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Following a proposed scheme for realizing the time-periodically modulated Rabi frequency in experiments, we
suggest density-dependent hoppings of two-species hardcore bosons in a one-dimensional optical lattice. Distinct
from the previous work [Phys. Rev. Res. 2, 013275 (2020)], we study effects in the first resonance region. In the
effective Hamiltonian, the intraspecies hopping occurs only if the density discrepancy of the other species on
these sites is zero, while the interspecies one is allowed once the relevant density discrepancy becomes nonzero.
At integer-1 filling, the quantum phase diagram of the effective Hamiltonian is determined by the perturbation
analysis together with numerical calculations. We find that in the limit of dominant J1, the system becomes a
double-degenerate dimerized state spontaneously breaking the translation symmetry. The interplay of J0, J1, and
the fixed Ū = 1 leads to three BKT transition lines and a tricritical BKT point. Exact transition lines are obtained
by the level spectroscopic technique. Besides, general physical properties, including the charge gap, neutral gap,
superfluid density, and dimerization strength, are investigated as well.
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I. INTRODUCTION

Floquet engineering with controllable time-periodic driv-
ing sources [1,2] is a powerful tool to tailor quantum gases
in optical lattices. In contrast to the traditional solid state
systems, it relies on extremely high-intensity laser and a
sophisticated scheme of fast measurements [3]. The typical
driving frequency ranges from several to several tens of kilo-
hertz (kHz), which allows us to unveil the physics in the
strong driving regime experimentally [4]. Floquet engineering
greatly enriches accessible models and exotic phenomena in
optical lattices, such as generating artificial gauge fields by
breaking the time-reversal symmetry of the driving function
[5–9], realizing anyon physics combing with Raman assisted
tunneling [10,11], and designing other unconventional Hub-
bard models [12,13].

For example, Bose-Hubbard models with density-
dependent correlated hoppings have been Floquet-engineered
in optical lattices by tuning the magnetic field near a Feshbach
resonance point [14,15]. These models give novel quantum
phases [16,17] and are also essential for implementing
dynamical gauge fields [18,19]. However, for two-species
hardcore bosons that tightly connect to the Fermi-Hubbard
model in one dimension (1D), it was challenging to tune
interspecies interaction together with holding the hardcore
constraint. In the previous work [20], we proposed an
alternative way of periodically driving the Rabi frequency,
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which has been realized in experiments recently [9]. In the
case of high-frequency approximation, we found an integrable
point and a “gauge dressed superfluid” phase [20]. Once the
driving frequency resonates with the interaction strength, new
physics insights are concerned in the presence of different
models [2,21,22].

The paper is organized as follows. In Sec. II, we derive
the effective model in the first resonance region according to
an existing time-dependent Hamiltonian in optical lattices. In
Sec. III, we do an explicit perturbation analysis and numerical
simulations to characterize all phases and phase transitions
in the allowable parameter region. At last in Sec. IV, we
summarize all results with a brief discussion.

II. DENSITY-DEPENDENT CORRELATED HOPPINGS
IN THE FIRST RESONANCE REGION

Following the existing scheme [20], the full Hamiltonian
for two-species hardcore bosons in one-dimensional (1D) op-
tical lattices reads

Ĥ (t ) = ĤT + ĤU + Ĥ�(t ) (1)

and

ĤT = −J0

∑
l

(â†
l âl+1 + b̂†

l b̂l+1 + H.c.),

ĤU = U
∑

l

n̂a
l n̂b

l ,

Ĥ�(t ) = J�(t )
∑

l

(â†
l b̂l + H.c.),
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where âl (b̂l ), â†
l (b̂†

l ) and n̂a
l = â†

l âl (n̂b
l = b̂†

l b̂l ) are the anni-
hilation, creation and particle number operators for the species
“a” (“b”) respectively, J0 the hopping coefficient governed by
the lattice depth, U the effective interspecies onsite repulsion
strength, J�(t ) = J0

� cos(ωt ) the time-periodically modulated
“Rabi frequency” with the driving frequency of ω and the
index l runs over whole L lattice sites. In Appendix A, we
detail the scheme of the experimental realization, including
the techniques of tuning the lattice depth, the static magnetic
field in the Feshbach resonance, and the time-periodically
modulated Rabi frequency, which have been discussed in
many works before [9,20,23–28].

In our previous work, our attention was centered on the
nonresonance region, where the driving frequency must be
much larger than J0 and U , but not too large to avoid “photon-
assisted hopping” between energy bands of the optical lattices
[20]. In this work, we further investigate rich quantum phases
and phase transitions in the first resonance region h̄ω ∼ U ,
which is achieved by moving the static magnetic field a bit
further away from the Feshbach resonance point on the side
of negative scattering length. Meanwhile, J0

�/h̄ is of several
kHz, the same as ω.

