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Construction of the spectral function from noncommuting spectral moment matrices
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The LDA+U method is widely used to study the properties of realistic solids with strong electron correlations.
One of its main shortcomings is that it does not provide direct access to the temperature dependence of material
properties such as the magnetization, the magnetic anisotropy energy, the Dzyaloshinskii-Moriya interaction,
the anomalous Hall conductivity, and the spin-orbit torque. While the method of spectral moments allows us
in principle to compute these quantities directly at finite temperatures, the standard two-pole approximation
can be applied only to Hamiltonians that are effectively of single-band type. We do a first step to explore if
the method of spectral moments may replace the LDA+U method in first-principles calculations of correlated
solids with many bands in cases where the direct assessment of the temperature dependence of equilibrium
and response functions is desired: The spectral moments of many-band Hamiltonians of correlated electrons do
not commute and therefore they do not possess a system of common eigenvectors. We show that nevertheless
the spectral function may be constructed from the spectral moments by solving a system of coupled nonlinear
equations. Additionally, we show how to compute the anomalous Hall conductivity of correlated electrons from
this spectral function. We demonstrate the method for the Hubbard-Rashba model, where the standard two-
pole approximation cannot be applied because spin-orbit interaction (SOI) couples the spin-up and the -down
bands. In the quest for new quantum states that arise from the combination of SOI and correlation effects, the
Hartree-Fock approximation is frequently used to obtain a first approximation for the phase diagram. We propose
that using the many-band generalization of the self-consistent moment method instead of Hartree-Fock in such
exploratory model calculations may improve the accuracy significantly, while keeping the computational burden
low.
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I. INTRODUCTION

The LDA+U approach is a very popular method to com-
pute the electronic structure of realistic solids with strong
electron correlations [1–4]. While it is less accurate than dy-
namical mean field theory (DMFT) [5] it is computationally
faster.

Recently, the demand to compute spintronic material prop-
erties such as the Dzyaloshinskii-Moriya interaction [6], the
spin-orbit torque [7–10], and the Hall coefficient [11–14]
at finite temperatures has increased. While LDA+DMFT
provides direct access to the temperature dependence of equi-
librium and response property tensors, the LDA+U scheme
is limited to zero temperature unless it is extended by sub-
sequent calculations of the effects of finite temperature, e.g.,
by Monte Carlo simulations, by classical atomistic spin mod-
els, or by Green’s function theory [15–17]. This poses the
question of whether extending LDA+U by additional higher-
order correlation functions beyond the mean field level will
allow us to compute these material properties directly at fi-
nite temperature with a computational cost comparable to
LDA+U calculations, i.e., a computational cost much smaller
than the one of LDA+DMFT. This question is particularly
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important in view of response tensors such as the anoma-
lous Hall effect (AHE) [18–20] or the spin-orbit torque [21],
which often require a much finer k-point sampling to achieve
convergence than the calculation of total energies and mag-
netic moments does, e.g., due to the spiky Berry curvature of
the AHE.

The self-consistent spectral moment method explored in
the 1980s on the basis of a single-band Hubbard model
is an alternative approach able to predict realistic results
for the Curie temperatures in Fe and Ni [22–24] and it is
computationally much less demanding than LDA+DMFT.
Similarly to LDA+U and LDA+DMFT, it improves LDA
by adding a Hubbard-type interaction to it. While the Kubo-
Bastin equation for the electrical conductivity [25,26] does
not hold for correlated electrons, the method of spectral mo-
ments can also be used to compute the response functions
avoiding the independent particle approximation of the Kubo-
Bastin equation [27]. In this paper we embark on extending
the self-consistent spectral moment approach to a practical
computational method that can be combined with density
functional theory to study the finite-temperature properties of
realistic magnetic materials and spintronic modules. For this
we need to go beyond the single-band approximation of the
original method. The success of our approach is explicitly
shown for the relativistic Rashba-Hubbard model. Avoiding
the solution of the quantum impurity problem inherent to the
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LDA-DMFT method, our approach to the finite-temperature
problem is expected to be computationally much faster.

We define the nth spectral moment matrix at k point k by
[22,23,28]

M (n)
k = 1

h̄

∫ ∞

−∞
Sk(E )EndE , (1)

where Sk(E ) is the spectral density matrix at energy E . Since
the spectral moments may alternatively be expressed in terms
of thermal averages of anticommutators such as [22,23,28]

M̃ (1)
kαβ

= 1

N

∑
i j

eik·(Ri−R j )〈[[ciα,H]−, c†
jβ ]+〉, (2)

where c†
jβ creates an electron in state β at lattice site j (po-

sition R j), ciα annihilates an electron in state α at lattice site
i (position Ri), H = H − μN̂ , H is the Hamiltonian of the
system, N̂ is the number operator, μ is the chemical potential,
[. . . ]− denotes the commutator, and [. . . ]+ is the anticommu-
tator, a closed system of equations for Sk(E ) may be obtained
by requiring that M (n)

k = M̃
(n)
k . Usually, the first four moments

are considered, i.e., n = 0, 1, 2, 3. In Eq. (2) we give only
the anticommutator for the first moment. The nth moment
contains n commutators, which are generated by applying the
equation of motion n times. Explicit expressions are given in
Appendix A.

In the single-band Hubbard model the electron can only
be in the state of spin up (↑) or spin down (↓), i.e., α =↑,↓,
and one may choose the spectral function and the spectral mo-
ments to be diagonal in the spin indices, i.e., M (n)

kαβ
= M (n)

kα
δαβ

and Skαβ = Skαδαβ . Considering the first four moments, n =
0, 1, 2, 3, one obtains four equations for α =↑ and four
equations for α =↓. These four equations may be used to
determine the four unknown coefficients akα1, akα2, Ekα1, and
Ekα2 in the two-pole approximation [28]

Skα (E − μ)

h̄
= akα1δ(E − Ekα1) + akα2δ(E − Ekα2) (3)

of the spectral density. Here, Ekα1 and akα1 are the band
energy and the spectral weight of the lower Hubbard band,
while Ekα2 and akα2 are those of the upper Hubbard band. The
alternative expression of the third moment M (3)

k↑ in terms of the
thermal average of an anticommutator contains higher-order
correlations such as 〈c†

i↑c†
i↓c j↓c j↑〉, which lead to a much more

realistic description of the effect of finite temperature than the
mean field level can provide.

In order to replace LDA+U by the method of spectral
moments one might consider to map the electronic structure
of a standard LDA calculation first onto a set of maximally
localized Wannier functions (MLWFs) [29]. ciα may then
be considered to be the annihilation operator of an electron
in the MLWF state |Riα〉. Note that MLWFs are routinely
used for the Wannier interpolation of response functions such
as the AHE [20] and the spin-orbit torque [21]. When one
wishes to compute such response functions, the mapping of
the electronic structure onto MLWFs is therefore often not an
additional complication because this step will have to be done
in any case. Some implementations of LDA+U already use
Wannier functions as basis set [30].

The question now arises of how to modify Eq. (3) when we
have NW states, i.e., α = 1, . . . , NW, instead of only the two
states α =↑,↓ in the single-band Hubbard model. An obvious
generalization of Eq. (3) is given by

Skαβ (E − μ)

h̄
=

2∑
p=1

NW∑
γ=1

akγ pVkαγ pV∗
kβγ pδ(E − Ekγ p), (4)

where p = 1 denotes the lower Hubbard band, while p = 2
denotes the upper one, and Vkαγ p is the component α of a
normalized vector associated with the band described by the
indices γ and p with the band energy Ekγ p. This approxi-
mation for Skαβ (E ) is Hermitian, i.e., Skαβ (E ) = [Skβα (E )]∗.
The unknown parameters Ekγ p, akγ p, and Vkαγ p need to be
determined by equating Eqs. (1) and (2). To demonstrate how
this may be achieved is the central goal of this paper.

