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Directly probing the chirality of Majorana edge states
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We propose to directly probe the chirality of Majorana edge states in 2D topological superconductors
using polarization selective photon absorption. When shining circularly polarized light on a 2D topological
superconductor in disk geometry, the photons can excite quasiparticles only when the polarization of the light
matches the chirality of the Majorana edge states required by the angular momentum conservation. Hence, one
can obtain the chirality of the Majorana edge states by measuring the photon absorption rate. We show that the
polarization selective photon absorption can also serve as smoking gun evidence of the chiral Majorana edge
mode.
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I. INTRODUCTION

Searching for Majorana fermions is an important topic in
condensed matter physics because of its potential application
in topological quantum computing based on the non-Abelian
statistics [1–12]. Recently, the chiral Majorana edge states
(CMES) localized at the boundary of a 2D topological SC
have attracted much attention [13–18]. However, its identifi-
cation is challenging due to the neutrality of the zero energy
Majorana state.

The probable CMES was first observed in the quantum
anomalous Hall (QAH)/SC structure [13]. Tuning the ex-
ternal magnetic field, a half-quantized conductance plateau
emerges as a signature of the CMES when the system is
driven into a topological superconducting phase [16]. How-
ever, it has been shown that there are also other possible
origins of the half-quantized conductance plateau [19,20],
such as disorder. Another platform realizing the CMES is
the ferromagnet/Rashba SC bilayer structure [17,18,21]. In
this setup, using scanning tunneling microscopy (STM) and
scanning tunneling spectroscopy (STS), finite density of states
(DOS) below the superconducting gap was observed only
close to the edge of the ferromagnet and this is regarded as
a signature of the CMES. Recently, it was proposed that the
CMES can generate enhanced local optical response at finite
frequencies, [22,23] as the states at nonzero energy can couple
to the electromagnetic field. The local optical conductivity
scales as the square of the frequency, also distinguishing it
from the normal edge states.

Despite the great progress made in investigating the prop-
erties of the CMES, the STM and local optical measurement
only show finite DOS at low energies but fail to tell whether
the low energy mode is a chiral mode propagating only in
one direction. The main reason for the difficulty is the neu-
trality of the zero energy Majorana mode. In QAH materials,
the chirality of the topological edge states can be probed by
measuring the quantized Hall conductance [24,25]. However,

in a topological SC, the zero energy Majorana mode is charge
neutral and hence produces no Hall conductance. Instead,
the CMES generates a quantized thermal Hall conductance
[26,27], which is difficult to measure in experiments. Another
proposal to detect the chirality of the CMES by two-tip mea-
surement is also experimentally difficult [28].

In this work, we propose to directly probe the chirality
of the CMES using polarization selective photon absorption
(PSPA). We consider a topological SC in disk geometry. This
setup preserves a rotation symmetry (RS). Thus the Majorana
states are labeled by the total angular momentum j rather than
the momentum k as in the usual cases [29]. Near zero energy,
the CMES always has a linear dispersion Ej = CvM j, where
C = ±1 is the Majorana chirality and vM > 0 is the Majo-
rana angular speed. Shining circularly polarized light with
angular momentum Cl = ±1 and frequency ω on the sam-
ple, a quasiparticle with energy Ej and angular momentum
j can absorb a photon and be excited to the state with energy
Ej + h̄ω and angular momentum j + Cl if Cl = C as shown in
Fig. 1. On the other hand, if Cl �= C, this optical excitation is
forbidden by angular momentum conservation. Therefore, by
measuring the photon absorption, one can directly probe the
chirality of the CMES. This effect can hence serve as smoking
gun evidence of the CMES. The advantage of this method is
that it excludes the possibility of low energy trivial Andreev
bound states that would have chirality independent response.
Such exclusion cannot be achieved by STM or local optical
methods.