We are willing to restate three concerns. Firstly, by using an
acousto-optic modulator (AOM) to change both the amplitude
and polarization angle of the pump laser [26,27], the setup
can effectively generate the time-periodically modulated Rabi
frequency in practice [20]. Secondly, the initial phase of the
time-periodically modulated Rabi frequency is irrelevant to
the stroboscopic measurement at an integer number of peri-
ods, which has already been realized and well controlled in
experiments [1]. Thirdly, although the system usually heats
up to the infinite temperature in a long time due to the absence
of energy conservation [29], a prethermal stage still survives
[30,31]. Various theoretical and experimental studies have
exhibited that it is long enough for stabilizing and measuring
the effects governed by the effective Hamiltonian [32,33].
Even in the resonance region [22], the heating rate is expo-
nentially suppressed in the Floquet Bosonic optical lattices
[34].

According to the Floquet theory [1,4,12,14,16,17] for a
time-periodically driven system Ĥ (t ) = Ĥ (t + T ) with a pe-
riod of T = 2π/ω, the dynamics of the system is depicted
by the effective Hamiltonian and corresponding kick oper-
ators, which can be determined from a nearly degenerate
perturbation method [1,20]. By adopting standard operations
(Appendix B), we obtain the effective Hamiltonian

Ĥe = −
∑

l

[
J0

(
Ĥaa

l,l+1 + Ĥbb
l,l+1

) + J1
(
Ĥab

l,l+1 + Ĥba
l,l+1

)]

+ Ū
∑

l

n̂a
l n̂b

l (2)

with J1 = J0J1(2K�), the first order of the first kind Bessel
function J1(x), a dimensionless parameter K� = J0

�/h̄ω, a
renormalized onsite repulsion strength Ū = U − h̄ω and four
distinct hopping terms

Ĥaa
l,l+1 = â†

l âl+1
[
n̂b

l n̂b
l+1 + (

1 − n̂b
l

)(
1 − n̂b

l+1

)] + H.c.,

Ĥbb
l,l+1 = b̂†

l b̂l+1
[
n̂a

l n̂a
l+1 + (

1 − n̂a
l

)(
1 − n̂a

l+1

)] + H.c.,

Ĥab
l,l+1 = â†

l b̂l+1
[
n̂b

l

(
1 − n̂a

l+1

) + (
1 − n̂b

l

)
n̂a

l+1

] + H.c.,

Ĥba
l,l+1 = b̂†

l âl+1
[
n̂a

l

(
1 − n̂b

l+1

) + (
1 − n̂a

l

)
n̂b

l+1

] + H.c. (3)

Due to the properties of J1, the intraspecies hopping in the ef-
fective Hamiltonian occurs only if the density discrepancy of
the other species on these sites is zero, while the interspecies
one is allowed once the relevant density discrepancy becomes
nonzero. Hereafter we choose Ū = 1 as unit since two out of
three parameters are free in the model. Additionally, we only
consider the case of integer-1 filling, namely, Na + Nb = L
and Na/b = 〈∑l n̂a/b

l 〉, where more interesting phenomena and
a rich phase diagram are anticipated.

Although |J1/J0| < 1 because of |J1| < 1, its regime could
be extended if the driving forms are chosen appropriately. For
instance, one can implement the above proposal in a two-leg
Wannier-Stark ladder, where the energy difference between
the nearest-neighboring sites along the ladder resonates with
the driving frequency ω [35]. In the setup, J0 and J1 are
dressed by J1 and the second order of the first kind Bessel
function J2 separately, so we study the full parameter space
of |J0/J1| in the following sections.

Before going to the details of the quantum phase diagram,
let us discuss the symmetry related to the controllable param-
eters J0, J1, and Ū . First of all, positive and negative J0/1 are
linkable under the transformation Wa/b

l = exp(iπ n̂a/b
l ), which

yields âl → −âl and b̂l → −b̂l respectively. For instance, in
order to reverse the sign of J0/1 at the same time, we can apply
Wa/b

l to all even sites. Secondly, the effective Hamiltonian
does not have the particle-hole symmetry for each species in
principle. Under the partial particle-hole transformation with
â†

l → âl for each site, the hopping terms remain invariant but
ĤŪ becomes Ĥ−Ū + Ū

∑
l n̂b

l . In the quantum phase diagram
discussed later, phases always have zero polarization Na = Nb

and the chemical potential term Ū
∑

l n̂b
l is a trivial constant

actually. Thus, the positive and negative Ū regions are sym-
metrically equivalent. In the work, we are merely concerned
with the region where both J0/1 and Ū are positive.

