j,1〉 = 0, simplifying
the Hamiltonian to

ĤHub = Vv

2

∑
j

(r̂†
j,1r̂ j,1 + r̂†

j,2r̂ j,2 − r̂†
j,1r̂ j,1r̂†

j,2r̂ j,2). (A7)

The Jordan-Wigner transformation translates this expression
to a ferromagnetic coupling between the two spin models:

ĤHub = Vv

4

∑
j

(
1 − σ z

j,1σ
z
j,2

)
. (A8)

In π -flux regime, the imbalanced Creutz-Hubbard model can
be understood as two coupled quantum Ising chains. For weak
interactions Vv < th, we can treat the mutual effect of chains
on each other through an MF decoupling which renormalizes
the original transverse magnetization term.
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Spielman, G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett.
112, 043001 (2014).

[116] T. Ozawa and H. M. Price, Nat. Rev. Phys. 1, 349 (2019).
[117] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.

Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Science 349, 1510 (2015).

[118] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Science 349, 1514 (2015).

[119] J. H. Han, J. H. Kang, and Y. Shin, Phys. Rev. Lett. 122,
065303 (2019).

[120] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M.
Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L.
Fallani, Phys. Rev. Lett. 117, 220401 (2016).

[121] S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E.
Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Nature
(London) 542, 66 (2017).

[122] S. L. Bromley, S. Kolkowitz, T. Bothwell, D. Kedar, A. Safavi-
Naini, M. L. Wall, C. Salomon, A. M. Rey, and J. Ye, Nat.
Phys. 14, 399 (2018).

[123] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne,
J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Nat.
Phys. 6, 289 (2010).

[124] G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F.
Schäfer, H. Hu, X.-J. Liu, J. Catani, C. Sias, M. Inguscio, and
L. Fallani, Nat. Phys. 10, 198 (2014).

[125] S. Barbarino, L. Taddia, D. Rossini, L. Mazza, and R. Fazio,
New J. Phys. 18, 035010 (2016).

[126] T. Bilitewski and N. R. Cooper, Phys. Rev. A 94, 023630
(2016).

[127] T. Y. Saito and S. Furukawa, Phys. Rev. A 95, 043613
(2017).

[128] L. Taddia, E. Cornfeld, D. Rossini, L. Mazza, E. Sela, and R.
Fazio, Phys. Rev. Lett. 118, 230402 (2017).

[129] S. Barbarino, M. Dalmonte, R. Fazio, and G. E. Santoro, Phys.
Rev. A 97, 013634 (2018).

[130] M. Calvanese Strinati, S. Sahoo, K. Shtengel, and E. Sela,
Phys. Rev. B 99, 245101 (2019).

[131] J. Jünemann, A. Piga, S.-J. Ran, M. Lewenstein, M. Rizzi, and
A. Bermudez, Phys. Rev. X 7, 031057 (2017).

[132] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[133] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[134] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[135] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[136] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).

045147-27

https://doi.org/10.1103/PhysRevB.91.140406
https://doi.org/10.1103/PhysRevB.87.174501
https://doi.org/10.1103/PhysRevLett.115.190402
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevB.92.115446
https://doi.org/10.1103/PhysRevX.7.021033
https://doi.org/10.1103/PhysRevLett.83.2636
https://doi.org/10.1103/RevModPhys.73.119
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0370-2693(92)91335-7
https://doi.org/10.1016/0370-2693(93)90692-B
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.55.775
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1103/PhysRevLett.81.5888
https://doi.org/10.1088/1367-2630/14/1/015007
http://arxiv.org/abs/arXiv:1907.11460
https://doi.org/10.1103/PhysRevB.86.155140
https://doi.org/10.1103/PhysRevLett.112.130401
https://doi.org/10.1103/PhysRevLett.102.135702
https://doi.org/10.1103/PhysRevB.99.054302
https://doi.org/10.1103/PhysRevB.96.035139
https://doi.org/10.1103/PhysRevB.82.184502
https://doi.org/10.1103/PhysRevA.88.063613
https://doi.org/10.1103/PhysRevB.88.220510
https://doi.org/10.1103/PhysRevA.99.053834
https://doi.org/10.1002/qute.201900105
https://doi.org/10.1103/PhysRevLett.126.103601
https://doi.org/10.1088/1361-6633/aad6a6
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1088/1367-2630/ab6352
https://doi.org/10.1103/PhysRevB.102.041116
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevLett.108.133001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1038/s42254-019-0045-3
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1103/PhysRevLett.122.065303
https://doi.org/10.1103/PhysRevLett.117.220401
https://doi.org/10.1038/nature20811
https://doi.org/10.1038/s41567-017-0029-0
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys2878
https://doi.org/10.1088/1367-2630/18/3/035010
https://doi.org/10.1103/PhysRevA.94.023630
https://doi.org/10.1103/PhysRevA.95.043613
https://doi.org/10.1103/PhysRevLett.118.230402
https://doi.org/10.1103/PhysRevA.97.013634
https://doi.org/10.1103/PhysRevB.99.245101
https://doi.org/10.1103/PhysRevX.7.031057
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495


E. TIRRITO, M. LEWENSTEIN, AND A. BERMUDEZ PHYSICAL REVIEW B 106, 045147 (2022)

[137] S. A. Parameswaran, R. Roy, and S. L. Sondhi, C. R. Phys. 14,
816 (2013).

