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We investigate how symmetry and topological order are coupled in the (2 + 1)–dimensional ZN rank-2 toric
code for general N , which is an exactly solvable point in the Higgs phase of a symmetric rank-2 U(1) gauge
theory. The symmetry-enriched topological order present has a nontrivial realization of square-lattice translation
(and rotation and reflection) symmetry, where anyons on different lattice sites have different types and belong
to different superselection sectors. We call such particles “position-dependent excitations.” As a result, in the
rank-2 toric code anyons can hop by one lattice site in some directions while only by N lattice sites in others,
reminiscent of fracton topological order in 3 + 1 dimensions. We find that while there are N2 flavors of e charges
and 2N flavors of m fluxes, there are not NN2+2N anyon types. Instead, there are N6 anyon types, and we can
use Chern-Simons theory with six U(1) gauge fields to describe all of them. While the lattice translations permute
anyon types, we find that such permutations cannot be expressed as transformations on the six U(1) gauge
fields. Thus, the realization of translation symmetry in the U6(1) Chern-Simons theory is not known. Despite
this, we find a way to calculate the translation-dependent properties of the theory. In particular, we find that
the ground-state degeneracy on an Lx × Ly torus is N3 gcd(Lx, N ) gcd(Ly, N ) gcd(Lx, Ly, N ), where gcd stands
for “greatest common divisor.” We argue that this is a manifestation of UV/IR mixing which arises from the
interplay between lattice symmetries and topological order.
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I. INTRODUCTION

Topological order [1] is a cornerstone in understanding
gapped liquid phases of highly entangled quantum matter
[2]. At the microscopic level, phases with topological order
exhibit long-range entanglement [3–5]. At the macroscopic
level, from the highly entangled constituents emerges remark-
able robust properties, like internal gauge fields, exotic bulk
excitations (anyons), topology-dependent ground-state degen-
eracies, and gapless chiral edge excitations. In the presence of
symmetries, this structure of topological orders becomes even
richer and the quantum phase is said to possess symmetry-
enriched topological (SET) orders [6–12].

For instance, the emergent anyons do not need to form a
linear representation of the symmetry group and can instead
transform protectively under its elements. This then allows
them to carry fractional quantum numbers of the symme-
try, known as symmetry fractionalization [6,13]. This is a
familiar phenomenon in the context of fractional quantum
Hall states where the anyons transform protectively under
the U(1) symmetry group corresponding to the electron’s
charge and consequentially carry fractional amounts of the
electron charge [14]. Intrinsic topological orders can also be
enriched by external symmetries, such as the space group of
an underlying lattice [15–18]. For example, anyons transform-
ing protectively under lattice translations can carry fractional
crystal momentum, which consequentially reduces the size of
the first Brillouin zone in the reciprocal lattice [6]. In addition
to its richness, we note how in both of the above examples,

symmetry fractionalization provides direct experimental sig-
natures for the underlying topological order: the former being
fractionally quantized Hall conductivity in a two-dimensional
electron gas [19] and the latter through proposed neutron
scattering experiments on candidate quantum spin liquids in
frustrated magnets [17,20,21].

In both of the above examples, the symmetry elements
act locally on anyons as a U(1) phase, which describe the
fractional quantum number they carry. However, it is also pos-
sible for the symmetry transformations to additionally induce
a nontrivial automorphism on the anyon types, permuting
inequivalent anyon types [22–24]. By inequivalent anyons, we
mean excitations belonging to different topological superse-
lection sectors (see Appendix E of Ref. [25] for a review of the
algebraic theory of anyons). For instance, consider a double-
layer fractional quantum Hall system. There is an internal Z2

symmetry operator which exchanges the elementary anyons
on each layer, physically corresponding to an anyon tunneling
between layers [26]. Furthermore, there are exactly solvable
lattice models, like Wen’s plaquette model [27,28] or the color
code [29,30], where lattice transformations permute inequiva-
lent anyons. For example, in the plaquette model on the square
lattice, there are two types of elementary excitations, e charges
and m flux. Lattice translations by one lattice space in either
the x or y directions take all e charges to m fluxes and all m
fluxes to e charges. Following the terminology introduced in
Ref. [22], we say that SET phases including such nontrivial
automorphisms contain unconventional SET orders. In these
phases, the interplay between symmetry and topological order
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is even more striking. Indeed, in all of the above-described
examples, the existence of automorphism permuting inequiv-
alent anyons causes the topological ground-state degeneracy
to become dependent on the system’s size (in a nonextensive
way).

While gauging a global symmetry leads to topological
order present in the discussion above, gauging a subsys-
tem symmetry (a symmetry acting only on subspace of the
entire system) leads to fracton topological order [31–33].
Phases with this order are characterized by topological ex-
citations that are only able to move along subsets of the
spatial lattice [34–38]. These subdimensional excitations are
also said to have fractionalized mobility. While individually
they can only move within planes (planons), along lines
(lineons), or are entirely immobile (fractons), their compos-
ite objects can be completely mobile. Such subdimensional
physics has emerged as a very exciting frontier of quantum
matter, displaying a wide range of phenomena, such as noner-
godic behavior [34,39,40] and emergent gravitational physics
[41–47].

There is an interesting way to understand subdimensional
particles’ mobility based on how their topological superselec-
tion sectors transform under lattice translations [48]. Consider
a superselection sector s and the operator Ti which performs
a translation in the i direction by one lattice spacing. If lat-
tice translations induce the transformation Ti : s �→ s, then by
definition there exists an operator that moves the elementary
excitation of superselection sector s by one lattice spacing
in the i direction (a “string” operator). However, suppose
that for all integers n less than the linear size of the system,
that (Ti )n : s �→ sn �= s. This then means that there does not
exist a string operator which moves the elementary excitation
of s in the direction i. For instance, on a cubic lattice if
(Tx )n : s �→ sn �= s and (Ty)n : s �→ sn �= s but Tz : s �→ s, then
s is the topological superselection sector of a lineon restricted
to move in the z direction. If (Ti )n : s �→ sn �= s for all i, then
s describes a fracton, where as if Ti : s �→ s for all i, then s
describes a normal mobile excitation.

This is reminiscent of unconventional SET orders. Indeed,
under translations in any direction a subdimensional parti-
cle cannot move, its corresponding superselection sector is
changed. Therefore, for phases with fracton topological or-
der and an underlying lattice, there is always some lattice
translation that induces a nontrivial automorphism on the
superselection sectors. This point of view is quite enlight-
ening. Indeed, it provides an intuitive explanation as to why
the topological ground-state degeneracy scales with system
size for fracton topological orders: the number of excitation
types grows with the system size. Furthermore, the UV/IR
mixing known to occur in fracton phases can be understood
as a consequence of global equivalence relations between
excitation types which only exist when the system is put
on a topologically nontrivial space. The intuition behind this
will be explained in detail throughout this paper. Therefore,
from this point of view, some of the most striking features of
fracton topological phases arise from a rich interplay between
long-range entanglement and symmetry.

Throughout this paper, we will denote excitations that
change type under lattice transformations as “position-
dependent excitations.” From the above discussion, all sub-

dimensional excitations are position dependent, but not all
position-dependent excitations are subdimensional. Indeed,
position-dependent excitations occur in the aforementioned
Wen’s plaquette model and the color code, which both have
traditional topological order. Because they do not possess
fracton topological order, it means that while there are super-
selection sectors where Ti : s �→ s′ �= s, there is some n > 1
smaller than the linear system size such that (Ti )n : s �→ s.
Recalling the example provided from the plaquette model,
while a single translation takes Ti : e �→ m and Ti : m �→ e,
a double translation acts as the identity (Ti )2 : e �→ e and
(Ti )2 : m �→ m.

In this paper, we investigate an unconventional SET phase
with position-dependent excitations that are closer in sim-
ilarity to subdimensional excitations. In other words, an
unconventional SET order that is similar to fracton topological
order. One promising route to such an SET order is to start
off with a phase containing only fracton topological order
and undergo a phase transition to a phase with conventional
topological order. Indeed, when subdimensional particles con-
dense if all of the additional excited particles that usually
prevent their movement are absorbed into the condensate,
they can become mobile [49–53]. And so, through condensing
excitations, an extensive subset of the superselection sectors (a
feature of fracton topological order) reduce down to to a finite
number (conventional topological order).

A particularly simple class of theories known to include
subdimensional particles are symmetric U(1) tensor gauge
theories [54]. In the context of quantum matter, these ten-
sor gauge theories are effective theories describing exotic
quantum spin-liquid phases [41,42,55,56]. Unlike in fracton
topological order, the low-energy physics is governed by gap-
less excitations and the gauge charges’ subdimensional nature
arises due to emergent higher-moment symmetries, like dipole
momentum conservation. When these tensor gauge theories
are Higgsed such that the U(1) group reduces to ZN , the
gapless gauge boson becomes gapped, the subdimensional
particles typically become mobile, and the phase possesses
topological order [49–51,57,58]. While these excitations have
become mobile, they can typically only hop by multiple sites
at a time in the directions they were previously immobile.
For example, a lineon belonging to superselection sector
s in a phase where it is partially condensed still satisfies
Tx : s �→ s′ �= s, Ty : s �→ s′ �= s, and Tz : s �→ s, like before
the phase transition, but now also satisfies (Tx )n : s �→ s and
(Ty)n : s �→ s for an integer n > 1 less than the system size.
Therefore, this Higgs transition has induced a phase transition
from gapless fracton order to unconventional SET order. This
SET phase is more “subdimensional like” because the value
of n grows with N , whereas, for instance, the plaquette model
always had n = 2.

The remaining of this paper is organized as follows. In
Sec. II A, we start by reviewing the rank-2 U(1) “scalar
charge” gauge theory in 2+1 dimensions [(2 + 1)D] and its
subdimensional particles, and describe how to regulate it
on a spatial square lattice. Upon Higgsing the lattice gauge
fields of this tensor gauge theory, we introduce the exactly
solvable model studied throughout this paper: the ZN rank-2
toric code. In Sec. II B, we show how emergent conservation
laws of gauge charge and flux arising from the fusion rules
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enforce that anyons of the same species having a hidden
flavor index and carry different charge and flux based on
their position. This recovers previous results of the mobil-
ity of these excitations and their position-dependent braiding
statistics. Additionally, it allows us to define the anyon lat-
tice which reveals how the excitations change type under
lattice transformations, hence making the rank-2 toric code
pose an unconventional SET order. Interestingly, these auto-
morphisms on anyon lattice vectors are nonlinear. Then, in
Sec. II C, we consider the effect of periodic boundary con-
ditions and find equivalence relations between anyon types
which arise from the lattice translations’ realization on the
anyon lattice. We find the ground-state degeneracy for gen-
eral N and identify new nonlocal string operators that further
modify the mobility of the excitations. The ground-state
degeneracy sensitively depends on the system size, which
we discuss in the context of UV/IR mixing. The position-
dependent excitation picture and the anyon lattice additionally
provide a straightforward way for developing a mutual Chern-
Simons theory for the rank-2 toric code, which is the subject
of Sec. III A. Using the Chern-Simon gauge fields, we find
a basis set of holonomies for the torus in Sec. III B, which
in Sec. III C we use to find a low-energy effective action in
terms of the gauge fields’ zero modes. The number of ground
states from this effective action is the same as that found by
considering the anyon lattice group. Furthermore, this low-
energy effective action explicitly depends on the number of
unit cells from the microscopic theory, revealing the origin of
the UV/IR mixing in the effective theory.

II. ZN RANK-2 TORIC CODE IN (2 + 1)D

One of the simplest cases of topological order is ZN

topological order. A canonical system which contains ZN

topological order is Kitaev’s toric code model1 in (2 + 1)D
space-time dimensions [59]. It is an exactly solvable model
that resides in the deconfined phase of a ZN quantum gauge
theory. One way to motivate the toric code Hamiltonian is by
“Higgsing” a vector U(1) lattice gauge theory down to a ZN

theory. The U(1) gauge group is reduced to ZN , causing the
U(1) gauge charge to become a ZN gauge charge, the U(1)
magnetic flux loop to become a ZN vortex, and the gapless
gauge boson (the photon) to become gapped [60]. The toric
code is an exactly solvable point in this Higgs phase of the
U(1) lattice gauge theory.

In this section, we investigate the rank-2 toric code, a
recent generalization of the toric code. We will first review
how its Hamiltonian can be obtained by Higgsing the gauge
field in a tensor U(1) lattice gauge theory [50,51,57,58]. We
then introduce a position-dependent excitation picture, from
which we study the excitations’ mobility, braiding statistics,
symmetry properties, and find the ground-state degeneracy for
general N . In addition to its utility in this section, the anyon
lattice framework for the position-dependent excitations will
be crucial for developing a mutual Chern-Simons theory of
the rank-2 toric code in Sec. III A.