The difficulty to determine the unknown parameters in
Eq. (4) may be illustrated by comparing it to the spectral
function of a closed system with NW independent electrons,
which is given by

S̄kαβ (E − μ) = h̄
NW∑
γ=1

UkαγU∗
kβγ δ(E − Ekγ ), (5)

where the unitary NW × NW matrices Uk describe the
transformation between the basis functions |φkβ〉 and the
eigenfunctions |ψkα〉,

|ψkα〉 =
∑

β

Ukβα|φkβ〉, (6)

which are eigenfunctions with energy Ekα . Clearly, the NW

columns of the matrix Uk are the NW eigenvectors of the mo-
ments M (n)

k of S̄k(E ) with eigenvalues (Ekα − μ)n. In contrast,
the unknown vectors Vkαγ p are generally not the eigenvec-
tors of the spectral moments M (1)

k , M (2)
k , and M (3)

k because
these spectral moments do not commute for correlated elec-
trons and therefore they do not possess a common system of
eigenvectors.

Another argument to formulate this difficulty is as follows:
The band γ splits into the lower Hubbard band and the upper
Hubbard band and generally Vkαγ 1 �= Vkαγ 2. Consequently,
we need to determine 2NW state vectors, but each spectral
moment matrix M (n)

k has only NW eigenvectors. Thus, the
eigenvectors of the spectral matrices are not eigenstates of
the Hamiltonian in the case of correlated electrons, which is
a major difference when compared with closed systems of
uncorrelated electrons.

The interplay of spin-orbit interaction (SOI) with electron
correlations may lead to new and exotic quantum phases
[31,32]. In order to obtain a first approximation for the phase
diagram the Hartree-Fock approximation is frequently used
in order to explore new quantum states that arise from the
combination of SOI and correlation effects [33–35]. Since the
treatment of the higher-order correlation 〈c†

iαc†
jβclγ cmδ〉 within

the self-consistent moment method goes beyond the Hartree-
Fock level, one may expect that this method may improve the
accuracy of the phase diagram significantly, while keeping
the computational effort low. Broken space-inversion sym-
metry gives rise to Rashba-type SOI, which promotes many
important effects in spintronics [36,37]. The Hubbard-Rashba
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model [35,38] combines the Rashba-type SOI with electron
correlations. Since the Rashba-type SOI couples the spin-up
and spin-down bands, the two-pole approximation (3) cannot
be applied to the Hubbard-Rashba model. Therefore, we take
the Hubbard-Rashba model as an example to demonstrate our
method to construct the spectral function.

The rest of this paper is organized as follows: In Sec. II
we describe how to determine the unknown parameters Ekγ p,
akγ p, and Vkαγ p in Eq. (4) in order to determine the ground
state and the band structure of the correlated system. In
Sec. III we discuss how to compute correlation functions of
the type 〈c†

iαc†
jβclγ cmδ〉 using the method of spectral moments.

These correlation functions are needed to compute the third
moments M̃ (3)

kαβ
. In Sec. IV A we discuss how to obtain re-

sponse functions based on the method of spectral moments
for systems of independent electrons. This section provides
useful guidelines to determine the response functions for cor-
related electrons in Sec. IV B. In Sec. V we demonstrate the
method for the Hubbard-Rashba model. Section VI provides
an outlook of how this approach may be combined with DFT.
This paper ends with a summary in Sec. VII.

II. GROUND STATE AND BAND STRUCTURE

The moments M̃
(n)
k [Eq. (2)] are Hermitian NW × NW ma-

trices. A Hermitian NW × NW matrix is fully defined by N2
W

real-valued parameters because its diagonal is real valued and
the upper triagonal is the complex conjugate of the lower
triagonal. Consequently, we may map each moment M̃

(n)
k onto

an N2
W-dimensional real-valued vector M(n)

k . To be concrete,
we fill the first NW(NW + 1)/2 components of the vector
M(n)

k with the real parts of the elements from the upper triag-

onal of M̃
(n)
k , and the remaining NW(NW − 1)/2 components

we fill with the imaginary parts of the elements from the upper
triagonal. We define the N2

W × 4 matrix Mk by

Mk = [
M(0)

k ,M(1)
k ,M(2)

k ,M(3)
k

]
. (7)

Inserting the approximation (4) into (1) yields

M (n)
kαβ

=
2∑

p=1

NW∑
γ=1

akγ pWkαβγ p(Ekγ p − μ)n, (8)

where we defined Wkαβγ p = Vkαγ pV∗
kβγ p. We may consider

Wkαβγ p as the row-α column-β element of a Hermitian matrix
Wkγ p. Since γ = 1, . . . , NW and p = 1, 2, there are 2NW

such matrices at a given k point k. As the Hermitian NW ×
NW matrix Wkγ p is equivalent to a N2

W-dimensional real-
valued vector W̃kγ p, we define the N2

W × 2NW matrix Wk =
[W̃k11 . . .W̃kNW2]. Additionally, we construct the 2NW × 4
matrix Ak by setting the element Akγ pm in row (γ , p) and col-

umn m to akγ p(Ekγ p − μ)m−1. The requirements M (n)
k = M̃

(n)
k

with n = 0, 1, 2, 3 can now be formulated in compact form by

WkAk = Mk. (9)

The moments computed from the thermal averages of anti-
commutator expressions, e.g., Eq. (2), are stored in the matrix
Mk. In the step of solving Eq. (9) they are considered as fixed
given input. The unknown band energies and spectral weights

are contained in the matrix Ak. The matrix Wk is constructed
from the unknown state vectors Vkγ p.

Equation (9) defines 4N2
W nonlinear equations because this

is the number of matrix elements in Mk. Each vector Vkγ p

has NW components and there are 2NW such vectors. Since
Vkγ p is required to be a normalized vector and since the gauge
transformation Vkγ p → ei�Vkγ p has no effect on Wkαβγ p =
Vkαγ pV∗

kβγ p, every Vkγ p is determined by 2(NW − 1) real-
valued unknowns, i.e., 4(N2

W − NW) unknown coefficients
need to be determined to define all vectors Vkγ p. Additionally,
we need to determine the 2NW unknown energies Ekγ p and the
2NW unknown spectral weights akγ p. Thus, Eq. (9) defines
a system of 4N2

W nonlinear equations for 4N2
W unknown pa-

rameters. Since the number of unknowns matches the number
of available equations, our approximation (4) for the spectral
function is justified. This proves that the spectral function
may be constructed from the spectral moments even in the
correlated many-band case, which is a central result of this
paper.

In order to solve Eq. (9) numerically one may use the
standard equation solvers available in many mathematical li-
braries. These equation solvers typically require the user to
formulate the problem in the form

fm(x) = 0, (10)

where the components of the 4N2
W-dimensional vector x are

the unknown coefficients and the 4N2
W functions fm(x) may

be obtained by rewriting Eq. (9) as

Fk = WkAk − Mk (11)

and setting the mth function fm(x) to the mth entry of the
matrix Fk, which has 4N2

W entries in total. From the equa-
tions above it is clear that it is straightforward to obtain
expressions for the derivatives dfm(x)/dx j . Thus, one may
also provide the Jacobian to the equation solver.

