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Using the three-orbital Hubbard model, we investigate the low-energy excitation spectra in the antiferromag-
netic phase of Ca2RuO4. We calculate the dynamical susceptibilities in the low-energy region by the random
phase approximation and find that the anisotropic dispersion of the transverse mode is in good agreement with
the spectra recently reported by inelastic neutron scattering experiments. By the fast-collision approximation,
we simulate the resonant inelastic x-ray scattering (RIXS) spectra of the Ru L3 edge from the dynamical
susceptibilities. We show that the dispersion of the transverse mode is clearly observed in the calculated RIXS
spectra and that the polarization dependence of the incident x rays enables one to distinguish between the
excitations of the in-plane transverse mode and out-of-plane transverse mode.
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I. INTRODUCTION

In several 4d or 5d electron transition-metal compounds,
the spin-orbit coupling (SOC) and electron correlation pro-
duce unique quantum states [1,2]. In materials with t2g orbitals
formed by a cubic crystal field, one electron has an effective
orbital angular momentum of � = 1, leading to various mag-
netic properties. In t5

2g electron systems, for example, a layered
perovskite Sr2IrO4 is a weak Mott insulator with a half-filled
narrow isospin j = 1/2 based band in the square lattice [3,4].

The influence of SOC on t4
2g electron configuration sys-

tems has recently attracted much attention. In SOC-dominated
materials, the local spin S = 1 and effective orbital angular
momentum L = 1 align antiparallel, resulting in a nonmag-
netic state with total angular momentum J = 0. In the region
where the crystal field due to distortion of octahedra and/or
superexchange are sufficiently strong, the system may become
magnetic. The layered perovskite Ca2RuO4 that we focus on
is in such a region, where a metal-insulator transition with
a shortened c axis occurs at TMI � 360 K and an antifer-
romagnetic (AFM) transition occurs at TN � 110 K [5–7].
The low-temperature phase of Ca2RuO4 is considered to be
either an S = 1 Heisenberg antiferromagnet, in which the
electronic configuration is d1

yzd
1
xzd

2
xy [8–11], or an excitonic

magnet, in which the triplons condense between J = 0 and
J = 1 [12–18].

Study of collective mode excitations is essential to un-
derstand properties of materials with long-range order. In
Sr2IrO4, for example, L-edge resonant inelastic x-ray scatter-
ing (RIXS) spectra show the dispersion of magnons with en-
ergy transfer ω = 0 at momentum transfer q = (0, 0) [19,20],
which is similar to that of well-known Heisenberg antifer-
romagnets such as La2CuO4 [21]. In the AFM phase of
Ca2RuO4, inelastic neutron scattering (INS) spectra show a
gap in the spectrum at momentum transfer q = (π, π ) and a

dispersion maximum at q = (0, 0) [8,9,22], which is different
from the spectrum expected from the magnon dispersion of a
simple Heisenberg antiferromagnet. Theoretical explanations
made in previous studies include a Heisenberg-model descrip-
tion for S = 1, which incorporates single-ion anisotropy due
to SOC [8–11] and triplon condensation [12,13,22]. These
studies are based on the phenomenological strong-coupling
model. However, more detailed models based on realistic elec-
tronic states of the system are needed to understand what kind
of excitation structure is present in this material. Recently, O
K-edge [23,24] and Ru L3-edge [25] RIXS has also been used
to investigate the excitation spectra, which makes it possible to
verify the collective excitation structure from various angles.

Using the three-orbital Hubbard model obtained by the
band-structure calculation and applying mean-field approxi-
mation and random-phase approximation (RPA), we investi-
gate the low-energy excitation spectra in the AFM phase of
Ca2RuO4. We note that Ca2RuO4 is known as a Mott insulator,
in which we expect that the electronic correlation effect plays
an important role. However, while the approximations used
in this paper ignore a large part of the correlation effect,
we confirm that the calculated dispersion of the transverse
mode is in good agreement with the spectra obtained by
INS experiments. Previous studies of Ca2RuO4 within the
mean-field approximation are also found in Refs. [26,27].
By the fast-collision approximation, we simulate the RIXS
spectra of the Ru L3 edge from the dynamical susceptibility.
Indeed, preceding studies have shown that the RIXS spectra
of low-energy excitations of AFM ground states in Mott in-
sulators can be reproduced by the mean-field approximation
plus RPA [28–30]. We will show that in the calculated RIXS
spectra, the dispersion of transverse mode is clearly observed.
We will also show that the polarization dependence of incident
x rays enable one to distinguish between the excitations of the
in-plane transverse mode and out-of-plane transverse mode.
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We will also confirm that the high-energy RIXS intensity
corresponding to excitations between the dyz/xz and dxy or-
bitals are significantly dependent on the angle of incidence,
in agreement with previous studies [25].