1Throughout this paper, the terminology “toric code” refers to the
general ZN version.

A. Higgsed U(1) symmetric tensor gauge theory and its
excitations

1. Continuum field theory

Consider a rank-2 U(1) quantum gauge theory in the
continuum with a compact gauge field Ai j (x) and conjugate
electric field Ei j (x). We work in (2 + 1)D so the indices
i, j ∈ {x, y}. Both of these are symmetric rank-2 quantum
tensor fields and satisfy the canonical commutation relation

[Ai j (x), Ekl (y)] = i(δkiδl j + δliδk j )δ(x − y). (1)

We work to consider the so-called scalar charge theory, where
the U(1) gauge charge density ρ is given by the Gauss’s law

ρ(x) = ∂i∂ jE
i j (x), (2)

where Einstein’s summation convention is assumed and
∂i ≡ ∂/∂xi. Another thoroughly studied symmetric tensor
gauge theory is the so-called vector charge theory, where the
gauge charge density is a vector field and satisfies the Gauss’s
law is ρ i = ∂ jE ji [54], but in (2 + 1)D the scalar and vector
charge theories are dual to one another [57]. The Gauss’s law
in Eq. (2) generates the gauge transformation [61]

Ai j (x) → Ai j (x) + ∂i∂ j f (x), (3)

where f (x) is a general function. In light of this gauge trans-
formation, we define the components of the gauge-invariant
magnetic field as2

Bx(x) = ∂yAxy(x) − ∂xAyy(x), (4a)

By(x) = ∂xAxy(x) − ∂yAxx(x). (4b)

We note that in this form, given that A transforms like a 2-
tensor, the magnetic field B transforms as a vector.

Symmetric tensor gauge theories have attracted vast
interests recently due to their matter excitations having subdi-
mensional mobility due to global conservation laws [54]. For
instance, the U(1) dipole moment xρ is conserved:∫

xiρ =
∫

xi∂ j∂kE jk = b.t. −
∫

∂kE ik = b.t., (5)

where “b.t.” stands for “boundary term.” Therefore, allowed
dynamical processes are only those that conserve the system’s
dipole moment. So, an isolated gauge charge cannot move
while a two-particle bound state can. By itself, it is immo-
bile and hence a fracton. Additionally, the “magnetic angular
momentum” (xBy − yBx ) is conserved:∫

(xBy − yBx ) =
∫

(x∂xAxy − x∂yAxx,−y∂yAxy + y∂xAyy),

=
∫

(−Axy + Axy) + b.t. = b.t. (6)

2In the (3+1)D scalar charge theory, the components of the mag-
netic field B̃i j are defined as B̃i j = εiab∂aAb j , where εi jk is the totally
antisymmetric Levi-Civita symbol. In the (2+1)D theory, we define
the components of the vector magnetic field B in terms of B̃ as
Bx = −B̃zy and By = B̃zx , which leads to Eq. (4).
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This is like the “angular momentum” conservation law for the
vector charge theory, which enforces vector gauge charges to
move only in the direction of their charge. Therefore, U(1)
magnetic flux loops can move only in the direction of B and
are therefore lineons.

2. Lattice field theory and Higgsing

To regularize the continuum theory on a lattice, we dis-
cretized the two-dimensional space as a square lattice while
time remains a continuous variable. Throughout this section,
there will be objects acting on or residing on the sites, edges,
and plaquette of the square lattice. To make the notation less
cumbersome, we will label all of these by a corresponding
lattice site. For each lattice site (x, y), we associate with it
the plaquette whose center is at (x + 1

2 , y + 1
2 ), the horizontal

edge whose center is (x + 1
2 , y), and the vertical edge whose

center is at (x, y + 1
2 ). Throughout this paper, lengths are

measured in units of the lattice constant and so the lattice
constant is unity.

In order to discretize the continuum tensor gauge fields,
first consider two U(1) quantum rotors residing on each lattice
site and one U(1) quantum rotor at each plaquette. Because
the 2-tensor fields are symmetric in two spatial dimensions,
they each contain three independent operators. For a given
lattice site, the operators corresponding to the xx and yy com-
ponents each act on one of the rotors residing on the lattice site
while the operator corresponding to the xy component acts on
the rotor residing on the plaquette [62]. Therefore, the lattice
operator Axx

x,y acts one one of the rotors at lattice site (x, y),
Ayy

x,y acts on the other rotor on the lattice site, and Axy
x,y acts

on the rotor on the plaquette corresponding to (x, y). This can
be motivated from the gauge transformation in Eq. (3) as Ai j

should act on the same location as ∂i∂ j . The designations then
follow directly from the fact that the discretized differential
operators ∂x∂x and ∂y∂y are naturally associated with a lattice
site while ∂x∂y is naturally associated with a plaquette [63].

In the continuum theory, the canonical commutation rela-
tion (1) is manifestly symmetric in exchanging the indices of
A or E . However, because of the Kronecker delta functions,
the components of the tensor fields satisfy [Axx

x,y, Exx
x,y] = 2i,

[Ayy
x,y, Eyy

x,y] = 2i, and [Axy
x,y, Exy

x,y] = i. Because Ai j is compact,
this implies that while Exy has integer eigenvalues, Exx and
Eyy have only even integer eigenvalues. Following Ref. [51],
we make the transformation Exx → 2Exx and Exyy → 2Eyy

so the lattice variables all satisfy [Ai j
x,y, Ei j

x′,y′ ] = iδx,x′δy,y′ and
thus all components Ei j have integer eigenvalues. With this
change, however, from the discretized Gauss’s law the eigen-
values of the ρ operator take only even integer eigenvalue.
Therefore, we also make the transformation ρ → 2ρ. Then,
the eigenvalues of Ei j and ρ are only integers and the lattice
Gauss’s law becomes

ρx,y = Exx
x+1,y + Exx

x−1,y − 2Exx
x,y + Eyy

x,y+1 + Eyy
x,y−1

−2Eyy
x,y +Exy

x,y −Exy
x−1,y+Exy

x−1,y−1−Exy
x,y−1. (7)

Additionally, the components of the lattice magnetic field are
given by

Bx
x,y = (

Axy
x,y − Axy

x,y−1

) − (
Ayy

x+1,y − Ayy
x,y

)
, (8a)

FIG. 1. A graphical representation of the ZN Gauss operator G
and magnetic flux operators F (x) and F (y) contained in the rank-2
toric code’s Hamiltonian [see Eq. (12)]. The disks are color coded to
represent Xi and Zi operators, according to the legend. Furthermore,
disks with a † represent the Hermitian conjugate of the corresponding
operator.

By
x,y = (

Axy
x,y − Axy

x−1,y

) − (
Axx

x,y+1 − Axx
x,y

)
. (8b)

Having put the scalar charge U(1) gauge theory onto a
lattice, the U(1) gauge group is now Higgsed so all charge-
N excitations condense into the vacuum, reducing the U(1)
gauge group down to ZN [60]. This can be done formally by
introducing a charge-N matter field, including a Higgs term in
the U(1) lattice gauge theory Hamiltonian, and then consid-
ering the low-energy subspace in the Higgs phase where the
gauge field is constrained to Ai j = 2π (integer)/N [50,51]. In
this Higgs phase, there are ZN lattice gauge fields Xi and ZN

electric fields Zi which are given by

X1 = eiAxx
, X2 = eiAyy

, X3 = eiAxy
, (9a)

Z1 = ωExx
, Z2 = ωEyy

, Z3 = ωExy
, (9b)

where ω = e2π i/N . It follows that Xi and Zj are unitary op-
erators and satisfy ZjXi = ωδi, j XiZ j , X N

i = 1, and ZN
i = 1.

Additionally, there is a ZN Gauss operator Gx,y and ZN mag-
netic flux operators F (x)

x,y and F (y)
x,y that are given by

Gx,y = ωρi , (10a)

F (x)
x,y = eiBx

x,y , (10b)

F (y)
x,y = eiBy

x,y . (10c)

In terms of the Xi and Zi operators, Gx,y, F (x)
x,y , and F (y)

x,y are

Gx,y = (Z†
1,x,y)2(Z†

2,x,y)2Z3,x,yZ†
3,x−1,yZ3,x−1,y−1

×Z†
3,x,y−1Z1,x−1,yZ1,x+1,yZ2,x,y−1Z2,x,y+1, (11a)

F (x)
x,y = X2,x,yX †

2,x+1,yX3,x,yX †
3,x,y−1, (11b)

F (y)
x,y = X1,x,yX †

1,x,y+1X3,x,yX †
3,x−1,y. (11c)

A graphical representation of these operators is shown in
Fig. 1.

Using these operators, the rank-2 toric code Hamiltonian is

HR2TC = −1

2

∑
x,y

(
Gx,y + F (x)

x,y + F (y)
x,y + H.c.

)
. (12)
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It is straightforward to confirm that G, F (x), and F (y) are
all mutually commuting for every lattice site. Therefore, this
model is exactly solvable and the ground state |vac〉 is the
eigenstate of G, F (x), and F (y) with the maximum eigenvalue,
which is 1.

Before moving on to discuss the excitations in this model,
we now consider lattice transformations and show that H is
invariant under the space group of the square lattice. The
space group is p4m and can be generated by a fourfold
rotation about a lattice site C4, a mirror reflection about a
horizontal line that intersects lattice sites Mx, and lattice
translations. It is easy to see that HR2TC is invariant under
translations. To see that it is invariant under the point-group
elements, first note that in the U(1) theory, because Ai j is
a symmetric tensor its components transform under C4 as
Axx

x,y → Ayy
−y,x, Ayy

x,y → Axx
−y,x, and Axy

x,y → −Axy
−y−1,x, and un-

der Mx as Axx
x,y → Axx

x,−y, Ayy
x,y → Ayy

x,−y, and Axy
x,y → −Axy

x,−y−1.
Therefore, according to Eq. (9a), the Xi operators transform as

X1,x,y → X2,−y,x,

C4 : X2,x,y → X1,−y,x, (13a)

X3,x,y → X †
3,−y−1,x,

X1,x,y → X1,x,−y,

Mx : X2,x,y → X2,x,−y, (13b)

X3,x,y → X †
3,x,−y−1.

Because Ei j is also a symmetric tensor, Zi transforms in the
same way as Xi. Therefore, G, F (x), and F (y) transform like

Gx,y → G−y,x,

C4 : F (x)
x,y → F y

−y,x, (14a)

F (y)
x,y → (F (x)

−y−1,x )†,

Gx,y → Gx,−y,

Mx : F (x)
x,y → F (x)

x,−y, (14b)

F (y)
x,y → (F (y)

x,−y−1)†.

Using this, it is easy to see that the Hamiltonian remains
unchanged by both C4 and Mx and, therefore, it is invariant
under all lattice transformations.

The many-body ground state satisfies the local constraints
Gx,y = F (x)

x,y = F (y)
x,y = 1 at each lattice site. The excited states

are connected to the ground state by acting Xi or Zi on |vac〉,
which gives rise to violations of the ground-state constraints.
Just like in the toric code model, this corresponds to exciting
gapped particles from an artificial vacuum. Violations of the of
the Gx,y = 1 constraint correspond to exciting gauge charges,
which we will denote as e particles, whereas violations of
the F (x)

x,y = 1 and F (y)
x,y = 1 constraints correspond to exciting

gauge fluxes (vortices), which we denote as m(x) and m(y)

particles, respectively. We will denote the charge carried by
an excitation as the mathfrak font of the symbol used to label
the excitation. So, the gauge charge carried by ex,y [an e
particle at lattice site (x, y)] is ex,y and the gauge flux carried
by m(x)

x,y is m(x)
x,y and by m(y)

x,y is m
(y)
x,y. If it appears strange

to label the charge by the lattice site it corresponds to, we
note that this will be discussed in greater detail throughout
Sec. IIB1. Nonetheless, for a general energy eigenstate |ψ〉,
the amount of charge carried by an excitation at lattice site
(x, y) is determined by the eigenvalue relations

Gx,y |ψ〉 = ωex,y |ψ〉 , (15a)

F (x)
x,y |ψ〉 = ωm(x)

x,y |ψ〉 , (15b)

F (y)
x,y |ψ〉 = ωm

(y)
x,y |ψ〉 . (15c)

The symmetry properties of the charges can then be deter-
mined from Eqs. (14a) and (14b). Indeed, transforming Gx,y,
F (x)

x,y , and F (y)
x,y reveal that ex,y, m(x)

x,y, and m
(y)
x,y transform under

C4 and Mx as

ex,y → e−y,x,

C4 : m(x)
x,y → m

(y)
−y,x, (16a)

m(y)
x,y → −m

(x)
−y−1,x,

ex,y → ex,−y,

Mx : m(x)
x,y → m

(x)
x,−y, (16b)

m(y)
x,y → −m

(y)
x,−y−1.

