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In this work, we report results of the quasiparticle self-consistent GW method within the framework of the
linearized augmented plane-wave method. The impact of self-consistency on the electronic structure is investi-
gated with the examples of nine semiconductors and insulators, namely, Ar, Si, SiC, C, BN, LiF, MgO, CaO,
and GaAs. Possible reasons for discrepancies between different studies and implementations are discussed. For
LiF, MgO, and CaO, we assess the charge-density redistribution upon self-consistency. For a representative set
of materials, we investigate and confirm the absence of (any) starting-point dependence. The off-diagonal terms
in the self-energy matrix are found to considerably impact the electronic structure. For better reproducibility and
quality assessment, we describe the implementation of QSGW in the all-electron full-potential code EXCITING.
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I. INTRODUCTION

Tailoring materials for any application requires a thor-
ough understanding of their electronic structure. In the past
decades, density functional theory [1] (DFT) has been the
most popular numerical method to calculate properties of
many-electron systems in the ground state (GS). Indeed, for
a large number of materials, DFT provides accurate results
for properties derived from the ground-state energy. In prac-
tice, DFT is implemented in terms of the Kohn-Sham (KS)
scheme [2]. In this scheme, the electron-electron interaction is
approximated by a mean-field exchange-correlation potential
vxc. Since KS particles represent a fictitious, auxiliary system,
their eigenvalues do not reflect real one-electron energies but
a first approximation in terms of the independent-particle (IP)
picture. Nevertheless, even if falling short of describing ex-
cited states, the KS band structure gives a first insight in the
electronic structure of the system.

In order to access one-electron energies for addressing
excited states, one can use many-body perturbation theory
(MBPT), where electrons are described as quasiparticles
(QP). Quasielectrons are “dressed” with their interaction with
all other electrons. The QP acquires an energy, called self-
energy �(ω), that arises from the perturbation the QP causes
in the system. Within MBPT, we express this dynamical quan-
tity through the GW approximation (GWA) [3].

Central to the GWA, the Green’s function G provides the
propagation of the QP upon its removal from or addition
to the system in the GS [4]. Unfortunately, G is a com-
plicated object defined by the unknown eigenstates of the
interacting QP. In practice, G can be approximated to a single-
particle, noninteracting Greens’s function G0, usually built
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from DFT eigenfunctions. This operator, together with the
screened Coulomb interaction in the random phase approxi-
mation (RPA), W0, provides the lowest-order approximation
to the self-energy �. Treating the difference between � and
Vxc in first-order perturbation theory provides corrections to
the KS eigenvalues. This approach is known as one-shot GW
[5] or G0W0. Although often successful when calculating band
gaps, the G0W0 approximation builds upon KS results and
therefore depends on the energies and eigenstates provided by
the chosen vxc. This phenomenon is known as starting-point
dependence [6,7]. Possible solutions to this starting-point de-
pendence are self-consistent schemes [8–11]. Here we focus
on the quasiparticle self-consistent GW (QSGW) method
[12–14]. Within this framework, one arrives at the interacting
G through the iterative optimization of vxc. In other words, in
every step of the cycle, G0 is updated, finally converging to
the solution closest to G. We have implemented the QSGW
method into the all-electron full-potential code EXCITING that
makes use of linearized augmented plane-wave (LAPW) basis
functions to describe the one-electron states and a mixed-
product basis [15–17] to represent nonlocal operators in GW
and hybrid-functional calculations.

We start with a summary of the QSGW method. Our results
comprise electronic properties of nine semiconductors and in-
sulators, covering details of the band structures and examples
of charge densities. We then assess the starting-point depen-
dence and provide insight in the role of off-diagonal terms
of the self-energy. In the Implementations section, we briefly
describe the basis sets for GS and excited-states calculations
followed by specific aspects of the implementation of QSGW
in EXCITING. Since different approximations, algorithms, and
computational parameters introduced in different codes and
calculations may give rise to significant discrepancies, de-
tailed information is inevitable in view of reproducibility of
calculations. For this reason, we also point to the input and
output files of our calculations available in the NOMAD
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Repository [18]. The used computational parameters and their
impact on the results are provided in the Appendix.

II. METHODOLOGY

Following Fermi-liquid theory, there is a one-to-one corre-
spondence between a bare and dressed particle, i.e., QP. GW ,
being a realization of MBPT, regards interacting fermions
as dressed particles. In fully self-consistent GW (scGW), the
Green function G is updated by the self-consistent solution
of the Dyson equation, starting from an initial guess for the
self-energy.

QSGW is an alternative self-consistent method within the
realm of GWA, suggested by Kotani, Schilfgaarde, and Faleev
[12–14]. It considers conservation laws and provides a prac-
tical recipe to build the iterative procedure. It can be best
understood through the adiabatic connection of a bare particle
to a dressed one. The difference between these two is the
interaction potential, where their one-to-one correspondence
allows the independent-particle system to evolve into the fully
interacting one. Here, the Kohn-Sham particles [called in-
dependent particles (IP) in the following] serve as a zeroth
approximation to the bare particles, i.e., as the starting point
of QSGW.1

The Kohn-Sham particles interact through an effective po-
tential veff that comprises the lattice and Hartree potentials V
and vH , respectively, and the exchange-correlation potential
vxc. The initial, independent-particle Hamiltonian H0 is made
up by veff and the kinetic energy T . In general terms, the effec-
tive potential in H0 can include any static, local, or nonlocal
vxc. In QSGW, H is split into H0 and a residual part H0 − H .
This last contribution is small and thus considered as a per-
turbation, leaving the momentum of the bare QP unaffected.
This residual part is minimized by finding an optimal effective
potential v

opt
xc . In that way, the QSGW method searches for the

“best” possible candidate for G0, i.e., the one closest to the in-
teracting G. To carry out this optimization, v

opt
xc is determined

self-consistently [14]. Finally, the converged potential v
opt
xc

replaces the initial vxc in the independent-particle Hamiltonian
H0.

The potential v
opt
xc is calculated as

vopt
xc = 1

2

∑
nl

|ψn〉 { Re[�xc(εn)]nl

+ Re[�xc(εl )]nl } 〈ψl |, (1)

with n, l being band indices and [. . . ]nl indicating the corre-
sponding matrix elements. For simplicity, we have left out the
k dependence in this expression. Here only the real part of the
self-energy is considered.

Kotani and coworkers derived the optimal effective po-
tential through a norm-functional formalism. The potential
vxc

opt guarantees that the energy functional F [G] reaches its
lowest value upon variation [19–21]. The measure defining the
lowest value is the squared length of the functional derivative
||D(ω)||2. Taking the Klein functional as reference, Ismail-
Beigi has proven [21] that F is independent of variations of

1They are termed bare QPs in Ref. [14].

veff or, equivalently, of the starting point G0. On the other
hand, varying G with a fixed G0, implies a variation in F :

δF |G0 =
∫ ∞

−∞

dω

2π i
eiω0+

tr
{ − G−1

0 (ω)δG(ω)

+ G−1(ω)δG(ω) − (vH − vxc)δG(ω)
}

+ δEH [ρ] + δ	xc[G]. (2)

The variation of the Hartree energy EH with respect to to G
is equal to vHδG, canceled out by the third term in the trace,
and the variation of the Luttinger-Ward functional δ	xc[G]
can be written as �xcδG. Factorizing δG out, the trace reads
as [G−1 − G−1

0 + �xc − vxc]δG. To replace δG, we use the
Dyson equation with fixed G0 and parametrize G by a trial
self-energy �t :

G−1 = ωI − T − V − vH − �t = G−1
0 − [�t − vxc], (3)