The rest of this paper is organized as follows. In Sec. II,
the three-orbital Hubbard model with SOC is introduced as
an effective model for describing Ca2RuO4, together with the
mean-field approximation. We also introduce the RPA and
analyze the dynamical magnetic susceptibility corresponding
to INS spectra in this approximation. In Sec. III, RIXS spectra
tuned for the Ru L3 edge are calculated based on the fast-
collision approximation. The spectral characters in both low-
and high-energy regions are discussed. We summarize our
results in Sec. IV.

II. MODEL AND METHOD

We introduce the three-orbital Hubbard model, including
the SOC term as an effective model for Ca2RuO4. By applying
the mean-field approximation, we obtain the AFM ground
state of the system. The dynamical magnetic susceptibility is
calculated in the RPA.

A. Three-orbital model and mean-field approximation

We consider the three-orbital Hubbard model on the square
lattice with periodic boundary conditions for modeling the t2g

electrons of Ca2RuO4. We define that the x and y axes are
parallel to the Ru bonds while the z axis is perpendicular to
the square lattice. The lattice constant is set to be unity. The
Hamiltonian is written by H = H0 + HSOC + Hint, where H0

is the kinetic-energy term, HSOC is the SOC term, and Hint is
the interaction term.

The kinetic-energy term reads

H0 =
∑

k,σ,μ,ν

εμ,ν (k)c†
k,μ,σ

ck,ν,σ , (1)

where c†
k,μ,σ

is the creation operator of an electron with
wave vector k, orbital μ (= yz, xz, xy), and spin σ (=↑
,↓). This term is estimated from the first-principles calcula-
tions. First, we obtain the band structure, using the Quantum
ESPRESSO package [31,32] with the revised Perdew-Burke-
Ernzerhof generalized gradient approximation [33] and the
projector augmented-wave pseudopotential by Kresse and
Joubert [34,35]. The plane-wave cut-off energy is set to 60
Ry, and the k-point mesh on the 5 × 5 × 2 Monkhorst-Pack
grid [36] is used. We use the crystal structure of Ca2RuO4

at 90 K [37]. Then, we construct the maximally localized
Wannier functions [38] for the energy window of −1.9 eV <

E − EF < 0.6 eV.
We consider only the nearest- and the next-nearest-

neighbor hopping integrals. The band structure is qualitatively
the same as the original one. The orbital-diagonal terms of

εμ,ν (k) are given by

εxy,xy(k) = −2tNN
xy (cos kx + cos ky)

− 4tNNN
xy cos kx cos ky − �, (2)

εxz,xz(k) = −2tNN
xz cos kx, εyz,yz(k) = −2tNN

yz cos ky, (3)

whereas the orbital-off-diagonal terms are given by

εxz,xy(k) = −2t ′ cos kx, εyz,xy(k) = −2t ′ cos ky. (4)

� arises from the energy splitting due to compression of RuO6

octahedra, and t ′ arises from the rotation and tilt of the RuO6

octahedra. The values of the parameters are tNN
xy = 0.211 eV,

tNN
xz = tNN

yz = 0.158 eV, tNNN
xy = 0.087 eV, t ′ = 0.052 eV, and

� = 0.240 eV.
The effect of SOC and electron-electron interactions at

each atomic site i cannot be ignored in Ca2RuO4. The SOC
term is given by

HSOC = ζ
∑

i

�μ,ν · sσ,σ ′c†
i,μ,σ ci,ν,σ ′, (5)

where ζ is the strength of SOC, s = σ/2 is the spin angular
momentum with Pauli matrix σ, and

�x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, �y =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

�z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠ (6)

is the orbital angular momentum for t2g electrons [39].
The on-site interaction term is given by

