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Local density of states and particle entanglement in topological quantum fluids
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The understanding of particle entanglement is an important goal in the studies of correlated quantum matter.
The widely used method of scanning tunneling spectroscopy—which measures the local density of states
(LDOS) of a many-body system by injecting or removing an electron from it—is expected to be sensitive to
particle entanglement. In this paper, we systematically investigate the relation between the particle entanglement
spectrum (PES) and the LDOS of fractional quantum Hall (FQH) states, the paradigmatic strongly correlated
phases of electrons with topological order. Using exact diagonalization, we show that the counting of levels in
both the LDOS and PES in the Jain sequence of FQH states can be predicted from the composite fermion theory.
We point out the differences between LDOS and PES characterization of the bulk quasihole excitations, and we
discuss the conditions under which the LDOS counting can be mapped to that of PES. Our results affirm that
tunneling spectroscopy is a sensitive tool for identifying the nature of FQH states.
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I. INTRODUCTION

Since their discovery, strongly correlated topological
phases of electrons, such as those in the regime of the frac-
tional quantum Hall (FQH) effect, have continued to attract
attention for their exotic properties [1–6], including the recent
experimental measurements of fractional statistics of their un-
derlying charged quasiparticles [7,8]. A promising approach
for directly observing these quasiparticles is the scanning
tunneling microscopy (STM) [9]. The STM reveals the local
density of states (LDOS) spectrum, which is sensitive to the
topological order of the underlying FQH phase. Moreover,
the LDOS spectrum changes if the fundamental quasiparticle
gets trapped by an impurity. Recent work [10] success-
fully employed STM measurements to visualize atomic-scale
electronic wave functions, revealing microscopic signatures
of valley ordering and spectral features of FQH phases in
graphene. In light of these experimental developments, it is
important to formulate a general framework for the theoretical
interpretation of the LDOS spectra for different classes of
FQH phases, in particular going beyond the low-density limit
where analytic treatments are possible [11,12].

A highly accurate approach for describing a large class of
FQH states and their low-energy excitations is the composite
fermion (CF) theory [4]. This theory applies primarily to
the so-called Jain sequence of states at the electron filling
factors ν = n/(2pn ± 1), where n and p are positive integers,
that in particular capture the most prominent incompressible
FQH plateaus observed in the lowest Landau level (LLL).
The main tenet of CF theory is that the Jain states can be
viewed as integer quantum Hall (IQH) states of CFs [13]. The
latter are bound states of an electrons and an even number
(2p) of quantized vortices. Importantly, the CF theory not

only accurately captures the FQH ground states, but also the
entire low-energy spectrum, including both charged as well as
charge-neutral excitations (for a recent overview of CF theory,
see Ref. [14]). Given that the LDOS spectrum is determined
by the systems’ bulk excitations, it is natural to expect that
its structure can be predicted and understood, at least quali-
tatively, from CF theory, as first proposed in Ref. [9]. In this
work, we systematically investigate LDOS for the Jain states
through a combination of exact diagonalization simulations
and CF theory.

The second motivation behind this paper is to relate the
structure of the LDOS spectra with the entanglement of
the underlying electrons forming the FQH fluid. The rele-
vant entanglement measure in this context is the so-called
particle entanglement spectrum (PES), first introduced in
Refs. [15,16] as a generalization of the particle entanglement
entropy [17,18]. To evaluate PES, one performs the Schmidt
decomposition on a state by dividing it into two parts, each
with a fixed number of particles while the total area and
geometry of the system remain unchanged. Recently, PES
has been fruitfully studied in rotating two-dimensional gases
[19], Bose-Einstein condensates [20] and Luttinger liquids
[21], Hubbard models [22–24], magic-angle twisted bilayer
graphene [25], and various lattice models [26,27] including
driven optical lattices [28]. Since PES is obtained by trac-
ing out some particles from the system, it can be intuitively
thought of as introducing quasihole excitations to the bulk of
the FQH fluid [15]. In this sense, PES is conceptually similar
to LDOS, however, the relation between the two has not been
scrutinized thus far.

The remainder of this paper is organized as follows. In
Sec. II, we give a brief overview of CF theory and explain
how it describes the low-energy excitations when the magnetic
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flux is slightly increased or reduced relative to its value at
the center of an FQH plateau, corresponding respectively to
creating “quasihole” and “quasiparticle” excitations on top
of the ground state. In Sec. III, we introduce LDOS and
present the results of its numerical simulations in realistic
electron systems with screened Coulomb interaction and in
the presence of a charged impurity. We identify the distinctive
counting of LDOS, resolved by the angular momentum quan-
tum number in a reference frame centered at the impurity, and
we show how this counting can be understood from CF theory.
In Sec. IV, we introduce PES and explain how its counting
can be derived from CF theory. In Sec. V, we arrive at our
central question, i.e., the relation between PES and LDOS
countings. In particular, we explain the difference between
these two, albeit both measure the bulk quasihole excitations,
and we discuss the conditions under which the LDOS count-
ing can be mapped to the PES counting (and vice versa). Our
results are summarized in Sec. VI. In Appendix, we discuss
the optimization of the parameters of the screened Coulomb
interaction that yield the best conditions for observing the key
features of the FQH fluid in LDOS.

II. LOW-ENERGY EXCITATIONS FROM COMPOSITE
FERMION THEORY

A broad class of FQH states occurring at filling factors ν =
n/(2pn ± 1), can be understood as IQH states of CFs filling
ν∗ = n effective LLs [4] (a star superscript is used to denote
CF quantities). Here we use the spherical geometry [29] to
briefly illustrate the mapping between FQH states of electrons
and IQH states of CFs. In the spherical geometry, the two-
dimensional gas of N electrons is placed on the surface of
a sphere, with a Dirac monopole of strength 2Q flux quanta
situated at the center (2Q is a positive integer). The radius
of the sphere is R = √

Q in units of the magnetic length � =√
h̄/eB, where B is the strength of the magnetic field pointing

radially outwards. On the sphere, the LL indexed by n has
a degeneracy of 2(Q + [n − 1]) + 1 (in our convention, the
LLL has index n = 1.).