The ex,y excitations naturally reside on lattice sites and, like
in the continuum theory before Higgsing, are scalar gauge
charges. However, m(x) and m(y) transform into each other like
the components of a vector. Because of this, we introduce the
vector charge 	mx,y = (m(x)

x,y, m(y)
x,y), and consider m(x)

x,y (m(t )
x,y) to

reside on the horizontal (vertical) edge associated with the lat-
tice site (x, y).3 As components of a vector charge, pictorially
we represent them as vectors, where a positive charge m(x)

(m(y)) is a vector pointing in the +x (+y) direction. The six
different types of elementary excitations excited using Xi and
Zi operators are shown in Fig. 2.

B. Position-dependent excitations

In this section, instead of using the lattice operators Xi

and Zi in detail to study the excitations of the rank-2 toric
code, we will instead consider the anyon lattice they form.
This will present a powerful picture where anyons of the same
species (for instance, both e excitations) carry different gauge
charge depending on their position. This turns out to be a

3Unlike the normal toric code, due to e excitations being parti-
cles while 	m excitations are vectors, the rank-2 toric code lacks an
electric-magnetic duality.
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FIG. 2. Excitations in the rank-2 toric code can be excited using
the Xi and Zi operators and carry charge as defined by Eq. (15). (Left)
The Zi operators excite vector gauge fluxes 	m = (m(x), m(y) ). m(x)

(m(y)) excitations reside on horizontal (vertical) links, and a positive
gauge flux pictorially corresponds to a vector pointing in the +x (+y)
direction. (Right) The Xi operators excite gauge charges e, which we
represent as “+” and “−” signs on the lattice sites for positive and
negative charge, respectively.

natural framework to understand their mobility and braiding
statistics. It also reveals how the anyons couple with the lattice
symmetries in a rich way. Finally, this will act as a starting
point for developing a Chern-Simons theory as a low-energy
effective theory for the rank-2 toric code in Sec. III A. We note
that throughout this section, we will not be assuming periodic
boundary conditions. Instead, their effect will be investigated
in Sec. II C.

1. Anyon lattice

In the rank-2 toric code, as was discussed Sec. IIA2,
there are three species of elementary excitations: e and
	m = (m(x), m(y) ). It is typically the case that excitations of the
same species carry the same gauge charge and flux, and so
for each species of anyon there is only one inequivalent anyon
flavor. However, this is not generally true and the number of
inequivalent elementary excitations can be greater than the
number of species.

The number of inequivalent elementary excitations can be
found by first considering the most general possibility where
for every lattice site the e and 	m particles carry different gauge
charges and fluxes. Therefore, for the rank-2 toric code this
initial starting point is when the gauge charges and fluxes sat-
isfy ex1,y1 �= ex2,y2 and 	mx1,y1 �= 	mx2,y2 for (x1, y1) �= (x2, y2).
This means that for an Lx × Ly size system, there are initially
3LxLy inequivalent elementary excitations. By requiring that
gauge charge and flux is locally conserved by all processes
that excite e and 	m excitations, subsets of the initial gauge
charges and flux ex,y, m(x)

x,y, and m
(y)
x,y will become linearly

dependent. As a consequence, when all such equivalence
relations are taken into account the initial general 3LxLy

inequivalent elementary excitations reduces to the actual num-
ber of inequivalent elementary excitations.

This procedure is general and can be used for any topo-
logical order provided its fusion rules. For instance, in the

(2 + 1)D toric code, the initial 2LxLy number of elementary
excitations reduces to two: a single ZN gauge charge and ZN

gauge flux. And so, as is already known in the (2 + 1)D toric
code, all charges and vortices carry the same gauge charge
and gauge flux, respectively, regardless of their position on
the lattice. However, for the rank-2 toric code we will find
that this is no longer the case.

There are six different ways to excite e and 	m particles
from the ground state in the rank-2 toric code, which are the
configurations shown in Fig. 2. All other ways to locally excite
excitations are combinations of these six configurations. They
can be translated into fusion rules. Letting 1 denote the trivial
excitation (the vacuum), for every lattice site (x, y) there are
three fusion rules involving gauge fluxes

1 = m(x)
x−1,y ⊗ m̄(x)

x,y, (17a)

1 = m(y)
x,y−1 ⊗ m̄(y)

x,y, (17b)

1 = m̄(x)
x,y ⊗ m̄(y)

x,y ⊗ m(x)
x,y+1 ⊗ m(y)

x+1,y, (17c)

and three fusion rules involving gauge charges

1 = ex−1,y ⊗ ēx,y ⊗ ēx,y ⊗ ex+1,y, (18a)

1 = ex,y−1 ⊗ ēx,y ⊗ ēx,y ⊗ ex,y+1, (18b)

1 = ex,y ⊗ ēx+1,y ⊗ ex+1,y+1 ⊗ ēx,y+1. (18c)

Here, we use the notation that, for instance, ē denotes the an-
tiparticle of e and so, by definition, they obey the fusion rules
1 = ēx,y ⊗ ex,y, 1 = m̄(x)

x,y ⊗ m(x)
x,y, and 1 = m̄(y)

x,y ⊗ m(y)
x,y. These

fusion rules define equivalence relations between excitations.
Particularly, that the composite objects on the right-hand side
of Eqs. (17) and (18) belong to the same topological supers-
election sector as the trivial excitation 1. Instead of thinking
about the superselection sectors, we can equally view these as
emergent conservation laws relating the charge and flux car-
ried by different excitations. Because the ground state carries
no charge and flux, these fusion rules therefore give

m
(x)
x−1,y − m(x)

x,y = 0, (19a)

m
(y)
x,y−1 − m(y)

x,y = 0, (19b)

−m(x)
x,y − m(y)

x,y + m
(x)
x,y+1 + m

(y)
x+1,y = 0, (19c)

ex−1,y − 2 ex,y + ex+1,y = 0, (19d)

ex,y−1 − 2 ex,y + ex,y+1 = 0, (19e)

ex,y − ex+1,y + ex+1,y+1 − ex,y+1 = 0. (19f)

In what follows, we will treat these as recurrence relations and
recursively solve for the gauge charge and flux carried by e,
m(x), and m(y) at a general lattice site.4

4Alternatively, one could view Eq. (19) as finite differences, which
in the continuum limit become the differential equations ∂xm(x) = 0,
∂ym(y) = 0, and ∂ym(x) + ∂xm(y) = 0 for the gauge fluxes and
∂2

x e = 0, ∂2
y e = 0, and ∂x∂ye = 0 for the gauge charges. Then, it

is clear that their position dependencies are m(x)(y) = C1 + y C2,
m(y)(x) = C3 − x C2, and e(x, y) = C4 + x C5 + y C6, where Ci are
all constants. This is exactly what we find solving these recursively.
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Let us first consider the equivalence relations (19a) and
(19b). They imply that for every fixed value y that

m(x)
x1,y = m(x)

x2,y ∀ x1 and x2, (20)

and that for every fixed value x that

m(y)
x,y1

= m(y)
x,y2

∀ y1 and y2. (21)

Therefore, all m(x) along the same horizontal line, or similarly
all m(y) along the same vertical line, carry the same gauge flux.
So, for determining the number of inequivalent elementary ex-
citations, we can restrict ourselves to only having to consider
gauge flux types m(x)

0,y and m
(y)
x,0 since m(x)

x,y = m
(x)
0,y for all x and

m
(y)
x,y = m

(y)
x,0 for all y. Using this, the remaining equivalence

relation for the gauge fluxes, Eq. (19c), becomes

−m
(x)
0,y − m

(y)
x,0 + m

(x)
0,y+1 + m

(y)
x+1,0 = 0.

Solving for m(x)
0,y+1 and setting x = 0 gives a recurrence rela-

tion for m(x)
0,y in terms of m(x)

0,y−1 and the y independent m(y)
0,0 and

m
(y)
1,0. Recursively solving this for m(x)

0,y gives

m
(x)
1,y = ym(y)

0,0 + m
(x)
0,0 − ym(y)

1,0.

Similarly, solving instead for m(y)
x+1,0 and setting y = 0 gives

a recurrence relation for m
(y)
x,0 in terms of m

(y)
x−1,0 and the x

independent m(x)
0,0 and m

(x)
0,1. Recursively solving this for m(y)

x,0
gives

m
(y)
x,0 = xm(x)

0,0 + m
(y)
0,0 − xm(x)

0,1.

These expressions are in terms of m(x)
0,0, m(y)

0,0, m(x)
0,1, and m

(y)
1,0,

which are not linearly independent as they are related to one
another by Eq. (19c) with x = y = 0. Expressing m

(y)
1,0 in terms

of the other three, we are left with only m
(x)
0,0, m(y)

0,0, and m
(x)
0,1.

It is convenient to introduce the gauge fluxes

mx = m
(x)
0,0, my = m

(y)
0,0, g = m

(x)
0,1 − m

(x)
0,0, (22)

and then the above results yield that the gauge fluxes carried
by the excitations m(x) and m(y) associated with lattice site
(x, y) are

m(x)
x,y = mx + y g, (23a)

m(y)
x,y = my − x g. (23b)

The same type of recursive analysis can be done for the e par-
ticles. Indeed, the equivalence relation provided by Eq. (19d)
gives a recurrence relation for ex,y in terms of ex+1,y and ex+2,y.
Similarly, Eq. (19e) gives a recurrence relation for ex,y in terms
of ex,y+1 and ex,y+2. Solving these two recurrence relations
independently gives

ex,y = xe1,y + (1 − x)e0,y,

ex,y = yex,1 + (1 − y)ex,0.

Plugging one of these into the other yields an expression
for ex,y in terms of e0,0, e0,1, e1,0, and e1,1. However, these
four gauge charges are linearly dependent, related to another

FIG. 3. The gauge charge and gauge flux carried by excitations in
the rank-2 toric code depend on the particle’s position [see Eqs. (23)
and (25)]. For the ZN theory, this causes the unit cell of the spa-
tial lattice to become size N × N . Here, we show examples of the
unit cell for when (left) N = 2 and when (right) N = 3. The three
types of gauge charges carried by e particles (e, px, py) are graph-
ically represented by the color-coded thirds of the circles on each
lattice site. Similarly, the three gauge flux types 	m particles carry
(mx, my, g) are graphically represented by the color-coded halves
of the rectangles on the links of the lattice. The integers labeling
both represent the number basis gauge charges and fluxes a single
elementary excitation at that location carries.

another by Eq. (19f) at x = y = 0. Expressing e1,1 in terms of
the other three and introducing the gauge charges

e = e0,0, px = e1,0 − e0,0, py = e0,1 − e0,0, (24)

the expression for ex,y simplifies to

ex,y = e + x px + y py. (25)

At first glance, Eqs. (23) and (25) appear to imply that
all excitations at different lattice sites carry different gauge
charges and fluxes, which would imply that there are an ex-
tensive number of anyon flavors. For a theory with the fusion
rules (17) and (18) where e and 	m are, for instance, U(1) gauge
charges and fluxes, this is indeed true. However, this is not the
case for the rank-2 toric code because the e and 	m particles
carry ZN charges and fluxes, respectively, and therefore obey
the fusion rules 1 = (ex,y)N , 1 = (m(x)

x,y)N , and 1 = (m(y)
x,y)N . In

terms of the basis charges and fluxes, this means that they
all satisfy N mx = 0, N my = 0, etc. Therefore, Eqs. (23) and
(25) satisfy

ex,y = ex+N,y = ex,y+N , (26a)

m(x)
x,y = m

(x)
x,y+N , (26b)

m(y)
x,y = m

(y)
x+N,y, (26c)

and so the number of anyon flavors is independent of system
size. There are N flavors of m(x) particles, N flavors of m(y)

particles, and N2 flavors of e particles, each carrying different
combinations of gauge flux and gauge charge, respectively.
This causes the unit cell of the square lattice to become en-
larged, now being N × N lattice sites in size. Figure 3 shows
examples of the unit cell for N = 2 and 3 with the lattice

045145-7



SALVATORE D. PACE AND XIAO-GANG WEN PHYSICAL REVIEW B 106, 045145 (2022)

sites and edges labeled by the gauge charge and flux that an
excitation there carries.