Hint = U

2

∑
i,μ,σ

c†
iμσ ciμσ c†

iμσ̄ ciμσ̄

+ U ′

2

∑
i,σ,σ ′

∑
μ �=ν

c†
iμσ ciμσ c†

iνσ ′ciνσ ′

− J

2

∑
i,σ,σ ′

∑
μ �=ν

c†
iμσ ciμσ ′c†

iνσ ′ciνσ

+ J ′

2

∑
i,σ

∑
μ �=ν

c†
iμσ c†

iμσ̄ ciνσ̄ ciνσ , (7)

where U , U ′, J , and J ′ are the intraorbital Coulomb interac-
tion, interorbital one, Hund’s rule coupling, and pair-hopping
interaction, respectively. We define ↑̄ =↓ and ↓̄ =↑. We as-
sume J ′ = J and U ′ = U − 2J , which are satisfied in an
isolated ion [40].

We apply the mean-field approximation to the interaction
terms to obtain the ground state. We define the mean fields∑

k0
〈c†

k0,μ,σ
ck0+mQ,ν,σ ′ 〉 with ordering vector Q for all combi-

nations about orbital and spin, where k0 is the wave vector in
the reduced Brillouin zone and m is an integer. In this paper,
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we assume a checkerboard-type order, i.e., Q = (π, π ) and
m = 0, 1. The diagonalized mean-field Hamiltonian is written
as

HMF =
∑
k0,ε

Ek0,εγ
†
k0,ε

γk0,ε, (8)

where γk0,ε is the canonical transformation of annihilation op-
erator satisfying ck0+mQ,μ,σ = ∑

ε ψμ,σ,m;ε (k0)γk0,ε and Ek0,ε

is the single-particle energy with band index ε. In this pa-
per, we assume the absolute zero temperature and determine
the Fermi energy EF from the constraint that the number
of particles per site equals 4. Using 100 × 100 meshes in
the reduced Brillouin zone, we solved the mean-field equa-
tions self-consistently to calculate the order parameters, as
discussed below.

B. Magnetic moment

The magnetic moment is obtained from the sum of the spin
and orbital angular momentum, i.e.,

Mα = 2Sα + Lα, (9)

where Lα = �α ⊗ I2 and Sα = I3 ⊗ sα , and In is the iden-
tity matrix of size n. Using the creation and annihilation
operators of electrons, the corresponding magnetic-moment
operator with momentum q along α direction is expressed
by

M̂α
q = 2Ŝα

q + L̂α
q =

∑
k

c†
kMαck+q, (10)

where ck = (ck,yz,↑, ck,xz,↑, ck,xy,↑, ck,yz,↓, ck,xz,↓, ck,xy,↓)t .
We calculate the average value of the magnetic moment

by setting ζ = 0.15 eV, U = 2.0 eV, and J = 0.47 eV, which
are comparable to the ones used in previous theoretical
studies [18,41,42]. We find that, under the mean-field approx-
imation, the AFM order with ordering vector Q is stable,
and the spin moment and orbital moment are parallel. The
expectation value of each component is 〈Ŝb

Q〉 = 0.956 μB,
〈Ŝz

Q〉 = 0.103 μB, 〈L̂b
Q〉 = 0.620 μB, and 〈L̂z

Q〉 = 0.072 μB,
and the components along a axis are zero, where a and b
axes are along (1,−1) and (1, 1) directions, respectively.
Thus, the magnetic moment lies in the plane nearly parallel
to the b axis. The calculated magnetic moment 2.55 μB is
higher than the experimental value 1.3 μB [6]. This is due
to the fact that angular momentum fluctuations are neglected
in the mean-field approximation; a similar overestimation
is also found in the previous studies using the mean-field
approximation [41].

Figure 1(a) shows the energy dispersion without the inter-
action term (U = J = 0). Without the SOC (ζ = 0, dotted
red lines), the upper four bands, which are degenerate at
(π/2, π/2), come from the dyz/xz orbitals. These bands are
lifted by introducing the SOC term (ζ = 0.15 eV, solid black
lines). Introducing the interaction term (U = 2.0 eV and

FIG. 1. (a) Energy-band dispersions without the interaction term
(U = J = 0). The magnitude of the SOC is set to be ζ = 0.15 eV.
The dispersions without the SOC term (ζ = 0) are also illustrated
by the dotted red lines. (b) Energy-band dispersions obtained in the
mean-field approximation with U = 2.0 eV and J = 0.47 eV. The
system is in the AFM state. In each figure, the energy bands are
plotted in the reduced Brillouin zone.