In CF theory, every electron binds 2p quantized vortices to
form a CF. Thereby, the number of effective flux quanta felt
by a CF is 2Q∗ = 2Q − 2p(N − 1). In the zeroth-order ap-
proximation, the CFs are taken to be noninteracting particles,
and thus in an effective magnetic field, they form Landau-like
levels termed “Lambda levels” (�Ls). The formation of CFs
captures the leading effect of the electron-electron interactions
and lifts the degeneracy of the lowest LL. Since |Q∗| < Q,
each �L accommodates fewer states than the electronic LL.
If an integer number of �Ls are filled, a gapped ground state
can be formed. In this case, the flux-particle relationship at
ν = n/(2pn ± 1) is

N = n

2pn ± 1
(2Q ± n + 2p). (1)

The + (−) sign in ν = n/(2pn ± 1) denotes that the effective
magnetic field sensed by the CFs is in the same (opposite)
direction as the external magnetic field seen by the electrons.

FIG. 1. A schematic illustration of removing an electron from
ν = 2/5 (a) and adding an electron to ν = 1/3 (b). The left column
represents the ground states before removing or adding an electron.
The middle column shows the starting m state in the lowest branch
and the right column shows the starting m state in the second-lowest
branch. (c) The energy spectrum for N = 11 electrons at 2Q = 23
flux quanta in the LLL (computed by exact diagonalization in the
spherical geometry). The parameters of the screened Coulomb in-
teraction and impurity potential are given in Eqs. (10)-(11) with
dg = 3, di = 2.9. The blue rectangle labels the lowest branch, the red
rectangle labels the second branch, and the orange rectangle labels
the third branch. This spectrum corresponds to a hole excitation of
the ν = 3/7 state. As seen in the plot, the lowest branch and part of
the second branch and the third branch are separated from other parts
by a gap. Energies are quoted in e2/ε� units.

The FQH ground state at ν = n/(2pn ± 1) is represented
by the Jain wave function

�Jain
n

2pn±1
= PLLL�±n�

2p
1 , (2)

where �n is the n-filled LL wave function (�−n ≡ �∗
n). For

n = 1 and the + sign in Eq. (2), the Jain wave function reduces
to the Laughlin wave function �

Laughlin
1/(2p+1) = �

2p+1
1 [2]. Except

for the Laughlin case, the product state �±n�
2p
1 does not

reside fully in the LLL, so a projection operator PLLL onto the
LLL is needed to describe the state that arises in the high-field
limit [30].

The low-energy excitations can be obtained by replacing
�n with low-energy excitations of n-filled LLs. This provides
an efficient way to count the low-energy excitations in differ-
ent branches, which are separated by the effective cyclotron
energy of the �Ls, as illustrated in Fig. 1. Panels (a) and
(b) of Fig. 1 show the �L occupation for CF hole and CF
particle excitations of different branches, and panel (c) shows
an example of the energy spectrum where the lowest branch
can be fully identified while the second and third branches can
be partially identified.
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Nevertheless, when the CF interaction plays a nonpertur-
bative role, the naïve counting based on noninteracting CFs
can be misleading. This can be intuitively understood since
the naïve counting of noninteracting CFs would predict an
infinite number of excitations for a finite system in the LLL
(since one can create excitations in arbitrarily high �Ls),
which cannot be true. The CF-CF interactions make certain
excitations prohibitively expensive to create, so they should
be excluded from the counting. A comprehensive discussion
of the exclusion rules that arise from the residual interaction
between CFs is presented in Ref. [31]. As shown in Ref. [31],
for bare quasiparticle and quasihole excitations that are not
dressed by neutral excitations, the naïve IQH counting (with-
out the need to impose any exclusion rules) works, which
enables us to develop the LDOS counting conveniently for
these excitations.

We now illustrate the counting for excited states in the
CF theory. We first consider Jain states at ν = n/(2pn + 1).
When an electron is removed from the ν = n/(2pn + 1) Jain
state, the effective magnetic field is increased, i.e., 2Q∗ →
2Q∗ + 2p. In other words, each �L has 2p more orbitals.
Together, these create 2pn + 1 CF holes (the additional one
accounts for the removed electron) in the lowest n �Ls, as
shown in Fig. 1(a). The lowest branch of the excited states
will have all the CF holes in the topmost occupied �L with
index n. Therefore the counting of the lowest branch is given
by placing 2pn + 1 holes in 2[Q∗ + (n − 1)] + 1 orbitals. The
largest value of the magnitude of Lz, the z component of the
total orbital angular momentum, of these states is

∑2pn
l=0(Q∗ +

(n − 1) − l ) (we have set h̄ = 1), and a representative of the
corresponding configuration is illustrated in the middle panel
of Fig. 1(a). On the other hand, for states with one electron
removed from the ground state, the largest possible Lz = Q
since the ground state has Lz = 0. The difference between the
smallest (and largest) Lz of all excitations and excitations in

the lowest branch is

m0 ≡ Q −
2pn∑
l=0

(Q∗ + (n − 1) − l )

= (2p2 − p)n2 + (3p − 2p2 − 1)n − 2p + 1, (3)

which is a number independent of system size. The excitation
with the lowest Lz would be obtained by removing an electron
from the origin, which has Lz = 0 when the sphere is mapped
to the infinite plane in the thermodynamic limit. Therefore the
lowest Lz state has the same Lz value as the ground state, and
we define this as m = 0. Here m represents the difference of
Lz of the excited state with respect to the ground state in the
thermodynamic limit. Clearly, Eq. (3) gives the starting m for
the lowest branch of excitations. As we will show in Sec. III,
this quantity is directly accessible in the STM spectrum.

Moreover, if we denote the number of states in the Lz

sector with Nh holes or particles in a �L with M orbitals as
(Lz, Nh, M ), the counting for the lowest branch of excitations
is given by(

Lz, 2pn +1,
2Q

2pn + 1
+ 2pn2 − 2pn + 4p+ 2n − 1+ 4p2n

2pn + 1

)
.

(4)
We impose the restriction that (Lz, Nh, M ) = 0 if |Lz| >

(Nh/2)(M − Nh + 1). In general, (Lz, Nh, M ) can be com-
puted numerically once specific values are given. This number
is essentially the number of different partitions of Lz into
Nh different integers or half-integers, with each integer in
the range of [−(M − 1)/2, (M − 1)/2] or half-integer in the
range of [−M/2, M/2].