The calculation of the moments M̃ (n)
kαβ

requires the ther-

mal averages 〈c†
iαc jβ〉 as input. These thermal averages can

be computed easily from the spectral function Sk(E ), which
we discuss in the next section. However, since the spec-
tral function itself needs to be computed, a self-consistency
scheme is required: a starting guess for 〈c†

iαc jβ〉 needs to be
chosen. Using this starting guess, one may then evaluate the
spectral moments M̃ (n)

kαβ
for n = 0, 1, 2, 3. Examples for the

expressions of M̃ (n)
kαβ

are given in Appendix A for the Hubbard-

Rashba model. The moments M̃ (n)
kαβ

determine the right-hand
side of Eq. (9) completely. Next, one solves Eq. (9) for the
unknown coefficients Ekγ p, akγ p, and Vkγ p, which determine
the left-hand side of Eq. (9). Using these, one evaluates the
spectral function according to Eq. (4). Now, one may compute
new averages 〈c†

iαc jβ〉 employing this spectral function. This
completes the first iteration of the self-consistency loop. At
the beginning of the next iteration, one uses the new averages
〈c†

iαc jβ〉 to compute the moments M̃ (n)
kαβ

. The procedure is re-
peated until self-consistency is reached, i.e., it is repeated until
the averages 〈c†

iαc jβ〉 used as input to evaluate the spectral
moments M̃ (n)

kαβ
agree with the output averages 〈c†

iαc jβ〉.
For the calculation of the moments M̃ (3)

kαβ
we may need in

addition correlation functions of the type 〈c†
iαc†

jβclγ cmδ〉. Their
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computation is discussed in the next section and it may require
correlation functions 〈c†

i′α′c
†
j′β ′cl ′γ ′cm′δ′ 〉 as input. Therefore,

in order to compute 〈c†
iαc†

jβclγ cmδ〉 we use a self-consistent
procedure as well and we include the correlation functions
〈c†

iαc†
jβclγ cmδ〉 into the self-consistency scheme: Not only

〈c†
iαc jβ〉 but also the correlation functions 〈c†

iαc†
jβclγ cmδ〉 are

computed self-consistently, i.e., the calculation is considered
converged when their computed output agrees to their input.

The question poses itself if one may interpret Eq. (9) as
a generalization of the well-known eigenvalue problem of
matrix diagonalization, which needs to be solved in the case
of closed systems of independent particles. Therefore, let us
recall this noninteracting case. Inserting Eq. (5) into Eq. (1)
yields

M (n)
kαβ

=
NW∑
γ=1

UkαγU∗
kβγ [Ekγ − μ]n. (12)

Therefore, one may pick any value n > 0 and obtain the
eigenvalues from the spectral moment matrix M (n)

k . Since
the eigenvalue problem of matrix diagonalization is an im-
portant problem in linear algebra, one usually uses linear
algebra algorithms to diagonalize M (n)

k and to find thereby the
eigenvalues [Ekγ − μ]n and the eigenvectors, which are the
columns of the unitary matrix Uk.

However, one may easily cast the problem (12) into the
form of Eq. (9): We may consider W̄kαβγ = UkαγU∗

kβγ as the
row-α column-β element of a Hermitian matrix W̄kγ , rewrite
it as a N2

W -dimensional vector, and collect all these NW vectors
(γ = 1, . . . , NW) in the N2

W × NW matrix W̄k. If we map the
moment M (n)

k onto an N2
W -dimensional vector M (n)

k , we may
write Eq. (12) in the form of Eq. (9):

W̄ kA(n)
k = M (n)

k , (13)

where the γ th entry in the vector A(n)
k is the eigenvalue

[Ekγ − μ]n.
Equation (13) defines N2

W equations. The unitary matrix Uk

contains NW normalized vectors. Since their phase does not
matter, only 2N2

W − 2NW real parameters are needed to deter-
mine these vectors. However, the columns of the matrix Uk

are mutually orthogonal. This reduces the number of indepen-
dent real parameters needed to determine Uk by N2

W − NW.
Thus, we need only N2

W − NW parameters to determine W̄ k.
Since we need to find the NW eigenvalues [Ekγ − μ]n as well,
N2

W parameters need to be found in total, which matches the
number of available equations. Therefore, one may argue that
Eq. (9) is a generalization of the standard eigenvalue problem,
which needs to be used when the bands of correlated electron
systems split into lower and upper Hubbard bands, while it
is equivalent to the standard eigenvalue problem when the
independent particle approximation is used, i.e., when the
upper Hubbard bands are not considered.

III. CORRELATION FUNCTIONS

In Appendix A we give explicit expressions for the first
four moments of the single-particle spectral function for the
example of the Hubbard-Rashba model. In these expressions
correlation functions of the types 〈c†

iαc jβ〉 and 〈c†
iαc†

jβclγ cmδ〉

occur. These correlation functions may be computed from the
corresponding anticommutator spectral functions using the
spectral theorem [39]

〈c†
kα

ckβ〉 = 1

h̄

∫ ∞

−∞
dE f (E )Skβα (E − μ) (14)

and

〈c†
kα

c†
jβclγ cmδ〉 = 1

h̄

∫ ∞

−∞
dE f (E )Slγ mδ jβkα (E − μ), (15)

where f (E ) is the Fermi-Dirac distribution function.
In the case of 〈c†

kα
ckβ〉 the corresponding anticommutator

spectral function is simply the single-particle spectral function

Skβα (E ) = −1

2π

∫ ∞

−∞
dt e− i

h̄ Et 〈[ckβ, c†
kα

(t )]+〉, (16)

which we discuss above in the preceding section. However,

Slγ mδ jβkα (E ) =
∫ ∞

−∞
dt

−e− i
h̄ Et

2π
〈[c†

jβclγ cmδ, c†
kα

(t )]+〉 (17)

in Eq. (15) still needs to be determined.
For this we may use again the method of spectral moments,

i.e., we compute

K (n)
lγ mδ jβkα

= 1

h̄

∫
dE [E − μ]nSlγ mδ jβkα (E − μ) (18)

for n = 0 and 1 and require them to be equal to

K̃ (0)
lγ mδ jβkα

= 〈[c†
jβclγ cmδ, c†

kα
]+〉 (19)

and

K̃ (1)
lγ mδ jβkα

= 〈[c†
jβclγ cmδ, [H, c†

kα
]−]+〉, (20)

respectively. We need an approximation of Slγ mδ jβkα (E ) in
analogy to Eq. (4). The poles of Slγ mδ jβkα (E ) arise from the
time dependence of the operator c†

kα
(t ), i.e., the poles are

simply the energies Ekγ p discussed in the previous section. For
each of these 2NW poles a prefactor needs to be determined.
When α, β, γ , δ run from 1, . . . , NW the number of prefactors
is 2N5

W. However, there are only 2N4
W equations, if we use the

first two moments. This suggests that we need to make use
of Vkγ p as well in order to arrive at an equality between the
number of available equations and the number of unknown
coefficients.

Therefore, we approximate Slγ mδ jβkα (E ) by

Slγ mδ jβkα (E − μ)

h̄
=

∑
γ ′ p′

δ(E − Ekγ ′ p′ )Vkαγ ′ p′a(kγ ′ p′ )
lγ mδ jβ . (21)

When we fix the orbital indices γ , δ, β, the site indices l, m, j,
and the k point k we obtain 2NW equations if we consider
the first two moments and compute these moments for α =
1, NW. The number of unknown coefficients a(kγ ′ p′ )

lγ mδ jβ is like-
wise 2NW because (γ ′ p′) may take 2NW possible values. Thus,
the requirement K (n)

lγ mδ jβkα
= K̃ (n)

lγ mδ jβkα
provides 2NW linear

equations for 2NW unknowns a(kγ ′ p′ )
lγ mδ jβ .

The evaluation of the anticommutators

K̃ (1)
lγ mδ jβkα

= 〈[c†
jβclγ cmδ, [H, c†

kα
]−]+〉 (22)
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may require correlation functions of the type
〈c†

i′α′c
†
j′β ′cl ′γ ′cm′δ′ 〉. Therefore, the calculation of the

correlation functions 〈c†
iαc†

jβclγ cmδ〉 has to be performed
self-consistently, as explained in the previous section. In
Appendix B we provide examples for K̃ (n)

lγ mδ jβkα
.

IV. RESPONSE FUNCTIONS

A. Independent electrons

It is instructive to consider first the derivation of response
functions of independent electron systems using the method
of spectral moments because the standard procedure [25,26]
of evaluating the Kubo formula does not make use of this
method. Considering independent electrons first will allow us
to establish the basic steps needed to evaluate the response
functions based on the method of spectral moments for corre-
lated electrons in the next section.