J = 0.47 eV) and assuming the AFM order in the mean-
field approximation, the system becomes fully insulating, as
shown in Fig. 1(b). There is one slow-dispersed band around
−0.5 eV, two slow-dispersed bands around −2.0 eV, and one
fast-dispersed band extended between −2.5 eV and −1.2 eV,
which are consistent with the angle-resolved photoemission
spectroscopy experiment [43].

C. Random-phase approximation

The dynamical susceptibility of a multiorbital system is in
general written as

χu,v (q1, q2, ω) = i

N

∑
k1,k2

∫ ∞

0
dteiωt 〈[c†

k1,κ,σ1
(t )ck1+q1,λ,σ2 (t ), c†

k2+q2,μ,σ3
(0)ck2,ν,σ4 (0)]〉, (11)
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TABLE I. Nonzero elements of Vv,u.

σ1 = σ2 = σ3 = σ4 σ1 = σ2 �= σ3 = σ4 σ1 = σ4 �= σ2 = σ3

μ = ν = κ = λ — −U U

μ = κ �= ν = λ — −J J

μ = ν �= κ = λ −U + 3J −U + 2J J

μ = λ �= ν = κ U − 3J −J U − 2J

where N is the number of k points in the Brillouin zone
and ck,μ,σ (t ) is the Heisenberg representation of ck,μ,σ . We
define u = (κ, σ1; λ, σ2) and v = (μ, σ3; ν, σ4). Hereafter, we
consider the case q1 = q + l1Q and q2 = q + l2Q. The bare
susceptibility is given by

χ0u,v (q + l1Q, q + l2Q, ω)

= 1

N

∑
p0,m,n,ε,ε′

f (Ep0+q,ε ) − f (Ep0,ε
′ )

Ep0+q,ε − Ep0+q,ε′ − (ω + iη)

× ψλ,σ2,m+l1;ε (p0 + q)ψ∗
μ,σ3,m+n+l2;ε (p0 + q)

× ψ∗
κ,σ1,m;ε′ (p0)ψν,σ4,m+n;ε′ (p0), (12)

where f (E ) is the Fermi distribution function and the summa-
tion with respect to p0 runs over the reduced Brillouin zone.
We calculate the dynamical susceptibility in the multiorbital
RPA [44], i.e.,

χu,v (q + l1Q, q + l2Q, ω)

= χ0u,v (q + l1Q, q + l2Q, ω)

+
∑

u′,v′,l ′
χ0u,v′ (q + l1Q, q + l ′Q, ω)Vv′,u′χu′,v

× (q + l ′Q, q + l2Q, ω), (13)

with the interaction matrix V listed in Table I. We abbreviate
Eq. (11) as χu,v (q, ω) when q1 = q2 = q.

D. Dynamical magnetic susceptibility

Before calculating the RIXS spectra, we investigate the
dynamical magnetic susceptibility, whose imaginary part di-
rectly corresponds to the excitation spectra observed in INS
experiments. The α component of the dynamical magnetic
susceptibilities is given by

χαα (q, ω) = i

N

∫ ∞

0
dteiωt

〈[
Mα

q (t ), Mα
−q(0)

]〉
, (14)

where the magnetic moment is defined in Eq. (10).
We carry out the calculation of the dynamical susceptibility

with N = 50 × 50 meshes for k-space integration. Figure 2
shows the imaginary part of the total dynamical magnetic
susceptibility Imχ (q, ω) = Im

∑
α χαα (q, ω). In Fig. 2(a), we

consider the case where the SOC term in the Hamiltonian
is neglected, i.e., ζ = 0. In this case, we observe the strong
intensity at q = (π, π ), which corresponds to the transverse-
mode excitation. Since the system is free from SOC, the
quantization axis of the antiferromagnetically ordered spins
can be chosen in an arbitrary direction, and therefore the exci-
tation gap of the spin-transverse mode closes at q = (π, π ).
Also, the peak position of the excitation goes to ω = 0 at

FIG. 2. Calculated imaginary part of the dynamical magnetic
susceptibility (a) without SOC (ζ = 0) and (b) with SOC (ζ =
0.15 eV). We set the broadening parameter η = 3 meV.

q = (0, 0). This behavior is the same as the spin-wave dis-
persion of the AFM Heisenberg model [22] or the single-band
Hubbard model at half filling in the AFM state [45]. Thus, the
excitation spectra can be interpreted to be the usual spin-wave
dispersion of the AFM state when the SOC is absent.