II. MODEL

We first consider the simplest model of a 2D topological
SC: A 2D spinless chiral p wave SC described by the Hamil-
tonian [2]

H =
∑

k

�̃
†
k

[(
h̄2k2

2m
− μ

)
τ3 + �

kF
(kxτ1 − Ckyτ2)

]
�̃k. (1)
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FIG. 1. Schematic energy spectrum of the CMES. (a) A photon
can excite a quasiparticle to a higher energy state if Cl = C. (b) The
optical excitation is forbidden if Cl �= C.

Here �̃k = [ψk, ψ
†
−k]T, where ψ

†
k is the electron creation op-

erator which creates one electron with momentum k. τ is the
Pauli matrix acting on the particle-hole space. C = ±1 is the
chirality of the chiral p wave SC. m, μ, and � are electron ef-
fective mass, chemical potential, and pairing gap, respectively.
We consider a sample in disk geometry [30] with the boundary
x2 + y2 = R2

0, where x and y are spatial coordinates and R0

is the radius. The energy of the bulk states can be obtained
by diagonalizing the Hamiltonian. The bulk spectrum close to
k ≈ kF is the usual Bogoliubov spectrum and has the gap �.
To find the subgap edge states, it is convenient to use the polar
coordinates (r, φ). This system preserves a generalized RS:
[H, J] = 0, where J = −i∂φ − 1

2τ3 is the generalized angular
momentum operator around the z axis. Thus the total angular
momentum j is a good quantum number and the edge states
take the form

�M, j = ei jφ

[
ψ+,M, j (r)eiφ/2

ψ−,M, j (r)e−iφ/2

]
, (2)

where j = n + 1/2 with n ∈ Z . Here we assume that the
radius R0 of the sample is much larger than the Majorana
localization length and the Fermi wavelength 2π/kF , where
kF is the Fermi momentum and vF is the Fermi velocity. By
using the hard wall boundary condition � j (r = R0) = [0, 0]T,
we obtain the energy Ej = C j�

kF R0
and the wave function of the

low-energy edge states [31]

iψ+,M, j = ψ−,M, j = 1√
2

[
eκ+(r−R0 ) − eκ−(r−R0 )

]
, (3)

where κ± = m
h̄2 [ �

kF
±

√
�2

k2
F

− 2h̄2μ

m ]. One can see that there are

low energy states localized at the boundary as long as μ >

0 required by Re(κ±) > 0. The effective Majorana angular
speed is given by vM = C�

kF R0
. This shows that the chirality of

the CMES is indeed C.

III. OPTICAL RESPONSE

When shining light with a frequency ω much lower than
the pairing gap of the sample, the photon can be absorbed by
the edge states and excite the quasiparticles to higher-energy
states, if selection rules allow it. For circularly polarized
light, the vector potential is A = A(1, iCl ), where Cl = ±1
is the angular momentum (polarization) of the photon. The
photon absorption power W can be determined by W (ω) =

4πA2ω2R2
0Re[σll (ω)], where σll is the circular optical con-

ductance, given by

Re σll (ω) = 1

2π2ωR2
0

∑
m,n

〈m|J†
l |n〉〈n|Jl |m〉

× Im
f (En) − f (Em)

Em − En − h̄ω + i0+ , (4)

where |m〉 is the edge eigenstate with angular momentum m,
Em is the eigenenergy, and f (E ) is the Fermi distribution
function. The generalized current operator Jl is the integral
of the current density operator over the volume, given by Jl =
h̄e
m eiCl φ (−i∂r + Cl

R0
∂φ ), where e is the electron charge. With this

generalized current operator we can calculate the matrix ele-
ment in Eq. (4), 〈m|Jl |n〉 = ih̄evF En

�
δm,n+Cl , where vF = h̄kF /m

is the Fermi velocity in the normal state. This matrix element
has several important features: first, it is proportional to vF

rather than the velocity of the edge states; second, the matrix
element is linear in energy En in contrast to the case of normal
chiral edge states [23]; third, the finiteness of the matrix ele-
ment depends on the polarization of the light Cl . We get the
real part of the optical conductance by substituting the matrix
element into Eq. (4) [31],