III. QUANTUM PHASE DIAGRAM

A. Perturbation analysis

Once J1 = 0, the hopping between neighboring double oc-
cupied and empty sites is not allowed [20]. The Hamiltonian
no longer distinguishes between double occupied and empty
sites, we can denote both of them with pseudospin up |↑〉.
Similarly, the hopping between neighboring single occupied
sites is forbidden regardless of whether they are species “a”
or “b”, so both can be denoted with pseudospin down |↓〉. The
resulting Hamiltonian at integer-1 filling is equivalent to an
exactly integrable spin-1/2 XY model

ĤJ0 =
∑

l

[
−J0(Ŝ+

l Ŝ+
l+1 + H.c.) + Ū

2

(
Ŝz

l + 1/2
)]

, (4)

where Ŝ±/z are the ordinary operators for spin-1/2. Ū provides
a Zeeman Splitting between |↑〉 and |↓〉. For Ū > 4J0, the
system is saturated with only single occupied sites and has
a finite charge gap, which corresponds to the Mott-insulating
(MI) phase. When Ū � 4J0, the ground state is in a gapless xy
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FIG. 1. (a) Schematic picture for the experimental realization.
Both hopping amplitudes J0 and raw onsite repulsion strength are
controlled by the lattice depth. Two hyperfine states are coupled
to an intermediate state (black dashed line) by the extra Raman
laser beams. The effective Rabi frequency J� is time-periodically
modulated. The static magnetic field is a bit far away from a Fes-
hbach resonance point on the side of negative scattering length,
so the residual interspecies repulsion strength U ∼ h̄ω. Meanwhile,
the dominantly large intraspecies repulsion maintains the hardcore
constraint. (b) Quantum phase diagram of the effective model at
integer-1 filling. It consists of three distinct phases: superfluid (SF),
Mott-insulating (MI), and dimerized (DM) phases. Border lines
of SF-MI, SF-DM, and MI-DM are marked by red, orange, and
blue, respectively. A green five-star indicates a tricritical point of
three phases. Two dashed cutting lines J0 + J1 = 1 and J1 = 1.5 are
marked for convenience of discussion.

phase without superfluid (SF) response indicated by a vertical
line J1 = 0 in Fig. 1(b).

We now turn to the case of J0 = 0. When J1 = 0 as well,
the system falls into a clean MI state purely made up of
single-occupied sites. Given a small J1, cooperative hoppings
are allowed, where the annihilation of a double occupancy
at site-l is followed by creating one at site-(l + 1), namely
|a〉l |a〉l+1 → |0〉l |ab〉l+1 and vice verse. By the second order
perturbation, the above hoppings are generalized into an ef-
fective Hamiltonian (Appendix C)

Ĥ (2)
MI = −J2

1

Ū

∑
l

[
2(Ŝ+

l Ŝ+
l+1 + H.c.) − 4Ŝz

l Ŝz
l+1 + 1

]
. (5)

Different from the Hamiltonian (4), the spin states |↑〉 and
|↓〉 here correspond to the single occupation |a〉 and |b〉 re-
spectively. We further write a new set of bases following
|↑〉 → −|↓〉 and |↓〉 → −|↑〉 at all odd sites. Accordingly,
the effective hamiltonian goes back to a regular form of the
antiferromagnetic Heisenberg chain

Ĥ (2)
MI = J2

1

Ū

∑
l

(4Ŝl · Ŝl+1 − 1). (6)

In the light of the Bethe Ansatz solution [36], we know the
energy per site e(2)

MI = −4(ln 2)(J2
1 /Ū ) in the thermodynami-

cal limit (TDL).
Usually, a regular chain of two-species interacting hard-

core bosons favors establishing a counter-flow SF order in
the MI phase [37–40]. However, the J1 density-dependent
hoppings in the Hamiltonian (2) give a nonlocal quadrupole
order [41,42], which easily breaks into a polarized fluid under
the species-dependent perturbation.

When J1 � Ū and J0 = 0, we suppose that a pure DM state
is a product of the local dimers |φl,l+1〉 = B[4J1(|ab〉l |0〉l+1 +
|0〉l |ab〉l+1) + (Ū + A)(|a〉l |a〉l+1 + |b〉l |b〉l+1)] on all even
bonds. And the average energy per site is e(0)

DM = (Ū −
A)/4 with A =

√
16J2

1 + Ū 2 and B = 1/(2
√

A2 + ŪA). Ac-
cording to the details in Appendix C, we estimate
the modification of average energy up to the sec-
ond order, that is e(1)

DM = 0 and e(2)
DM = (J2

1 /4)[64J4
1 +

(Ū + A)4]/[16J2
1 + Ū (Ū + A)]2

/(Ū − A).
The competition between the MI and DM phases leads

to a critical point, roughly indicated by e(2)
MI(J

c
1 ) = e(0)

DM(Jc
1 ) +

e(2)
DM(Jc

1 ), which suggests Jc
1 ≈ 0.3. In comparison with Jc

1 ≈
0.5 determined by numerical simulations later as shown
in Fig. 1(b), the underestimated value above-mentioned is
caused by the limited perturbation order near the transition
point.