For the second lowest branch, we put 2pn holes in the
nth �L and one hole in the (n − 1)th �L. The starting m
is decreased by 2pn − 1, as shown in the right column of
Fig. 1(a). The counting in the second lowest branch in the Lz

sector is given by

Q∗+n−1∑
q=−(Q∗+n−1)

(
Lz − q, 2pn,

2Q

2pn + 1
+ 2pn2 − 2pn + 4p + 2n − 1 + 4p2n

2pn + 1

)
. (5)

Similarly, when an electron is added to the ν = n/(2pn + 1) Jain state, the effective magnetic field is decreased, i.e., 2Q∗ →
2Q∗ − 2p. Along with the newly added electron, there are 2pn + 1 electrons in the (n + 1)th and higher �Ls, as shown in
Fig. 1(b). The lowest branch will have all the electrons in the (n + 1)th �L. The starting m is

m0 = Q −
2pn∑
l=0

(Q∗ + n − l ) = (2p2 − p)n2 + (2p2 + p − 1)n. (6)

The counting in each Lz sector is given by(
Lz, 2pn + 1,

2Q

2pn + 1
+ 2pn2 + 2pn + 2n − 4p2n + 1

2pn + 1

)
. (7)

Analogously, we obtain the second branch by putting 2pn electrons in the (n + 1)th �L and one electron in the (n + 2)th �L.
The starting m is decreased by 2pn + 1. The counting in each Lz sector is given by

Q∗+n+2∑
q=−(Q∗+n+2)

(
Lz − q, 2pn,

2Q

2pn + 1
+ 2pn2 + 2pn + 2n − 4p2n + 1

2pn + 1

)
. (8)
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Having derived the particle and hole counting for ν =
n/(2pn + 1) Jain states, it is straightforward to understand
the counting for the ν = n/(2pn − 1) Jain states. Adding
one electron will increase 2|Q∗| by 2p, thereby creating
2pn − 1 quasiholes, while removing one electron will reduce
2|Q∗| by 2p, thereby creating 2pn − 1 quasiparticles. For
the special case of p = 1, the ν = n/(2n − 1) state is just
the particle-hole conjugate of the ν = (n − 1)/[2(n − 1) + 1]
state. Therefore the particle counting for ν = n/(2n − 1) is
identical to the hole counting for ν = (n − 1)/[2(n − 1) + 1],
and vice versa. For instance, when we remove an electron
from the ν = 2/3 ground state, Q∗ increases by 2. However,
as Q∗ is a negative number, its magnitude decreases by 2.
There are four fewer orbitals in the two occupied �Ls, with
an electron removed. This creates three particles in the higher
�Ls, which is also the case for adding an electron to ν = 1/3.
For more general ν = n/(2pn − 1) Jain states, the counting
is given by the number of ways of distributing the 2pn − 1
quasiholes or quasiparticles in the �Ls, which can be derived
similarly to that for the ν = n/(2pn + 1) states discussed
above.

III. LOCAL DENSITY OF STATES

Recently, it has been proposed that the fractional statistics
of excitations in FQH states can be visualized using STM
[9]. The STM directly probes the LDOS of an FQH state by
measuring the differential conductance [32–38]. The LDOS
for removing or adding an electron to the “vacuum” state |�〉
is defined as

LDOS(E , m) =
{∑

a δ(E − Ea)|〈a|cm|�〉|2, hole side,∑
a δ(E − Ea)|〈a|c†

m|�〉|2, particle side.
(9)

Here |a〉 runs over all energy eigenstates corresponding to the
FQH state with one electron removed or injected from |�〉,
and Ea is the corresponding eigenvalue (measured relative
to the ground state energy of |�〉). The operators cm and c†

m
destroy and create, respectively, an electron in a LLL orbital
with angular momentum Lz = m. The resolution of LDOS
into m sectors allows us to conveniently study its discrete
counting. However, this relies on a relatively low concentra-
tion of impurities (in our numerics below, we consider only a
single impurity), which do not fully destroy the translation or
z-rotation invariance of the system. More generally, one can
compute LDOS in real space by replacing cm, c†

m with the
corresponding field operators and then perform a “Laguerre
transform” to approximately extract the counting per m sector
[9].

In the numerical simulations below, we evaluate LDOS for
a system of electrons in the spherical geometry [29,39] using
the model introduced in Ref. [9]. The electrons interact via
screened Coulomb potential given by

VC (r) = 1

r
− 1√

(2dg)2 + r2
, (10)

where the screening distance dg represents the distance be-
tween the FQH system and a metallic gate. The one-body
potential due to an impurity at a distance di from the electron

gas (di < dg) is given by

U (r) = Z√
d2

i + r2
− Z√

(2dg − di )2 + r2
, (11)

where Z = 1 (−1) for repulsive (attractive) impurity potential
placed at the South (North) Pole which can bind quasiholes
(quasiparticles). Below we quote all lengths in units of the
magnetic length � and the energies are quoted in units of
e2/ε�. We assume the magnetic field is strong enough such
that the kinetic energy is quenched and the electrons are con-
fined in the LLL.

In our calculations, di and dg are treated as tunable pa-
rameters. As shown in Appendix, we can adjust the values
of dg and di to separate the different branches in LDOS and
facilitate their identification. We find the optimal parameters
to be dg ∼ 3� and di ∼ 2.9� for all filling factors considered
in our study. We also note that the weight of LDOS levels is
generally not uniformly distributed. The higher-energy LDOS
states can have more weight than the lower-energy states. In
an STM experiment, a level must have a sufficiently large
weight for it to be observable. In our calculations, we keep the
weight of all identifiable levels to be no smaller than 10−7 but
do not further consider its distribution in finding the optimal
parameters. In all LDOS figures, the background is manually
set to ∼10−12 to provide a large contrast in the color to assist
in identifying the counting.

As explained in the previous section, when an electron
is injected or removed from the bulk of a Jain state at ν =
n/(2pn ± 1), there are (2pn ± 1) anyons (quasiparticles or
quasiholes) created. If there is a single isolated impurity, the
LDOS spectrum directly shows the discrete energy levels of
anyons bound to the impurity. The spectrum is determined
by the fractional exclusion statistics of the anyons [40], and
it is a manifestation of the topological nature of FQH states.
Therefore STM can be a powerful experimental approach to
effectively “image” anyons.