[138] K. G. Wilson, in New Phenomena in Subnuclear Physics
(Springer New York, London, 1977), pp. 69–142.

[139] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[140] E. Fermi, Z. Phys. 88, 161 (1934).
[141] F. L. Wilson, Am. J. Phys. 36, 1150 (1968).
[142] A. Bermudez, E. Tirrito, M. Rizzi, M. Lewenstein, and S.

Hands, Ann. Phys. 399, 149 (2018).
[143] E. Tirrito, M. Rizzi, G. Sierra, M. Lewenstein, and A.

Bermudez, Phys. Rev. B 99, 125106 (2019).
[144] A. Hamed Moosavian and S. Jordan, Phys. Rev. A 98, 012332

(2018).
[145] D.-S. Li, H. Wang, C. Guo, M. Zhong, and P.-X. Chen,

arXiv:2011.07538.
[146] A. M. Czajka, Z.-B. Kang, H. Ma, and F. Zhao,

arXiv:2112.03944.
[147] S. Aoki, Phys. Rev. D 30, 2653 (1984).
[148] S. Sharpe and R. Singleton, Phys. Rev. D 58, 074501 (1998).
[149] D. B. Kaplan, arXiv:0912.2560.
[150] W. Sun, B.-Z. Wang, X.-T. Xu, C.-R. Yi, L. Zhang, Z. Wu, Y.

Deng, X.-J. Liu, S. Chen, and J.-W. Pan, Phys. Rev. Lett. 121,
150401 (2018).

[151] B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang,
X.-J. Liu, and G.-B. Jo, Sci. Adv. 4, eaao4748 (2018).

[152] Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji,
Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, Science 354, 83
(2016).

[153] M.-C. Liang, Y.-D. Wei, L. Zhang, X.-J. Wang, H. Zhang, W.-
W. Wang, W. Qi, X.-J. Liu, and X. Zhang, arXiv:2109.08885.

[154] H. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).
[155] H. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173

(1981).
[156] N. Manton, Ann. Phys. 159, 220 (1985).
[157] J. Ambjørn, J. Greensite, and C. Peterson, Nucl. Phys. B 221,

381 (1983).
[158] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[159] Y. Ando and L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361

(2015).
[160] H. Isobe and L. Fu, Phys. Rev. B 92, 081304(R) (2015).
[161] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407

(1961).
[162] E. Barouch and B. M. McCoy, Phys. Rev. A 3, 786 (1971).
[163] T. Moriya, Phys. Rev. 120, 91 (1960).
[164] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[165] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
[166] N. N. Bogoljubov, Il Nuovo Cimento 7, 794 (1958).
[167] H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics: An Introduction (Oxford Univer-
sity Press, Oxford, 2017).

[168] P. Coleman, Introduction to Many-Body Physics (Cambridge
University Press, Cambridge, 2015).

[169] M. C. Bañuls and K. Cichy, Rep. Prog. Phys. 83, 024401
(2020).

[170] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.
Rev. B 81, 064439 (2010).

[171] A. Dhar, M. Maji, T. Mishra, R. V. Pai, S. Mukerjee, and A.
Paramekanti, Phys. Rev. A 85, 041602(R) (2012).

[172] A. Tokuno and A. Georges, New J. Phys. 16, 073005
(2014).

[173] M. P. Zaletel, S. A. Parameswaran, A. Rüegg, and E. Altman,
Phys. Rev. B 89, 155142 (2014).

[174] V. Aji and C. M. Varma, Phys. Rev. B 75, 224511 (2007).
[175] V. Chua, H. Yao, and G. A. Fiete, Phys. Rev. B 83, 180412(R)

(2011).
[176] L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108,

207204 (2012).
[177] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173

(2011).
[178] D. Huerga, J. Dukelsky, N. Laflorencie, and G. Ortiz, Phys.

Rev. B 89, 094401 (2014).
[179] M. B. Plenio and S. S. Virmani, Quant. Inform. Coherence,

173 (2014).
[180] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.

Phys. 80, 517 (2008).
[181] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
[182] L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010).
[183] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys.

Rev. B 85, 075125 (2012).
[184] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 (2003).
[185] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[186] P. Calabrese and J. Cardy, J. Phys. A: Math. Theor. 42, 504005

(2009).
[187] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,

885 (2008).
[188] J. H. Kang, J. H. Han, and Y. Shin, Phys. Rev. Lett. 121,

150403 (2018).
[189] J. H. Kang, J. H. Han, and Y. Shin, New J. Phys. 22, 013023

(2020).
[190] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D.