Now we do a similar analysis on the charge gap in the MI
phase keeping J0/1 � Ū . And the signal of the gap closure
implies the SF-MI transition. Adding an atom “a” to the clean
MI state immediately raises the repulsion energy. Meanwhile,
the added atom can also move over long distances. In the
perturbation theory (Appendix C), the relevant projection op-
erator onto the clean MI state reads

P̂MI+ =
∑

l

P̂ (d )
l

∑
{r,q �=l}

∏
r

P̂ (a)
p

∏
q

P̂ (b)
q , (7)

with operators P̂ (d )
l = n̂a

l n̂b
l , P̂ (a/b)

l = n̂a/b
l (1 − n̂b/a

l ), l run-
ning over all double occupied sites, p and q giving a complete
set of combinations of the single occupied sites “a” or “b.”
Only up to the first order, the J1 terms contribute none at all,
while J0 allows the exchange between a double occupation
and a single one at neighboring sites. The resulting effective
Hamiltonian is

Ĥ (1)
MI+ = −J0

∑
l

P̂ (s)
l

[
Ĥaa,1

l,l+1 + Ĥbb,1
l,l+1

]
, (8)

with the single-occupation projection operator P̂ (s)
l =∑

r,q �=l,l+1

∏
r P̂(a)

r

∏
q P̂(b)

q , Ĥaa,1
l,l+1 = â†

l âl+1n̂b
l n̂b

l+1 + H.c. and

Ĥbb,1
l,l+1 = b̂†

l b̂l+1n̂a
l n̂a

l+1 + H.c. In such a complicated Hamil-
tonian, we find that the ground state has highly degenerate
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manifolds corresponding to various combinations of the single
occupied sites regardless of “a” or “b.” For simplicity, we just
choose the case where all sites are occupied by “b” except for
the site l . So the Hamiltonian becomes

Ĥ (1)
MI+ = −J0

∑
l

(â†
l âl+1 + H.c.), (9)

which yields a ground state energy e(1)
MI+ = −2J0 + Ū in

the TDL. Likewise, removing an atom gives the kinetic
energy e(1)

MI− = −2J0. Consequently, we get the charge
gap �c = e(1)

MI+ + e(1)
MI− − 2e(2)

MI = −4J0 + Ū + 8(ln 2)(J2
1 /Ū ).

The SF-MI borderline �c = 0 or equivalently Jc
0 = Ū/4 +

2(ln 2)(J2
1 /Ū ) ∝ J2

1 gives the asymptotical behavior near
J1 = 0 in Fig. 1(b).

At the end of the section, we roughly estimate the border-
line from the SF to DM phases for the case of large J0/1 but
relatively small Ū . As J0 � J1, the system recovers integrabil-
ity and the ground state energy is roughly −2J0/π . In contrast,
following equations for e(0/2)

DM as J0 � J1, the ground state
energy gives −69J1/64. As a result, the SF-DM borderline
is J0/J1 = 69π/128 ≈ 1.69.

B. Numerical results

Beyond the above perturbation analysis, we look forward
to an elaborate description of the quantum phase diagram
systematically through numerical simulations.

In the phase diagram, the transition from the SF to MI
phases breaks neither a continuous nor a discrete symmetry
and is clearly of the BKT type in the 1D quantum system.
Nevertheless, both the MI-DM and SF-DM transitions take
place by breaking the translation symmetry, so the criticality
depends on the scaling dimensions of relevant operators. From
a trial (Appendix D), the dimerization strength does not follow
the regular finite-size scaling with a polynomial function and
shows us a clear behavior of the imbalanced data collapse
instead. Therefore we believe that both of them are also of
the BKT type.

Even though it is very interesting to understand the mech-
anism by microscopic theories, e.g., bosonization, we only
exploit the level spectroscopy technique to determine the BKT
transition lines here. Level spectroscopy technique, based on
the renormalization group analysis and the symmetry consid-
eration, was proposed in history to overcome the difficulties
of determining the BKT phase transitions [43–45]. The BKT
transition points have been proven to be related to the cross-
ings of representative excited energy levels following the
quantum field theory [43–45].

Under the periodic boundary condition (PBC), the sth (s =
0, 1, . . .) lowest-lying level is marked by the number of atoms
N = Na + Nb, momentum k and parity P, the energy of which
is referred to as Es(N, k, P) in ascending order. The ground
state EGS = E0(L, 0,+1) at integer-1 filling always has zero
momentum and even parity. In the DM phase, a higher-energy
state EDM = E0(L, π,+1) has a small gap for a finite L and
gradually becomes degenerate with the ground state in the
TDL. In the MI phase, the state EMI = E1(L, 0,+1) describes
the gapless excitation with zero neutral gap �n = EMI − EGS

in the TDL. Once J0 = 0, it forms a triplet excitation together
with states E2(L, 0,+1) and E0(L, π,−1). In the SF phase,

the states with one atom more or less form the charge ex-
citations. A bit specially, because the Ū term does not have
the particle-hole symmetry, we use the average value ESF =
mink,P[E0(L + 1, k, P) + E0(L − 1, k, P)]/2 in practice.