To interpret the LDOS spectrum, we appeal to the CF
theory which, as explained above, accurately describes the
low-energy excitations of Jain states. Therefore this theory
also makes predictions for the counting in LDOS spectra.
For the low energy part of the LDOS spectrum, the starting
m is given by Eqs. (3) and (6), and the counting in each Lz

sector is given by Eqs. (4), (5), (7), and (8). In the remainder
of this section, we numerically compute the LDOS spectrum
using exact diagonalization and compare it to the predictions
of CF theory. The LDOS spectrum of the ν = 1/3, 2/3, 2/5,
3/5, and 3/7 state in the LLL is shown in Fig. 2, and the
corresponding countings are summarized in Table I.

At filling ν = 1/3, we first confirmed the number of LDOS
levels of the exact Laughlin state fully matches the number
of CF hole excitations. The LDOS of the exact Laughlin
state is obtained from its parent Hamiltonian—the V1 Haldane
pseudopotential [29,41]. The complete agreement between the
exact LDOS counting and CF theory, in this case, is expected
since both the Laughlin state and its hole excitations are zero-
energy eigenstates of the V1 interaction.

Next, in Figs. 2(a) and 2(b), we show the LDOS ob-
tained for the screened Coulomb interaction of Eq. (10) at
ν = 1/3. We see the lowest branch of quasiparticle excitations
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FIG. 2. The LDOS spectrum for ν = 1/3, 2/3, 2/5, 3/5, and 3/7 quasihole excitations (left column) and quasiparticle excitations (right
column) using the screened Coulomb interaction in Eq. (10) and impurity potential in Eq. (11). Plots are labeled according to (ν, 2Q, dg, di ).
The lowest three branches are denoted by blue, red, and orange rectangles. In (a) and (d), the dashed blue rectangle denotes the lowest branch
without its highest-energy multiplet.
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TABLE I. The summary of the lowest branch counting and second branch counting for the interaction parameters used in Fig. 2. The
numbers in the brackets are predicted by CF theory, while other numbers are from the computed LDOS spectra in Fig. 2 and Sec. III. The
numbers which do not match or are not identifiable due to the absence of gaps have been omitted.

ν type 2Q first branch second branch

1/3 h 27 1,1,2,3,4... N/A
(1,1,2,3,4,5,7,8,10,12,13,14,15,15) N/A

p 24 0,0,0,1,1,2,3,4,5,7,7,8,8 1...
(0,0,0,1,1,2,3,4,5,7,7,8,8) (1...)

2/3 h 24 0,0,0,1,1,2,3,4,5,7,7,8,8 1...
(0,0,0,1,1,2,3,4,5,7,7,8,8) (1...)

p 24 1,1,2,3,4,5... N/A
(1,1,2,3,4,5,7,8,10,12,13,14,15,15) N/A

2/5 h 26 0,0,0,1,1,2,3,5,6,8,9... 1...
(0,0,0,1,1,2,3,5,6,8,9...) (1...)

p 26 0,0,0,0,0,0,0,0,1,1,2,2,3,3 0,0,0,1,2,4,7...
(0,0,0,0,0,0,0,0,1,1,2,2,3,3) (0,0,0,1,2,4,7...)

3/5 h 26 0,0,0,0,0,0,0,0,1,1,2,2,3,3 0,0,0,1,2,4,7...
(0,0,0,0,0,0,0,0,1,1,2,2,3,3) (0,0,0,1,2,4,7...)

p 26 0,0,0,1,1,2,3,5,6,8,9... 1...
(0,0,0,1,1,2,3,5,6,8,9...) (1...)

3/7 h 23 0,0,0,0,0,0,0,0,1,1,1,1 0,0,0,0,1,2,4...
(0,0,0,0,0,0,0,0,1,1,1,1) (0,0,0,1,2,4...)

p 23 0,0,0,0,0,0,0,0,1,1,1,1 0,0,0,0,1,2,4...
(0,0,0,0,0,0,0,0,1,1,1,1) (0,0,0,1,2,4...)

in Fig. 2(b) matches the CF theory prediction. For quasihole
excitations in Fig. 2(a), we see there is a gap that allows us
to identify the lowest branch counting with CF theory up to
m = 5. For m>5, the branch merges with the continuum and
can no longer be visually identified. One interesting observa-
tion is that there is a clear gap separating the highest energy
state in the lowest branch from the rest of the lowest branch
for all m sectors, as marked by the blue dashed rectangle. In
other words, it is only the highest energy multiplet in the lowest
branch that merges with the continuum of the spectrum for
large-m sectors. This gap comes from the interactions between
CFs, which lift the degeneracy in the lowest �L. The presence
of this gap implies that the highest-energy multiplet in the
L2 = Q∗(Q∗ + 1) sector in the lowest �L is separated from
the other states in the lowest �L and merges with the higher
excitation. It is unclear why this happens for our specific
choice of interactions.

Figures 2(c) and 2(d) show the LDOS spectrum for ν =
2/3, which is the particle-hole conjugate of the ν = 1/3 state.
Hence, the counting for the quasihole excitations matches
perfectly with CF theory, while the quasiparticle excitations
match up to m = 5. Once again, in Fig. 2(d), we see a clear gap
that separates the highest-energy state in the lowest branch
from the rest. If we exclude this highest-energy multiplet,
the counting matches perfectly with CF theory for all m
sectors.

In the case of ν = 1/3 quasihole excitations and ν = 2/3
quasiparticle excitations, only one �L is involved and there
is only one branch of excitations in CF theory. For the ν =
1/3 quasiparticle excitations and ν = 2/3 quasihole excita-
tions, higher branches of excitations are expected. From the
LDOS spectrum, we can only see the starting m in the sec-
ond branch is zero, which matches CF theory. However, we

cannot identify further countings because there are no clear
gaps.

Figure 2(e) shows that the counting of the lowest branch
of LDOS for ν = 2/5 quasihole excitations matches the CF
theory up to m = 10 sector. For m = 11, 12, and 13 sectors,
we found the highest-energy state merges with the higher
branches. The second branch starts with m = 0, but we cannot
identify the counting because of the absence of a clear gap.
The LDOS counting of the ν = 2/5 quasiparticle excitations
is shown in panel (f). We can identify the counting of the
lowest branch with CF theory for all m sectors, although the
gap for m = 12 and 13 becomes quite small. In this case, we
can also identify the counting of the second branch up to
m = 6, as shown in Table I. The gap between the second
branch and the higher ones gradually disappears after that.