To be concrete, we consider the response function of the
anomalous Hall effect, i.e., the AHE conductivity σxy, which
is given by

σxy = − e2

NV
lim
E→0

∑
k

ImGR
kvxvy

(E )

E
(23)

in terms of the retarded velocity-velocity correlation function
GR

vxvy
(E ), which is defined by

GR
kvxvy

(E ) = −i
∫ ∞

0
dt eiEt/h̄〈[vx(t ), vy(0)]−〉. (24)

Here, vx and vy are the x and y components of the velocity
operator, respectively, e is the elementary charge, V is the
volume of the unit cell, and N is the number of k points.

One standard derivation of the AHE conductivity uses
Wick’s theorem in order to evaluate GR

kvxvy
(E ) for independent

electrons. In order to use the method of spectral moments, one
instead needs to employ the spectral representation [39]

GR
kvxvy

(E ) =
∫ ∞

−∞
dE ′ Zkvxvy (E ′)

E − E ′ + i0+ (25)

to express GR
kvxvy

(E ) in terms of the corresponding spectral
function

Zkvxvy (t − t ′) =
∑

γ

fkγ

2π
〈ψkγ |[vx(t ), vy(t ′)]−|ψkγ 〉 (26)

with Fourier transform

Zkvxvy (E ) =
∫ ∞

−∞
dt eiEt/h̄Zkvxvy (t ), (27)

where fkγ is the Fermi factor for eigenstate γ at k point k.
Zkvxvy (t − t ′) is a commutator spectral function in contrast to
the single-particle spectral function (16).

For independent electrons, the first two commutator mo-
ments are easy to evaluate:

D̃(0)
kvxvy

=
∑

γ

fkγ 〈ψkγ |[vx, vy]−|ψkγ 〉

=
∑
γ γ ′

[ fkγ − fkγ ′]〈ψkγ |vx|ψkγ ′ 〉〈ψkγ ′ |vy|ψkγ 〉 (28)

and

D̃(1)
kvxvy

=
∑

γ

fkγ 〈ψkγ |[[vx,H]−, vy]−|ψkγ 〉

=
∑
γ γ ′

[ fkγ − fkγ ′][Ekγ ′ − Ekγ ]

×〈ψkγ |vx|ψkγ ′ 〉〈ψkγ ′ |vy|ψkγ 〉. (29)

Clearly, the spectral function

Zkvxvy (E ) = h̄
∑
γ γ ′

[ fkγ − fkγ ′]

× δ[E − (Ekγ ′ − Ekγ )]〈ψkγ |vx|ψkγ ′ 〉〈ψkγ ′

× |vy|ψkγ 〉 (30)

reproduces these first two moments. Using Eq. (25) we get the
corresponding retarded Green function

GR
kvxvy

(E ) = h̄
∑
γ γ ′

[ fkγ − fkγ ′]
〈ψkγ |vx|ψkγ ′ 〉〈ψkγ ′ |vy|ψkγ 〉

E − (Ekγ ′ − Ekγ ) + i0+ .

(31)
Plugging Eq. (31) into (23) we obtain the literature expression
for the intrinsic AHE conductivity [18,19]:

σxy =
∑
kγ γ ′

e2h̄[ fkγ − fkγ ′]

V N

× Im[〈ψkγ |vx|ψkγ ′ 〉〈ψkγ ′ |vy|ψkγ 〉]
(Ekγ ′ − Ekγ )2 + 0+ . (32)

Obviously, the derivation above is not entirely satisfactory,
because we used only two moments, namely D(0)

kvxvy
and D(1)

kvxvy
,

in order to guess the spectral function in Eq. (30), which
contains up to NW(NW − 1) + 1 different poles. In order to de-
rive the transition rates for NW(NW − 1) + 1 poles rigorously
instead of simply guessing them requires the same number of
equations, but the number of moments D(n)

kvxvy
that we can eas-

ily compute will generally be much smaller than the number
of these poles. Therefore, we consider instead the moments

D̃(0)
kαβγ δ

= 〈[c†
kα

ckβ, c†
kγ

ckδ]−〉 (33)

and

D̃(1)
kαβγ δ

= 〈[[c†
kα

ckβ,H]−, c†
kγ

ckδ]−〉. (34)

The moments D̃(n)
kvxvy

considered so far are simply contractions
of these new moments with the velocity operators:∑

αβγ δ

D̃(n)
kαβγ δ

vxαβvyγ δ = D̃(n)
kvxvy

. (35)

The indices α, β, γ , and δ may be the band indices of the
eigenstates |ψkα〉, but they may also be the indices used to
label the basis functions |φkα〉. We do not introduce different
notations for labeling eigenstates on the one hand and basis
states on the other hand. The basis-state representation and
the eigenstate representation are connected by the unitary
transformation (6).
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In the eigenstate representation we obtain particularly sim-
ple expressions for these moments:

D̃(0)
kαβγ δ

= [ fkα − fkβ]δαδδγβ (36)

and

D̃(1)
kαβγ δ

= [ fkα − fkβ][Ekβ − Ekα]δαδδγβ . (37)

Using these two spectral moments we may easily obtain the
corresponding spectral function

Zkαβγ δ (t − t ′) =
〈[c†

kα
(t )ckβ (t ), c†

kγ
(t ′)ckδ (t ′)]−〉

2π
(38)

as
Zkαβγ δ (E )

h̄
= [ fkα − fkβ]δαδδγβδ[E − (Ekβ − Ekα )]. (39)

Employing

Zkvxvy (E ) =
∑
αβγ δ

Zkαβγ δ (E )vxαβvyγ δ (40)

we obtain Eq. (30) from (39), which completes the rigorous
derivation of the AHE conductivity of independent elec-
trons based on the method of spectral moments. Certainly,
Eq. (26) may also be evaluated easily directly for independent
electrons, without using the method of spectral moments.
However, the purpose of this section is to establish the nec-
essary guiding principles to find the commutator spectral
function of correlated electrons in the following section.

Using the unitary transformation (6) we may transform the
spectral moments and the commutator spectral function given
in the eigenstate representations in Eqs. (36), (37), and (39)
into the representation of basis functions:

D̃(n)
kα′β ′γ ′δ′ =

∑
αβ

[ fkα − fkβ][Ekβ − Ekα]n

×Ukα′αU∗
kβ ′βUkγ ′βU∗

kδ′α (41)

and
Zkα′β ′γ ′δ′ (E )

h̄
=

∑
αβ

[ fkα − fkβ]δ[E − (Ekβ − Ekα )]

×Ukα′αU∗
kβ ′βUkγ ′βU∗

kδ′α. (42)

B. Correlated electrons

When we treat the correlated electron system with the
method of Sec. II there are NW basis functions but up to
2NW energy bands due to the splitting into the lower and the
upper Hubbard bands. Consequently, the labels α, β, γ , δ in
Eqs. (33), (34), and (38) refer now only to the basis functions
and not to the energy bands, i.e., α, β, γ , δ = 1, . . . , NW.