In the first step, we obtain all representative levels by the
exact diagonalization (ED) and DMRG methods, followed by
getting the quasi-critical points Jc

0 (L) for a finite L. We take
the SF-MI and SF-DM transitions as examples. For L � 36,
the minimum spacing of parameters J0/1/Ū is equal to 0.005.
In DMRG, the truncated dimensions m � 4096 and the num-
ber of sweeps is enough for convergence accuracy. In the
vicinity of quasicritical points, we adopt a cubic interpolation
of the raw data before accurately determining the places of
crossings.

In the second step, we use data extrapolation to estimate
the true critical points in the TDL following a polynomial
function of 1/Lb. The values of exponent b in Fig. 2 are listed
below in Table I.

In the DM phase, each dimer |φl,l+1〉 is almost frozen and
can not move easily. J0 term tends to destroy a local dimer
and form a running ab pair in the chain. Therefore, between
the SF and DM phases, it expects to create a paired SF (PSF)
with a finite charge gap �c but a zero neutral gap in principle.
In that case, as J0 increases, EDM would first intersect with
the PSF state EPSF = E1(L, 0,+1) and then ESF. In fact, we
find that EDM just has single crossing with ESF. So there
is no evidence of the appearance of the PSF phase at all.
Besides, a tricritical point marked by a five star in Fig. 1(b),
where all representative states merge, is trivial without any
new emerging symmetry.

We now follow two dashed cutting lines in Fig. 1(b) to
browse the properties of phases. The dashed line J0 + J1 = 1
or equivalently J0 = 1 − J1 goes through three distinct phase
regions. For a small J1 close to the J0 axis, the system stays
in the SF phase because of J0 > Ū/4 and the charge gap
closes following a function of 1/L, which means that L�c

collapses to a constant as J1/Ū < 0.44(5) shown in Figs. 3(a)
and 3(b), respectively [46–48]. Under a twisting angle θ at
edges, the system has a finite energy response δEGS(θ ) =
EGS(θ ) − EGS(0). In the SF phase, the second order differ-
ential ρs = δEGS(θ )/θ2, so called the “superfluid density”
[49,50], remains finite as θ decreases towards infinitesimal. In
Fig. 3(d), ρs is finite and invariant with respect to L in the deep
SF region. While near the SF-MI transition, ρs decreases as L
grows and expects to vanish in the TDL. Besides, in the SF
phase region, the lowest-lying neutral excitation �n = 2�c,
considered as the second order effect of the charge excitations
correspondingly, also scales of 1/L and vanishes in the TDL.

Differently, when the system entries the MI phase region,
the charge gap �c becomes finite and the scaled value L�c

TABLE I. Values of exponent b fitting in Fig. 2.

J1/Ū 0.2 0.4 0.6 0.8 1

b 0.476986 0.459362 0.584881 0.633980 0.710094

J1/Ū 1.2 1.4 1.6 1.8 2

b 0.634221 0.649848 0.658709 0.677195 0.690281
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FIG. 2. BKT transition points determined by the level spec-
troscopy technique. Each quasi-critical point is marked by the
intersection of relevant representative states for a certain L: EMI

(violet), EDM (green) and ESF (red) for MI, DM and SF respec-
tively. (a) Take an example for fixed L = 14 and J1/Ū = 0.8, their
intersections give quasi-critical points located at Jc

0 /Ū = 0.403(5)
for the MI-DM transition and 0.526(5) for the SF-MI transition.
(b) Scaling of borderlines of SF phase for J1/Ū from 0.2 to 2.0,
where L � 36 and interval of physical parameters δJ0/1/Ū � 0.005.
Values of exponent b by fitting (blue lines) are listed in Table I.

expects to be divergent in TDL. So in Fig. 3(b), the single line
starts to split into diverse ones at the SF-MI transition point
J1 = 0.44(5). However, the neutral gap remains closed, which
means that a pair of neighboring a can be flipped to a pair of
neighboring b or vice versa without costing energy. Likewise,
the scaled neutral gap L�n is a constant shown in Fig. 3(c).

In the DM phase, both the charge and neutral gaps are
finite. For an even number of sites with the PBC or an odd
number with the open boundary condition (OBC), the ground
state is double-degenerate due to the broken translation
symmetry. As J1 > 0.63(5) in Fig. 3(a), the finite strength dis-
crepancy between even and odd bonds is characterized by the
nonzero dimerization strength D = |〈ĥ2l,2l+1〉 − 〈ĥ2l−1,2l〉| �=
0 with the local Hamiltonian ĥl,l+1 = −J0(Ĥaa

l,l+1 + Ĥbb
l,l+1) −

J1(Ĥab
l,l+1 + Ĥba

l,l+1) for bond l . However, in the MI and SF

regions,
√

LD turns a constant in the TDL shown in Fig. 3(e).