Now we turn on the SOC term. The magnitude of the SOC
is set to be ζ = 0.15 eV. The imaginary part of the dynamical
susceptibility, in this case, is shown in Fig. 2(b). We find that
the strong intensity appears at q = (π, π ), as in the case of
ζ = 0, but the peak position locates at finite frequency; i.e.,
the collective excitation is gapped at this point. This is because
the finite ζ and t ′ in the Hamiltonian cooperatively intro-
duce the magnetic anisotropy to the system. Apart from the
case without SOC, the dispersion of the collective excitation
reaches a maximum at q = (0, 0). This behavior resembles
the spin-wave dispersion in a typical XY model [22]. By de-
composing the dynamical magnetic susceptibility according
to the direction of magnetization, we find that this excitation
dispersion originates from the in-plane transverse component.
The out-of-plane transverse component shows a maximum
at q = (π, π ) and a minimum at q = (0, 0), which can be
seen as a comparably weak intensity in Fig. 2(b). The in-
plane and out-of-plane transverse modes are degenerate along
q = (π/2, π/2) to (π, 0).

The characteristic behaviors of the calculated dynam-
ical susceptibility mentioned above are qualitatively con-
sistent with the spectra observed in previous INS exper-
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FIG. 3. Calculated longitudinal component of the imaginary part
of dynamical magnetic susceptibility Im χ l at q = (π, π ) as a func-
tion of U . We set ζ = 0.15 eV and the broadening parameter η =
3 meV.

iments [8,9,22], except for the longitudinal mode. This
longitudinal mode is also observed in the Raman scattering
experiment [46]. In the previous INS experiment, the longitu-
dinal mode appears just above the in-plane transverse mode
in its spectra [22]. However, there is no such dispersion in
the present result [see Fig. 2(b)]. To clarify the reason, we
investigate the U dependence of the longitudinal component
of the susceptibility. We expect that the longitudinal mode
should be gapless at the normal-to-AFM transition point. For
simplicity, we set t ′ = 0 to align the S and L vectors along
the x-axis direction. The result is shown in Fig. 3. We find
that the AFM transition occurs at U � 0.5 eV, and above
the transition point, the newly emerged peak corresponding
to the longitudinal mode excitation rapidly grows to a large
frequency as U increases. We therefore conclude that the
peak position of the longitudinal mode is overestimated due
to the mean-field approximation, which becomes comparable
to the energy of orbital excitations. We believe that, although
the calculated longitudinal mode is not consistent with the
experiment, no problems arise in discussing the RIXS spectra.
This is because the dominant excitation spectra in the RIXS
come from the transverse mode, which is well reproduced in
our calculations.

III. RIXS SPECTRUM

In this section, we calculate the RIXS spectra in Ca2RuO4

tuned for the Ru L3 edge. First, we derive the formula of
spectral intensity in the fast-collision approximation, where
the dynamical susceptibilities calculated in Sec. II are in-
cluded. Then, the calculated RIXS spectra are analyzed from
the viewpoint of collective excitations.

A. Formulation of RIXS spectral intensity

We briefly introduce the direct RIXS process in ruthenate.
After irradiation of an x ray with the Ru L-edge frequency, the
following three-step process occurs [47,48]. First, the incident
photon excites the electron in the core-level 2p orbital in Ru
atoms to the conduction band. Next, the electron in the con-
duction band interacts with the electrons in the valence band.

Finally, the electron in the valence band falls into the hole
of the core-level 2p orbital, simultaneously emitting photons.
Since the incident photon and emitted photon have a different
energy, this scattering process is inelastic.