Lukin, Phys. Rev. Lett. 89, 220407 (2002).
[191] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003).
[192] M. Reitter, J. Näger, K. Wintersperger, C. Sträter, I. Bloch,

A. Eckardt, and U. Schneider, Phys. Rev. Lett. 119, 200402
(2017).

[193] K. Wintersperger, M. Bukov, J. Näger, S. Lellouch, E. Demler,
U. Schneider, I. Bloch, N. Goldman, and M. Aidelsburger,
Phys. Rev. X 10, 011030 (2020).

[194] W. Xu, W. Morong, H.-Y. Hui, V. W. Scarola, and B. DeMarco,
Phys. Rev. A 98, 023623 (2018).

[195] M. Messer, K. Sandholzer, F. Görg, J. Minguzzi, R.
Desbuquois, and T. Esslinger, Phys. Rev. Lett. 121, 233603
(2018).

[196] F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M.
Messer, and T. Esslinger, Nat. Phys. 15, 1161 (2019).

[197] K. Viebahn, J. Minguzzi, K. Sandholzer, A.-S. Walter, M.
Sajnani, F. Görg, and T. Esslinger, Phys. Rev. X 11, 011057
(2021).

[198] X.-J. Liu, Z.-X. Liu, and M. Cheng, Phys. Rev. Lett. 110,
076401 (2013).

[199] X.-J. Liu, K. T. Law, and T. K. Ng, Phys. Rev. Lett. 112,
086401 (2014).

[200] X.-J. Liu, K. T. Law, and T. K. Ng, Phys. Rev. Lett. 113,
059901(E) (2014).

[201] L. Ziegler, E. Tirrito, M. Lewenstein, S. Hands, and A.
Bermudez, arXiv:2011.08744.

[202] L. Ziegler, E. Tirrito, M. Lewenstein, S. Hands, and A.
Bermudez, arXiv:2111.04485.

045147-28

https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.1007/BF01351864
https://doi.org/10.1119/1.1974382
https://doi.org/10.1016/j.aop.2018.10.007
https://doi.org/10.1103/PhysRevB.99.125106
https://doi.org/10.1103/PhysRevA.98.012332
http://arxiv.org/abs/arXiv:2011.07538
http://arxiv.org/abs/arXiv:2112.03944
https://doi.org/10.1103/PhysRevD.30.2653
https://doi.org/10.1103/PhysRevD.58.074501
http://arxiv.org/abs/arXiv:0912.2560
https://doi.org/10.1103/PhysRevLett.121.150401
https://doi.org/10.1126/sciadv.aao4748
https://doi.org/10.1126/science.aaf6689
http://arxiv.org/abs/arXiv:2109.08885
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0003-4916(85)90199-X
https://doi.org/10.1016/0550-3213(83)90585-0
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1103/PhysRevB.92.081304
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF02745585
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevA.85.041602
https://doi.org/10.1088/1367-2630/16/7/073005
https://doi.org/10.1103/PhysRevB.89.155142
https://doi.org/10.1103/PhysRevB.75.224511
https://doi.org/10.1103/PhysRevB.83.180412
https://doi.org/10.1103/PhysRevLett.108.207204
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevB.89.094401
https://doi.org/10.1007/978-3-319-04063-98
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.104.130502
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.121.150403
https://doi.org/10.1088/1367-2630/ab61d7
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PhysRevLett.119.200402
https://doi.org/10.1103/PhysRevX.10.011030
https://doi.org/10.1103/PhysRevA.98.023623
https://doi.org/10.1103/PhysRevLett.121.233603
https://doi.org/10.1038/s41567-019-0615-4
https://doi.org/10.1103/PhysRevX.11.011057
https://doi.org/10.1103/PhysRevLett.110.076401
https://doi.org/10.1103/PhysRevLett.112.086401
https://doi.org/10.1103/PhysRevLett.113.059901
http://arxiv.org/abs/arXiv:2011.08744
http://arxiv.org/abs/arXiv:2111.04485


TOPOLOGICAL CHIRAL CURRENTS IN THE GROSS- … PHYSICAL REVIEW B 106, 045147 (2022)

[203] F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010).
[204] N. Q. Burdick, Y. Tang, and B. L. Lev, Phys. Rev. X 6, 031022

(2016).
[205] B. Song, C. He, S. Zhang, E. Hajiyev, W. Huang, X.-J. Liu,

and G.-B. Jo, Phys. Rev. A 94, 061604(R) (2016).
[206] D. González-Cuadra, L. Tagliacozzo, M. Lewenstein, and A.

Bermudez, Phys. Rev. X 10, 041007 (2020).

[207] G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M. Müller,
and A. Bermudez, Phys. Rev. D 99, 014503 (2019).

[208] G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M.
Müller, and A. Bermudez, Phys. Rev. B 100, 115152
(2019).

[209] P. Jordan and E. P. Wigner, in The Collected Works of Eugene
Paul Wigner (Springer, Heidelberg, 1993), pp. 109–129.

045147-29

https://doi.org/10.1088/1367-2630/12/3/033007
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevA.94.061604
https://doi.org/10.1103/PhysRevX.10.041007
https://doi.org/10.1103/PhysRevD.99.014503
https://doi.org/10.1103/PhysRevB.100.115152