Re[σll (ω)] = e2v2
F

2πR2
0ωh̄�2

∑
j

E2
j [ f (Ej ) − f (Ej+1)]

× δ

(
ω − �

kF R0

)
δC,Cl , (5)

where f is the Fermi distribution function. In the parameter
regime h̄ω � kBT � �, the above equation can be simplified

Re[σll (ω)] ≈ π2e2T 2v2
F kF

3h�3R0
δ

(
h̄ω − �

kF R0

)
δC,Cl . (6)

One can see that Re[σll (ω)] is nonzero only when C = Cl and
h̄ω = �/kF R0 required by the energy conservation and angu-
lar momentum conservation. Therefore, by shining circularly
polarized light on a 2D topological superconductor one can
directly probe the chirality of the CMES via measuring the
photon absorption rate. We also note that the effective velocity
of the CMES is the Fermi velocity vF while the density of
states of the CMES (NM) is determined by its group velocity
vM , NM ∝ 1/vM . Therefore, there is a large prefactor v2

F /v2
M

in the optical conductance σll , resulting in the fact that σll can
be several orders of magnitude larger than e2/h.

In systems with a higher Chern number [17], several Ma-
jorana edge modes are present. If the velocities of the modes
differ, they appear in the photon absorption rate as separate
peaks at the frequencies determined by the angular momen-
tum selection rule. If the velocities are too close to each
other to be resolved, the low-temperature absorption spectrum
provides a lower bound for the number of edge states.

For comparison with Eq. (6), we consider the optical re-
sponse of normal chiral edge states in a QAH insulator. Note
that a QAH insulator can also be described by Eq. (1) with
�̃ replaced by � = (ψ↑, ψ↓)T, the Pauli matrix τ replaced by
the Pauli matrix σ acting on the spin space, and � replaced by
the spin orbit coupling strength �α [32]. The current operator,
however, is different, and the optical conductance is given
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FIG. 2. (a) Sketch of an F/SC structure realizing 2D topological
superconductor. (b) Spatial distribution of |�|2, where � is the wave
function of the lowest energy state.

by [23]

Re[σll (ω)] = e2�α

hkF R0
δ

(
h̄ω − �α

kF R0

)
. (7)

In the normal state, Re[σll ] is independent of the tempera-
ture. The difference of temperature dependence of the optical
conductance is due to the fact that the Majorana excitation is
the superposition of electron and hole excitation, so that the
Majorana states couple to the external electromagnetic field
differently from normal edge states.

A. F/SC lattice model

Recently, there have been several experiments realizing the
CMES in a ferromagnet/SC structure as shown in Fig. 2(a).
[17,18] This system can be described by the effective tight-
binding Hamiltonian

HT B =
∑
R,d

tψ†
R+d�R − μ�

†
R�R − Vz(R)�†

Rσz�R

+ iαd × ẑ · �R+dσ�R + ��R,↑�R,↓ + H.c., (8)

where R denotes the lattice sites, and d denotes the two unit
vectors dx and dy. t is the hopping strength, μ is the chemical
potential, α is the Rashba coefficient, and � is the pair poten-
tial. Vz(R) is a position dependent exchange field Vz(R) = V0

when |R| < R0, and otherwise zero. When V 2
0 > μ2 + �2,

the ferromagnetic part is topological while the nonmagnetic
part is trivial. We get the eigenstates of this tight-binding
Hamiltonian by diagonalizing it. The wave function of the
eigenstate closest to the zero energy is shown in Fig. 2(b). This
subgap state, localized at the boundary of the ferromagnet re-
gion, is the chiral Majorana state. In this tight-binding model,
the generalized current operator corresponding to circularly
polarized light is given by [31]

Jl = ea

4π

∑
R,q

Bq[it�†
R+dq

�R + H.c.]