δG = G δ �t G. (4)

Note that in order to arrive at Eq. (2), the relation δ tr{ln(A)} =
tr{A−1δA} has been used to rewrite the Klein functional, and
for the derivation of G above one makes use of the variation
of an inverse, i.e., δ[A−1] = −A−1[δA]A−1, and the cyclicity
of the trace tr{ABC} = tr{BCA} has been employed for the
matrix derivative in Eq. (5). The variation of the functional
with respect to the trial potential finally reads as (without
explicitly indicating the frequency dependence)

2π i
δF

δ�t
= G

[
G−1 − G−1

0 + �xc − vxc
]
G. (5)

To facilitate the search, it is reasonable to delimit the search
space for all possible G to all possible G0 of the system
because G0 is already connected to a physically grounded
Hamiltonian. Doing so, i.e., replacing G0 in Eq. (5), the ex-
pression becomes

2π i
δF

δ�t
= G0[�xc − vxc]G0. (6)

||D0||2 is the square of the length of the matrix in Eq. (6)
in the basis of |n〉, in which G0 is diagonal in the Lehman
representation:

||D0(ω)||2 =
∫ ∞

−∞

∑
nl

|〈n|�xc(ω) − vxc|l〉|2
[(ω − εn) + η2][(ω − εl ) + η2]

, (7)

where η is a small positive quantity representing the decay rate
of the state with energy εn [19]. When minimizing the integral
in Eq. (7), one needs to distinguish between diagonal and
off-diagonal terms. The former show a leading contribution,
scaling as η−3, which turns to zero if 〈n|Re[�xc(εn)]|n〉 =
〈n|vxc|n〉. In the off-diagonal terms, the largest contribution,
scaling as η−1, comes from the poles εn + iη and εl + iη.
Finally, Eq. (1) follows from the minimization of the latter,
as explained in detail in Ref. [20].

Solving the secular equation for H0 with the newly derived
optimized potential returns new energies and eigenvectors.
One then solves Hedin’s equations and updates again v

opt
xc ,
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TABLE I. Energy gaps E� (eV) at � and between � (VBM) and X (in most cases CBM) as obtained for the production settings (see
Table VI). Corrections for fully converged results of selected materials are provided in Appendix C, Table VIII. For Si and C, the fundamental
band gap Eg is indirect with the CBM not at a high-symmetry point. In the last row, the experimental values are corrected for zero-point
renormalization and spin-orbit coupling (SOC), unless noted by a subscript e. If more than one reference is provided, the first one refers to the
experimental gap, while the other one to the correction(s). In case of GaAS, the third one points to the SOC.

E�/eV SiC Si BN MgO CaO LiF Ar C GaAs

QSGW �-� 8.35 3.64 12.61 9.97 8.68 17.09 15.34 8.41 2.24
�-X 3.00 1.59 7.62 14.25 8.06 23.48 18.12 7.01 2.32
Eg 3.00 1.39 7.62 9.97 8.06 17.09 15.34 6.23 2.24

G0W0 �-� 7.47 3.18 11.18 7.46 6.54 13.86 12.99 7.33 1.28
�-X 2.35 1.17 6.30 11.79 6.01 20.07 15.84 5.95 1.83

LDA �-� 6.42 2.52 8.68 4.62 4.56 8.94 8.18 5.54 0.27
�-X 1.29 0.60 4.35 8.91 3.48 14.55 10.85 4.41 1.34

Expt. Eg 2.50 1.23 6.66 7.98 7.1e 14.48 14.20e 5.89 1.69
Refs. [34,35] [35,36] [37,38] [38,39] [39] [38,40] [31] [34,35] [14,36,41]

repeating this cycle until self-consistency. This way, the
single-electron state ψnk has become the quasiparticle wave
function ψ

QP
nk with associated eigenvalue ε

QP
nk .

We note in passing that QSGW inherits the main approx-
imation of GWA, namely, neglecting vertex corrections. This
impacts the final results due to the omitted electron-hole inter-
actions, e.g., leading to underestimated dielectric screening,
that is reflected in overestimated band gaps [22]. To address
this issue, possible corrections to QSGW have been suggested
in literature [23,24]. Aside from this approximation, the opti-
mized potential is static, i.e., the full energy dependence of the
self-energy is dropped. Also, Hermiticity is forced by neglect-
ing the imaginary part of the self-energy in its evaluation. The
latter, nevertheless, can be computed, providing the inverse of
the QP’s lifetime.

III. RESULTS

The selected cubic bulk semiconductors and insulators
are listed in Table VI in Appendix B. In general, the re-
spective IP calculations are performed with the local-density
approximation (LDA), unless when probing the starting-point
dependence. Like in previous works [25,26] for interpolating
the electronic structure from G0W0 and QSGW results onto a
denser q grid, we use maximally localized Wannier functions
[27–29]. This scheme has been implemented in EXCITING

recently [30]. Computational parameters and details can be
found in the Appendices.

A. Quasiparticle electronic structure

For any of the here investigated material, the valence band
region obtained by LDA, G0W0, and QSGW exhibits the same
overall features, albeit shifted energies. With no exception, the
valence band maximum (VBM) in QSGW is shifted down-
wards in energy with respect to G0W0 and LDA, while the
opposite is true for the conduction band minimum (CBM).
Assessing the impact of self-consistency along the X -� di-
rection, i.e., the region of the direct and indirect band gaps
(Table I), we neither see a rigid shift relative to G0W0 nor
to LDA. In other words, aside from changed band gaps, the
bands exhibit slightly different dispersion and, hence, band

masses. Only for MgO (see Fig. 1) the changes relative to
LDA are the same, for both QSGW and G0W0 results. Overall,
we observe, that the G0W0 values in Table I are in many in-
stances closer to the experimental values than those calculated
with QSGW.

Overestimation of fundamental band gaps by the QSGW
method is known from the literature [14,31,32]. Overall, we
confirm this. As an example, looking at absolute energies,
the values obtained from our calculations for SiC and GaAs
deviate by ≈ 0.5 eV with respect to experiment, correspond-
ing to +19% and +33%, respectively. Another option is to
correlate this finding with the impact when starting from a
semilocal functional. For instance, we find the largest increase
in the band gaps of Ar, changing from 8.18 to 15.34 (7.16-
eV increase) compared to LDA and LiF (8.16-eV increase,
from 8.94 to 17.10). The distinct amounts of discrepancies
of 1.13 and 2.62 eV relative to the experimental counter-
parts, respectively, suggest that there is no direct correlation.
However, we cannot draw a final conclusion without consid-
ering the starting-point dependence of G0W0 results which is
thoroughly discussed in the literature [13,32,33]. Moreover,
there are also other sources for discrepancies to be taken into
account, which are discussed at the end of this section.

The differences in band energies between QSGW and the
other methods also show up at low-energy states. As an

FIG. 1. Band structure of MgO calculated with QSGW (dark
green), G0W0 (light green), and LDA (gray).
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FIG. 2. Same as Fig. 1 for GaAs. The inset, framed in blue,
shows the region around the fundamental (direct) band gap Eg.

example, the position of the 3d orbitals in GaAs shows sub-
stantial improvement upon self-consistency with respect to
experiment. Taking the VBM (�1v symmetry) as reference,
the Ga 3d orbitals from QSGW are found 19.39–19.47 eV
below it, in good agreement with an experimental value of
18.8 eV [42]. In contrast, the LDA position 14.94 eV below
its VBM is ≈4 eV off. G0W0 lowers the LDA energy value
to 16.43 eV. The latter is a substantial but still insufficient
improvement over LDA, and QSGW is obviously superior.