FIG. 3. (a) Charge gap �c (+), neutral gap �n (×), superfluid
density ρs (•) and dimerization strength D (�) as a function of J1/Ū
along a line J1 + J2 = Ū . Left dashed and right dot-dashed lines
indicate two BKT transition points Jc

1 = 0.438(4) and 0.63(2) deter-
mined by level spectroscopy technique previously. Scaled charge gap
L�c (b), scaled neutral gap L�n (d), superfluid density ρs and scaled
dimerization

√
LD (e) for various L are zoomed in near transition

points. In details, �c, �n and D are obtained under OBC for L = 50
(red), 100 (orange), 150 (green), and 200 (blue) respectively. How-
ever, ρs is calculated under PBC for L = 10 (orange), 20 (green), and
30 (blue) respectively.

Referring to the Peierls theory about the DM phase [51–53],
changes in the behavior of

√
LD imply the MI-DM transition,

the place of which matches the value determined by the level
spectroscopy technique previously.

Following the other dashed line J1 = 1.5, the ground state
transits from the DM phase to the SF phase with the closure
of both charge and neutral gaps, as shown in Fig. 4(a), which
was also verified by the scaling behaviors of �c, �n, ρs and
D in Figs. 4(b)–4(e). Moreover, the strong finite-size effects
near Jc

0 = 1.28(4) result in an interesting SF-DM coexistence
region 0.6 � J0 < Jc

0 for L = 200, indicated by both finite ρs

and D. It vanishes in the TDL but may exist in other lattice
models for the ultra-cold atoms.

IV. SUMMARY AND DISCUSSION

Our work proposes a way of Floquet engineering a new
example in the family of correlated-hopping models for two-
species hardcore bosons. In the effective Hamiltonian for
the first resonance region, the intraspecies and interspecies
hoppings, as well as the repulsive interaction strength are
controlled by the lattice depth, the driving amplitude, and
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FIG. 4. (a) Charge gap �c (+), neutral gap �n (×), superfluid
density ρs (•), and dimerization strength D (�) as a function of J1/Ū
along a line J1/Ū = 1.5. The dashed line indicates the BKT transi-
tion point Jc

0 = 1.28(4) determined by level spectroscopy technique
previously. Scaled charge gap L�c (b), scaled neutral gap L�n (d),
superfluid density ρs and scaled dimerization

√
LD (e) for various

L are zoomed in near transition points. In details, �c, �n and D are
obtained under OBC for L = 50 (red), 100 (orange), 150 (green),
and 200 (blue), respectively. However, ρs is calculated under PBC
for L = 10 (orange), 20 (green), and 30 (blue), respectively.

the static magnetic field separately. At integer-1 filling, we
study the properties of the ground state by both the analytical
perturbation and numerical simulations. In addition to normal
SF and MI phases in the quantum phase diagram, a double-
degenerate DM state breaks the translation symmetry once J1

enters the region J1/J0 = J1[2K�] > 0.5, which rules out the
possibility of the existence of the SF-DM coexistence region.
The interplay of J0, J1, and the fixed Ū = 1 leads to three BKT
transition lines and a tricritical BKT point, the exact places
of which have been determined by the level spectroscopic
technique.

Many works could be done based on the effective model.
For example, it is worth studying quantum scars near the
integrable point. Also in a two-leg Wannier-Stark ladder, the
frozen dimers in the DM phase would be released and their
collective breathing tends to form a resonating valence bond
state in a proper parameter space, which certainly deserves
more systematic studies in the future.
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APPENDIX A: PROPOSED EXPERIMENTAL
REALIZATION OF THE TIME-PERIODICALLY

DRIVEN MODEL

After loading a gas of bosonic atoms into one dimensional
(1D) confined optical lattices, it is proposed to modulate the
external Zeeman fields and radio-frequency dependent cou-
plings dynamically to gain a sample with balanced filling
fractions of two hyperfine states [20,54], such as two inner
states |F = 1, mF = 1〉 and |F = 1, mF = 0〉 for 87Rb atoms
in a 400 nm lattice [20,24]. In the single-band approximation,
the movement of the atoms appears in the form of hoppings
between two neighboring minima of the lattice potential and
the hopping processes are independent of the internal hyper-
fine states of atoms [23], the relevant Hamiltonian reads

ĤT = −J0

∑
l

(â†
l âl+1 + b̂†

l b̂l+1 + H.c.), (A1)

where âl (b̂l ) and â†
l (b̂†

l ) are the annihilation and creation
operators, J0 the hopping coefficient of atoms with hyperfine
level “a” (“b”) and the site index l runs over the whole lattice
of L sites. The depth of the optical lattice potential can also
affect the on-site intra- and interspecies repulsive interaction
UL between arbitrary two atoms [23]. It is also independent of
the hyperfine states and we propose UL � J0.