In general, the commutator spectral function exhibits the
following properties: It is Hermitian, i.e.,

[Zαβγ δ (E )]∗ = Zδγ βα (E ), (43)

and it fulfills

Zkαβγ δ (E ) = −Zkγ δαβ (−E ). (44)

One may additionally combine Eqs. (43) and (44) to obtain

Zkαβγ δ (E ) = −[Zkβαδγ (−E )]∗. (45)

The differences between the single-particle spectral func-
tions of correlated electrons on the one hand [Eq. (4)] and
independent electrons on the other hand [Eq. (5)] are the
additional spectral weights akγ p and the replacement of the
unitary matrix Uk by the matrix Vk of the state vectors. It is
therefore plausible to guess the commutator spectral function
of correlated electrons by adding spectral weights to Eq. (42)
and by replacing Uk by Vk, which yields

Zkαβγ δ (E ) = h̄
2∑

p,p′=1

NW∑
μ,μ′=1

δ[E − (Ekμ′ p′ − Ekμp)]

× akμ′ p′akμp[ fkμp − fkμ′ p′]

×VkαμpV∗
kδμpV∗

kβμ′ p′Vkγμ′ p′ . (46)

In order to test the quality of this guess (46) we may com-
pute the first two moments from it, i.e., evaluate the energy
integrals similar to Eq. (1) [see Eq. (57)], and subsequently
we may compare these moments to those obtained from eval-
uating the alternative commutator expressions (33) and (34).
The zeroth moment obtained by integrating Eq. (46) over the
energy is simply

D(0)
kαβγ δ

=
2∑

p,p′=1

NW∑
μ,μ′=1

akμ′ p′akμp[ fkμp − fkμ′ p′ ]

×VkαμpV∗
kδμpV∗

kβμ′ p′Vkγμ′ p′

=
2∑

p=1

NW∑
μ=1

akμp fkμp

× [VkαμpV∗
kδμpδγβ − V∗

kβμpVkγμpδαδ]. (47)

The commutator expression in Eq. (33) evaluates to

D̃(0)
kαβγ δ

= 〈c†
kα

ckδ〉δβγ − 〈c†
kγ

ckβ〉δαδ, (48)

where we made use of the identity

[Â, B̂Ĉ]− = [Â, B̂]+Ĉ − B̂[Â, Ĉ]+ (49)

(where Â, B̂, and Ĉ are operators) to convert the commutator
into anticommutators, which are simply given by

[c†
kα

, ckβ]+ = δαβ, [ckα, ckβ]+ = 0, [c†
kα

, c†
kβ

]+ = 0
(50)

for fermionic creation and annihilation operators. Inserting

〈c†
kα

ckβ〉 =
2∑

p=1

NW∑
μ=1

akμp fkμpV∗
kαμpVkβμp, (51)

which may be derived easily using the spectral theorem (14),
into Eq. (48), we obtain D̃(0)

kαβγ δ
= D(0)

kαβγ δ
, i.e., our guess (46)

describes the zeroth moment consistently.
The first moment D(1)

kαβγ δ
= 1

h̄

∫
dE Zkαβγ δ (E )E is given

by

D(1)
kαβγ δ

=
2∑

p,p′=1

NW∑
μ,μ′=1

(Ekμ′ p′ − Ekμp)akμ′ p′akμp

× [ fkμp − fkμ′ p′]VkαμpV∗
kδμpV∗

kβμ′ p′Vkγμ′ p′ . (52)
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Formally, the alternative commutator expressions (34) differ
considerably from Eq. (52), while they yield similar numerical
results for the model considered in Sec. V. In Appendix C
we give some examples of these first moments obtained by
evaluating the commutator expressions (34).

While the numerical differences between D̃(1)
kαβγ δ

and

D(1)
kαβγ δ

are sufficiently small to consider Eq. (46) as a useful
approximation, one may obtain almost perfect agreement be-
tween D̃(1)

kαβγ δ
and D(1)

kαβγ δ
by simple modifications of Eq. (46).

One possible improvement of Eq. (46) is the replacement
of the two known spectral weight factors by a single more
general unknown coefficient matrix:

akμ′ p′akμp → akμ′ p′μp. (53)

This unknown coefficient matrix may be determined by mini-
mizing the deviation

λ =
∑
αβγ δ

2∑
n=1

∣∣D̃(n)
kαβγ δ

− D(n)
kαβγ δ

∣∣2
. (54)

The generalization (53) removes the problem of Eq. (46) that
the state μp always contributes with the weight akμp irrespec-
tive of the partner state μ′ p′ of the transition. In order to satisfy
Eqs. (43)–(45), these generalized transition weights need to be
real valued and they have to satisfy

akμ′ p′μp = akμpμ′ p′ . (55)

In Secs. II and III we solved systems of coupled equa-
tions in order to determine anticommutator spectral functions.
Therefore, the question arises if we may also obtain an ex-
pression for the commutator spectral function by solving a
system of coupled equations instead of starting with the guess
(46) and successively improving it through the modification
(53). The expression (39) of the commutator spectral function
of independent electrons suggests the following form for the
commutator spectral function of correlated electrons:

Zkαβγ δ (E ) =
2∑

p,p′=1

NW∑
μ,μ′=1

δ[E − (Ekμ′ p′ − Ekμp)]bμpμ′ p′
αβγ δ .

(56)
For fixed n the moment

D(n)
αβγ δ = 1

h̄

∫ ∞

−∞
Zkαβγ δ (E )EndE (57)

has N4
W components. Consequently, considering the first two

moments provides 2N4
W equations to determine the unknown

parameters bμpμ′ p′
αβγ δ . However, the number of components

bμpμ′ p′
αβγ δ is 4N6

W. Without imposing additional constraints on the

form of bμpμ′ p′
αβγ δ we therefore do not have a sufficient number

of equations to determine bμpμ′ p′
αβγ δ .

In Sec. III above we describe a similar difficulty for the
anticommutator spectral function, which we solve by using
additionally the state vectors Vkγ p in the approximation of
the spectral function. Therefore, it is plausible to make use
of both Ekμp and Vkγ p to formulate a suitable approximation
for the commutator spectral function. However, this is what
we describe above already. The main difference between our
solution above and the previous solution strategies in Secs. II

and III is that we minimize Eq. (54) instead of solving systems
of coupled equations because there is no obvious modification
of Eq. (56) which requires as many unknown parameters as
the number of equations provided by the first two moments.
The number of unknown coefficients akμ′ p′μp is NW(2NW − 1)
in total. Since the moments are Hermitian, the first two mo-
ments may be expressed in terms of 2N4

W real numbers. This
number is sufficient to obtain akμ′ p′μp unambiguously by min-
imizing the deviation λ in Eq. (54).

Using Eqs. (40), (23), and (25) we obtain the following
expression for the AHE conductivity from Eqs. (46) and (53):

σxy = e2h̄

V N

2∑
p,p′=1

NW∑
μ,μ′=1

akμ′ p′μp[ fkμp − fkμ′ p′]

×
∑
αβγ δ

Im[vxαβvyγ δVkαμpV∗
kδμpV∗

kβμ′ p′Vkγμ′ p′]

(Ekμ′ p′ − Ekμp)2 + 0+ . (58)

V. APPLICATION TO THE HUBBARD-RASHBA MODEL

In Sec. II we explained that 4N2
W unknown coefficients

need to be determined in order to obtain the spectral function.
While the one-band Hubbard model has spin-up and -down
bands, one may obtain these bands separately when there is
no spin-orbit interaction (SOI). Therefore, effectively NW = 1
for the one-band Hubbard model without SOI, i.e., 4N2

W,
evaluates to 4. This is indeed the number of parameters in the
two-pole approximation (3). Without SOI, one computes the
spin-up and -down bands separately and four parameters are
needed for each of them.

However, when we add SOI to the one-band Hubbard
model the spin-up and -down bands are coupled. Conse-
quently, we need to use NW = 2, and 4N2

W = 16 is the number
of unknown coefficients. Therefore, we may demonstrate the
spectral moment approach with noncommuting spectral mo-
ment matrices developed in this paper for the single-band
Hubbard model with additional Rashba-type SOI because the
standard two-pole approximation cannot be used in this case.

We consider the Hubbard-Rashba model [38] with the
Hamiltonian

H =
∑
〈 j,l〉,s

t jl c
†
jscls + U

∑
j

c†
j↑c j↑c†

j↓c j↓

+ itR
∑

〈 j,l〉,s,s′
êz · (σss′ × d jl )c

†
jscls′ , (59)

where t jl is the hopping amplitude, U is the strength of the
Hubbard interaction, tR quantifies the Rashba-type SOI, and
d jl = (R j − Rl )/a is the distance vector between sites j and
l , where a is the lattice constant. The notation 〈 j, l〉 means that
j and l are nearest neighbors. We consider a two-dimensional
square lattice with lattice translation invariance and êz is a unit
vector perpendicular to the lattice.