In some QSGW calculations, the changes in effective elec-
tron and hole masses with respect to LDA are very significant.
For instance, in GaAs, shown in Fig. 2, QSGW not only
shifts the band energies, but also changes slope and curvature,
as observed in similar calculations for GaN [43] and GaAs
[44]. In GaAs, the QSGW bands in the gap region (upper-
right corner in Fig. 2) exhibit smaller curvature than those
in Ref. [45]. However, in that work, the QSGW implemen-
tation is different in that the optimized potential v

opt
xc is mixed

with the LDA potential, arguably leading to a mismatch with
our results. The same discrepancy is obvious for the CBM
reported in Ref. [44] where the authors indeed found that
replacing a percentage of v

opt
xc with the LDA potential reduces

the effective mass. The amount was chosen such to reproduce
the experimental band gap at 0 K. Without the mixing of
potentials, a direct band gap, including spin-orbit coupling,
≈0.4 eV smaller than our result was obtained. Considering
the SO correction to be ≈ 0.11 eV [14], there is a significant
discrepancy remaining.

Finally, we get back to the possible reasons behind the
overestimation of band gaps, indicating the intricate many-
body effects in the different materials. Here we focus on
three issues: (i) contributions from zero-point renormalization
(ZPR), (ii) spin-orbit coupling (SOC) effects, and (iii) lack of
vertex corrections.

(i) The impact of electron-phonon coupling varies even
among tetrahedral sp semiconductors [41]. For instance,
it plays an important role in diamond (ZPR correction of
0.41 eV for the fundamental band gap) while in Si, this cor-
rection only amounts to 0.06 eV, and for other materials it
may be even neglected [35]. In all our calculations, atomic
vibrations are not included, thus, the experimental data shown
in Table I have been corrected such to exclude correspond-
ing contributions as well. Importantly, the values reported in

literature differ significantly and depend considerably on the
method used, thus, their choice appears somewhat arbitrary.
For Si and SiC, these corrections stem from LDA calculations
[35]. For diamond, the calculated correction in Ref. [35] is
0.33 eV, while extrapolation of temperature-dependent exper-
imental data returns 0.41 eV [46]. Note also that Antonius and
coworkers [47] included many-body effects in the calculation
of ZPR for diamond, leading to a correction of 0.628 eV.
Considering the latter value, the remaining discrepancy of our
results compared to experiment is 2% only.

In addition, in polar compounds, the longitudinal and
transversal optical phonons cause a polarization, leading to a
lattice contribution to the screening of the QP [48]. Including
this contribution to the screened Coulomb interaction on top
of QSGW results [49], a significant narrowing of the funda-
mental band gaps by 2.12 and 1.23 eV was found for LiF and
MgO, respectively.

(ii) The inclusion of SOC in QSGW calculations appears
in the literature in either a perturbative [44,50] or an itera-
tive [26] correction to the optimized Hamiltonian. In the first
scheme, the SOC term enters the converged QSGW Hamilto-
nian, to return corrected eigenvalues. Following this approach,
all-electron linear muffin-tin orbital (LMTO) calculations [44]
showed for GaAs a band splitting of 0.366 eV for the first
conduction band at �, in contrast to Ref. [12] obtaining a
value of 0.1 eV. Thus, like in the case of ZPR, the uncertainty
from such corrections is significant. Since aside from GaAs,
the SOC does not considerably alter results of our materials
set, its omission is not considered a major source of error in
our results.

(iii) Adopting the polarizability from the RPA corresponds
to setting the vertex to one, i.e., neglecting higher-order
interactions. Lack of electron-hole interaction leads to un-
derestimated dielectric screening, which is reflected in the
overestimation of band gaps [22]. To make up for this
shortcoming, Chen and coworkers [23] included an exchange-
correlation kernel in the polarizability, finding reduced
QSGW band gaps in a vast number of semiconductors. These
findings are backed by similar calculations with a different
exchange-correlation kernel [24].

B. Electronic density

It is important to recall that the eigenvalue-only correc-
tion G0W0 was motivated by the argument that KS provides
wave functions close enough to the QP wave functions [5].
However, for some cases, it was shown that they can differ
considerably [32]. To investigate the impact of QP self-
consistency on wave functions and chemical bonds, we study
the electron density distribution ρ. More specifically, we an-
alyze the charge-density difference �ρ between results from
LDA and QSGW:

�ρ(r) = ρLDA(r) − ρQP(r). (8)

�ρ is evaluated on a dense grid, consisting of 400 points in
each spatial direction, which allows for a careful assessment
of charge reallocation resulting from self-consistency. We
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FIG. 3. Charge-density differences between QSGW and LDA
results [Eq. (8)] for LiF (top) and MgO (bottom panels). On the left,
the isovalue for both is ±2 × 10−2 e/bohrs3; on the right, isovalues
are ±7 × 10−3 e/bohrs3 for LiF and ±2 × 10−3 e/bohrs3 for MgO.
Positive values are red, negative ones blue. Fluorine atoms are dis-
played in light blue, lithium in green, magnesium in yellow, oxygen
in red (masked by isosurfaces).

chose different isovalues, corresponding to a specific value
of �ρ in space, in order to evaluate the degree of overlap
between initial and final wave functions.

As first examples, we take two highly ionic compounds:
LiF and MgO. In the top panels of Fig. 3, the charge-density
differences for both materials at an isovalue of �ρ = ±0.02
electron per cubic bohr are depicted. We infer that QSGW
significantly redistributes density towards the nuclei. In the
case of LiF (top), this effect comes at the expense of some den-
sity from the interatomic space. In contrast to MgO, at even
higher isovalues, reallocation of electronic density is evident.
In this regime (not shown), self-consistency makes F holding
less charge in its surrounding, with density differences of
the order of 1 electron per cubic bohr. In fact, Kaplan and
coworkers [51] have shown that for LiF molecules, QSGW
gives a dipole moment in good agreement with experiment,
while DFT (using PBE) underestimates it. Exhibiting a clearly
visible isosurface at ±2 e/bohrs3, the area surrounding the
anion is most affected by self-consistency, demonstrating that

LDA overlaps poorly with 
QP. This finding reflects our
observation that the bottom of the valence band at the � point
(here Li 1s) is lowered by 13 eV compared to its initial LDA
value.

Density differences in the interstitial region are only
present at very low scale. For both materials, we see in Fig. 3
a modest change in density upon self-consistency. At this
small isovalue (±2–7 e/bohrs3), the charge rearrangement is
much less evident in LiF than in MgO. We conclude that the
initial and final wave functions of MgO show considerable
differences only at very low scales, in other words, overall
they overlap to a large extent.

In general, �ρ is much higher valued, by two orders of
magnitude, around the nuclei than in the space between them.
This highlights the correction of the well-known delocaliza-
tion error of (semi)local KS functionals [52,53] by QSGW.
The only exception is the immediate neighborhood around
the metal atom (Mg) which is less charged in QSGW than
in LDA, as visible in the bottom panels of Fig. 3. Importantly,
there is a large charge accumulation around the cations, while
the region around oxygen is always slightly depleted. These
last aspects are also present in our next example.

FIG. 4. Charge-density differences between QSGW and LDA
results in CaO at isovalues of ±2 × 10−2 e/bohrs3 (top), ±1 × 10−2

e/bohrs3 (middle), and ±2 × 10−3 e/bohrs3 (bottom), respectively.
Orange spheres represent calcium, oxygen (red) sits at the center of
the unit cell.