We now introduce the dipole transition operator Dk,ε

(D†
k,ε

), which describes the x-ray absorption (emission) as

Dk,ε =
∑

k′, j, jz,μ,σ

c j, jz
μ,σ (ε)c†

k′+k,μ,σ
pk′, j, jz , (15)

where k and ε are the wave vector and polarization vector of
the x ray, respectively, and pk, j, jz is the annihilation operator
of an electron in the core-level Ru 2p-orbital with total angular
momentum j, whose z component is jz. The matrix element
of the dipole operator is given by

c j, jz
μ,σ (ε) = 〈4d, μ, σ |ε · r|2p, j, jz〉, (16)

where |4d, μ, σ 〉 and |2p, j, jz〉 represent the states with 4d
and 2p orbitals in the Ru atom. The matrix elements are listed
in Appendix A. From the resonance terms of the second-order
response of the external field, the scattering intensity of reso-
nant x ray is given by

IRIXS(q = kin − kout, ω = ωin − ωout, εin, εout )

∝
∑

f

∣∣∣∣〈 f |D†
kout,εout

|n〉〈n|
ωin + Ei − En + i�

Dkin,εin |i〉
∣∣∣∣
2

× δ(ω − E f + Ei ), (17)

where Ei (E f ) is the energy of the initial (final) state, En is
the energy of the intermediate state, εin (εout) is polariza-
tion vector of incoming (outgoing) x ray, and 1/� represents
the lifetime of the intermediate state. Hereafter, we consider
the Ru L3-edge x-ray absorption, i.e., j = 3/2. Furthermore,
to calculate the RIXS intensity, we apply the fast-collision
approximation; i.e., the lifetime of the intermediate state is
assumed to be sufficiently short compared to the scale of the
electron motion, so we neglect the dynamics in the intermedi-
ate state. With this approximation, Eq. (17) is simplified as

IRIXS(q, ω, εin, εout ) ∝ Im
∑
u,v

χuv (q, ω)

×
∑

jz

c j, jz
κ,σ1

(εout )c
j, jz
λ,σ2

(εin )∗

×
∑

j′z

c
j, j′z
μ,σ3 (εin )c

j, j′z
ν,σ4 (εout )

∗. (18)

We assume that the polarization of the outgoing x rays is
not taken into account, i.e., the intensity of RIXS spectral is
calculated as a sum of the spectra with σ - and π -polarized
εout.

Figure 4 illustrates the scattering geometry assumed in
the calculation of the RIXS spectra. kin (kout) is the wave
vector of the incident (scattered) x ray, and we assume that the
angle between kin and kout is equal to π/2, and the scattering
plane is perpendicular to the square lattice. We denote the
angle between the xy plane and kin as θ . Since we consider the
two-dimensional system, the momentum transfer q is equal
to kin − kout projected onto the xy plane. The energy of the
dipole-active L3 edge of Ru atom is about 2838.5 eV [25],
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Ru

x

y

kin kout

FIG. 4. The scattering geometry used in the calculations of RIXS
spectra. The gray spheres represent Ru atoms. We assume that the
scattering plane is perpendicular to the square lattice. The direction
of σ (π ) polarization is perpendicular (parallel) to the scattering
plane.

which corresponds to |kin| � |kout| � 1.76π . Therefore, by
varying the angle of the incident x ray, the momentum transfer
can sweep the entire Brillouin zone. We investigate the RIXS
spectra in both low-energy and high-energy regions.

B. Simulated RIXS spectra

The RIXS spectra of σ and π polarization for q = (−π, 0)
to (π, 0) with kin and kout in the (ky = 0) plane are plotted in
Figs. 5(a) and 5(b). In this case, the angle of incident light is
taken from θ = 0.382π to 0.118π . The results show that when
the incident light is σ polarized, the strong intensity originat-
ing from the in-plane transverse mode appears at (−π, 0).
On the other hand, when the incident light is π polarized,
the strong intensity appears at (π, 0). We also investigate the
RIXS spectra of σ and π polarization for q = (−π,−π ) to
(π, π ) with kin and kout in the (kx = ky) plane, which are
plotted in Figs. 5(c) and 5(d). In this case, the angle of incident
light is taken from θ = 0.442π to 0.058π . We find that only
the out-of-plane transverse mode is observed in the σ polar-
ization, while the in-plane transverse mode appears in the π

polarization.
Finally, we investigate the RIXS spectra in the high-energy

region. Figure 6 shows the RIXS spectra obtained by varying
the angle θ with kin and kout in the (ky = 0) plane; the results
for σ (π ) polarization are shown in Fig. 6(a) [Fig. 6(b)]. We