For this model we give explicit expressions for the mo-
ments in Appendix A. The moments needed to evaluate the
correlation functions of Sec. III are discussed in Appendix B,
while explicit expressions for the moments required for the
calculation of the AHE are given in Appendix C.
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FIG. 1. Dependence of the magnetic moment on the Hubbard
parameter U at temperature T = 23 K. Two values of SOI strength
are considered: tR = 0.01 eV (blue circles) and tR = 0.02 eV (red
squares). The magnetic moment is given in units of the Bohr magne-
ton (μB).

We set the nearest-neighbor hopping to t jl =
−0.2 eVδ1,|dx jl |+|dy jl |, the site occupation

n = n↑ + n↓ = 〈c†
i↑ci↑〉 + 〈c†

i↓ci↓〉 (60)

to n = 0.675, and we vary the Hubbard U parameter between
2 and 5 eV. We perform calculations for two SOI strengths,
tR = 0.01 and 0.02 eV. We use an 80 × 80 k mesh in the
calculations.

In Fig. 1 we show the magnetic moment as a function of U
at the temperature T = 23 K. Around U = 2.7 eV the system
becomes ferromagnetic when tR = 0.01 eV. When SOI is
larger, i.e., tR = 0.02 eV, the onset of ferromagnetism occurs
at a higher U of around 3 eV. Therefore, SOI suppresses the
onset of ferromagnetism in this system.

In Fig. 2 we show the band structure in the nonmag-
netic phase at U = 2 eV. The lower Hubbard bands describe
electrons that hop between empty sites, while the upper Hub-
bard bands describe electrons hopping between sites that are
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FIG. 2. Band structure for U = 2 eV at T = 23 K when tR =
0.02 eV. For this value of U the system is nonmagnetic. The Rashba
splitting is larger for the upper Hubbard bands than for the lower
ones.
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FIG. 3. Band structure for U = 4 eV at T = 23 K when tR =
0.02 eV. For this value of U the system is ferromagnetic.

already occupied by an electron. Consequently, the lower and
upper Hubbard bands are separated in energy by roughly
U . Surprisingly, the Rashba splitting is larger for the upper
Hubbard bands than for the lower ones. The band structure in
the ferromagnetic phase at U = 4 eV is shown in Fig. 3. Both
the upper and the lower Hubbard bands are exchange split,
while the effect of Rashba SOI on the band structure is not
visible directly.

In Fig. 4 we show the temperature dependence of the mag-
netic moment at U = 4 eV. The magnetic moment decreases
monotonously with temperature. The Curie temperature is
smaller when SOI is larger. This is consistent with the finding
in Fig. 1 that SOI suppresses ferromagnetism in this system.

In Fig. 5 we show the temperature dependence of the
intrinsic AHE conductivity. Since AHE requires SOI, higher
SOI leads to larger AHE. Interestingly, σxy increases with
increasing T . Phenomenological theory usually assumes that
σxy is proportional to the magnetization. However, from zero
temperature up to the Curie temperature the magnetic moment
decreases, while the AHE conductivity increases according to
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FIG. 4. Temperature dependence of the magnetic moment at
U = 4 eV for SOI strength tR = 0.01 (circles) and 0.02 eV (squares).
Stronger SOI suppresses the Curie temperature.
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FIG. 5. Temperature dependence of the intrinsic AHE conductiv-
ity at U = 4 eV.

Fig. 5. This increase of the AHE conductivity with decreasing
magnetic moment is therefore surprising at first.

An explanation may be found by recalling in which cases
the AHE is predicted to be proportional to the magnetic mo-
ment. When the intrinsic AHE is generated predominantly
by the term ∝LzSz in the SOI (Lz and Sz are the orbital and
spin angular momentum operators, respectively) and when
the magnetic moment is sufficiently small we may argue
that the spin-resolved AHE conductivity has opposite sign
for spin-up and -down electrons, i.e., sign(σ ↑

xy) = −sign(σ ↓
xy),

because LzSz = Lz for spin-up electrons and LzSz = −Lz for
spin-down electrons. As a consequence, a pure spin current is
generated from the intrinsic spin-Hall effect when the magne-
tization is zero: σ SHE

xy = σ ↑
xy − σ ↓

xy = 2σ ↑
xy. For small magnetic

moment the spin-resolved AHE conductivities do not satisfy
σ ↑

xy = −σ ↓
xy any more [40] and it is plausible to assume that

both depend linearly on the magnetization M in the leading
orders,

σ s
xy(M ) = sσ (0)

xy + ∂σ (0)
xy

∂M

∣∣∣∣
M=0

M, (61)

where s = 1 for spin up and s = −1 for spin down. This yields

σ SHE
xy (M ) = σ ↑

xy(M ) − σ ↓
xy(M ) = 2σ (0)

xy ,

σ AHE
xy (M ) = σ ↑

xy(M ) + σ ↓
xy(M ) = 2

∂σ (0)
xy

∂M

∣∣∣∣
M=0

M. (62)

Thus, one may expect σ AHE
xy (M ) ∝ M when only the term LzSz

from SOI is relevant. However, this is often not the case, i.e.,
spin-flip transitions may be important for the AHE [41].

In fact, the Rashba SOI does not contain any term that
preserves the spin Sz, i.e., in the language of Ref. [41] it
generates only spin-flip transitions. However, when all virtual
transitions that give rise to the AHE are of spin-flip type, there
is no reason for Eq. (61) to be valid. The spin-flip transitions
occur between up and down states, and their energy difference
decreases when the magnetic moment decreases. Therefore,
the spin-flip transitions become more important in Eq. (58)
when the energy denominator decreases due to the decrease
of the magnetization.
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FIG. 6. Dependence of the intrinsic AHE conductivity on Hub-
bard U at T = 23 K.

To verify this hypothesis we investigate the dependence of
the AHE conductivity on the Hubbard parameter U at a fixed
small temperature of T = 23 K. Thereby we modify the mag-
netic moment without changing the temperature. The result is
shown in Fig. 6. Indeed, σxy increases when lowering U from
4.5 eV down to 2.8 eV. Therefore, the dominant mechanism
for the strong increase of σxy with increasing temperature in
Fig. 5 is indeed the decrease of the magnetic moment.

VI. OUTLOOK

In order to judge if the self-consistent spectral moment
method may replace LDA+U while keeping the compu-
tational effort low, we briefly discuss the differences to
LDA+U . The orbital-resolved occupation matrix, which
needs to be computed self-consistently in LDA+U calcu-
lations for all atomic orbitals for which correlations are
included, corresponds to the correlator 〈c†

iαc jβ〉 in the self-
consistent moment method. In LDA+U only the onsite
elements are considered, i.e., only 〈c†

0αc0β〉. However, in-
cluding the nearest neighbors will often not pose problems.
Clearly, the matrix structure of 〈c†

iαc jβ〉 resembles the one of
the hopping matrix elements, i.e., the matrix elements of the
Hamiltonian between Wannier functions [29]. Therefore, for
all systems where the calculation of the hopping matrix does
not pose problems, e.g., computer memory issues, we do not
anticipate issues concerning the correlator 〈c†

iαc jβ〉.
The higher-order correlators of the type 〈c†

iαc†
jβclγ cmδ〉 are

often only needed for special cases such as i = j and l = m.
Therefore, while the most general form 〈c†

iαc†
jβclγ cmδ〉 has

four independent site indices, i, j, l, m, it will often be suf-
ficient to compute it only with one site index. Moreover,
when we consider only onsite Coulomb interactions, similar
to standard LDA+U , the range of the orbital indices α, β, γ , δ

can be restricted significantly. Thus, while the number of
basis functions in LDA calculations based on full-potential
linearized augmented plane-wave (FLAPW) method increases
proportionally to the system volume, leading to a quadratic
increase of the memory requirement of the Hamiltonian
with system volume, we expect that the computer memory
needed to hold 〈c†

iαc†
jβclγ cmδ〉 scales only proportionally to the
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number of correlated atoms in the system, i.e., often propor-
tionally to the volume and not to the square of the volume.
This is similar to the scaling of the orbital-resolved occupation
matrix with system size in LDA+U , which is proportional to
the number of correlated atoms.