Although there are plenty of DFT calculations on calcium
oxide (see Ref. [54] and references therein), this material has
been less studied with MBPT methods [55]. Experimentally,
x-ray spectra show that the charge density at a distance of 0.18
bohrs from the nucleus is roughly four times higher around
calcium than around oxygen [56]. In LDA, the delocaliza-
tion error hampers an accurate description of the proportion
of electronic charge around the ions and is reflected in the
O(2s) and O(2p) bandwidths, being by ≈ 0.5 eV larger than
obtained by electron momentum spectroscopy measurements
(EMS) [57]. Thus, one may wonder whether QSGW provides
a solution to these shortcomings. Looking at the charge-
density rearrangement at low isovalues (middle and bottom
panels of Fig. 4), we observe that QSGW changes the de-
gree of ionicity, i.e., the redistribution of charge density only
occurs in the vicinity of the ions while the interstitial is not
affected. At higher isovalues (±2 ×10−2 e/bohrs3, top panel),
there is only very small charge depletion around both nuclei.
Like in MgO, this indicates that the LDA wave functions are
close to its QSGW counterpart. Overall, the above-mentioned
discrepancy with experiment [56] is only partially solved,
and more experimental work would help settling the issue.
CaO and MgO (Fig. 3) differ in the sense that overall (see
high isovalues), in contrast to Ca, Mg gains charge, but they
are very similar at low isovalues. Reallocation of electronic
density is more pronounced in LiF than in the two oxides, CaO
and MgO, where only the immediate vicinity of the nuclei is
affected. For all three materials, QSGW results show more
charge density within the MT compared to LDA (differences
between 0.5 and 0.7 e/bohrs3), and a significant part of the
gain is found at the anion.

For comparison, we show in Fig. 5 the difference in elec-
tronic density distribution between PBE0 and QSGW results
for LiF and MgO. While MgO follows the same trend as
above, i.e., QSGW giving a considerably different density
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FIG. 5. Charge-density differences between QSGW and PBE0
results for LiF (top) and MgO (bottom panels). On the left, the
isovalue is ±2 × 10−2 e/bohrs3 for both materials; on the right,
isovalues of ±7 × 10−3 e/bohrs3 for LiF and ±2 × 10−3 e/bohrs3

for MgO are chosen. Positive values are red, negative ones blue. F
atoms are displayed in light blue, Li in green, Mg in yellow, O in red.

than PBE0, the situation is opposite in LiF. Here, the QSGW
and PBE0 wave functions overlap to a large extent, and differ-
ences are only visible at small isovalues.

C. Starting-point (in)dependence

Clearly, the perturbative character makes the G0W0 method
dependent on the underlying exchange-correlation functional.
Self-consistency is supposed to cure this intrinsic flaw, as
indeed found in the vast majority of works employing QSGW
for different materials, as discussed in more detail below.
An exception to this trend was reported by Liao and Carter
[58] who found a considerable starting-point dependence of

FIG. 6. Band structure of argon calculated with QSGW@LDA
(green line), QSGW@PBE0 (orange diamonds), and QSGW@HF
(blue circles).

QSGW for hematite Fe2O3. To explore this issue, we in-
vestigate Ar, SiC, and C, materials that are characterized by
very different band gaps. Three distinct initial choices of the
exchange-correlation potential are employed, i.e., the LDA,
the hybrid functional PBE0, and the Hartree-Fock approxima-
tion (HFA). As strikingly evident from Fig. 6 for the example
of argon, the QP eigenvalues are practically the same in all
three final band structures. The same holds for the indirect
band gap along �-X and the direct gap at � in diamond
and silicon carbide, where the different starting points lead
to almost negligible differences (see Table II). One would
expect that the closer the underlying result is to the final value,
the faster should be the convergence behavior. Indeed, the
calculation for the insulator argon profits from the HFA as
the starting point, where only three iterations are required.
Here, the initial (direct) band gap E0

� is 14.96 eV, very close to
the converged value of 15.33 eV. Yet, the same is not true for
the band gap of diamond, where PBE0 as starting point takes
more iterations to converge than the LDA case, despite the
fact that the initial PBE0 value is 1 eV closer to the final value.
Most counterintuitive is the case of SiC, where the fastest con-
vergence is found for QSGW@LDA, starting from 1.25 eV,
compared to QSGW@PBE0 starting from 2.77 eV. In fact,
QSGW@HF starts from the huge value of 5.16 eV but still
converges faster than QSGW@PBE0. Our findings are in con-
trast to all-electron calculations for small molecules by Koval
and coworkers [61], where QSGW@LDA and QSGW@HF
took the same number of iterations to converge.

From our findings summarized in Table II, we conclude
that in the considered cases, self-consistency cures the depen-
dence on the initial G0, despite the considerable differences in
initial eigenvalues, concerning both the DFT starting point as
well as G0W0 results. In line with our results, the starting-point
independence has also been shown for other types of func-
tionals. As an example, results for oxides on top of GGA + U
revealed only a weak dependence on the amount of the Hub-
bard parameter U [62]. Another QSGW study for complex
oxides [63] based on the Heyd-Scuseria-Ernzhof (HSE) func-
tional with different amounts of exact exchange shows that
all starting points return the same fundamental band gap.
Also for molecules, the converged results on top of PBE0-like
hybrid functionals remained unchanged for different propor-
tions of exact exchange as found by Kaplan and coworkers
[51]. Our observations for HFA and PBE0 complement these
studies, conforming that QSGW results do not depend on the
initial parametrization of the exchange-correlation potential.
However, choosing the right starting point may save some

TABLE II. E� (in eV) at high-symmetry points for C, SiC, and Ar together with the number of iterations until convergence. For comparison,
the two last columns show the results of G0W0 calculations with EXCITING on top of LDA and PBE0, taken from Refs. [59,60].

QSGW@LDA QSGW@PBE0 QSGW@HF G0W0@LDA G0W0@PBE0
E� Iterations E 0

� E� Iterations E 0
� E� Iterations E 0

� E� E�

C � − X 7.01 6 4.40 7.00 7 5.40 6.99 10 8.94 5.95 6.26
C � − � 8.41 5.53 8.44 6.71 8.41 10.66 7.43 8.10
SiC � − X 3.00 5 1.25 3.03 8 2.77 3.03 6 5.16 2.43 3.13
SiC � − � 8.35 6.40 8.38 8.05 8.40 11.87 7.51 8.47
Ar � − � 15.34 5 8.18 15.34 4 9.97 15.33 3 14.96 13.28 14.35
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FIG. 7. QSGW band structure of BN using the full (solid line)
and the diagonal self-energy matrix (dashed line). For comparison,
the G0W0 results (light green) are included.

iterations in this computationally very involved scheme, like
seen in the case of argon.

D. Effect of off-diagonal matrix elements

In this section, we look into the impact of off-diagonal
matrix elements, referred to as nl terms. Their role has
been discussed in literature, albeit not extensively. In contrast
to G0W0, this feature couples different bands in the self-
energy, as evident from Eq. (1). To investigate its influence
on the electronic structure, we perform QSGW calculations
for Ar, SiC, C, MgO, and BN with (i) diagonal elements only
(n = l) and (ii) the full self-energy matrix (standard QSGW,
n �= l).

Based on these results, we conclude that the degree at
which nl terms affect the band structure is strongly material
dependent. For example, for simple sp semiconductors, such
as SiC, the effect is less dramatic than in more correlated
systems [64]. More specific, the fundamental band gap of SiC
is 3.87 eV in the diagonal case, compared to 3.00 eV when
including off-diagonal contributions. In diamond, the effect
is even less pronounced but dependent on the segment of the
Brillouin zone. In contrast, in all other materials investigated
here, the band gap is slightly widened. The indirect band gap
including nl terms is 7.01 eV, only 0.14 eV larger than in
the diagonal case (6.87 eV). Contrary to our overall findings,
Shishkin and coworkers [31] reported increased band gaps
upon inclusion of nl terms. The impact of off-diagonal terms
depending on the degree of correlation had also been observed
for a perturbative correction to LDA eigenvalues [33].