From the above analysis, the m(x) and m(y) excitations carry
three different types of gauge flux (mx, my, and g) while the e
excitations carry three different types of gauge charge (e, px,
and py). Using this, we can now introduce the anyon lattice
that describes the excitations. For Abelian anyons, the anyon
lattice A is an Abelian group under fusion. Anyons can be
represented as vectors and the fusion of anyons correspond to
vector addition. In this representation, the basis vectors span-
ning the anyon lattice correspond to the basis gauge fluxes
and charges. Every vector 		 ∈ A corresponds to a unique
topological superselection sector. Therefore, for the rank-2
toric code A = Z6

N , and a generic excitation is represented by
the anyon lattice vector 		 as

		 = 	1 	mx + 	2 	my + 	3 	g + 	4 	e + 	5 	px + 	6 	py

.=
⎛
⎝	1

	2

	3

⎞
⎠ ⊕

⎛
⎝	4

	5

	6

⎞
⎠. (27)

It is important to note that because 	i ∈ ZN , the elementary
excitations represented as anyon lattice vector are

		m(x)
x,y

=
⎛
⎝ 1

0
y mod N

⎞
⎠ ⊕

⎛
⎝0

0
0

⎞
⎠, (28)

		m(y)
x,y

=
⎛
⎝ 0

1
−x mod N

⎞
⎠ ⊕

⎛
⎝0

0
0

⎞
⎠, (29)

		ex,y =
⎛
⎝0

0
0

⎞
⎠ ⊕

⎛
⎝ 1

x mod N
y mod N

⎞
⎠. (30)

Finally, we note that because the anyon lattice is spanned
by three ZN gauge charges and three ZN gauge fluxes, the
rank-2 toric code in (2 + 1)D possesses Z3

N topological order
[50,51]. However, we emphasize that because it is Z3

N topolog-
ical order in the presence of the square-lattice symmetries, this
is really symmetry-enriched topological (SET) order. As we
will see in Sec. IIB4 and throughout later parts of the paper,
this plays an important role in understanding the rank-2 toric
code. For instance, the lattice symmetry elements permute
the anyon flavors, causing the topological degeneracy to be
extremely sensitive to the system’s size.

2. Pseudosubdimensional particles

In general, an excitation can only reside on lattice
sites/edges that are compatible with the gauge charge/flux
it carries. Consequentially, an excitation’s mobility can be
affected if the gauge charge or flux it carries depends on its
position. For instance, an e excitation at (x1, y1) can only move
to the lattice site (x2, y2) if ex1,y1 = ex2,y2 or else local conser-
vation of gauge charge will be violated. Because this emergent
conservation law arises from the fusion rules, this equivalently
means that in order for a local operator to exist that hops an
excitation from (x1, y1) to (x2, y2), then it must be the case that
ex1,y1 = ex2,y2 . Here, we consider the mobility of e, m(x), and
m(y) excitations using the position-dependent anyon-lattice

picture, and compare them to the continuum field theory of
Sec. IIA1 where they correspond to subdimensional particles,
and discuss their string operators found in Refs. [50,51,57].

First, consider the m(x) and m(y) excitations. Let us denote
the direction orthogonal (parallel) to their superscript as the
transverse (longitudinal) direction. So, for instance, the trans-
verse (longitudinal) direction for m(x) is the y (x) direction.
The mobility of m(x) and m(y) in their longitudinal directions
is determined by Eqs. (20) and (21), respectively. Because all
edges in their longitudinal direction are associated with the
same gauge flux, the shortest distance m(x) and m(y) can hop
by in their longitudinal direction is by one lattice spacing. On
the other hand, the mobility of m(x) and m(y) in their transverse
directions is determined by Eqs. (26b) and (26c), respectively.
Only edges at a minimum N lattice spaces away in their
orthogonal direction are associated with the same gauge flux,
and therefore the shortest distance m(x) and m(y) excitations
can hop by in their transverse direction is N lattice spaces.

As for the e particles, their mobility is determined by only
Eq. (26a). The closest distance two lattice sites associated with
the same gauge charge are is N lattice spacing. Therefore, the
shortest distance e particles can hop by in both the x and y
directions is N lattice spaces.

In addition to the elementary excitations e, m(x), and m(y),
this analysis can be applied to composite excitations. Indeed,
particular nontrivial excitations made of the e particles and 	m
particles carry a position-independent gauge charge and flux
and can therefore move freely. For instance, consider the m
vector “dipole” corresponding to the lattice site (x, y):

gx,y = m̄(x)
x,y ⊗ m(x)

x,y+1. (31)

From Eq. (23), as represented on the anyon lattice, it al-
ways carries the position-independent gauge flux gx,y = g and
therefore its mobility is unrestricted. As for composite exci-
tations made up of e particles, from Eq. (25) the e x dipole

p(x)
x,y = ēx,y ⊗ ex+1,y (32)

always carries the position-independent gauge charge
p(x)

x,y = px. Similarly, the e y dipole

p(y)
x,y = ēx,y ⊗ ex,y+1 (33)

always carries the position-independent gauge charge
p

(y)
x,y = py. Therefore, both p(x) and p(y) are completely mobile.

The mobility of e, m(x), and m(y) excitations are closely
connected to the conservation laws of the continuum U(1)
tensor gauge theory given by Eqs. (5) and (6). Indeed, these
cause the U(1) gauge charges (the e particles before Higgs-
ing) to be fractons and U(1) magnetic flux loops (the m(x)

and m(y) particles before Higgsing) to be lineons. The sub-
dimensional behavior of the U(1) case is also captured by the
position-dependent gauge charge and flux anyon picture. The
expressions for ex,y, m(x)

x,y, and m
(y)
x,y given by Eqs. (23) and (25)

apply independent to whether or not the gauge charges and
fluxes are ZN charges and fluxes as their derivation never used
the fact that N charges and N fluxes condense. Then, for the
U(1) case the expression for ex,y is different for each lattice
site, and therefore U(1) e particles cannot move (hence, they
are fractons). As for m(x)

x,y and m
(y)
x,y in the U(1) case, because
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of Eqs. (19a) and (19b) they can still move by one lattice
spacing in their longitudinal direction, but cannot move in
their transverse direction (hence, they are lineons). Upon Hig-
gsing, since the U(1) charges and fluxes become ZN charges
and fluxes, the equivalence relation (26) applies which allows
a process where excitations hop by N lattice sites in the
direction they previously could not move.

While the position-dependent excitation picture recovers
the mobility of e and 	m excitations and their composite ob-
jects, the above analysis only concludes that there exist local
string operators. However, the structure of these string oper-
ators is important in determining the low-energy dynamics.
Indeed, when subdimensional particles condense in a Higgs
phase, they can gain mobility only if all of the additional
excited particles that usually prevent their movement are per-
fectly absorbed into the condensate [49–53]. As such, the
lattice string operators can be rather complicated. Indeed,
the string operators that hops an e particle from (x, y) to
(x + N, y) or (x, y + N ), respectively, are [50,51,57]

W (e,x)
x,y =

N−1∏
i=0

(
X †

1,x+i,y

)i
,

W (e,y)
x,y =

N−1∏
i=0

(
X †

2,x,y+i

)i
, (34)

and the string operators that hop m(x) and m(y) by N lattice
spaces in their transverse directions are

W (m(x),y)
x,y =

N−1∏
i=0

Z3,x,y+i
(
Z1,x,y+iZ

†
1,x+1,y+i

)i
,

W (m(y),x)
x,y =

N−1∏
i=0

Z3,x+i,y
(
Z2,x+i,yZ†

2,x+i,y+1

)i
. (35)

On the other hand, the string operators that hop excitations in
directions they are always mobile are much simpler. Indeed,
the string operators to hop m(x) and m(y) in their longitudinal
directions by one lattice site are simply

W (m(x),x)
x,y = Z†

2,x+1,y,

W (m(y),y)
x,y = Z†

1,x,y+1. (36)

Similarly, the string operators that hop the e dipoles p(x)
x,y and

p(y)
x,y by one lattice site are

W (p(x),x)
x,y = X1,x,y,

W (p(x),y)
x,y = X3,x,y,

W (p(y),x)
x,y = X3,x,y,

W (p(y),y)
x,y = X2,x,y, (37)

and the ones for the m vector dipole gx,y are

W (g,x)
x,y = Z2,x+1,yZ†

2,x+1,y+1,

W (g,y)
x,y = Z3,x,y+1Z1,x+1,y+1Z†

1,x,y+1Z†
3,x,y. (38)

The rank-2 toric code Hamiltonian (12) does not have dy-
namics, but by adding off-diagonal terms we can consider the

corresponding low-energy effective Hamiltonian describing
the induced dynamical processes. The leading-order terms for
small off-diagonal elements will consist of quantities made of
the fewest operators. The minimum number of operators used
to hop an e particle by N lattice sites is

Le(N ) =
{

N2/4, N is even
(N2 − 1)/4, N is odd

(39)

where as the minimum number of operators to hop m(x) and
m(y) in their transverse directions, respectively, is

Lm(N ) = N + 2Le(N ). (40)

For N > 2, the leading-order dynamical processes are 	m par-
ticles moving in one direction and p dipoles moving freely. In
the low-energy effective Hamiltonian, the e particles are there-
fore pseudofractons while the 	m particles are pseudolineons,
and therefore there are pseudosubdimensional (subdimen-
sional at low energies) particles in (2 + 1)D.

3. Position-dependent braiding statistics

An interesting consequence of the e and 	m particles car-
rying position-dependent gauge charge and flux is that their
mutual braiding statistics become position dependent. While
the position dependency of braiding statistics can be inferred
directly from the string operators [57], the result seems rather
magical. However, it becomes much more intuitive when un-
derstood as a consequence of anyons from different lattice
sites carrying different gauge charge and flux. Furthermore,
considering the excitations’ braiding statistics will also be
useful later on in Sec. III A when we develop a mutual Chern-
Simons theory as the low-energy effective field theory for the
system.

The elementary excitations e, m(x), and m(y) are all bosons
and therefore have trivial self-statistics. However, their non-
trivial mutual statistics make them Abelian anyons. Indeed,
braiding exe,ye counterclockwise around either m(x)

xm,ym
or m(y)

xm,ym

will cause the many-body wave function to pick up a phase
that depends on the initial coordinates (xe, ye) and (xm, ym).
The phase accumulated from this can be found by first finding
the braiding statistics between excitations carrying the basis
vectors of the anyon lattice. Then, using the expressions for
ex,y, m(x)

x,y, and m
(y)
x,y in Eqs. (23) and (25), the braiding statis-

tics between any elementary or composite excitations can be
found.

First recall that as described by Eq. (22), the basis gauge
fluxes carry the gauge flux of m(x)

0,0, m(y)
0,0, and m(x)

0,1 and from
Eq. (24) the basis gauge charges carry the gauge charge of
e0,0, e1,0, and e0,1. Therefore, finding the mutual braiding
statistics for the anyon lattice basis amounts to finding the
mutual statistics between the m(x)

0,0, m(y)
0,0, and m(x)

0,1 and e0,0,
e1,0, and e0,1. Using the string operators it is straightforward to
find their mutual statistics from the relations ZjXi = ωδi, j XiZ j

where ω ≡ exp[2π i/N].
Indeed, using the e particle’s string operators given by

Eq. (34), braiding e0,0 around m(x)
0,1, and e1,0 around m(x)

0,1 or

m(y)
0,0 all cause the many-body wave function to pick up the

phase ω due to the relation XiZ
†
i = ωZ†

i Xi. However, braiding
e0,1 around m(x)

0,0 instead causes the many-body wave function
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TABLE I. The ex,y, m(x)
x,y, and m(y)

x,y excitations of the rank-2 toric
code have nontrivial mutual statistics and pick up phase factor from
braiding ex,y around m(x)

x,y or m(y)
x,y. The e excitations carry basis gauge

charges e px , and py and the m(x) and m(x) excitations carry basis
gauge flux mx , my, and g [see Eqs. (23) and (25)]. This table shows
the phases picked up from braiding excitations carrying a single unit
of each gauge charge and flux, with ω ≡ exp[2π i/N].

Braiding statistics mx my g

e 1 1 ω

px 1 ω 1
py ω−1 1 1

to pick up the phase ω−1 due to the relation X †
i Z†

i = ω−1Z†
i X †

i .
From these, we can find the braiding statistics between exci-
tations carrying the basis gauge charges and fluxes, which is
summarized in Table I.