To realize a cloud of interacting two-species hardcore
bosons, we suggest adding a static magnetic field and tuning
its amplitude B to be very close to the Feshbach resonance
point B0, where two-species atoms form s-wave bound states,
while it is far away from intraspecies Feshbach resonance
points for both species [24,25]. On the side of negative scatter-
ing length, an attractive interspecies interaction UF emerges,
which can compensate for the interspecies repulsion UL and
results in a finite interspecies repulsion U = UL − UF > 0 at
last. Meanwhile, a dominant intraspecies repulsion UL still
leads to a hardcore constraint, which means that more than
one atom of a species is forbidden to occupy the same lattice
site. And thus only interspecies repulsion is reserved

ĤU = U
∑

l

n̂a
l n̂b

l , (A2)

where n̂a
l = â†

l âl (n̂b
l = b̂†

l b̂l ) denotes the particle number
operator of the species “a” (“b”). Taking 87Rb atoms for exam-
ple, we set the static magnetic field to be a little smaller than
the interspecies Feshbach resonance point 1259.96 G and far
away from the intraspecies ones, which are located at 685.43
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G for |F = 1, mF = 1〉 and 661.43 G for |F = 1, mF = 0〉
separately [20,24].

We further suggest generating a pure Rabi oscillation be-
tween hyperfine states “a” to “b” by coupling them to a pair
of Raman laser beams [26,27]

Ĥ� = J�

∑
l

(â†
l b̂l + H.c.), (A3)

with the coupling constant J�, so-called “Rabi frequency.”
The way of tuning setup parameters has been discussed be-
fore [20]. Significantly, J� depends on the separation angle
between the electric field of linearly polarized Raman lasers
and the polar moment of hyperfine states [28]. After a 1/4
wave plate is connected to a mechanical motor with rotating
frequency ω within the kHz range, much lower than the laser
frequency of several hundreds of THz, we effectively get
a time-modulated Rabi coupling J�(t ) = J0

� cos(ωt + δ). In
practice, an acousto-optic modulator (AOM) can change the
amplitude and the polarization of the pump laser [26,27]. Thus
the full Hamiltonian reads

Ĥ (t ) = ĤT + ĤU + Ĥ�(t ). (A4)

APPENDIX B: EFFECTIVE HAMILTONIAN
IN THE FIRST RESONANCE REGION

At the preliminary step of the standard operations, we
should remove extra energy scales J0

� and U by applying a
time-dependent rotation [1], both of which are comparable
with h̄ω. The rotation V̂ (t ) = V̂ω(t )V̂�(t ) consists of two com-
muting parts

V̂ω(t ) = exp

[
−iωt

∑
l

n̂a
l n̂b

l

]
,

V̂�(t ) = exp

[
−iK̃�(t )

∑
l

(â†
l b̂l + H.c.)

]
(B1)

with dimensionless parameters K̃�(t ) = K� sin(ωt ) and K� =
J0
�/h̄ω. After rotation, the Hamiltonian is divided into two

parts Ĥ r (t ) = Ĥ r
T (t ) + ĤŪ , where

Ĥ r
T (t ) = −J0

∑
l

[
Ĵb

l,l+1â†
l âl+1 + Ĵa

l,l+1b̂†
l b̂l+1

+ Q̂ba
l,l+1â†

l b̂l+1 + Q̂ab
l,l+1b̂†

l âl+1 + H.c.
]

(B2)

with the emergent density-dependent “gauge fields” Ĵa/b
l,l+1 =

cos[2K̃�(n̂a/b
l − n̂a/b

l+1)] exp[iωt (n̂a/b
l − n̂a/b

l+1)] and Q̂ab/ba
l,l+1 =

−i sin[2K̃�(n̂a/b
l − n̂b/a

l+1)] exp[iωt (n̂a/b
l − n̂b/a

l+1)] as well as the
renormalized interspecies onsite repulsion ĤŪ = Ū

∑
l n̂a

l n̂b
l .

Obviously, microscopic hopping processes are sorted into
two groups: the intraspecies and interspecies hoppings
between two neighboring sites. In contrast to the previous
work [20], we can see the modulated terms Ĵa/b

l,l+1 and Q̂ab/ba
l,l+1

in Eq. (B2) are not pure phases. The involved cosine/sine
function conserves time-reversal symmetry and belongs to
the even/odd sector respectively. We found that the extra
symmetry would help hopping processes select the distinct
order of the first-kind Bessel function.