Thus, while in LDA+U one needs to compute the orbital-
resolved occupation matrix for all correlated atoms, in the
self-consistent spectral moment method one has to compute
several correlators of the type 〈c†

iαc jβ〉 and 〈c†
iαc†

jβclγ cmδ〉.
Since their structure and memory requirement is similar to
the one of matrix elements computed for Wannier interpo-
lation [20,21,29], we expect that this is feasible for a large
range of realistic materials without a dramatic increase of
the computer time or memory requirements, because experi-
ence with Wannier functions suggests that the calculation of
such matrix elements is much faster than the duration of the
LDA self-consistency cycle if only orbitals for the occupied
and first few unoccupied states are considered. In contrast,
a recent comparative study of several electronic structure
codes estimated that eDMFT takes 5000 times more com-
puter time than meta-GGA with the modified Becke-Johnson
potential [42].

Finally, in LDA+U the orbital-resolved occupation matrix
is used to compute the potential matrix, which is employed to
supplement the Hamiltonian by correlation effects. This step
may be performed as a second variation step, i.e., one may
first compute the LDA eigenvalues and eigenfunctions in first
variation, followed by the calculation of the LDA+U eigen-
values and eigenfunctions in second variation [43]. Similarly,
in the self-consistent moment method one may first compute
the LDA eigenvalues and eigenfunctions in first variation,
followed by the construction of the spectral function from the
first four moment matrices in second variation. This second
variation approach is expected to take only a fraction of the
computing time of the first variation step.

In comparison to LDA+DMFT, one drawback of the self-
consistent moment method is that it does not give access
to the imaginary part of the self-energy. However, since the
self-consistent moment method has been used before success-
fully to study finite-temperature magnetism [22–24], we do
not expect this to be a major drawback for this application.
Moreover, many response properties of interest in spintron-
ics are not strongly dependent on the electron correlation
self-energy in a large range of realistic materials because
they are at most sensitive to the electron lifetime at the
Fermi surface, which is often determined by scattering rather
than electron correlation effects. In such cases, the transfer
of spectral weight between states of different energy might
be more important for the accurate computation of the re-
sponse function than the imaginary part of the self-energy.
For example, already simple band shifts due to electron cor-
relation effects may sometimes improve the agreement of
AHE to experiment [44]. Concerning the description of mag-
netism at finite temperatures LDA+DMFT studies suggest
that missing long-wavelength spin waves may lead to an over-
estimation of the Curie temperature in some cases [5]. We
suspect that the self-consistent moment method suffers from
a similar problem whenever the smallest possible magnetic
unit cell is chosen and when translational invariance is thus
enforced.

In comparison to LDA+U the self-consistent spectral mo-
ment method is not only expected to improve the description
of magnetism at finite temperatures, but additionally it is ex-
pected to capture spectral features that arise from the splitting
of bands into lower and upper Hubbard bands, similarly to
LDA+DMFT. For example, it has been shown [23] to repro-
duce the valence band satellite in Ni.

VII. SUMMARY

We show that for a general crystal lattice Hamiltonian
which describes NW electronic orbitals and which includes
the Coulomb interaction the spectral function may be found
within an approximation that assumes that the electronic
structure is given in terms of 2NW bands and 2NW spectral
weight factors: NW band energies and spectral weights de-
scribe the lower Hubbard bands, while NW band energies and
spectral weights describe the upper Hubbard bands. For this
purpose we generalize the standard two-pole approximation of
the self-consistent moment method to the case of many bands.
We argue that the problem of constructing 2NW bands and
2NW spectral weights from four NW × NW spectral moment
matrices may be considered as a generalization of the well-
known problem of finding the NW eigenstates of an NW × NW

single-particle Hamiltonian matrix of a closed quantum sys-
tem. We describe how the higher correlation functions of the
type 〈c†

iαc†
jβclγ cmδ〉 may be obtained consistently within this

approach by employing the state vectors and state energies
of the single-particle spectral function. Moreover, we discuss
how the response functions may be computed. We present ap-
plications of this approach to the Hubbard-Rashba model. Our
findings suggest that the many-band spectral-moment method
may replace the standard LDA+U approach to correlated
electrons when the temperature dependence of the electronic
structure or of the response functions needs to be determined.
We propose that the many-band spectral-moment method may
also be used instead of Hartree-Fock in exploratory model
calculations of phase diagrams in the search of new quantum
states that arise from the interplay of SOI and correlation
effects.

ACKNOWLEDGMENTS

We acknowledge financial support from Leibniz Col-
laborative Excellence project OptiSPIN–Optical Control
of Nanoscale Spin Textures, funding under SPP 2137
“Skyrmionics” of the DFG and Sino-German research project
DISTOMAT (DFG Project No. MO 1731/10-1). We grate-
fully acknowledge financial support from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant No. 856538,
project “3D MAGiC”). The work was also supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation), Grants No. TRR 173-268565370 (Project No.
A11) and Grant No. TRR 288-422213477 (Project No. B06).
We also gratefully acknowledge the Jülich Supercomputing
Centre and RWTH Aachen University for providing computa-
tional resources under Project No. jiff40.

045135-10



CONSTRUCTION OF THE SPECTRAL FUNCTION FROM … PHYSICAL REVIEW B 106, 045135 (2022)

APPENDIX A: SPECTRAL MOMENTS IN THE HUBBARD-RASHBA MODEL

In this Appendix we give explicit expressions for the moments (2) of the single-particle spectral function evaluated for the
Hubbard-Rashba model introduced in Eq. (59). The zeroth moment is given by

M̃ (0)
kss′ = 1

N

∑
l j

eik·(Rl −R j )〈[cls, c†
js′ ]+〉 = δss′ , (A1)

where s, s′ =↑,↓.
The spin-diagonal first moments are given by

M̃ (1)
kss = 1

N

∑
l j

eik·(Rl −R j )〈[[cls,H]−, c†
js]+〉 = [ε(k) − μ] + U 〈n−s〉 (A2)

while those that couple opposite spins are

M̃ (1)
ks,−s = 1

N

∑
l j

eik·(Rl −R j )〈[[cls,H]−, c†
j,−s]+〉 = Re[α(k)] − si Im[α(k)] − U

N

∑
l

〈c†
l,−scls〉. (A3)

Here, we defined

α(k) = 1

N
tR

∑
〈 j,l〉

eik·(R j−Rl )[dx jl + idy jl ], (A4)

where dx jl and dy jl are the x and y components, respectively, of the distance vector d jl used in the Rashba-type SOI in Eq. (59).
For equal spins the second moments are

M̃ (2)
kss = 1

N

∑
l j

eik·(Rl −R j )〈[[cls,H]−, [H, c†
js]−]+〉

= [ε(k) − μ]2 + 2U 〈n−s〉(ε(k) − μ) + U 2〈n−s〉 − 2U Re

[
α(k)

1

N

∑
l

〈c†
l↓cl↑〉

]
+ |α(k)|2, (A5)

while they are

M̃ (2)
ks−s = 1

N

∑
l j

eik·(Rl −R j )〈[[cls,H]−, [H, c†
j,−s]]+〉

= [2ε(k) − 2μ + nU ][Re[α(k)] − si Im[α(k)]] − [U 2 + 2U [ε(k) − μ]]
1

N

∑
l

〈c†
l,−scls〉 (A6)

for opposite spins.
The third moments are

M̃ (3)
kss = 1

N

∑
l j

eik·(Rl −R j )〈[[[cls,H]−,H]−, [H, c†
js]−]+〉

= [ε(k)−μ]3 + 3U 〈n−s〉[ε(k) − μ]2 − 3U 2〈n−s〉μ + 2U 2ε(k)n−s + 2U 2t00n−s + U 3n−s