FIG. 6. Calculated RIXS spectra, where the incoming vector has
(a) σ poralization and (b) π polarization. Each line is plotted for
the angle of incident light θ between 0 and π/2 from bottom to top
with the increments of π/20. We set the broadening parameter η =
30 meV.

find three peaks around 50 meV, 200 meV, and 500 meV. The
50 meV peak corresponds to the collective excitation of the
transverse mode discussed in Sec. II D. The 200 (500) meV
peak originates from the excitation from the dxy orbital to
dyz/xz orbital with spin conservation (spin flipping) (see Ap-
pendix B). We find that the intensity of the RIXS spectra in the
π polarization is much larger than that in the σ polarization. In
particular, the 200 and 500 meV peaks for π polarization show
significant intensity at θ = 0, which gradually decrease by
increasing θ from zero to π/2; the result is consistent with the
θ dependence of the asymmetric peak at 320 meV observed in
the experiment [25].

Therefore, using RIXS, we can selectively observe the
collective mode excitations of Ca2RuO4 by changing the
polarization of the incident light. In other words, the measure-
ment by RIXS has the potential to distinguish a particular kind
of collective mode from the excitation spectra.

FIG. 5. Calculated dispersion of the RIXS spectra. The momentum transfer is from q = (−π, 0) to (π, 0) in (a) and (b), and is from
q = (−π,−π ) to (π, π ) in (c) and (d). The incident x rays are σ polarized in (a) and (c) and π polarized in (b) and (d). We set the broadening
parameter η = 3 meV.
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IV. CONCLUSION

We have analyzed the collective excitations in Ca2RuO4

by the itinerant electron approach. We have introduced the
three-orbital Hubbard model with SOC, which is an effective
model of Ca2RuO4. We have applied the mean-field approxi-
mation to the model and have obtained the AFM ground state.
Using this state, we have calculated the dynamical magnetic
susceptibility by RPA and have obtained the excitation spectra
of in-plane and out-of-plane transverse modes. We thus found
that the excitation spectra are consistent with the spectra ob-
served in the previous INS experiments, which confirms the
validity of this model.

To calculate the RIXS spectra, we have applied the fast-
collision approximation. Using the dynamical susceptibility
calculated in the RPA, we have obtained the Ru L3-edge RIXS
spectra of Ca2RuO4. We have found that the RIXS spectra
are quite asymmetric concerning momentum transfer k and
−k and that the in-plane and out-of-plane transverse modes
can be distinguished by varying the polarization of incident
light.

The results obtained in this paper are consistent with the
experimental results, except for the longitudinal mode ob-
served in the INS spectra. This may be due to the fact that
the mean-field approximation overestimates the magnitude of
AFM order, so the peak position of the longitudinal-mode ex-
citation appears higher in energy than expected. To obtain the
longitudinal mode with appropriate excitation energy in the
itinerant electron approach, it is necessary to go beyond the
mean-field approximation and RPA, incorporating the quan-
tum fluctuations driven by electron-electron correlations more
accurately. However, we stress that our results properly repro-
duce the excitation spectra of the transverse mode and that the
predicted RIXS spectra can advance our understanding of this
material, which we hope will lead to a better understanding of
the character of collective excitations in strong SOC materials
in general. We expect that the selective behavior for the polar-
ization of incident light in the RIXS spectra will be observed
experimentally in the future.
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APPENDIX A: LIST OF MATRIX ELEMENTS
OF DIPOLE OPERATOR

To obtain the intensity of the RIXS spectra, we should
calculate the matrix elements of the dipolar operator given in
Eq. (16). If we write the polarization vector as ε = (εx, εy, εz ),
then the matrix element in |n, l, m〉 basis, where n, l , and m
are principal, azimuthal, and magnetic quantum numbers, is

TABLE II. c j, jz
μ,σ (εα ) of the t2g basis with j = 3/2 and 1/2.