We also show the LDOS spectra for ν = 3/5 in Figs. 2(g)
and 2(h). We choose the same value for 2Q as in Fig. 2(e)
and (f). Therefore the quasihole (quasiparticle) excitations in
(g) and (h) are just particle-hole conjugates of quasiparticle
(quasihole) excitations in (f) and (e). The LDOS spectra are
seen to be identical, except for the unimportant energy offset
due to the one-body term resulting from the particle-hole
conjugation.

Finally, the LDOS spectra for ν = 3/7 are shown in
Figs. 2(i) and 2(j). The counting in the lowest branch is exactly
predicted by CF theory. The counting in the second branch
matches the theory up to m = 5, and we can also identify
m = 0, 1 for the third branch. Due to the limited system size
accessible to the calculation, the particle side excitation has
Q∗ = −1, which creates seven holes (rather than particles) in
the fourth �L. Due to this coincidence, the particle side LDOS
spectrum is similar to the hole side excitation for the chosen
finite system.
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IV. PARTICLE ENTANGLEMENT SPECTRUM

Another quantity that is related to the bulk excitations of
an FQH system is the particle entanglement spectrum (PES),
introduced in Ref. [15]. The PES is defined by dividing the
system into two parts, subsystem A composed of NA particles
and subsystem B composed of NB particles, with the total
particle number N = NA + NB. The state |�〉 of the system
(assumed to be nondegenerate, although the generalization to
the degenerate case is straightforward [15]) can be decom-
posed as

|�〉 =
∑

i

e−ξi/2
∣∣�A

i

〉 ⊗ ∣∣�B
i

〉
, (12)

where 〈�A
i |�A

j 〉 = 〈�B
i |�B

j 〉 = δi j . The bipartition preserves
the full symmetry of the original system and the entangle-
ment levels {ξi} of the PES spectrum can be labeled by
angular momentum quantum numbers, L and Lz. The ξi

and |�A
i 〉 can be regarded as the eigenvalues and eigenvec-

tors, respectively, of the “particle entanglement Hamiltonian,”
H = − ln(ρA), where ρA is the reduced density matrix for
subsystem A.

PES turns out to be closely related to the orbital entangle-
ment spectrum (OES) [42,43], whereby the system is divided
into two parts by introducing a geometric/orbital partition.
Therefore the partition in the OES is a subset of the partitions
in PES, and the number of levels in OES is bounded by the
number of levels in PES. OES and PES correspond to the
edge excitations and bulk excitations, respectively. Reference
[44] found that for a state that is uniquely defined by some
clustering properties, the counting of OES and PES in the
thermodynamic limit is identical, as expected from the bulk-
edge correspondence. On the other hand, for finite systems,
there is a range of angular momentum sectors for which
the counting of OES and PES agrees for such “clustered”
states, with the range becoming larger as the system size is
increased.

Furthermore, when the state is uniquely defined by some
clustering properties, the correspondence between the number
of levels in PES and the allowed number of bulk quasihole ex-
citations has been rigorously established [44]. As explained in
Ref. [44], the partition of the clustered state inherits the clus-
tering properties, and this sets the number of bulk quasihole
excitations as an upper bound of the rank of the particle entan-
glement matrix. The existence of an exact clustering property,
assumed in this proof, is a special feature of model FQH
states described by holomorphic wave functions, which also
have exact parent Hamiltonians that compactly encode the
clustering conditions [45]. For such model states, the upper
bound on the PES counting is indeed saturated. On the other
hand, the focus of the present paper—Jain states projected to
the LLL—are not uniquely identified by clustering [46,47].
Somewhat surprisingly, it has been numerically confirmed that
the counting of the PES still corresponds to the number of
bulk excitations for ν = 2/5 and 3/7 Jain states [15]. This
result strongly suggests that the number of levels in PES is
correctly predicted by the CF theory, even in the absence of
exact clustering properties.

In this section, we illustrate how to understand the PES
counting from CF theory. We first consider the unprojected

Jain states at ν = n/(2pn + 1). These states live in the Hilbert
space formed by the lowest n LLs. When the system is di-
vided into two parts, one with NA particles and the other
with N − NA particles (and NA � N/2), the effective field
for the NA particles is 2Q∗ = 2Q − 2p(NA − 1). To count the
number of hole excitations for this state, we need to allocate
NA particles in the n �Ls. Take the unprojected Jain states
at ν = 2/(4p ± 1) as examples (p = 1, + sign for ν = 2/5
and p = 1, − sign for ν = 2/3), the CF theory predicts the

FIG. 3. The PES for unprojected Jain states (blue “−”), pro-
jected Jain states (red “×”), and ground states of the unscreened
Coulomb interaction in the LLL (green “0”) for N = 6, 2Q = 11
at ν = 2/5. The subsystem contains NA = 1 particles in Fig. 2(a),
NA = 2 particles in (b), and NA = 3 particles in (c). The counting of
unprojected states agree with Eq. (13). Some states are annihilated
by LLL projection. The low-energy part of projected Jain states and
the LLL Coulomb ground states are similar, except that the level at
L = 13.5 for NA = 3 is only present for the Coulomb ground state.
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TABLE II. The PES counting of unprojected and projected Jain states for N = 6 electrons at ν = 2/5. The unprojected case fully agree
with Eq. (13).