From the braiding statistics shown in Table I and using
Eqs. (23) and (25), it is straightforward to find the mu-
tual statistics between e and 	m particles at any site. Indeed,
braiding a single exe,ye particle around a single m(x)

xm,ym
coun-

terclockwise, the accumulated phase is ω−(ye−ym ). Therefore,
if there are 	e units of exe,ye gauge charge and 	m(x) units of
m(x)

xm,ym
gauge flux, the total phase is

exp[iθe,m(x) (xe, ye, xm, ym)] = ω−	e	m(x) (ye−ym ). (41)

Similarly, braiding a single exe,ye around a single m(y)
xm,ym , the

accumulated phase is ωxe−xm . Therefore, given that there are
	e units of exe,ye gauge charge and 	m(y) units of m(y)

xm,ym gauge
flux, the total phase becomes

exp[iθe,m(y) (xe, ye, xm, ym)] = ω	e	m(y) (xe−xm ). (42)

Because ωN = 1, the position-dependent phase only depends
on the excitations’ relative positions in the N × N lattice
unit cell. We note that from these expressions, the braiding
statistics of any composite excitations can also be readily
found. Furthermore, these phases are in agreement with the
results found in Refs. [57,58], validating our expressions for
the position-dependent gauge charge and flux carried by the
elementary excitations.

4. Lattice transformation effect on the anyon lattice

So far, we have seen that from the fusion rules, the elemen-
tary excitations’ vector representations in the anyon lattice
depend on their position. This restricted their mobility and
enriched them with position-dependent braiding statistics.
Furthermore, because the anyon lattice is coupled to the direct
lattice, this also means that lattice transformations induce
transformations on the anyon lattice. We will investigate these
transformations in this section, further revealing the rich mix-
ing between symmetry and the topological order in the rank-2
toric code.

The space group for the square lattice can be generated by
a fourfold rotation, a mirror reflection, and translations in the
x and y directions. Under the point-group part of the space
group, the excitations charge transform according to Eq. (16).
While under the two translations, only their coordinates of the

gauge charge and flux are changed (e.g., Ty : ex,y → ex,y+1 or
Tx : m

(y)
x,y → m

(y)
x+1,y). Because lattice transformations change

the position of excitations, they also induce a transformation
on the gauge charge and flux it carries.

Consider the fourfold rotation C4 that rotates the lattice
counterclockwise by π/2 about the lattice site (0,0). Accord-
ing to Eq. (16a), C4 transforms the gauge flux m(x) and m(y)

excitations carry as

C4 : m(x)
x,y → m

(y)
−y,x = my + yg,

C4 : m(y)
x,y → −m

(x)
−y−1,x = −mx − xg.

However, considering Eq. (23), this is equivalent to starting
with m(x)

x,y and m
(y)
x,y and instead of transforming (x, y), trans-

forming the basis gauge fluxes as

mx → my,

C4 : my → −mx,

g → g. (43)

As for the e particles, under the rotation C4 the gauge charge
carried by ex,y transforms as

C4 : ex,y → e−y,x = e − ypx + xpy.

Comparison to Eq. (25), the transformation is equivalent to
starting with ex,y and transforming the gauge charge basis as

e → e,

C4 : px → py,

py → −px. (44)

Therefore, a rotation of the lattice indeed induces a transfor-
mation on the anyon lattice.

Consider a generic excitation represented by the anyon
lattice vector 		, given by Eq. (27). Then, from Eqs. (43) and
(44), the lattice rotation C4 induces a transformation on 		
represented as

C(A)
4 : 		 →

⎛
⎝−	2 mod N

	1

	3

⎞
⎠ ⊕

⎛
⎝ 	4

−	6 mod N
	5

⎞
⎠.

The anyon lattice vector’s components are 	i ∈ ZN and, there-
fore, in order for the transformed 	 to remain in Z6

N , the
coefficients picking up a minus sign have to be mod N . This
makes the transformation on the anyon lattice vector nonlin-
ear. Nevertheless, we note that because any integers a and b
satisfy −(−a mod b) mod b = a mod b, this correctly sat-
isfies (C(A)

4 )4 = 1
The calculation and reasoning can be repeated for the

other three transformations that generate the space group of
the square lattice. Indeed, for a mirror reflection about the
horizontal line y = 0, the induced transformation on the anyon
lattice is represented by

M (A)
x : 		 →

⎛
⎝ 	1

−	2 mod N
−	3 mod N

⎞
⎠ ⊕

⎛
⎝ 	4

	5

−	6 mod N

⎞
⎠.

Note that this correctly satisfies (M (A)
x )2 = 1. As for trans-

lations in the x and y directions by one lattice spacing, the

045145-10



POSITION-DEPENDENT EXCITATIONS AND UV/IR … PHYSICAL REVIEW B 106, 045145 (2022)

matrices acting on 		 are represented by

T (A)
x : 		 →

⎛
⎝ 	1

	2

	3 − 	2 mod N

⎞
⎠ ⊕

⎛
⎝ 	4

	4 + 	5 mod N
	6

⎞
⎠,

T (A)
y : 		 →

⎛
⎝ 	1

	2

	1 + 	3 mod N

⎞
⎠ ⊕

⎛
⎝ 	4

	5

	4 + 	6 mod N

⎞
⎠.

(45)

As a consequence of Eq. (26), both T (A)
x and T (A)

y transfor-
mations satisfy (T (A)

x )N = (T (A)
y )N = 1, which can easily be

confirmed from the above expression.
All of the symmetry elements that generate the square-

lattice space group act on the anyon lattice vectors as
nonlinear transformations. However, for odd N , if we choose
the range of 	i to be −N−1

2 ,−N−1
2 + 1, · · · , 0, . . . , N−1

2 , then

we can drop mod N in the above transformations of C(A)
4 and

M (A)
x . In this case, C(A)

4 and M (A)
x are linear transformations in

the six-dimensional anyon lattice. This implies that the lattice
space-group transformations C4 and Mx can be realized as
a linear transformations on the six U(1) gauge fields in the
effective Chern-Simons theory discussed in Sec. III A.

But for the lattice translations, we cannot find a range of
	i’s to linearize T (A)

x and T (A)
y . This implies that the lattice

translations cannot be realized as transformations on the six
U(1) gauge fields in the effective Chern-Simons theory in
Sec. III A. On the other hand, if the mod N equivalence of
the U(1) gauge charges could be implemented in the effective
Chern-Simons theory, then the lattice translations could be
realized as transformations on the U(1) gauge fields.

One may try to linearize the space-group transformation
on anyon types by enlarging the number of basis anyon lattice
vectors. If the anyon lattice vector space is spanned by the
number of indistinguishable elementary excitations, so there
are N2 gauge charge anyon lattice basis vectors and 2N gauge
flux basis vectors, the lattice transformations would act on the
anyon lattice vectors linearly. However, this is not a legal basis
because, as we saw in Sec. IIB1, these anyon lattice vectors
are linearly dependent.

As discussed in Sec. IIB1, the rank-2 toric code has Z3
N

topological order that is enriched by the square lattice’s space
group. In Sec. I, we reviewed how there are unconventional
SET orders in which symmetry elements additionally ex-
change inequivalent anyon types. The transformations on the
anyon lattice vectors above describe these nontrivial automor-
phisms.

It is interesting to note that the fact symmetry elements
exchange inequivalent anyon types is not explicit from the
rank-2 toric code Hamiltonian. For instance, Wen’s plaque-
tte model [27,28], Z2 charges live on A plaquettes while
Z2 fluxes live on B plaquettes, is in an unconventional SET
phase. From the Hamiltonian, it is explicit that any lattice
transformations that exchange A and B plaquettes (e.g., trans-
lations on by lattice spacing) will also exchange these anyon
types. Here, lattice symmetries exchange inequivalent flavors
of ZN charges or inequivalent flavors of ZN fluxes, which
are, respectively, excited by the same local operators. Their
inequivalencies arise from their nontrivial fusion rules, which

are influenced by the conservation laws in the continuum
tensor gauge theory: the fusion rules for exciting e particles
are the simplest ones that conserve dipole moment, Eq. (5),
and the fusion rules for exciting 	m particles are the simplest
ones that conserve “magnetic angular momentum,” Eq. (6).

C. Global anyon equivalence relations

So far, we have considered effects arising from local op-
erators (from the fusion rules studied) that were independent
of the system’s boundary conditions. In this section, we now
consider the system with periodic boundary conditions. In par-
ticular, how the presence nonlocal operators wrapped around
the nontrivial cycles of the torus affect the excitations in the
rank-2 toric code. These global operators will give rise to
new equivalence relations between anyon types. Indeed, for an
Lx × Ly square lattice, periodic boundary conditions require
that gauge charges and fluxes satisfy the global equivalence
relations

ex,y
pbc= ex+Lx,y

pbc= ex,y+Ly ,

	mx,y
pbc= 	mx+Lx,y

pbc= 	mx,y+Ly . (46)

We use the notation
pbc= and terminology “global” to denote

that the equivalence relation is satisfied only given periodic
boundary conditions and affects only nonlocal operators that
wind around the system. Using Eqs. (23) and (25), these yield

Lx p
x pbc= 0, Ly p

y pbc= 0,

Lx g
pbc= 0, Ly g

pbc= 0. (47)

Both local and global operators can condense N elementary
excitations into the vacuum, arising from the property that
X N

i = ZN
i = 1. This too, of course, applies for the nontrivial

excitations p(x), p(y), and g. Equation (47) reveals that there ex-
ist operators that wind around the system in the x direction that
can cause Lx of the p(x) and Lx of the g excitations to condense.
And, similarly, that there exist operators that wind around the
system in the y direction that can cause Ly of the p(y) and Ly of
the g excitations to condense. We will only be concerned with
the exact form of these and similar nonlocal operators when it
is required, and instead focus on the general consequences of
their existence using the equivalence relations.

The above discussion implies that global operators can
potentially condense fewer than N charges into the vacuum.
Indeed, the number of charges can be found by a repeated
condensing algorithm. For instance, consider the simultane-
ous equivalence relations for p(x), which we will call level zero
of the procedure:

Level 0: Npx = 0, Lxp
x pbc= 0.

Assuming Lx > N , consider Lx of the px charges. While ac-
cording to Eq. (47) this can be condensed into the vacuum,
let us use the fact that N px = 0 to instead condense only N
of them. Because Lx of the p(x) anyons were equivalent to the
trivial excitation, (Lx − N ) of them must also be equivalent

to the trivial excitation and satisfy (Lx − N ) px pbc= 0. There-
fore, the simultaneous equivalence relations of level zero are
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updated to level one:

Level 1: Npx = 0, (Lx − N )px pbc= 0.

If (Lx − N ) > N we will progress to level 2a of the procedure
by condensing N more of the px charges, leading to

Level 2a: Npx = 0, (Lx − 2N )px pbc= 0.

On the other hand, if (Lx − N ) < N , we instead start from
N px = 0 and condense (Lx − N ) of the px charges. This gives
the other possibility for level two of the procedure:

Level 2b: (2N − Lx )px pbc= 0, (Lx − N )px pbc= 0.

This repeated condensation procedure continues by subtract-
ing the smaller integer from the larger integer of the two
equivalence relations until they yield the same equivalence
relation. Indeed, at this final level of the procedure

Final level: Neffp
x pbc= 0, Neffp

x pbc= 0.

However, this is exactly Euclid’s algorithm for finding the
greatest common divisor (gcd) between two integers [64].
Therefore, given Lx and N in level zero, the final level will
always have Neff = gcd(Lx, N ), and so the two simultaneous

equivalence relations N px = 0 and Lx p
x pbc= 0 imply the sin-

gle one gcd(Lx, N ) px pbc= 0.
The same condensing procedure can be repeated for the py

charge and the g flux. The only difference is that for the g

flux, there are now three constraints that need to be simulta-

neously considered: N g = 0, Lx g
pbc= 0, and Ly g

pbc= 0, and
therefore the repeated condensation procedure will instead
give gcd(Lx, Ly, N ). Therefore, by taking into account that
the elementary excitations are ZN charges and fluxes, Eq. (47)
simplifies to

gcd(Lx, N ) px pbc= 0, (48a)

gcd(Ly, N ) py pbc= 0, (48b)

gcd(Lx, Ly, N ) g
pbc= 0. (48c)

Local operators do not have access to the equivalence rela-
tions of Eq. (48) and therefore still view px and py as ZN

charges and g as an ZN flux. So, the anyon lattice A to
local operators is still spanned by three ZN charges and three
ZN fluxes. However, nonlocal operators utilizing the peri-
odic boundary conditions can induce processes that condense
gcd(Lx, N ) of the px charges, gcd(Ly, N ) of the py charges,
and gcd(Lx, Ly, N ) of the g charges. Therefore, these global
operators perceive the anyon lattice instead as

A pbc= Z3
N ⊗ Zgcd(Lx,N ) ⊗ Zgcd(Ly,N ) ⊗ Zgcd(Lx,Ly,N ). (49)

The subgroup of the anyon lattice corresponding to only gauge
charges according to nonlocal operators is

Ae
pbc= ZN ⊗ Zgcd(Lx,N ) ⊗ Zgcd(Ly,N ),

while the subgroup of only gauge fluxes according to nonlocal
operators is

Am
pbc= Z2

N ⊗ Zgcd(Lx,Ly,N ).