Analyzing our results for BN and MgO, shown in Figs. 7
and 8, it is clear that removal of the nl terms opens the gaps.
Like in SiC (not shown), in BN the overall shape of the bands
is not significantly changed by the off-diagonal terms, but
they matter when it comes to details. Omitting them shifts the
conduction band upwards and the valence band downwards,
thus widening both the indirect and the direct band gaps by
1.3 and 1.6 eV, respectively. In this material, we also notice
that a number of band crossings in the conduction band are
present or absent in one case with respect to the other.

According to our results, the nl terms also play an impor-
tant role in the band curvature, i.e., effective masses. The first

FIG. 8. Same as Fig. 7 for MgO.

conduction band in BN exemplifies this effect, also showing
a dependence on the direction in k space, observed in other
calculations as well [65]. Looking at the CBM (inset in Fig. 7),
in the full-matrix case the slope along the X -W direction
is steeper than in the diagonal-matrix counterpart, while it
exhibits less variation in other directions. This indicates an
enhanced anisotropy of the charge-carrier mobility. Likewise,
the slope at the VBM flattens noticeably when excluding nl
terms, i.e., making the effective hole mass heavier and thus
charge carriers less mobile. This feature is also present at the
VBM of MgO (see inset of Fig. 8).

While we observe a striking effect of nl terms in our
results, the extent of their impact has been debated in lit-
erature [31,51]. Analytical considerations [19] indicate that
the contributions from nl terms are very small compared to
the diagonal elements showing scaling behaviors of η−3 and
η−1, respectively [see Eq. (7), Sec. IV B]. In our results, these
terms are indeed much smaller than the diagonal elements.
But, however small the off-diagonal values are compared to
the diagonal elements, we still observe a clear impact on the
whole band structure.

To exemplify the ratio between diagonal and off-diagonal
matrix elements, we first focus on the VBM in BN and
diamond, consisting of three degenerate states in both
cases. For highlighting their respective impact, we only
compute the contributions from mixing these states, i.e., us-
ing the matrix elements 〈n|�xc(εn) − vxc|l〉, with εl = εn.
While the diagonal components �nn(εn) for both materials are
of the order 10−1 Ha, these degenerate nl terms are two orders
of magnitude smaller, inline with Ref. [19]. Second, we con-
sider the matrix elements between the degenerate VBM and
the nondegenerate CBM. Here, BN and diamond show consid-
erable differences. While in BN, the corresponding nl terms
have magnitudes up to 10−2 Ha, the maximum value in dia-
mond is of the order of 10−4 Ha only. This indicates that this
issue is more complex, depending on material and specific
states.

In some cases, unphysical features may arise when ne-
glecting the nl-terms. Among these materials, argon shows
the most pronounced effect by adopting an indirect band gap,
when starting from LDA, exhibiting a direct band gap and the
VBM located at the � point, as shown in Fig. 9. Including
nl terms moves the VBM back to this high-symmetry point,
and thus gives a direct QSGW band gap, like observed in ex-
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FIG. 9. Same as Fig. 7 for Ar.

periments. In fact, Bruneval and coworkers [32] compared the
LDA and QSGW wave functions of argon, showing that away
from high-symmetry points, the overlap between them is poor
for the conduction bands. Interestingly, even for this weakly
bound material, with atomiclike orbitals, off-diagonal matrix
elements, i.e., mixing of states, are apparently necessary for
the proper description of the band structure. We note that the
same effect is observed in GaAs (not shown here). Using a
GW scheme similar to QSGW but to first iteration only, Aguil-

era and coworkers [66] concluded that in some topological
insulators, leaving out the nl terms in the self-energy leads
to “unphysical band dispersion in those parts of the Brillouin
zone where the bands hybridize strongly.” In addition, the nl
terms in QSGW have proven to be also crucial to properly
describe electronic states in molecules [51].

IV. IMPLEMENTATION

A. The (L)APW + LO basis

For solving the KS equations, the unit cell is divided into
two types of volumes. The muffin-tin (MT) region consists of
nonoverlapping spheres with radii Rα

MT, centered at the nu-
clear positions rα , where the index α indicates the atom. The
remaining part is called interstitial region [67]. This division
of space goes hand in hand with a dual basis, where in the
interstitial region plane waves (PWs) are used to represent KS
functions, density, and potential. In the MT spheres atomiclike
functions account for the rapidly varying potential near the
nuclei. Obviously, such functions can equally well represent
valence and core states.

More specifically, in a unit cell of volume �, the basis
functions are defined as

φk+G(r) =
⎧⎨
⎩

1√
�

ei(k+G)·r, r ∈ I

φLAPW
k+G (r) = ∑

l,m

[
Aζ uα

l (rα; Elα ) + Bζ u̇α
l (rα; Elα )

]
Y m

l (r̂α ), r ∈ MT
(9)

with the vector rα = r − rα . Y m
l are spherical harmonics, and

l and m the azimuthal and the magnetic quantum number,
respectively. The label ζ gathers the parameters k + G, l , m,
and α. The uα

l (rα; Elα ) are solutions of the radial Schrödinger
equation for the spherically symmetric part of the potential in
the respective atomic sphere.

The linearization energies Elα are chosen such to lie within
the band of the respective character, where deviations from
the actual KS energy are accounted for by the term u̇, i.e., the
derivative of the radial function with respect to energy [68,69].
The fixed Elα makes the basis functions energy indepen-
dent, and the secular equation represents a linear eigenvalue
problem (hence the term “linearized” in the name). The co-
efficients A and B ensure continuity of the basis functions
at the sphere boundary. Since the inclusion of u̇ impacts the
form of the basis functions within the MT, the LAPW method
demands a rather large number of basis functions to restore
the proper shape of the eigenstates close to the nuclei [70,71].

Alternatively, one can linearize the eigenvalue problem by
using the radial function only, and add a local orbital (LO) at
the respective linearization energy. This so-called APW + LO
method [72] allows for more flexibility of the basis at lower
cost. Note that in the following, for brevity, we use the term
LAPW for both ways of linearization. Local orbitals φLO

μ are
defined within the MT as

φLO
μ (r) = δααμ

δllμδmmμ

[
aμ uα

l

(
rα; ELO

lα

)
+ bμ u̇α

l

(
rα; ELO

lα

)]
Y m

l (r̂α ). (10)

Local orbitals are also used for extended core (i.e., semi-
core) states as well as high-energy states, the latter being
crucial for obtaining accurate GW results [73]. Also second-
or higher-order derivatives may enter the linear combination
in Eq. (10). The coefficients aμ and bμ ensure normalization
and that φLO

μ goes to zero at the boundary.
The product of two KS functions ψnk often appears in the

matrix form of nonlocal operators. To represent these prod-
ucts, we make use of the mixed product basis {χq

i }, or MB for
short [14,15,17],

ψnk(r)ψ∗
mk−q(r) =

∑
i

Mi
nm(k, q)χq

i (r) (11)

with coefficients

Mi
nm(k, q) ≡

∫
�

[
χ

q
i (r)ψmk−q(r)

]∗
ψnk(r) dr, (12)

where n and m are band indices and i labels the MB function.
Frequency-(in)dependent two-body operators are represented
in matrix form as Oi j (r, r′; ω):

Oi j (q, ω) =
∫

V

[
χ

q
i (r)