NA 1 2 3

CF counting [Eq. (13)] (0,0,0,0,0,1,1) (2,1,3,1,3,1,3,1,3,1,2) (2,6,7,9,11,9,7,7,5,3,3,1)
Unprojected Jain states (0,0,0,0,0,1,1) (2,1,3,1,3,1,3,1,3,1,2) (2,6,7,9,11,9,7,7,5,3,3,1)
Projected Jain states (0,0,0,0,0,1,1) (1,0,1,0,1,0,1,0,1,0,1) (0,1,1,1,2,2,1,2,1,1,1,1)

number of PES levels to be

(Lz, NA, 2Q∗ + 1) + (Lz, NA, 2Q∗ + 3)

+
NA−1∑
n=1

∑
m

(m, n, 2Q∗ + 1) × (Lz − m, NA − n, 2Q∗ + 3),

(13)

where Q∗ = Q − p(NA − 1) is the effective number of flux
quanta. In Eq. (13), the first term is the number of states with
NA particles in the lowest �L, the second term is the number
of states with NA particles in the second �L, and the last term
sum over all states which have particles in both �Ls. We
found that for all the tested cases (N = 4 and 6 for ν = 2/5
fermionic Jain states and N = 4, 6, 8, and 10 for ν = 2/3
bosonic Jain states) the PES counting agrees with the above
counting. The unprojected Jain states (bosonic at ν = 2/3,
fermionic at ν = 2/5) were obtained by diagonalizing the
corresponding Trugman-Kivelson parent Hamiltonian in two
LLs with cyclotron energy set to zero [48,49].

On the other hand, the more commonly studied projected
Jain states have different counting as a result of the exclusion
rules mentioned in Sec. II. The higher-LL part of the Hilbert
space is annihilated by the LLL projection and, as a result, lin-
ear dependence is induced in the CF basis. In other words, the
overlap matrix of LLL-projected CF states no longer neces-
sarily has full rank. This can be viewed as a “nonperturbative
effect” of the CF interaction [31]: the CF-CF interactions push
the energies of some states to infinity after the LLL projection,
such that these states effectively disappear from the spectrum.
The singular-value-decomposition of projected states can be
written as

PLLL|�〉 =
∑

i

e−ξi/2PLLL|ui〉 ⊗ |vi〉. (14)

On the right-hand side, PLLL|ui〉 ⊗ |vi〉 corresponds to the
hole excitation after projection. Since these states become lin-
early dependent, the number of levels in PES is also reduced.
The number of levels in PES for projected states should be
equal to the number of linearly independent hole excitations,
the computation of the latter is discussed in Ref. [31].

In Fig. 3, we compare the PES for projected and un-
projected Jain states at ν = 2/5 for N = 6 and show these
counting in Table II. Bandyopadhyay et al. [50] have recently
proposed a set of parent Hamiltonians which have the un-
projected Jain states at ν = n/(2pn + 1) as highest-density
zero modes. Based on this, we expect the naïve CF counting
with n �Ls will work for general unprojected Jain states
at ν = n/(2pn + 1), although we have not explicitly tested
cases with n>2. On the other hand, there are fewer levels

in the PES of projected Jain states as a result of the exclu-
sion rules discussed above. In the case of NA = 1, 2Q∗ =
2Q − 2p(NA − 1) = 2Q. According to the noninteracting CF
picture, we now put one CF in the lowest two �Ls. Therefore
naïvely we expect two states in PES, one in the lowest �L
with L = Q∗ and the other in the second �L with L = Q∗ + 1.
As Fig. 3(a) shows, there is only one state with L = Q∗ for
the projected Jain state. The other state should not exist at all,
because its angular momentum exceeds the maximum angular
momentum in the LLL. This does not imply the CF picture
no longer works here. The L = Q∗ + 1 state gets annihilated
by the LLL projection in the CF formalism because it resides
fully in the second LL.

For the NA = 2 case, there are two configurations for the
highest L = 2Q∗ + 1 case: there is one particle at Lz = Q∗ +
1 in the second �L and the other one can be at Lz = Q∗,
either in the second �L or the lowest �L. Thus there are
two levels expected at L = 10 and indeed, we see two levels
for the unprojected state in Fig. 3(b). However, we only see
one level for the projected state. The reason is similar to the
explanation of the NA = 1 case. After the LLL projection, the
two states at Lz = 10 are not linearly independent—there is
only one independent state. For the same reason, the PES level
pattern for NA = 2 is 1,0,1,0,1,0,1,0,1,0,1 for projected states,
which is actually the full dimension of the lowest LL.

The PES levels of the projected states closely coincide with
the lower part of the PES levels of the unprojected states,
which is expected as they lie in the same topological phase
[51]. In Fig. 3, we also include the PES of the LLL unscreened
Coulomb ground state, which is very similar to the PES of the
projected Jain state. However, the full counting of the PES
of the LLL Coulomb ground state is given by (Lz, NA, 2Q).
For NA = 1 and 2, this coincides with the counting of the pro-
jected Jain state. For NA � 3, only the lower part of the LLL
Coulomb ground state is expected to be similar to the pro-
jected Jain state.

One might wonder why we do not need to consider the
exclusion rules for the lowest branch of LDOS counting dis-
cussed in Sec. III. In that case, we only have quasiparticles
in the lowest unoccupied �L or quasiholes in the highest
occupied �L. As shown in Ref. [31], the CF-CF interactions
do not eliminate any states in such cases. However, more
generally, when there is more than one �L that is partially
occupied, the strong effect of CF-CF interactions will push
the energies of some states to infinity or, in other words,
some states will be annihilated by the LLL projection in
the CF formalism. For the PES counting of Jain states, we
must take into account such nonperturbative effects since
there are two or more partially occupied �Ls. A detailed
discussion of this strong effect or exclusion rule is given in
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FIG. 4. The PES for N = 10 electrons and 2Q = 15 flux quanta
corresponding to ν = 2/3 Jain state. The subsystem contains NA =
1, 2, 3, 4, and 5 electrons in panels (a), (b), (c), (d), and (e),
respectively. In this case, the counting is exactly given by the number
of states in the full Hilbert space, i.e., NA particles in 2Q + 1 orbitals.

Ref. [31]. In certain cases, the simple exclusion rules spec-
ified in Ref. [31] need to be supplemented with additional
exclusion rules. To get the accurate CF counting with the
CF interaction included, one can use the technique of CF
diagonalization [52,53] to find out the precise number of inde-
pendent states. Notably, the exclusion principle plays no role
in the counting of PES at ν = 1/3, since only the lowest �L is
involved.