In the remainder of this section, we will consider two particu-
larly interesting consequences of this result.

1. Nonlocal string operators

In Sec. II B 2, we found that as a consequence of the
equivalence relations in Eq. (26), there exist local operators
that hop e particles by N lattice spaces in the x and y directions
and that hop m(x) and m(y) particles by N lattice spaces in
their transverse directions. Similarly, as a result of the global
equivalence relations in Eq. (48), using Eqs. (23) and (25)
implies the equivalence relations

ex,y
pbc= ex+gcd(Lx,N ),y

pbc= ex,y+gcd(Ly,N ), (50a)

m(x)
x,y

pbc= m
(x)
x,y+gcd(Lx,Ly,N ), (50b)

m(y)
x,y

pbc= m
(y)
x+gcd(Lx,Ly,N ),y. (50c)

Therefore, there exist nonlocal operators that hop e parti-
cles in the x direction by gcd(Lx, N ) sites and in the y
direction by gcd(Ly, N ), and that hop m(x) and m(y) particles
gcd(Lx, Ly, N ) lattice sites in their transverse directions, re-
spectively.5 Physically, these involve complicated processes
where the excitations using local operators and winding
around the system such that their net displacement is as de-
scribed above.

For an e particle, when Li (i = x or y) is a multiple of N ,
hopping e around the system once in the i direction and returns
to its position. Thus, as verified by Eq. (50a), in this case
global operators can still only hop e by a net N lattice site.
However, When Lx or Ly is not a multiple of N , after winding
around the system once in that direction, the e particle does
not return to where it started. Instead, it arrives at a different
lattice site within the N × N unit cell gcd(Li, N ) sites away.
Hence, the nonlocal string operator that hops e by gcd(Li, N )
lattice sites is just the local string operator wrapped around the
system once.

The nonlocal string operators that hop an m(x) or m(y) par-
ticle by gcd(Lx, Ly, N ) in their transverse directions are much
more complicated. It is constructed using a four-step sequence
of operators that excite 	m particles from vacuum and hop them
throughout the system until the final operator is the desired
nonstring operator for hopping by gcd(Lx, Ly, N ) sites. The
sequence uses a result from elementary number theory known
as Bézout’s identity, which states that the gcd of two integers
a1 and a2 can be written as [64]

gcd(a1, a2) = b1a1 + b2a2.

There are an infinite number of “Bézout coefficients” b1 and
b2, but one is always a non-negative integer and the other a

5In the presence of periodic boundary conditions, the braiding
statistics between a gauge charge and gauge flux can become quite
complicated. By utilizing the periodic boundary conditions, particles
can braid and pick up different phases than those described by the
expressions in Sec. II B 3.
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FIG. 4. In the presence of periodic boundary conditions, mx and
my excitations can hop in the y and x directions, respectively, by
gcd(Lx, Ly, N ) lattice sites. This string operator is complicated, but
can be constructed using a four-step recipe, as described in the main
text. The top panel shows the first two steps, the middle panel shows
the third step, and the bottom panel shows the fourth step of con-
structing this string operator for m(y). Relevant lattice sites are labeled
once but color coded throughout the panels to avoid cumbersome
labeling, and b+

y is a Bézout coefficient satisfying Eq. (51)

nonpositive integer.6 Using that

gcd(Lx, Ly, N ) = gcd ( gcd(Lx, N ), gcd(Ly, N ))

and applying Bézout’s identity gives the decomposition

gcd(Lx, Ly, N ) = bx gcd(Lx, N ) + by gcd(Ly, N ). (51)

In constructing the string operator, we will use two minimal
pairs of Bézout coefficients (b±

x , b∓
y ), which are defined as

the smallest positive (b+
x,y) and negative (b−

x,y) Bézout coef-
ficients. The recipe for the string operator that hops m(y) by
gcd(Lx, Ly, N ) sites in the x direction is as follows (see Fig. 4
for a visualization of each step in the produce).

(1) First, using the fusion rule (17c), excite the trivial
excitation

m̄(x)
x,y ⊗ m̄(y)

x,y ⊗ m(x)
x,y+1 ⊗ m(y)

x+1,y

6Given a pair of Bézout coefficients (b1, b2) for the integers a1

and a2, all other pairs are given by (b1 − n a2
gcd(a1,a2 ) , b2 + n a1

gcd(a1,a2 ) ),
where n ∈ Z.

from the vacuum. The next three steps will involve hopping
these four excitations throughout and around the system. Re-
gardless of its position, we will denote the excitation m̄(x)

x,y as

simply m̄(x), m(y)
x+1,y as m(y), etc., without any risk for ambigu-

ity.
(2) The composite object m(x)

x,y+1 ⊗ m(y)
x+1,y can move freely

along the x̂ + ŷ direction. Indeed, from Eq. (23), it carries
gauge flux

m
(x)
x,y+1 + m

(y)
x+1,y = mx + my + (y − x)g

which is invariant under translations in the x̂ + ŷ direction.
The second step is to hop m(x)

x,y+1 ⊗ m(y)
x+1,y in the x̂ + ŷ direc-

tion [b+
y gcd(Ly, N ) − 1] times.

(3) The excitation m(y) can always hop by one lattice site
in the y direction, and using a nonlocal operator m(x) can hop
in the y direction by gcd(Ly, N ) lattice spaces. The latter is for
the same reason that with periodic boundary conditions an e
particle can hop by gcd(Li, N ) in the i direction. The third step
is to hop m(y) in the −ŷ direction [b+

y gcd(Ly, N ) − 1] times,
and to hop m(x) by gcd(Ly, N ) lattice sites b+

y times in the −ŷ
direction.

(4) The fourth, and final, step is to first hop m(x) by
one lattice site [b+

y gcd(Ly, N ) − 1] times in the −x̂ direc-
tion such that it stops at site (x, y) and annihilates with
m̄(x). Then, hop m(y) by gcd(Lx, N ) lattice sites in the −x̂
direction (−b−

x ) times. Because b−
x and b+

y are the Bézout co-
efficients of the decomposition (51), m(y) will stop at position
(x + gcd(Lx, Ly, N ), y), a distance gcd(Lx, Ly, N ) away from
m̄(y).

This recipe creates a string operator that hops m(y) from
(x, y) to (x + gcd(Lx, Ly, N ), y). The string operator that hops
m(x) from (x, y) to (x, y + gcd(Lx, Ly, N )) is created in a sim-
ilar fashion. In the recipe, steps 1 and 2 involve only local
operations that could have been done in the absence of pe-
riodic boundary conditions. It is important to note, however,
that in order to hop m(x) by gcd(Ly, N ) lattice sites in the y
direction in step 3 [when gcd(Ly, N ) �= N] this string operator
winds around the system. Similarly hopping m(y) by gcd Lx, N
lattice sites in the x direction in step 4 [when gcd(Lx, N ) �= N]
involves an operator that winds around the system. Indeed,
hopping m(y) in the x direction by gcd(Lx, Ly, N ) lattice sites
requires winding m(y) around the system (−b−

x ) times in the
x direction and winding a m(x) particle b+

y times around the
system in the y direction. Similarly, hopping m(x) in the y
direction by gcd(Lx, Ly, N ) lattice sites requires winding m(x)

around the system (−b−
y ) times in the y direction and winding

a m(y) particle b+
x times around the system in the x direction.

2. Ground-state degeneracy

Due to the global equivalence relations, nonlocal operators
using periodic boundary conditions identify possibly fewer
anyon types than local operators, depending on the system
size. An effect of this is that the ground-state degeneracy
(GSD) becomes sensitive to the system size. In topologically
ordered phases, degenerate ground states are distinguished by
Wilson loop operators defined on the system’s topologically
nontrivial cycles and are subject to the low-energy constraint
that defines the ground-state subspace. So, because these
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FIG. 5. The ground-state degeneracy (GSD) of the rank-2 toric
code is highly sensitive to the system’s size [see Eq. (52)]. (a) For a
fixed N , the GSD’s value will change in the range N3 � GSD � N6

as the system size Lx × Ly is changed. In the plot, for each value
of N , the logarithm base N of all possible GSD values is plotted.
(b) While there are always a finite number of different unique GSD
values, the number of them does not change monotonically with N
and is very chaotic. However, the number of GSD values is always at
its minimum when N is a prime, and the GSD only takes the values
N3, N4, or N6. In the plot, the dashed lines are drawn to guide the
eye.

Wilson loops distinguish possibly fewer anyon types, there
can be fewer Wilson loop types and therefore the GSD can
potentially be smaller than the naive guess.

On a torus, the number of ground states is equal to the num-
ber of topological excitations, the number of superselection
sectors, distinguishable by global Wilson loops [24,30,65].
The anyon lattice according to local operators is A = Z6

N
and therefore local operators distinguish N6 superselection
sectors. However, according to global operators, the anyon
lattice is given by Eq. (49) and therefore global operators
distinguish N3 gcd(Lx, N ) gcd(Ly, N ) gcd(Lx, Ly, N ) superse-
lection sectors. Because the Wilson loop operators perceive
the latter number of sectors, the GSD is

GSD = N3 gcd(Lx, N ) gcd(Ly, N ) gcd(Lx, Ly, N ). (52)

As shown in Fig. 5(a), for fixed N the GSD takes multiple
different values in the range N3 � GSD � N6 depending on
the system size. Furthermore, the number of unique GSD
values does not change monotonically with N , as shown in

Fig. 5(b). Instead, it depends on the number of divisors of
N , which is always a minimum when N is a prime number.
Indeed, when N is prime, gcd(Li, N ) can either be 1 or N , and
therefore there are always only three different values of the
GSD when N is a prime: N3, N4, or N6.

The extreme sensitivity of the GSD to the system’s size
prevents a well-defined continuum limit from existing. In-
deed, changing the system size by a single lattice spacing,
which is seemingly inconsequential after taking the contin-
uum limit, leads to drastically different number of ground
states. Therefore, any low-energy effective field theory must
make explicit mention to the lattice spacing and number of
lattice sites (which we will indeed find to be true in Sec. III C).
This can be interpreted as a manifestation of UV/IR mixing
[66,67], where the low-energy (IR) physics cannot be decou-
pled from the high-energy (UV) physics. Here, low- (high-)
energy referees to energies much smaller (larger) than the
anyons’ energy gaps. The UV/IR mixing arises because the
anyon lattice and spatial lattice are coupled. The anyon lattice
describes gapped excitations which are details of the UV the-
ory. On the other hand, the system’s size is only detectable by
nonlocal (very long-wavelength) operators and is therefore an
IR property. The global anyon equivalence relations relate the
number of distinct anyon types (a UV property) to the system
size (an IR property) and therefore a change in IR induces a
change in the UV.

We emphasize that the GSD’s sensitivity to the system size
is a consequence of the global equivalent relations (47), which
themselves were consequences of the fact that the anyons
gauge charge and flux are position dependent. However, while
not framed in the framework on lattice-dependent excitations,
similar results have been seen in other lattice models. For
instance, the GSD of Wen’s Z2 plaquette model on a torus
can either be 2 or 4, depending on if the system’s linear size
is even or odd [27,28]. Similarly, the GSD of the color-code
model [29,30] is also sensitive to the system size of a hexag-
onal lattice based on whether or not the lattice is globally
tricolorable. Furthermore, recently Seiberg et al. have found
the GSD of several different models to depend on the greatest
common divisor between the system size and N [66,67]. In
particular, as a consequence of possessing a ZN global dipole
symmetry, the (1 + 1)D “ZN tensor gauge theory” they study
is closely related to the gauge charge sector of the rank-2
toric code. Indeed, ignoring the y direction in our above
analysis, the gauge-charge sector of the anyon lattice would
be spanned by e and px. Nonlocal operators perceive e as
a ZN charge and px as a Zgcd(Lx,N ) charge. Therefore, there
are N gcd(Lx, N ) globally distinguishable anyons made out of
only these gauge charges, which is the same number as the
GSD found in the (1 + 1)D “ZN tensor gauge theory” studied
in Ref. [67]. It would be interesting to see if the results from all
of these mentioned models could also be understood in terms
of position-dependent excitations.