Furthermore, the time-periodic function Ĥr (t ) can be ex-
panded into a Fourier series Ĥr = ∑+∞

−∞ Ĥ (n)
r exp(iωt ). The

zeroth-order term or the effective Hamiltonian is given by
simply averaging over a period, that is,

Ĥe = Ĥ (0)
r = 1

T

∫ T

0
dtĤr (t ) =

∑
l

ĥl,l+1 + ĤŪ . (B3)

In the derivation, we use a relation of J−1(x) = −J1(x) =
J1(−x). For the intraspecies/interspecies hoppings governed
by Ĵa/b

l,l+1/Q̂ab/ba
l,l+1 , the time-average of the cosine/sine term in a

period leads to identity/J1 separately. Similar to our previous
work [20], the first order in J0/h̄ω vanishes. The second-order
correction, consisting of many terms proportional to (J0/h̄ω)2,
is ignored in the limit J0/h̄ω � 1.

APPENDIX C: PERTURBATION THEORY

To obtain the low-energy effective Hamiltonian Ĥe in
a subspace H0, we follow the strong-coupling expansion
method suggested by Takahashi [55]. For a system described
by a Hamiltonian Ĥ = Ĥ0 + V̂ , the expansion takes the
form

Ĥe = P0Ĥ0P0 + Ĥ (1) + Ĥ (2) + · · · , (C1)

where

Ĥ (1) = P0V̂P0, Ĥ (2) = P0V̂
P0 − 1

E0 − Ĥ0
V̂P0, (C2)

with the projection operator P0 onto H0 and the zeroth order
energy E0.

Firstly, let us consider the case of zero J0 but small J1 � Ū .
At integer-1 filling, the ground state for the nonperturbed
Ĥ0 ≡ ĤŪ is 2L-fold degenerate with E0 = 0. Similar to the
Hubbard model, all the odd-order perturbation terms vanish
[55]. So we obtain the effective Hamiltonian (5) up to the

FIG. 5. A finite-size analysis of the dimerization strength D at
J1/Ū = 1.5 following the standard scaling theory with polynomial
functions. For L = 50 (red), 100 (orange), 150 (green), and 200
(blue), the best fitting to the raw data suggests a critical point Jc

0 =
1.7724 with exponents a = 0.2213 and b = 0.1988.
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second order using the following identities:

P0â†
l b̂lP0 = Ŝ+

l , P0â†
l âlP0 = 1

2 + Ŝz
l ,

P0âl b̂
†
l P0 = Ŝ−

l , P0b̂†
l b̂lP0 = 1

2 − Ŝz
l . (C3)

As J0 = 0 and J1 � Ū , we decouple odd and even
bonds for generating the dimerized manifold naturally.
The Hamiltonian Ĥ0 ≡ −J1

∑
even l [Ĥ

ab
l,l+1 + Ĥba

l,l+1] + ĤŪ for
all even bonds is exactly solvable. The corresponding
ground state wave function |ψ0〉 = ⊗even l |φl,l+1〉 is a product
of local dimers |φl,l+1〉 = B[4J1(|ab〉l |0〉l+1 + |0〉l |ab〉l+1) +
(Ū + A)(|a〉l |a〉l+1 + |b〉l |b〉l+1)] with A =

√
16J2

1 + Ū 2 and
B = 1/(2

√
A2 + ŪA). The resulting energy is E0 = L(Ū −

A)/2. We treat the Hamiltonian V̂ ≡ −J1
∑

odd l [Ĥ
ab
l,l+1 +

Ĥba
l,l+1] for all odd bonds as the perturbation. It is easy to know

that the projection of V̂ onto the subspace H0 in Ĥ (1) is always
null. The leading-order term comes from the second-order
perturbation. At last, the second-order perturbation term Ĥ (2)

is simplified by 〈ψ |1/(E0 − Ĥ0)|ψ〉 ≈ 1/[E0 − 〈ψ |Ĥ0|ψ〉]

and the energy modification is E (2)
0 ≈ 〈ψ0|V̂ 2|ψ0〉/E0 =

LJ2
1 [64J4

1 + (Ū + A)4]/[2(A2 + ŪA)2(Ū − A)].

APPENDIX D: FINITE-SIZE ANALYSIS

In this section, we check the scaling behavior of dimeriza-
tion strength D in the vicinity of the SF-DM transition and
attempt to find out whether it follows the ordinary finite-size
scaling theory with polynomial functions.

For example, we fix J1/Ū = 1.5 and complete the standard
finite-size analysis in Fig. 5. We can see that all curves are
nearly overlapping on the SF side while their difference re-
mains finite on the DM side, so called the imbalanced data
collapse, which was considered as a signal of the BKT tran-
sition in many previous works [56–60]. In addition, near the
suggested critical point Jc

0 = 1.7724, the system still behaves
like the SF phase, which has vanishing �c, �n and D as
well as a convergent ρs independent of the system size L in
Fig. 4. Further confirmed by the unusual critical exponents
a = 0.2213 and b = 0.1988 in Fig. 5, we suppose that the
SF-DM transition is of the BKT type.
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