We also studied the PES of the projected ν = n/(2pn − 1)
Jain states. The ground states at these fillings have reversed
vortex attachment, which means Q∗ < 0. On the other hand,
for the subsystem A with NA � N/2, the effective magnetic
field is reversed back to Q∗

A > 0. Therefore the �L structure
completely changes in going from the ground states to the
excited states in PES, and as a result CF theory cannot give
a prediction on the counting. We illustrate this using the
ν = 2/3 state, whose PES is presented in Fig. 4. We find that,
for each NA and each L, the counting of PES is exactly given
by the number of excited states in the lowest LL (i.e., not �L).
This far exceeds the number of states in the lowest two �Ls
if we apply the CF theory. Thus the CF theory is not useful in
predicting the PES counting for the reversed-vortex attached
states. This does not mean the CF theory is inconsistent with
PES, rather the CF theory does not predict a PES counting for
2/3. We expect it to be generally true for the n/(2pn − 1) Jain
states that the counting is simply given by the full counting in
the LLL and the �L structure is irrelevant.

V. THE RELATION BETWEEN LDOS AND PARTICLE
ENTANGLEMENT

Since both the LDOS and PES count the bulk quasihole
excitations, one might naïvely expect that a one-to-one cor-
respondence could be established between them. However,
this turns out to not be true in general. There is a crucial
difference in how LDOS and PES each measure the bulk
quasihole excitations. The LDOS creates one hole (equivalent
to a few quasiholes) on top of the ground state by removing
one electron, while the PES creates N − NA holes on top of
the ground state, with the restriction NA � N/2, where N is
the electron number for the ground state. When NA > N/2, the
PES is the same as N ′

A = N − NA, which equals the number of
excitations creating NA holes. Therefore the PES always de-
scribes the creation of max{NA, N − NA} holes, which means
the number of holes is always more than half of the electron
number in the ground state.

The difference between LDOS and PES becomes even
more obvious in the thermodynamic limit. In the thermody-
namic limit, the counting of LDOS is equivalent to the number
of states obtained by creating one hole on the ground state
while the counting of PES is equivalent to the number of states
of creating a finite number of particles on top of the vacuum
state. The latter can also be viewed as creating an infinite
number of holes in the ground state, which is very different
from creating one hole in the ground state. The counting
for the PES is still well-defined by counting the configura-
tions of a finite number of particles allowed by the clustering
property, although this is not equivalent to the configura-
tions of a finite number of holes allowed by the clustering
property.

Nevertheless, while a one-to-one correspondence between
LDOS and PES may not exist in general, a correspondence
can be established in special cases such as the Laughlin states
through CF theory. Suppose the ground state has Ñ electrons,
and 2Q̃ = (2p + 1)Ñ − (2p + 1) flux quanta, which corre-
sponds to the ν = 1/(2p + 1) Laughlin state. For the LDOS,
we remove one electron from the system. The counting is the
same as the number of zero modes for the Haldane pseu-
dopotential interaction

∑p
l=1 V2p−1 with Ñ − 1 electrons in

2Q̃ flux quanta. For the PES counting, we assume there are
N electrons divided into two subsystems, with NA � NB. The
number of flux quanta is 2Q = (2p + 1)N − (2p + 1). The
counting equals the number of zero modes for the Haldane
pseudopotential interaction

∑p
l=1 V2p−1 with NA electrons in

2Q flux quanta.
From CF theory, we know the exact number of zero modes.

On the LDOS side, it is the number of states with 2p + 1 holes
in the 2Q̃ + 1 − 2p(Ñ − 2) CF orbitals. On the PES side, it is
the number of states with NA particles in 2Q + 1 − 2p(NA −
1) CF orbitals. There are two ways in which parameters can
be chosen such that the LDOS and PES have the same count-
ing. The first way to match the number of zero modes is by
imposing Q = Q̃ and NA = Ñ − 1, but this does not work as it
violates our constraint NA � N/2. However, there is a second
option: we can choose the number of holes in LDOS to be the
same as the number of particles NA in PES, and also make the
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FIG. 5. Matching the LDOS and PES countings for the Laughlin
states. There are m holes in the lowest �L for LDOS and NA = 2p +
1 particles in the lowest �L for PES, and the total numbers of orbitals
are the same 2Q̃ − 2p(Ñ − 2) + 1 = 2Q − 2p(NA − 1) + 1.

effective magnetic fields the same, as illustrated in Fig. 5. This
corresponds to

2p + 1 = NA,

2Q̃ − 2p(Ñ − 2) = 2Q − 2p(NA − 1),

NA � N/2. (15)

The solution to the above equations is

NA = 2p + 1,

N = 1

2p + 1
Ñ + 2p + 1 − 1

2p + 1
,

Ñ � (2p + 1)2 + 1. (16)

Because of the inequality constraint, Ñ must be no less
than 10. All choices of (2Q, N, NA|2Q̃, Ñ ) given by the
above equations have the same counting for LDOS spectrum
and PES spectrum, as we have confirmed numerically for
(15, 6, 3|27, 10), (18, 7, 3|36, 13), and (21, 8, 3|45, 16).

It is natural to ask whether a similar relationship like
Eq. (15) can be established for general Jain states. There are
several obstacles to doing so. To match the full counting of
LDOS and PES, a parent Hamiltonian for the Jain states is
needed to compute the LDOS. To the best of our knowledge,
such Hamiltonians do not exist for the projected Jain states
[47,49,50]. Without a parent Hamiltonian, the best one can do
is to identify the lower-energy branches of LDOS with PES.
However, the PES generally does not exhibit easily identifi-
able branches organized hierarchically, i.e., a higher energy
state does not correspond to a higher entanglement energy
state. Therefore we expect in general it would be challenging
to relate the LDOS and PES level counting.

VI. CONCLUSION

The main conclusions of this paper are summarized in
Fig. 6. In this work, we studied two quantities, LDOS and
PES, that both describe the bulk excitations of FQH systems,
and we showed that both quantities can be understood using
CF theory for Jain states. We demonstrated how to predict the
LDOS spectrum counting from the CF theory using various
Jain states as examples. Numerical simulations based on the
screened Coulomb interaction show that the lowest branch
of LDOS spectra agrees well with theoretical predictions for
several angular momentum sectors, while in some cases the
second or even the third branch counting is also identifiable
for the first few angular momentum sectors. Moreover, we
studied the PES counting from the CF theory. We found
the PES counting for Jain states at ν = n/(2pn + 1) to be
accurately predicted by CF theory. For Jain states at ν =
n/(2pn − 1) with reversed vortex attachment, the counting is

FIG. 6. Summary of the main results. We study two quantities that both describe the bulk excitations of FQH systems, LDOS and PES,
using CF theory. The CF theory predicts the counting of LDOS if the electron-electron interaction opens up gaps between different branches
of CF excitations. The PES counting can also be predicted from CF theory, after carefully incorporating the residual interaction between CFs.
Furthermore, PES has previously been related to OES [44], which describes the edge excitations, if the model state is uniquely defined by
clustering properties.
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given by the number of states in the full lowest LL, which
is beyond the subspace described by CF theory. We also
discussed the relationship and differences between LDOS and
PES. While a general one-to-one mapping between them is
likely impossible to establish, we showed that in special cases,
such as the Laughlin states, one can indeed map the LDOS
and PES counting onto each other with an appropriate choice
of system sizes.