−U 2 1

N

∑
l j

eik·(Rl −R j )tl j〈c†
l,−sc

†
j,−scl,−sc j,−s〉 + U 2 1

N

∑
l j

tl j〈(2nls − 1)c†
l,−sc j,−s〉

+U 2 1

N

∑
l j

eik·(Rl −R j )tl j〈c†
jsc

†
l,−sclsc j,−s〉 + U 2 1

N

∑
l j

eik·(Rl −R j )tl j〈c†
jsc

†
j,−sclscl,−s〉

+U 2 2

N

∑
l

Re[α(k)〈c†
l,−scl,s〉] + 3|α(k)|2[ε(k) − μ] + |α(k)|2U (n + n−s)

+ 6U [ε(k) − μ]Re

[
α(k)

1

N

∑
l

〈c†
l,−scls〉

]
+ U 2 2

N

∑
l j

Re[eik·(Rl −R j )αl j〈c†
l,−sc

†
j,−sclsc j,−s〉], (A7)
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when the spins are parallel, and

M̃ (3)
k↑↓ = 1

N

∑
l j

eik·(Rl −R j )〈[[[cl↑,H]−,H]−, [H, c†
j↓]]+〉

= −3[α(k)]∗[ε(k) − μ]2−[α(k)]∗|α(k)|2−U 2[α(k)]∗n − (3[ε(k) − μ]2 + 2|α(k)|2 + 2U [ε(k) − μ])

× U

N

∑
l

〈c†
l↓cl↑〉 + U 2 1

N

∑
l j

tl j〈c†
l↓c j↑〉 − U [α∗(k)]2 1

N

∑
l

〈c†
l↑cl↓〉 − 3U [α(k)]∗[ε(k) − μ]n

− [U 3 − U 2μ + 2U 2t00]
1

N

∑
l

〈c†
l↓cl↑〉 − U 2 1

N

∑
l j

eik·(Rl −R j )tl j〈c†
j↑c†

l↓cl↑c j↑〉

−U 2 1

N

∑
l j

eik·(Rl −R j )tl j〈c†
l↓c†

j↓c j↑cl↓〉 + U 2 1

N

∑
l j

eik·(Rl −R j )α∗
l j〈c†

j↑c†
l↓c j↑cl↓〉

−U 2 1

N

∑
l j

eik·(Rl −R j )α∗
l j〈c†

j↑c†
j↓cl↑cl↓〉 − U 2 1

N

∑
l j

eik·(Rl −R j )αl j〈c†
l↓c†

j↓cl↑c j↑〉

+U 2 1

N

∑
l j

tl j〈c†
l↑c†

l↓cl↑c j↑〉 − U 2 1

N

∑
l j

tl j〈c†
l↓c†

j↓cl↑cl↓〉 (A8)

when they are opposite. Here, we defined

α jl = [dx jl + idy jl ]. (A9)

The correlation functions of the type 〈c†
iαc†

jβclγ cmδ〉 in the expressions of the third moments may be obtained from the spectral
theorem in Eq. (15) and Fourier transformation.

APPENDIX B: CORRELATION FUNCTIONS IN THE HUBBARD-RASHBA MODEL

In this Appendix we provide examples for explicit expressions of the moments K̃ (0)
lγ mδ jβkα

and K̃ (1)
lγ mδ jβkα

used in Sec. III. The
zeroth moment is explicitly given by

K̃ (0)
lγ mδ jβkα

= 〈[c†
jβclγ cmδ, c†

kα
]+〉 = 1√

N
[〈c†

jβclγ 〉e−ik·Rmδαδ − 〈c†
jβcmδ〉e−ik·Rl δαγ ]. (B1)

The thermal averages 〈c†
jβclγ 〉 and 〈c†

jβcmδ〉 in this expression may be obtained from the spectral theorem (14).
The explicit expression for the first moment

K̃ (1)
lγ mδ jβkα

= 〈[c†
jβclγ cmδ, [H, c†

kα
]−]+〉 (B2)

depends on the Hamiltonian H . We list some examples for K̃ (1)
lγ mδ jβkα

that we obtain for the Hubbard-Rashba model discussed in
Sec. V. From

〈[c†
i↓ci↑c j↓, [H, c†

l↑]−]+〉 = −til〈c†
i↓c j↓〉 + α jl〈c†

i↓ci↑〉 − Uδilδl j〈c†
l↓cl↓〉 + Uδil〈c†

l↑c†
l↓cl↑c j↓〉 + Uδl j〈c†

i↓c†
l↑ci↑cl↓〉 (B3)

we obtain K̃ (1)
i↑ j↓i↓k↑ by performing a Fourier transformation from the site Rl to the k point k. As explained in Sec. III this

moment is required in order to compute the thermal average 〈c†
l↑c†

i↓ci↑c j↓〉. However, according to Eq. (B3) additional correlation

functions are needed, namely, 〈c†
l↑c†

l↓cl↑c j↓〉 and 〈c†
i↓c†

l↑ci↑cl↓〉. As explained in Sec. III we therefore use a self-consistent

procedure that determines all necessary correlation functions 〈c†
iαc†

jβclγ cmδ〉.
The correlation function 〈c†

l↑c†
i↓c j↑ci↑〉 vanishes without SOI when the spin-quantization axis is chosen to be along the z

direction, but it may be nonzero in general when SOI is present. We obtain the corresponding first moment K̃ (1)
j↑i↑i↓k↑ from

〈[c†
i↓c j↑ci↑, [H, c†

l↑]−]+〉 = til〈c†
i↓c j↑〉 − t jl〈c†

i↓ci↑〉 + Uδ jl〈c†
i↓c†

l↓ci↑cl↓〉 − Uδil〈c†
l↑c†

l↓cl↑c j↑〉 (B4)

by performing a Fourier transformation from the site Rl to the k point k.
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APPENDIX C: FIRST MOMENTS FOR RESPONSE FUNCTIONS

In the following we give a few examples for explicit expressions of the first moment of the commutator spectral function
obtained by evaluating Eq. (34) for the Hubbard-Rashba model:

D̃(1)
k↑↑↑↑ = [α(k)]∗〈c†

0↓c0↑〉 + α(k)〈c†
0↑c0↓〉 + U

∑
j

e−ik·[R j−R0]〈c†
0↑c†

0↓c j↑c0↓〉

+U
∑

j

eik·[R j−R0]〈c†
j↑c†

0↓c0↑c0↓〉 − 2
U

N

∑
j,l

eik·[R j−Rl ]〈c†
j↑c†

0↓cl↑c0↓〉 (C1)

and

D̃(1)
k↑↓↓↑ = 2α(k)〈c†

0↓c0↑〉 + U
∑

j

e−ik·[R j−R0]〈c†
0↑c†

0↓c j↑c0↓〉 + U

N

∑
j,l

eik·[R j−Rl ]〈c†
j↑c†

0↑c0↑cl↑〉

+U
∑

j

eik·[R j−R0]〈c†
0↑c†

j↓c0↑c0↓〉 − U

N

∑
j,l

eik·[−R j−Rl ]〈c†
0↑c†

0↑c j↑cl↑〉

− U

N

∑
j,l

eik·[R j−Rl ]〈c†
0↓c†

j↓c0↓cl↓〉 − U

N

∑
j,l

eik·[R j+Rl ]〈c†
j↓c†

l↓c0↓c0↓〉. (C2)

The correlation functions of the type 〈c†
iαc†

jβclγ cmδ〉 in these expressions may be obtained from the spectral theorem in Eq. (15)
and Fourier transformation.
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