]∗
O(r, r′; ω)χq

j (r′) dr dr′ (13)

where V = Nc� is the crystal volume with Nc being the num-
ber of unit cells. The Bloch functions χ

q
i are normalized to

unity within V .
Following the spirit of the LAPW method, the construction

of the MB functions employs space partitioning between the
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MT spheres and the interstitial region such that χ
q
i belongs

to either the former or the latter space. This gives rise to
two types of MB functions, i.e., products of plane waves [74]
and products of radial functions (from the same MT sphere),
ναNL(rα ), times spherical harmonics. The radial product func-
tions are neither normalized nor orthogonal. To ensure linear
independence of these products, we diagonalize their overlap
matrix [15], returning a set of eigenvalues and eigenvectors
{λN , cll ′,N }. If the eigenvalue is lower than a given thresh-
old, the corresponding eigenvector is assumed to be linearly
dependent and discarded [15,75]. The final product ναNL(rα )
consists of a linear combination of the eigenvectors corre-
sponding to selected eigenvalues and radial functions. For
being selected, the radial functions ul and ul ′ have to fulfill two
conditions [17]: (i) l and l ′ must be smaller than a predefined
threshold lMB

max, and (ii) the triangular condition |l − l ′| � L �
l + l ′ must be met. The product of two spherical harmonics
can be expanded into spherical harmonics Y M

L . For each wave
vector q, considering translation symmetry, we arrive at the
product basis for the MT:

γ
q
αNLM (r) = eiq·rα ναNL(rα )Y M

L (r̂α ). (14)

The set {ναNL} does not include the derivatives of u′
l s due to

their negligible contribution [15], i.e., BG+k
lm in Eq. (9) is set to

zero. However, we include the energy derivatives u̇α
l (rα; Elα )

stemming from local orbitals by incorporating them in the
coefficients of the expansion at the left in Eq. (12). Radial
functions along with their integrals, and hence {ναNL}, are
initialized only once and remain fixed afterwards.2

Analogous to the product of radial functions, we calculate
the overlap matrix of the plane-wave products, with eigen-
values λi and eigenvectors SGi. For each wave vector q, the
interstitial basis function in the MB is

Pq
i (r) ≡ 1√

�

Gmax∑
G

S̃Gie
i(q+G)·r θ (r), (15)

with S̃Gi ≡ SGi/
√

λi, and the step function θ (r) guarantees that
the integral is zero if r resides outside the interstitial region.
Finally, the MB is given as follows:{

χ
q
i (r)

} = {
γ

q
αNLM (r), Pq

i (r)
}
. (16)

Crucial for the calculation of the self-energy and the polariz-
ability matrix are the expansion coefficients Mi

nm, obtained by
inserting Eq. (16) into (12).

B. QSGW in EXCITING

The QSGW implementation involves several operators in
matrix form, classified in three groups:

(i) Group A: Operators making up the Hamiltonian H0. For
details, we refer to Ref. [76].

(ii) Group B: Nonlocal operators, appearing in Hedin’s
equations. The implementation in EXCITING follows closely
Ref. [17], albeit with some differences.

2Including the updated density from the optimized H0 into the local
potential Vα in the radial part of the Schrödinger equation worsened
the results in some cases.

FIG. 10. Flowchart of the QSGW implementation in EXCITING.
Green (white) color refers to operators from group A (B); blue
indicates the only representative of group C.

(iii) Group C: The nonlocal exchange-correlation poten-
tial vxc

opt [see Eq. (1)].
Figure 10 sketches the implementation of the QSGW

method in EXCITING. The green blocks represent operators
from group A and the output of the secular equation, i.e.,
the eigenvectors and eigenvalues; the blue block contains the
optimized potential (group C). The bottom block displays
the main quantities from group B. Step one of the im-
plementation is to perform an IP calculation with a chosen
exchange-correlation potential vxc and operators from group
A, providing the initial eigenvectors and energies. Then, the
operators from group B are built in the MB, i.e., the screened
Coulomb interaction Wi j (ω), the polarizability P0

i j (ω), the bare
Coulomb interaction vi j , and the dielectric matrix εi j (ω). The
optimized potential in matrix form is then computed accord-
ing to Eq. (1). Its diagonal and off-diagonal matrix elements
are expressed in terms of KS functions, and thus expressed
in terms of the LAPW basis in order to be inserted in the
Hamiltonian. Step two is to replace the initial vxc from the
IP scheme with vxc

opt. Keeping this potential fixed, the secular
equation is solved for each k point using the updated H0. This
includes an iterative procedure, called inner cycle, indicated
by dashed lines in the figure. With the eigenvectors and eigen-
values produced in the inner cycle, in the third step, the matrix
operators from groups B and C are recalculated. The new
potential vxc

opt is plugged into H0, and steps 2 and 3 are repeated
until convergence. This eventually leads to the transition from
the initial KS eigenfunctions to the QP states via {ψ IP

nk, ε
IP
nk} →

{ψnk, εnk} → {ψQP
nk , ε

QP
nk }. The complete procedure is called

the outer cycle.
For consistency, (i) the q grid and the k grid are common

to both cycles (unlike other implementations [14]), (ii) in
all operators we consider the same number of unoccupied
states, (iii) all core electrons enter the self-energy operator,
and (iv) all operators are based on the same computational
parameters, i.e., Elα , RMT

α · |k + G|max. An exception is the
self-consistency criterion for the charge density which typi-
cally is much stricter in the inner than the outer cycle.

The Coulomb-interaction matrix in the MB has three dis-
tinctive blocks, namely, the two where both χi and χ j are
either ∈ MT or ∈ I , and a third one where χi ∈ MT and χ j ∈ I .
More details are given in Refs. [17,75]. The diagonal form
of the Coulomb matrix is not only convenient for simplifying
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the matrix multiplication. Also, when computing the dielectric
matrix, the singularity at q = 0 is getting restricted to the first
matrix element (head, H) and the first column and row (wings,
W), while the rest (body, B) holds no singularity. Seeking
to recover this diagonal matrix form of response functions,
the MB has to undergo a basis transformation [75], using the
fact that a Hermitian operator is diagonal in the basis of its
eigenvectors. Hence, in the unitary transformation∣∣χq

μ

〉 =
∑

i

∣∣χq
i

〉
U q

μi, (17)

the matrix U is expressed in a v-diagonal basis [75], where
U q

μi is the ith component of the μth eigenvector of the
Coulomb interaction matrix vi j (q). We stress that this trans-
formation does not imply an approximation. In practice, we
consider only physically significant eigenvectors, i.e., those
whose eigenvalues are above a threshold [75]. In our QSGW
implementation, the chosen threshold remains fixed, yet the
number of eigenvectors taken into account varies but typically
stabilizes after a few iterations.

The dielectric function includes an integral over the prod-
uct of the polarizability and the bare Coulomb interaction.
The latter introduces a numerical challenge due to above-
mentioned singularity as q goes to zero, but is alleviated by
means of the v-diagonal basis. We then treat the q = 0 term
of the dielectric matrix within k · p theory [77] for evaluating
H, W, and B, as detailed in Ref. [17]. Throughout the im-
plementation, we use a contraction between the square root
of the Coulomb matrix and the coefficients Mi

nm(k, q) in the
v-diagonal basis representation (note the greek indices intro-
duced with the basis transform):

M̃μ
nm(k, q) ≡ √

vμ(q)Mμ
nm(k, q), (18)

where vμ(q) are the eigenvalues of the Coulomb matrix.
In contrast to G0W0, in QSGW the self-energy is not diag-

onal. Exchange and correlation self-energies include a mixing
of states, embodied in the off-diagonal terms of the respective
matrices. Expectation values taken with respect to two dif-
ferent states, i.e., n and l , make up the upper triangle of the
self-energy matrix, the lower one is constructed by enforcing
Hermiticity. In the following, these off-diagonal elements are
denominated nl terms. The exchange part is calculated as
suggested by Betzinger and coworkers [16].