− Bq[αdq × ẑ · �
†
R+dq

σ�R + H.c.], (9)

where q = x, y and Bx = 1, By = i and a is the lattice con-
stant. The first term in Eq. (9) comes from the kinetic energy,
and the second term is the Rashba contribution. We numeri-
cally calculate the optical conductance using Eq. (4), and the
results are shown in Fig. 3. When Cl = 1, Re[σll ] is finite and
has a peak when the photon frequency matches the energy
spacing of the CMES. When Cl = −1, Re[σll ] is close to

FIG. 3. The real part of the optical conductance as a function of
frequency at different temperatures calculated from the lattice model
Eq. (8). This figure only shows the optical conductance when Cl = 1.
For Cl = −1, Re[σll ] overlaps the Cl = 1, T = 0.0025 curve. The
inset shows the nonlinear spectrum of the CMES. Parameters used
here are � = 0.2t , μ = 0t , V0 = 0.5t , α = 0.25t , R0 = 40.

zero. When increasing the temperature, the conductance peak
is enhanced and broadened. This broadness is due to the fact
that the energy spacing of the CMES in this lattice model is
not constant, as seen in the inset of Fig. 3.

B. Breaking rotation symmetry

So far, we have considered the systems preserving the RS.
To investigate how robust the polarization selective photon
absorption is against the RS breaking, we first consider a
case with nonmagnetic impurities which locally break the RS,
but respect the RS on average. We consider the following
Hamiltonian:

HT BD = HT B −
∑

R

U (R)�†
R�R, (10)

where U (R) is the disorder potential which is uniformly dis-
tributed in [−U0,U0]. We numerically calculate Re[σll ] in the
presence of U (R) and show the results in Fig. 4. It shows that
the effect of the disorder is to shift the position of the con-
ductance peak and broaden it. The PSPA survives even when
the disorder strength is larger than the pairing gap. This result
is expected because the chiral edge states are topologically
protected, and hence the PSPA is robust against disorder.

Next we consider an elliptical ferromagnetic island with a
boundary described by bR2

x + 1
b R2

y = R2
0. When b �= 1, this ge-

ometry does not respect the RS, and the angular momentum is
no longer a good quantum number. We numerically calculate
Re[σll ] and show the results in Fig. 5. One can see that, even
with a large shape deformation (b = 2) which greatly breaks
the rotation symmetry (inset of Fig. 5), Re[σll ] for Cl = 1 is
much larger than that for Cl = −1. This can be understood as
follows. Since the Majorana wave function is single valued,
we can use an integer-winding number to label the CMES.
The circular polarized light with Cl approximately changes the
winding number by Cl , and we assume the CMES �m with
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FIG. 4. Real part of the optical conductance as a function of
frequency for different disorder strengths. Here we consider one dis-
order configuration. The solid lines and dashed lines represent Cl = 1
and Cl = −1, respectively. For Cl = −1, Re[σll ] with any disorder
strength is much smaller than that of Cl = 1 and overlap each other,
so we only show one of them in this figure. The parameters used here
are as in Fig. 3 with T = 0.0025t .

the winding number w roughly satisfies the normalization
condition 〈�m|�m′ 〉 ≈ δm,m′ . Therefore, similar to the angular
momentum conservation, the number conservation” can also
approximatively induce PSPA.

C. Experimental detection

Polarized electromagnetic fields can be generated in a
cross-shaped rf cavity, [33] as illustrated in Fig. 6. The po-
larization is controlled by the phase shift φ0 between the
sources, Ax(t ) ∼ A Re eiωt , Ay(t ) ∼ A Re eiωt+φ0 , and is cir-
cularly polarized if φ0 = ±π/2. As we have shown, if the

FIG. 5. Real part of the optical conductance as a function of
frequency for different shapes. The solid lines and dashed lines rep-
resent Cl = 1 and Cl = −1, respectively. The inset shows the spatial
distribution of the lowest energy for b = 2. The parameters used here
are as in Fig. 3 with T = 0.0025t .