Our results are expected to apply to other material sys-
tems that realize FQH phases. Apart from GaAs, the Jain
sequence of FQH states is also known to occur in monolayer
graphene [54–58], bilayer graphene [59–63], and transition
metal dichalcogenides such as WSe2 [64]. Moreover, mem-
bers of the n/(4n ± 1) Jain sequence observed in the second
LL of GaAs [65] are likely analogous to their LLL counter-
parts [66] and thus are also expected to lend themselves to a
description in terms of CFs.

Several questions remain to be answered. It is not clear un-
der what general conditions the number of PES levels equals
the number of bulk quasihole excitations. For FQH states with
known parent Hamiltonians, such as the Laughlin states [2],
Moore-Read states [6], and the Read-Rezayi Z3 states [67],
we have numerically confirmed that the number of levels in
PES exactly matches the number of zero modes of the parent
Hamiltonian for NA particles in the same total magnetic field
(the first two cases have also been numerically confirmed by
Sterdyniak et al. [15]). For the Jain states considered in this
work, the number of bulk excitations is calculated using CF
theory rather than counting the zero modes of parent Hamil-
tonian. Bandyopadhyay et al. [50] have recently constructed a
parent Hamiltonian for the ν = n/(2pn + 1) unprojected Jain
states. The correspondence between PES and bulk excitations
for projected Jain states, which do not have any known parent
Hamiltonian, could be understood if the equivalence between
the number of excitations and PES levels survives the LLL
projection. However, it is not clear why that must be the case.
Moreover, for a generic state with no parent Hamiltonian, it is
not clear how to relate the number of excitations and levels in
PES.

An interesting question is how to predict the LDOS and
PES countings for states obtained from parton theory [68],
which generalizes the CF construction by expressing FQH
states as products of IQH states. Several non-CF parton states
have recently been shown to be potential candidates for de-
scribing the ground and excited FQH states in multilayer
graphene, second LL, and in wide quantum wells [69–75].
Many of these parton states support non-Abelian excitations
[76] and it is as yet unclear how the branch structure and the
counting in each branch works out for these states. Moreover,
parent Hamiltonians are not known for generic unprojected
parton states. It would be interesting to check whether the
number of levels in the PES spectra of parton states matches
the number of their bulk excitations.
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APPENDIX: OPTIMIZING THE PARAMETERS FOR
LDOS SPECTRUM

In this Appendix, we explain how we determine the opti-
mal parameters for identifying the LDOS spectrum counting.
Even if the vacuum state |�〉 has a large overlap with a model
state such as the Laughlin state, |�Laughlin

1/3 〉, the LDOS exci-
tation spectrum can show big deviations from the Laughlin
excitation spectrum, depending on the details of the inter-
actions and impurity potential. The parameters di and dg

defined in Eqs. (10) and (11) affect the gaps between different
branches of the LDOS spectrum, as illustrated in Fig. 7. Even
with relatively small changes in di and dg, the spectrum can

FIG. 7. The LDOS spectrum for N = 9, 2Q = 21, corresponding
to ν = 1/3 particle excitations. The screening distances and impurity
distances are dg = 7�, di = 2.1� for (a) and dg = 3�, di = 2.9� for
(b). We cannot identify the counting in (a) with the counting expected
from CF theory for m > 4, while there is a clear gap in (b) which
allows us to match the countings for all m sectors. In both cases,
the vacuum state � has a large overlap with the Laughlin state, i.e.,
|〈�|�Laughlin

1/3 〉|2 = 0.9536 for (a) and 0.9906 for (b).
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FIG. 8. Color scale shows the value of γ , defined in Eq. (A1), in
the parameter space di − dg for several filling factors. N = 8, 2Q =
24 is a ν = 1/3 hole excitation state. N = 9, 2Q = 21 is a ν = 1/3
particle excitation state, while it is also a ν = 2/5 hole excita-
tion state (CF theory predicts the same counting for both states).
N = 15, 2Q = 24 is a ν = 2/3 hole excitation state. N = 17, 2Q =
24 is a ν = 2/3 particle excitation state. All these results suggest
that the optimal parameters are around di = 2.9�, dg = 3�. The
squares of overlaps between the original states and the Laughlin state
|〈�|�Laughlin

1/3 〉|2 > 0.9 for all states.

look very different. We would like to optimize the parameters
so that the counting in the lowest branch can be easily iden-
tified by visual inspection. To achieve this aim, we perform a
systematic scan of dg and di. We set the standard for “good
parameters” as follows. We first set a critical m value for
which the gap is sensitive to the parameters for each filling
factor respectively. This is usually the third or fourth number
counting from the starting m since the gaps for smaller m are
always pretty big and the gaps for bigger m are always very
small. If n states are expected to occur in the lowest branch
for the mth sector, we use

γ ≡ (n − 1)(En − En−1)

En−1 − E0
(A1)

to quantify the gap which separates the lowest branch from
higher branches in the mth sector. This is the ratio of the gap
between the nth and (n − 1)th state and the average value of
the gaps between the 0th state and n − 1th state.

In Fig. 8, the ratio γ is computed across the parameter
space for filling factors ν = 1/3 and 2/3. In these examples,
the squared overlap between the exact ground state and the
model Laughlin wave function is always larger than 0.9, yet
the value of γ is quite sensitive to the parameters. These
results suggest that the optimal parameters are around di =
2.9�, dg = 3�, i.e., the LDOS counting is easiest to identify
when the screening distance is small and the impurity distance
is close to the screening distance. We use such parameters for
our calculations in the main text.
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