Evaluation of the correlation self-energy �c(ω) is the most
involved part in our implementation. We use the correlation
term of the screened Coulomb potential W c(ω) = W (ω) − v,
replace G0(ω + ω′) with its Lehman representation in the
KS basis, insert the MB expansion of W c(ω), and finally
employ the definition of Mi

nm(k, q) from Eq. (12). Following
these steps, the matrix elements of the correlation self-energy
�c

nlk(ω) = 〈ψnk|�c(ω)|ψlk〉 become

�c
nlk(ω) = 1

Nc

i

2π

BZ∑
q

∑
m

∑
i, j

×
∫ ∞

−∞

[
Mi

nm(k, q)
]∗

W c
i, j (q, ω′)M j

lm(k, q)

ω + ω′ − ε̃mk−q
dω′.

(19)

In the above equation, ε̃nk ≡ εnk + iη sgn(εF − εnk). Writing
W c

i, j (q, ω) in the v-diagonal basis and using the contraction in
Eq. (18), we obtain the product

M∗W cM =
∑
μν

[
M̃μ

nm(k, q)
]∗[

ε−1
μν (q, ω′) − δμν

]
M̃ν

lm(k, q).

(20)
For the off-diagonal matrix elements, this is a three-
dimensional matrix whose size depends on the number of
frequencies, number of states (unoccupied, valence, and core
states), and total number of nl terms. Because the convolution
integral over frequency in Eq. (19) has poles infinitesimally
close to the real axes, a large number of frequencies are
required to achieve precise results.

The evaluation of Eq. (20) is performed using the
imaginary-frequency formalism, i.e., by replacing ω =
iu, ω′ = iu′, where u and u′ are real. Correspondingly, both
the screened Coulomb potential W and the G0W0 self-energy
� are computed along the imaginary frequency axis. The
self-energy along the real axis is then obtained by means of
the Padé approximants [78]. For technical details regarding
the numerical implementation of the frequency convolution
integral [Eq. (20)], we refer to Ref. [17]. From a practical
point of view, the formalism leads to quickly converging
results with respect to the frequency grid. Unfortunately, the
analytical-continuation technique for mapping back from the
imaginary to the real axis is known to suffer from deficiencies,
e.g., when treating core states or computing molecules [11].
Nevertheless, employing the Padé approximants has been ver-
ified to produce stable and reliable results for the chosen bulk
systems. For future work, the contour deformation technique
[79] may be implemented to evaluate the convolution integral.

In the EXCITING code, the hybrid message passing interface
(MPI) + shared-memory multithreading (OpenMP) paral-
lelization is used. Computation of (k/q)-dependent quantities
is efficiently parallelized with MPI, whereas the computations
of the self-energy matrix elements make use of the OpenMP
technology.

V. CONCLUSIONS

In summary, we have adopted and adapted the QSGW
formalism to the full-potential (L)APW + LO framework and
implemented it into the all-electron package EXCITING. This
allowed us to study the electronic structure of selected ma-
terials. We have observed an overall overestimation of band
gaps, however, there is good agreement with experiment,
when corrections for zero-point vibrations and spin-orbit cou-
pling are considered. We have found significant impact of
QP self-consistency on band dispersions and effective masses.
For the examples of LiF, MgO, and CaO, we have shown
considerable reorganization of electronic charge surrounding
the ions compared to LDA densities, where the actual extent
of the effect depends on the material. Addressing the issue of
starting-point (in)dependence for different initial potentials,
we have found the final results to be in excellent agreement.
Finally, we have analyzed the impact of off-diagonal terms
in the self-energy matrix on the electronic structure. These
contributions to the optimized potential prove important in
most cases. For example, in argon, they are crucial for obtain-
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TABLE III. Total number of LOs for the materials considered in
this work.

SiC Si BN GaAs MgO CaO LiF Ar C

Number of LOs 155 164 138 312 168 136 140 127 146

ing the right character of the band gap. Our implementation
in an all-electron framework and our results for prototypical
materials are paving the way for calculations of more complex
compounds.
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APPENDIX A: CONFIGURATION OF LOCAL ORBITALS

In all calculations, we enhance the (L)APW basis set by a
large number of LOs (indicated in Table III) to represent low-
energy (semicore) as well as unoccupied states. They cover a
broad range of energy parameters (see examples in Table IV).
Previous G0W0 calculations with EXCITING [73] showed that
convergence within 3-meV precision with respect to the num-
ber of LOs is reached when six l channels are included. Based
on these results, we set lLO

max = 6 for all materials. A particular
case is GaAs where about twice the number of LOs is required
compared to the average of the other materials.

Since the radial functions are fixed in our QSGW imple-
mentation, the choice of linearization energies Elα requires
special care. As an example, Table IV presents the setup of
LOs for the first three l channels for GaAs. We adjust the nota-
tion from Sec. IV A [Eq. (10)], leaving out the subscript α and
adding instead the index i to the linearization energy Eil . We
search for these energies prior to the calculation by an autom-
atized optimization procedure based on the Wigner-Seitz rules
[80]. Some of them (marked in Table IV by the superscript
t) are further optimized after the first QSGW iteration (and
frozen afterwards). For GaAs, LOs with lLO between 3 and
6 are linear combinations without derivatives of ul , and the
number of LOs for the channels lLO = 5, 6 is two. In general,
we include LOs with energies up to 22 Ha.

APPENDIX B: COMPUTATIONAL PARAMETERS

The crystal structures and lattice parameters, as well as the
muffin-tin radii RMT

α , for all systems calculated in this work
are specified in Table V. G0W0 and QSGW calculations are
performed on a 4 × 4 × 4 k-point grid, whereas IP calcula-
tions employed a 6 × 6 × 6 k grid. In the binary compounds,

TABLE IV. Configuration of the three LOs with lowest energy
for lLO = 0, 1, and 2 in GaAs. The second column shows the radial
part of the LO, the right column the linearization energy Ejl (in Ha)
for index j and angular momentum l . The index μ, and the coeffi-
cients aμ and bμ, which are distinct for every LO, were introduced in
Sec. IV A.

l Ga

aμ u0(r′, E10 ) + bμ u̇0(r′, E10) E10 = −5.08095t

s aμ u̇0(r′, E20 ) + bμ ü0(r′, E20) E20 = −0.3695t

aμ u0(r′, E10 ) + bμ u0(r′, E20)
aμ u1(r′, E11) + bμ u̇1(r′, E11) E11 = 0.32460t

p aμ u̇1(r′, E11) + bμ ü1(r′, E11)
aμ u1(r′, E11) + bμ u1(r′, E21) E21 = −0.36955t

aμ u2(r′, E12) + bμ u̇2(r′, E12) E12 = −0.3695t

d aμ u̇2(r′, E12) + bμ ü2(r′, E12) E22 = 0.0000
aμ u2(r′, E22) + bμ u̇2(r′, E31) E32 = 1.3454

l As

aμ u0(r′, E10 ) + bμ u̇0(r′, E10) E10 = −0.3000t

s aμ u̇0(r′, E10 ) + bμ ü0(r′, E10)
aμ u0(r′, E10 ) + bμ u0(r′, E20) E20 = −6.5840t