III. LOW-ENERGY EFFECTIVE FIELD THEORY

In Sec. II, we have found and studied the anyon lattice that
describes the rank-2 toric code model. Using this vector space
formalism, we have investigated the mobility of gapped exci-
tations and their corresponding string operators, the position
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dependency of their braiding statistics, and the ground-state
degeneracy on a torus. The ground-state degeneracy, given
by Eq. (52) and plotted in Fig. 5, was extremely sensitive to
the system’s size. One may then wonder what, if any, long-
wavelength effective field theory could have the rank-2 toric
code as its UV regularization. In this section, we now develop
such an effective theory that describes the topological order
in the rank-2 toric code. The effective action we find reveals
the UV/IR mixing that was hinted at in Sec. II C 2: the IR
theory’s coupling constants explicitly depend on the number
of unit cells in the UV regularized lattice.

A. Mutual U6(1) Chern-Simons theory

Mutual Chern-Simons theory is a powerful theoretical tool
used to describe and characterize Abelian topological orders
in (2 + 1)D [68]. It acts as a long-wavelength effective field
theory for energies below the excitations’ gaps, described by
the (2 + 1)D Minkowski space-time action

SMCS = Ki j

4π

∫
dt d2x εμνρa(i)

μ ∂νa( j)
ρ + · · · , (53)

where K is a symmetric integer matrix, εμνρ is the an-
tisymmetric Levi-Civita symbol, and the ellipsis denotes
higher-order symmetry allowed terms, such as Maxwell
terms. To connect this mutual Chern-Simons action with the
(2+1)D Abelian topological order, we first introduce a com-
pact U(1) 3-vector gauge field a(i) = (a(i)

0 , a(i)) for each basis
gauge charge and flux. We can then find the matrix elements
of K using the fact that the braiding statistics between two
particles corresponding to the gauge fields a(i) and a( j) is given
by θi j = 2π (K−1)i j .

For example, ZN topological order is described by an ef-
fective U2(1) mutual Chern-Simons theory, where one gauge
field corresponds to the ZN charge and the other to the ZN flux,
and the K matrix is given by K = Nσx (where σx is the Pauli-x
matrix) [27,69]. The rank-2 toric code is instead described
by a U6(1) mutual Chern-Simons theory. We will consider
the gauge fields (a(1), a(2), a(3)) corresponding to the three
flavors of gauge flux (mx, my, g) and (a(4), a(5), a(6)) cor-
responding to the three independent flavors of e particles
(e, px, py). Then, from the mutual statistics shown in Table I,
we can solve for the matrix elements of K−1, and upon taking
its inverse yields

K =
(

03 C
C� 03

)
, C =

⎛
⎝0 0 −N

0 N 0
N 0 0

⎞
⎠, (54)

where 03 is a 3 × 3 matrix of all zeros. Note that this correctly
is an integer matrix.7 Furthermore, from the form of the K ma-
trix, this mutual Chern-Simons theory is equivalent to adding
three mutual Chern-Simon terms describing ZN topological
order. This agrees with the conclusion made in Sec. II B 1 and

7Here the matrix elements of K are integers. When this is not the
case, we note that the K matrix can still be determined from the
excitations’ self-statistics and mutual statistics, but auxiliary gauge
fields must be included into the theory (see Appendix C of Ref. [70]).

Refs. [50,51] that the rank-2 toric code has Z3
N topological

order.
However, the K matrix alone does not fully characterize

the topological order, the symmetry transformations, and how
they act on the gauge fields is also important. Indeed, for
example, when translations act on the gauge fields such that
they all satisfy periodic boundary conditions, the ground-state
degeneracy (GSD) on a torus is given by | det K| [68,71].
From the above K matrix, this would give that the GSD is
always N6. However, in Sec. II C 2, we found that this is
only true when both Lx and Ly are multiples of N . When
this is the case, the transformations acting on an anyon
lattice vector induced by lattice translations, Eq. (45), sat-
isfy (T (A)

x )Lx = 1 and (T (A)
y )Ly = 1. Therefore, only when

gcd(Lx, N ) = gcd(Ly, N ) = N do the gauge fields all indeed
satisfy periodic boundary conditions.

When this is not the case, this means that translations act
on the gauge fields nontrivially, causing them to satisfy mod-
ified boundary conditions and therefore the GSD is no longer
| det K|. Indeed, for instance, when Lx is not a multiple of N ,
(T (A)

x )Lx is no longer the identity and translations around the
system induce an automorphism on the anyon lattice. Similar
is true for translations around the system in the y direction.
This then causes the gauge fields to satisfy twisted periodic
boundary conditions [26], of the general form

cx
i a(i)(x + Lx, y) + cy

i a(i)(x, y + Ly) + cia
(i)(x, y) = 0, (55)

where the sum over i is implied and cx
i , cy

i , and ci are integers.
To find these twisted boundary conditions, we need to

know how translations act on the gauge fields. However,
lattice transformations act on the anyon lattice vectors nonlin-
early, which makes such a task nontrivial. Typically, for linear
transformations, one finds how the gauge fields transform
by considering a generic anyon lattice vector transforming
under some linear transformation 		 → U 		. Assuming that U
corresponds to a symmetry of the theory, the gauge fields
then transform as 	a → (U −1)�	a, where (	a)i = a(i). This is
because in the field theory, a generic excitation is described
by the term (		 · 	aμ) jμ in the effective Lagrangian density,
and 	a transforms in such a way so 		 · 	aμ remains unchanged.
Additionally, using this transformation of 	a, in order for the
mutual Chern-Simons term to remain unchanged by the trans-
formation, we find the familiar result that the K matrix must
transform as K → UKU �. Because the anyon lattice trans-
forms nonlinearly, these familiar results using linear algebra
no longer apply.8

While we cannot find how the lattice transformations act
on the gauge fields of the Chern-Simons theory, we can still
find an effective action using the mutual Chern-Simons the-
ory with K matrix (54). In what follows, we will do so by
considering the holonomies of the torus in terms of these
gauge fields, from which we find the zero modes of the gauge
fields. Then, plugging in the gauge fields in terms of their

8It would be interesting if there exists a non-Abelian Chern-Simons
theory describing the same topological order but for which lattice
transformations act on the gauge fields linearly.
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zero modes into the mutual Chern-Simons theory yields an
effective low-energy action.

B. Holonomies of the torus

The topological (global) contributions of the gauge fields
are their zero modes, which are the holonomies of the torus.
On a torus, for each gauge field there are two holonomies,
so for the U6(1) mutual Chern-Simons theory written in the
previous section there are a total of 12 holonomies. These 12
holonomies act as a basis from which all other holonomies can
be generated. We can find them by first considering gauge-
invariant line integrals along the nontrivial cycles of the torus.
Because the gauge fields satisfy complicated twisted periodic
boundary conditions [Eq. (55)], we will see that in order to be
gauge invariant some of these line integrals will be integrating
around the torus multiple times.

Physically, the holonomies are Wilson loops, correspond-
ing to exciting particles and antiparticles and hopping the
particles around the system until they return to where they
started and can annihilate with the antiparticles back into the
ground state. On the lattice, when excitations hop by N lattice
sites at a time they need to go around the system multiple
times to return to the lattice site they started. In the field
theory, having a particle return back to where it started is
trivial since we are in the continuum limit. However, whether
or not it can annihilate back into vacuum is subtle because of
the twisted boundary conditions. One way to approach this is
by considering how (T (A)

x )nxLx and (T (A)
y )nxLy act on the anyon

lattice vectors for integers nx and ny. While we do not know
how T (A)

x and T (A)
y transform the gauge fields, we can instead

find the smallest nx and ny such that (T (A)
x )nxLx and (T (A)

y )nxLy

are the identity. If they act as the identity on anyon lattice
vectors, this is the one case we do know how they act on the
gauge fields: also as the identity. This amounts to ignoring the
details of the twisted boundary conditions and instead finding
out how many times the holonomy needs to go around the
system in order to close (for the particles to annihilate back
into vacuum).

Indeed, let us first consider the gauge charge sector. Recall
that in Sec. II B 2, the nontrivial excitations p(x) and p(y),
whose gauge charge corresponds to the gauge fields a(5) and
a(6), respectively, can hop by one lattice site in every direction.
In terms of the anyon lattice vectors, this means that the vector
whose components are 	i

px
= δi,5 (for the px excitation) or

	i
py

= δi,6 (for the py excitation) are unchanged under lattice
translations (45). Therefore, lattice transformations do not
change the gauge charge carried by p(x) and p(y) and conse-
quentially act on the gauge fields a(5) and a(6) as the identity.
Thus, these gauge fields satisfy the typical periodic boundary
conditions

a(5)(x + Lx, y, t ) = a(5)(x, y + Ly, t ) = a(5)(x, y, t ),

a(6)(x + Lx, y, t ) = a(6)(x, y + Ly, t ) = a(6)(x, y, t ).

Their four holonomies therefore need to go around the system
only once to close and are given by

7(y, t ) =
∮ Lx

0
dx a(5)

x (x, t, y),

8(x, t ) =
∮ Ly

0
dy a(5)

y (x, t, y),

9(y, t ) =
∮ Lx

0
dx a(6)

x (x, t, y),

10(x, t ) =
∮ Ly

0
dy a(6)

y (x, t, y).

The other two holonomies from the gauge charge sec-
tor can be found by considering a particle carrying e gauge
charge, which corresponds to the gauge field a(4). However,
now the corresponding anyon lattice vector 	i

e = δi4 trans-
forms nontrivially. Indeed, going around the system ne

x times
in the x direction or ne

y times in the y direction, this anyon
lattice vector transforms as(

T (A)
x

)ne
xLx : 		e → 		e + (ne

xLx mod N )		px ,(
T (A)

y

)ne
yLy : 		e → 		e + (ne

yLy mod N )		py .

Therefore, in order for the holonomy in terms of the corre-
sponding gauge fields to close, the number of times it winds
around the system must satisfy ne

i Li mod N = 0. For exam-
ple, for the x direction, this implies that

ne
xLx − kN = 0

for any integer k. The smallest value k can take such
that ne

x is an integer is k = Lx/ gcd(Lx, N ) and there-
fore ne

x = N/ gcd(Lx, N ). Using that the least-common
multiple (lcm) between two integers a and b satisfies
lcm(a, b) = |ab|/ gcd(a, b), the gauge field a(4) satisfies the
boundary condition

a(4)(x + lcm(Lx, N ), y, t ) = a(4)(x, y, t ).

Similarly, in y direction a(4) must also satisfy the boundary
condition

a(4)(x, y + lcm(Ly, N ), t ) = a(4)(x, y, t ).

Therefore, the two holonomies involving a(4) are

11(y, t ) =
∮ lcm(Lx,N )

0
dx a(4)

x (x, y, t ),

12(x, t ) =
∮ lcm(Ly,N )

0
dy a(4)

y (x, y, t ).

The other six holonomies come from the gauge flux sector.
Similar to the p(x) and p(y) excitations in the gauge charge
sector, the lattice vector for the g excitation does not change
under lattice translations. Therefore, the corresponding gauge
field a(3) satisfies normal periodic boundary conditions

a(3)(x + Lx, y, t ) = a(3)(x, y + Ly, t ) = a(3)(x, y, t ),

from which we introduce the two holonomies

1(y, t ) =
∮ Lx

0
dx a(3)

x (x, t, y),

2(x, t ) =
∮ Ly

0
dy a(3)

y (x, t, y).

Similarly, acting the lattice translations on the anyon lattice
vectors of mx and my in their longitudinal directions leaves

045145-16



POSITION-DEPENDENT EXCITATIONS AND UV/IR … PHYSICAL REVIEW B 106, 045145 (2022)

them unchanged. And so, their corresponding gauge fields
satisfy periodic boundary conditions in the x and y directions,
respectively:

a(1)(x + Lx, y, t ) = a(1)(x, y, t ),

a(2)(x, y + Ly, t ) = a(2)(x, y, t ).

Their corresponding holonomies are

3(x, t ) =
∮ Ly

0
dy a(2)

y (x, t, y),

4(y, t ) =
∮ Lx

0
dx a(1)

x (x, t, y).