j = 3/2 j = 1/2

α(μ, σ )\ jz 3/2 1/2 −1/2 −3/2 1/2 −1/2

x (xz, ↑) –
√

2/15 – – 1/
√

15 –

(xz, ↓) – –
√

2/15 – – −1/
√

15

(xy,↑) −i/
√

10 – −i/
√

30 – – −i/
√

15

(xy,↓) – −i/
√

30 – −i/
√

10 i/
√

15 –

y (yz, ↑) –
√

2/15 – – 1/
√

15 –

(yz, ↓) – –
√

2/15 – – −1/
√

15

(xy,↑) −1/
√

10 – 1/
√

30 – – 1/
√

15

(xy,↓) – −1/
√

30 – 1/
√

10 1/
√

15 –

z (yz, ↑) −i/
√

10 – −i/
√

30 – – −i/
√

15

(yz, ↓) – −i/
√

30 – −i
√

10 i/
√

15 –

(xz, ↑) −1/
√

10 – 1/
√

30 – – 1/
√

15

(xz, ↓) – −1/
√

30 – 1/
√

10 1/
√

15 –

given by

〈n′, l ′, m′|ε · r|n, l, m〉

=
√

4π

3

∫ ∞

0
drr3R∗

n′l ′ (r)Rnl (r)

×
[−εx + iεy√

2
c1(l ′, m + 1; l, m)δm′,m+1

+ εx + iεy√
2

c1(l ′, m − 1; l, m)δm′,m−1

+εzc
1(l ′, m; l, m)δm′,m

]
, (A1)

where Rnl (r) is the radial wave functions of a hydrogen atom
and cl1 (l ′, m′; l2, m2) is the Gaunt coefficient defined as the
integral over three spherical harmonics. To obtain the L-edge
scattering amplitude for Ru atoms, we have to calculate the
dipole matrix element between 2p and t2g of 4d orbitals. By
transforming the basis of Eq. (A1), we can obtain such matrix
elements as

c j, jz
μ,σ (εα ) = 〈μ, σ |εα · rα| j, jz〉, (A2)

whose specific values are listed in Table II.

APPENDIX B: SPIN-ORBITAL RESOLVED
SUSCEPTIBILITY

We investigated the spin-orbital resolved susceptibility to
interpret the excitation spectra. Figure 7(a) shows the total
magnetic susceptibility, showing the low-energy (<50 meV)
peaks originating from the transverse mode and high-energy
(∼200 meV) peaks. Next, we calculated spin-orbital resolved
susceptibility, which is given by

χ (q, ω) = i

N

∫ ∞

0
dteiωt

〈[
O†

q(t )O−q(0)
]〉
, (B1)

with

Oq =
∑

k

c†
k(O3 ⊗ O2)ck+q, (B2)

where O3(2) is a matrix in orbital (spin) space.
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FIG. 7. Calculated susceptibilities at q = (0, 0) and q = (π, π ).
(a) Total magnetic susceptibility. (b) Spin-flip susceptibility in dyz

orbital. (c) Spin-flip susceptibility between dyz and dxz orbitals.
(d) Spin-conservation susceptibility between dyz and dxy orbitals.
(e) Spin-flip susceptibility between dyz and dxy orbitals. We set the
broadening parameter η = 30 meV.

Figure 7(b) shows the spin-flip susceptibility in the dyz

orbital with

O3 ⊗ O2 =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ ⊗

(
1 i exp

(
i π

4

)
i exp(−i π

4 ) −1

)
.

(B3)

This susceptibility contributes to transverse mode
(<50 meV).

Figure 7(c) shows the spin-flip susceptibility between the
dyz and dxz orbitals with

O3 ⊗ O2 =
⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ ⊗

(
1 i exp

(
i π

4

)
i exp(−i π

4 ) −1

)
.

(B4)

This susceptibility does not contribute to the low-energy exci-
tation.

Figure 7(d) shows the spin-conservation susceptibility be-
tween the dyz and dxy orbitals with

O3 ⊗ O2 =
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ ⊗

(
1 0
0 1

)
. (B5)

This susceptibility has a peak at 200 meV.
Figure 7(e) shows the spin-flip susceptibility between the

dyz and dxy orbitals with

O3 ⊗ O2 =
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ ⊗

(
1 i exp

(
i π

4

)
i exp(−i π

4 ) −1

)
.

(B6)

This susceptibility has a peak at 500 meV, which does not
contribute to the INS spectrum but contributes to the RIXS
spectrum (see Fig. 6).
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