aμ u1(r′, E11) + bμ u̇1(r′, E11) E11 = 0.0837t

p aμ u̇1(r′, E11) + bμ ü1(r′, E11)
aμ u1(r′, E11) + bμ u1(r′, E21) E21 = −4.5224t

aμ u2(r′, E12) + bμ u̇2(r′, E12) E12 = −1.1219t

d aμ u̇2(r′, E12) + bμ ü2(r′, E12) E22 = 0.0000
aμ u2(r′, E22) + bμ u2(r′, E32) E32 = 0.9470

the RMT
α are, with the exception of calcium oxide, chosen to

be the same for both elements. For the calcium atom, the de-
scription of the nodal structure of 4p orbitals requires either a
large amount of PWs or a large RMT, for which we choose the
latter option, while for oxygen a smaller radius is sufficient.
The product RMT · |G + k|max, which determines the number
of PWs in the basis set, is set to either 10 or 11, values that
guarantee high numerical precision. For the radial functions,
we set the maximum azimuthal number lAPW

max to 12 for all
materials. For products of radial functions (see Sec. IV A), we
discard eigenvectors of the overlap matrix whose eigenvalues
are below 1 × 10−4. In this implementation, we restrict the ra-
dial functions entering the MB by a cutoff parameter lMB

max = 3,
without loss of precision.

TABLE V. Structure type and experimental lattice parameters a
for the calculated materials.

Structure type a (Å)

SiC zinc blende 4.340 [81]
Si diamond 5.431 [82]
BN zinc blende 3.615 [31]
MgO rocksalt 4.211 [83]
CaO diamond 4.810 [84]
LiF rocksalt 4.010 [81]
Ar fcc 5.260 [31]
C diamond 3.567 [85]
GaAs zinc blende 5.653 [86]
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TABLE VI. Investigated materials together with the corresponding input parameters. The abbreviation RGmax stands for RMT · |G + k|max.
Calculations were performed on a 4 × 4 × 4 k grid. In all binary materials but CaO, both atomic spheres have the same radii RMT.

RGmax RMT (bohrs) No. of empty states No. of nl terms MB size at �

SiC 11 1.6 350 46360 1460
Si 10 2.1 300 48828 1373
BN 11 1.4 350 53956 1315
MgO 11 1.6 350 54946 1443
CaO 11 2.0/1.8 350 43956 1383
LiF 11 1.6 450 45753 1275
Ar 11 2.75 350 60378 741
C 10 1.4 300 46360 1143
GaAs 11 2.2 350 42195 1779

For the integration over frequencies [Eq. (20)], we take
into account 32 values, and ω0 = 1 Ha is chosen in the
double Gaussian quadrature algorithm. For the nl terms in
the self-energy matrix, we choose an energy threshold εmax

nl ;
only states n and l with energies below εmax

nl build the upper
triangle of the self-energy, leading to a number of nl terms
(see Table VI). Based on our tests, disregarded higher-energy
states have no effect on the final result (see Appendix C).

APPENDIX C: CONVERGENCE BEHAVIOR

We perform convergence tests with respect to (i) k grid, (ii)
number of empty states, (iii) number of nl terms entering the
self-energy, and RMT · |G + k|max (RGmax) starting with MgO
as the first example. In Fig. 11, the behavior with respect to
the number of empty states is displayed for the parameter
set used in production (green symbols). For this material,
an extrapolation as employed by Refs. [59,73] turned out
not adequate. To reach nevertheless convergence, calculations
are carried out with reduced parameters [87] (blue symbols),
including the first 150 unoccupied bands for the off-diagonal
terms RMT · |G + k|max = 10 and 20 frequencies, as summa-
rized in Table VII. This allowed for including more empty
states. We conclude that convergence is reached with 400
empty states and, thus, the result for the production settings

FIG. 11. Convergence of the fundamental band gap of MgO with
respect to the number of empty states. The production settings are
described in Appendix B, the reduced settings are summarized in
Table VII.

(Table I) requires a correction of +0.05 eV, labeled �es in
Table VIII.

The convergence with respect to the number of off-
diagonal terms shows an oscillatory behavior the production
settings, as shown in Fig. 12. From the tests carried out
with reduced parameters, we reach convergence already at
181 states which corresponds to roughly 60% of the whole
energy spectrum. The same does not apply to the production
settings, where the 88% of the whole energy spectrum is
considered for the last data point and, yet, there is oscillating
behavior. Aside from the case with no nl terms, the differences
between the last two points are within 30 meV, as shown in
Fig. 12.

To test the convergence with respect to RMT · |G + k|max

(RGmax), we again make use of the reduced settings (Ta-
ble VII). As the calculations are converged at RGmax = 11,
and for the production settings a value of 12 was used, no
correction is needed, i.e., �RK = 0.

Finally, we assess the quality of the k grid. From Table VIII
we learn that we have to correct the results from the pro-
ductions settings by �k = −0.22, i.e., the difference between
the calculations with 6 × 6 × 6 and 4 × 4 × 4 grids, using the
reduced parameters.

FIG. 12. Convergence of the fundamental band gap of MgO with
respect to the number of nl terms.

045143-12



ELECTRONIC STRUCTURE OF REPRESENTATIVE … PHYSICAL REVIEW B 106, 045143 (2022)

TABLE VII. Reduced parameter settings used for convergence tests. For calculations probing convergence for LiF and Ar with respect to
k grid, the numbers of local orbitals and nl terms are further reduced and their values are shown at the left in the corresponding columns.

RGmax Number of empty states Number of frequencies Number of nl terms Number of LOs

MgO 10 300 20 14028 13
LiF 10 300 20 21736/24753 9/74
Ar 12 350 16 21528/24753 8/61

For the case of Ar, the band gap converges to 15.34 eV at
350 empty states for the production setting, thus, there is no
need for further correction in this regard. Likewise, conver-
gence tests with respect to RMT · |G + k|max using a reduced
set show a converged result already at a value of 11. The
calculation of Ar is carried out including practically all states
in the off-diagonal terms (leaving out only the last 15 of 355
states), therefore, no additional convergence was necessary.

In the calculation of LiF, the number of LOs is reduced to
74 (see Table VII) in order to account for up to 500 empty
states. The fitted curve for this convergence curve reaches
convergence at 500 empty states. The correction between 450
and 500 empty states corresponds to +0.02 eV. Likewise, for
the off-diagonal terms, we find that using the reduced setting
we reach convergence when including 277 empty states in
the nl terms which amounts to 92% of the total empty states.
For the production parameter set, this percentage corresponds
to 414 out of a total of 450 empty states. The fitted curve
for the results using reduced parameters returns a correction

of −0.4 eV to the band gap when we take into account the
92% of empty states. Tests regarding RMT · |G + k|max include
cases, showing convergence at a value of 10. Therefore, we
conclude that also for this material there is no need for a
correction due to the choice of RMT · |G + k|max.

TABLE VIII. Band gap Eg (eV) at � for MgO, Ar, and LiF
obtained for three k grids. �k is the difference between the 4 × 4 × 4
and 6 × 6 × 6 k grids; �es (�RK ) is a correction accounting for the
number of empty states (basis-set size). Likewise, �nl is a correction
with respect to the number of nl terms. The last column shows
the band gaps obtained by correcting the results from Table I by
considering all the corrections.

2 × 2 × 2 4 × 4 × 4 6 × 6 × 6 �k �nl �es �RK E corr
g

MgO 9.71 9.86 9.64 −0.22 0 0.05 0 9.82
Ar 15.38 14.96 14.83 −0.13 0 0 0 15.21
LiF 16.70 16.61 16.47 −0.13 −0.04 0.02 0 16.46
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