The last two holonomies come from m(x) and m(y) going
around the system in their transverse directions. Consider
going around the system nm

x or nm
y times in both transverse

directions:(
T (A)

y

)nm
y Ly : 		m(x) → 		m(x) + (nm

y Ly mod N )		g,(
T (A)

x

)nm
x Lx : 		m(y) → 		m(y) + (−nm

x Lx mod N )		g.

Notice that both transformations add 		g. Therefore, the most
general holonomy will include hopping both m(x) in the y
direction and m(y) in the x direction. Indeed, letting

		′
m(x) = (

T (A)
y

)nm
y Ly 		m(x) ,

		′
m(y) = (

T (A)
x

)nm
x Lx 		m(y) ,

we have that

		′
m(x) + 		′

m(y) = 		m(x) + 		m(y) + (nm
y Ly − nm

x Lx mod N ))		g.

So, in order for this holonomy to close, we must have nm
y and

nm
x satisfy nm

y Ly − nm
x Lx mod N = 0, which implies that for

some integer k that

nm
y Ly − nm

x Lx − kN = 0. (56)

We are looking for two holonomies from which all other
holonomies involving m(x) and m(y) moving in their transverse
directions can be generated. They are defined by two different
“basis” values of nm

y and nm
x : (nm1

x , nm1
y ) and (nm2

x , nm2
y ). For

the first pair, (nm1
x , nm1

y ), we are free to have one of the com-
ponents be zero, for instance nm1

x = 0. Then, this reduces to
the one-dimensional version we have considered previously,
so (nm1

x , nm1
y ) = (0, N/ gcd(Ly, N )). This then gives the holon-

omy.

5(x, t ) =
∮ lcm(Ly,N )

0
dy a(1)

y (x, y, t ).

Because nm1
x = 0, nm2

x must be the smallest possible value to
ensure all holonomies can be generated. Rewriting Eq. (56) as

nm
x Lx − gcd(Ly, N )

(
nm

y

Ly

gcd(Ly, N )
− k

N

gcd(Ly, N )

)
= 0,

the term in parentheses is some integer in terms of the vari-
ables we are solving for, and so like before the smallest nm

x
that satisfies this is

nm2
x = gcd(Ly, N )

gcd (Lx, gcd(Ly, N ))
= gcd(Ly, N )

gcd(Lx, Ly, N )
.

Plugging this back into Eq. (56), nm2
y is given by

nm2
y = lcm (Lx, gcd(Ly, N )) + kN

Ly
, (57)

where k is any integer for which nm2
y is also an integer.

There does not appear to be a closed form for such a k
in terms of generic Lx, Ly, and N . Nevertheless, from the
theory of linear Diophantine equations, because gcd(Ly, N )
divides lcm (Lx, gcd(Ly, N )) there indeed exists a solution
[64]. Therefore, from here on out we will leave our expres-
sions in terms of the integer nm2

y . From the above discussion
we therefore have that the final holonomy is given by

6(x, y, t ) =
∮ lcm(Lx,gcd(Ly,N ))

0
dx a(2)

x (x, y, t )

+
∮ nm2

y Ly

0
dy a(1)

y (x, y, t ).

C. Effective action and ground-state degeneracy

Having written the mutual Chern-Simons theory and
the corresponding holonomies of the torus, we can now
find an effective theory describing the degenerate ground-
state manifold on the rank-2 toric code. The low-energy
local constraint defining the ground state |vac〉 of the
mutual Chern-Simons theory is given by the Gauss-
law constraint9 K0i ε jk∂ ja

(i)
k |vac〉 = 0, which implies that

ε0 jk∂ ja
(l )
k |vac〉 = 0. We note that upon quantizing the theory,

the operator ε0 jk∂ ja
(l )
k is the generator the familiar U(1) gauge

transformation a(i)
k → a(i)

k + ∂k f (i). Considering only states
within the low-energy subspace of the Hilbert space, the gauge
fields satisfy ∂xa(i)

y = ∂ya(i)
x at all points in space-time. This

causes constraints to arise on the gauge-invariant line integrals
i. For instance, consider 1(y, t ) and differentiate it with re-
spect to y. Pulling the partial derivative inside the integral and
using the Gauss-law constraint, we find that ∂y1(y, t ) = 0.
Using similar manipulations, it is easy to show that all i are
position independent and only depend on t . Then, under the
influence of this constraint, the 12 holonomies of the torus are
constrained to i(x, y, t ) = ϕi(t ).

Because this is true for any gauge-field configura-
tion, we can express the component gauge fields in
terms of these space-independent 12 holonomies. For the
holonomies integrating around space only once (i for i =
1, 2, 3, 4, 7, 8, 9, 10) this gives the familiar results [72]

a(3)
x (x, y, t ) = ϕ1(t )

Lx
, a(3)

y (x, y, t ) = ϕ2(t )

Ly
,

a(5)
x (x, y, t ) = ϕ7(t )

Lx
, a(5)

y (x, y, t ) = ϕ8(t )

Ly
,

a(6)
x (x, y, t ) = ϕ9(t )

Lx
, a(6)

y (x, y, t ) = ϕ10(t )

Ly
,

9By Gauss-law constraints, we mean the local constraints which
the 0 components of a act as Lagrange multipliers to enforce or,
equivalently, for the mutual Chern-Simons theory, the equations of
motion for a(i)

0 .
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a(2)
y (x, y, t ) = ϕ3(t )

Lx
, a(1)

x (x, y, t ) = ϕ4(t )

Ly
.

For the holonomies that can wind around the system multiple
times (i for i = 5, 6, 11, 12), we find that

a(4)
x (x, y, t ) = ϕ11(t )

lcm(Lx, N )
, a(4)

y (x, y, t ) = ϕ12(t )

lcm(Ly, N )
,

a(1)
y (x, y, t ) = ϕ5(t )

lcm(Ly, N )
,

a(2)
x (x, y, t ) = Nϕ6(t ) − nm2

y gcd(Ly, N )ϕ5(t )

N lcm (Lx, gcd(Ly, N ))
.

These expressions for the gauge fields in terms of the
holonomies are defined up to some pure gauge fluctuations,
which we do not include. The part we do show is inde-
pendent of space, giving the topological part of the gauge
fields and acting as their zero-momentum modes. Lastly, we
emphasize that because in a compact gauge theory the low-
energy observables are Wilson loop amplitudes Wi = eiϕi , the
holonomies ϕi are all 2π -periodic phases.

Plugging in these expressions to the mutual Chern-Simons
theory, we get an effective theory of ground state in terms of
the holonomies (zero modes of gauge fields) described by the
action

Seff = bi j

2π

∫
dt ϕi

dϕ j

dt
. (58)

Here, b is a 12 × 12 antisymmetric matrix given by

b =
(

06 B
−B� 06

)
, (59)

where 06 is a 6 × 6 matrix of zeros and the integer matrix B is

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 Ny

0 0 0 0 −Nx 0
−N 0 0 0 0 0

0 0 0 −N 0 0
0 −nm2

y Nxy Ny 0 0 0
0 NNxyN−1

y 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (60)

For conciseness in the matrix B we have denoted

Nx ≡ gcd(Lx, N ),

Ny ≡ gcd(Ly, N ),

Nxy ≡ gcd(Lx, Ly, N ).

Seff describes a particle moving on a 12-torus in a magnetic
field described by the two form bi j .

Using the effective theory, we can now see if it reproduces
the ground-state degeneracy found from the anyon lattice cal-
culation in Sec. II C 2. Because the Wilson loop amplitudes
are the only observables at low energy, the number of ground
states is given by size of the smallest faithful representa-
tion of the nontrivial commutation relations satisfied by Wi.
Quantizing the effective theory, from the canonical commu-
tation relation [bi jϕi/2π, ϕ j] = i (where i is summed over
but j is not), we find that the commutation relation between
holonomies is [ϕi, ϕ j] = 2π i(b−1)i j . From this, the algebra

satisfied by Wilson loop operators is therefore given by

WiWj = e−2π i(b−1 )i jWjWi.

The dimension of the smallest representation is given by the
Pfaffian of b [71], and therefore the ground-state degeneracy
is GSD = | pf(b)|. Computing the Pfaffian, we find that

GSD = N3 gcd(Lx, N ) gcd(Ly, N ) gcd(Lx, Ly, N ), (61)

exactly agreeing with the result (52) found from the anyon
lattice. Note that despite the variable nm2

y appearing in the
matrix B, it does not affect the GSD.

The action Seff of Eq. (58) describes the long-wavelength
properties of the SET order in the rank-2 toric code, yet the
number of ground states depends on details from the lattice
(the number of lattice sites Lx and Ly). This arises because the
effective action’s coupling constants are explicitly dependent
on these microscopic parameters, and thus we see the UV/IR
mixing directly. The structure of these coupling constants is
a consequence of the structure of the holonomies found in
Sec. III B. Therefore, from the point of view of field theory,
the UV/IR mixing is due to the twisted boundary conditions
satisfied by the gauge fields, which forced the holonomies to
integrate around the system a number of times dependent on
the microscopic parameters in order to be gauge invariant.
And, finally, similar to the understanding of UV/IR mixing
from the anyon lattice point of view, this was determined
by how lattice translations act on anyon lattice vectors, and
hence the gauge fields. Therefore, microscopically, the UV/IR
mixing emerges due to the interplay between the lattice’s
translation symmetries and the long-range entanglement pat-
tern in the many-body states of the rank-2 toric code.

IV. CONCLUSION

In this paper, we have built off the work initiated in
Refs. [50,51,57] and studied an exactly solvable point of a
Higgsed symmetric tensor gauge theory in (2 + 1)D known
as the ZN rank-2 toric code. This model has unconventional
symmetry-enriched topological (SET) order, meaning that
the enriched symmetries permute inequivalent anyon types
in addition to acting on them projectively. We found that
this enforces anyons of the same species to have a spatially
dependent flavor index based on the different gauge charge
and flux they carry. Using this, we investigated their mobil-
ity, position-dependent braiding statistics, and how the lattice
transformations are realized on the anyon lattice. This allowed
us to find the ground-state degeneracy on a torus for general
N , which revealed the presence of UV/IR mixing. Then, using
the basis charges and fluxes of the anyon lattice, we developed
a mutual Chern-Simons theory from which we found a low-
energy effective action describing the SET order of the rank-2
toric code. This low-energy theory on a torus reproduced the
ground-state degeneracy and explicitly showed the presence
of microscopic details in its coupling constants, and hence the
aforementioned UV/IR mixing.

There are many interesting followup questions. The first
few are in the context of the rank-2 toric code model. It is
a very rich model due to how the lattice symmetries cou-
ple to the topological order, and it would be interesting to
explore their interplay further. For instance, the symmetry
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fractionalization patterns [13] arising could be rich and ex-
citing to understand. Furthermore, upon condensing anyons,
since the anyons are position dependent, not only would
the topological order change [73], but some of the lattice
symmetries would also spontaneously break. Studying these
lattice-symmetry-breaking patterns from condensing topo-
logical excitations would be interesting too. Additionally,
because excitations have directions which they can only hop
by greater than one lattice site, it would also be interesting to
study the effect of extrinsic lattice defects, which would act as
non-Abelian excitations [28,74–78].

The second set of followup questions are in the context of
fracton topological order. The unconventional SET order in
the rank-2 toric code model is reminiscent of fracton topo-
logical order. Therefore, it would be interesting to see if
the ideas presented here could be applied to a model with
genuine fracton topological order. For example, could emer-
gent conservation laws arising from the fusion rules be used
to find the position-dependent gauge charge and flux in a
model with fracton topological order, as we did in Sec. II
B 1 for the rank-2 toric code? In doing so, we found that
despite there being N2 + 2N inequivalent elementary excita-
tions, there were fewer types of gauge charge and flux: only
six basis charges and fluxes. A model with fracton topological
order would start off with an extensive number of inequiva-
lent elementary excitations, but it is likely that by using the
emergent conservation laws, one would end up with a basis
including a subextensive number of charges and fluxes. From

this basis, assuming the results from conventional topological
order apply, it becomes quite obvious that the ground-state de-
generacy should scale subextensively with the system’s size.
Furthermore, it is an open question as to whether or not there
exists an effective quantum field theory that describes the low-
energy physics of fracton topological order [49,66,67,79–84].
From the position-dependent excitations point of view, there
would be a subextensive number of corresponding Chern-
Simons gauge fields, which is closely in line with the thinking
of the infinite Chern-Simons theory developed in Ref. [70].
Additionally, such a framework could open up the avenue
to consider fracton topological order in terms of S and T
matrix formalism [85], which could possibly be studied in
the thermodynamic limit in which they would be infinitely
dimensional matrices. However, how one could extract the
mutual statics data required remains an open question.
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