FIG. 6. (a) Setup to probe the chirality of the CMES. Yellow
denotes the electrodes. (b) Sketch of the predicted microwave re-
flection rate as a function of frequency ω. There is a reflection dip
when the frequency is equal to the energy spacing of the CMES,
and the polarization of the microwave matches that of the Majorana
mode (blue line). The reflection rate is independent of the frequency
when the polarization of the microwave does not match that of the
Majorana mode (red line).

microwave polarization matches the chirality of the CMES,
the photon absorption rate is peaked at frequency h̄ω = δE ,
corresponding to the energy spacing of the CMES. This can
be observed as an enhanced absorption peak, whose presence
and amplitude depends on φ0 and temperature. The resonant
frequency can also be varied in situ, since the superconducting
gap � depends on, e.g., temperature T and applied magnetic
field B. The challenge in measuring the absorption peak is that
the Majorana conductance is shorted by the large admittance
of the host superconductor. On the other hand, as mentioned
above, the Majorana edge states can have a large optical con-
ductance far exceeding e2/h. Using parameters from a recent
experiment on 2D Majorana modes [17,31], we estimate that
the amplitude of the absorption peak, or a reflection dip in a
microwave transmission measurement, can be several percent,
making the scheme directly experimentally measurable [34].

IV. CONCLUSIONS

We have shown that, when shining circularly polarized
light onto a 2D topological superconductor with subgap
CMES, the photon absorption rate is finite only when the
polarization of the light matches the chirality of the CMES.
We propose that this effect can be used to directly probe the
chirality of the CMES. We show that this selective photon ab-
sorption effect is robust against rotation symmetry breaking,
such as disorder or shape deformation.
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P. Simon, and P. Piekarz, Phys. Rev. B 102, 245405 (2020).
[29] V. T. Phong, N. R. Walet, and F. Guinea, Phys. Rev. B 96,

060505(R) (2017).
[30] M. Stone and R. Roy, Phys. Rev. B 69, 184511 (2004).
[31] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.106.045139 for derivations for eigen-states
of a p wave superconductor in disk geometry, the calculation of
optical conductance of the CMES in a p wave superconductor,
derivations for current operator in the tight binding model, and
estimation of microwave reflection coefficient. This includes a
reference to X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law,
H. Berger, L. Forró, J. Shan, and K. F. Mak, Nat. Phys. 12, 139
(2016).

[32] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308
(2006).

[33] T. P. Mayer Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G.
Beausoleil, Phys. Rev. B 76, 165205 (2007).

[34] R. Haller, G. Fülöp, D. Indolese, J. Ridderbos, R. Kraft,
L.Y. Cheung, J.H. Ungerer, K. Watanabe, T. Taniguchi, D.
Beckmann, R. Danneau, P. Virtanen, and C. Schonenberger,
Phys. Rev. Research 4, 013198 (2022).

045139-5

https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1259327
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1103/PhysRevB.94.024507
https://doi.org/10.1073/pnas.1919753117
https://doi.org/10.1103/PhysRevB.102.075424
https://doi.org/10.1073/pnas.1810003115
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1103/PhysRevB.102.224510
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.92.064520
https://doi.org/10.1038/s41586-020-2989-y
https://doi.org/10.1126/sciadv.aav6600
https://doi.org/10.1103/PhysRevLett.120.107002
https://doi.org/10.1103/PhysRevB.97.100501
https://doi.org/10.1103/PhysRevLett.108.087003
https://doi.org/10.1103/PhysRevLett.126.237002
https://doi.org/10.1103/PhysRevB.103.L241109
https://doi.org/10.1126/science.1234414
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.7566/JPSJ.82.023602
https://doi.org/10.1103/PhysRevB.91.195139
https://doi.org/10.1103/PhysRevB.102.245405
https://doi.org/10.1103/PhysRevB.96.060505
https://doi.org/10.1103/PhysRevB.69.184511
http://link.aps.org/supplemental/10.1103/PhysRevB.106.045139
https://doi.org/10.1103/PhysRevB.74.085308
https://doi.org/10.1103/PhysRevB.76.165205
https://doi.org/10.1103/PhysRevResearch.4.013198

