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The Nielsen-Ninomiya theorem set up a ground rule for the minimal number of the topological points in
a Brillouin zone. Notably, in the 2D Brillouin zone, chiral symmetry and space-time inversion symmetry can
properly define topological invariants as charges characterizing the stability of the nodal points so the nonzero
charges protect these points. Due to the charge neutralization, the Nielsen-Ninomiya theorem requires at least
two stable topological points in the entire Brillouin zone. However, additional crystalline symmetries might
duplicate the points. In this regard, for the wallpaper groups with crystalline symmetries, the minimal number of
the nodal points in the Brillouin zone might be more than two. In this paper, we determine the minimal numbers
of the nodal points for the wallpaper groups in chiral-symmetric and space-time-inversion-symmetric systems
separately and provide examples for topological materials, such as topological nodal time-reversal-symmetric
superconductors and Dirac semimetals. This generalized Nielsen-Ninomiya theorem serves as a guide to search
for 2D topological nodal materials and platforms for twistronics. Furthermore, we show the Nielsen-Ninomiya
theorem can be extended to 2D non-Hermitian systems hosting topologically protected exceptional points and
Fermi points for the 17 wallpaper groups and use the violation of the theorem on the surface to classify 3D
Hermitian and non-Hermitian topological bulks.
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I. INTRODUCTION

The study of various topologically protected points in
lattices has deepened our understanding of profound knowl-
edge in condensed matter physics [1–7]. In particular, the
2D nodal point, which is one type of these topological
points, emerged in a variety of solid-state systems [8–12].
The manipulation of Dirac points in graphene has broadened
our knowledge of strongly correlated systems [13–16] and
topological phases [17–20]. Furthermore, nodal time-reversal
symmetric superconductors host nodal points at zero energy,
revealing Majorana flat bands in the edges [21,22]. While
the nodal points require symmetry for protection, excep-
tional points (EPs) in non-Hermitian systems are robust even
without symmetry protection [6,23,24]. All of these special
topological points in 2D Hermitian and non-Hermitian lattices
[25] follow the Fermion doubling theorem (Nielsen-Ninomiya
theorem) [26–28] as a universal no-go theorem.

The Fermion doubling theorem in the literature is limited
to the absence of additional global symmetries and crystalline
symmetries. On the contrary, including these symmetries,
the classification of topological phases of matter has rapidly
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grown since the discovery of topological insulators [29–31].
The tenfold Hermitian classification in the AZ symmetry
classes [32–34] and the 38-fold non-Hermitian classification
[35] can provide a unified approach to understand topological
phases sorted by nonspatial (global) symmetries. In addition,
the theory of the symmetry indicator [9,23,24,36] is an estab-
lished prominent approach classifying crystalline topological
phases. However, a unified principle through Hermitian and
non-Hermitian topological nodal systems regarding different
types of symmetries is absent. This paper extends from the
Fermion doubling theorem to a generalized no-go theorem
and shows several distinct 2D topological nodal systems nat-
urally following this unified principle.

In Hermitian systems, the Nielsen-Ninomiya Theorem in
2D is different from the one in 1D and 3D. That is, symmetries
are required to protect 2D nodal points; either space-time
inversion symmetry or chiral symmetry can protect 2D Dirac
nodes with twofold degeneracy at any location in the Brillouin
zone (BZ). Space-time inversion symmetry quantizes the Z2

Berry phase in the 1D integral path [37], whereas chiral sym-
metry leads to a well-defined integer winding number in the
1D integral path [5,11]. When the 1D integral path encircles
a Dirac node, the nonzero integral invariant stabilizes the
Dirac node. The reason is that if the Dirac node is gapped,
the integral path can become contractible and then vanishes.
Since this contradicts the robustness of the nonzero invariant,
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the invariant quantized by the symmetries protects the Dirac
node. This robustness manifests the emergence of multiple 2D
topological Dirac semimetals [38–41].

In chiral-symmetric systems, Dirac points with nonzero
integer winding numbers are stable and fixed at zero en-
ergy, while in space-time inversion symmetric systems, Dirac
points can be moved to any energy level and are the only stable
nodal points due to the Z2 invariant. On the other hand, in 2D
non-Hermitian systems, robust Fermi points (FPs) [36] and
EPs [23] are characterized by other nonzero integer winding
numbers even in the absence of any symmetries. Those topo-
logical points (nodal points, FPs, EPs) in the Hermitian and
non-Hermitian lattices always obey the Nielsen-Ninomiya
theorem as the ground rule [24]. In other words, in a 2D
lattice, a topological point inevitably accompanies at least an-
other topological point since the total charges characterizing
the topological points in the entire BZ must be neutralized.
However, in the presence of other symmetries, this no-go
theorem might not be that simple. Generally, a 2D lattice
system belongs to one of the 17 wallpaper groups (WGs)
and preserves on-site symmetries, such as time-reversal sym-
metry. The additional symmetries limit the possible number
of topological points and confine the points in designated
locations in the BZ. In other words, the minimal number of the
topological points might be more than two; hence, the fermion
doubling theorem is not a proper name for the generalization
of the theorem and we use Nielsen-Ninomiya theorem or
no-go theorem for the name. In the literature, the generalized
Nielsen-Ninomiya theorem has not been exhaustively studied
for different WGs with or without time-reversal symmetry.
Due to the growing interest in topological materials, it is
essential to set up the ground rule to understand the minimal
multiplicity of the topological points for different crystalline
symmetries and on-site symmetries.

To investigate the generalized no-go theorem, we con-
sider the three distinct 2D platforms: nodal chiral-symmetric
systems, space-time inversion symmetric semimetals, and
non-Hermitian nodal systems. Our generalized no-go theorem
includes any 2D lattice possessing the topological points char-
acterized by Z and Z2 invariants (winding numbers and Berry
phases). For Hermitian lattices, we note that the fragile topol-
ogy [42–44] or Dirac nodes protected by different crystalline
symmetries [45,46] is not considered here, and our focus is on
the stable nodal points protected by chiral symmetry or space-
time inversion symmetry, even in the presence of trivial bands.
First, we start with the minimal configurations and multiplic-
ities of the nodal points at zero energy protected by chiral
symmetry for all 17 WGs in the BZ. The chiral-symmetric
systems without and with different types of time-reversal sym-
metry and particle-hole symmetry correspond to five of the
ten Altland-Zirnbauer (AZ) symmetry classes [32–34]. These
five AZ classes (AIII, BDI, DIII, CII, CI) preserving chiral
symmetry must be treated separately for the generalized no-
go theorem since different time-reversal symmetries lead to
different charges and configurations for the nodal points. Sec-
ond, in space-time-reversal-symmetric semimetals, the nodal
points characterized by the Z2 invariants might have different
minimal configurations for the generalized no-go theorem
with Z invariants. The reason is that the two nodal points with
nonzero Z2 charges can be annihilated [47], whereas the ones

with nonzero integer charges together are always intact. How-
ever, space-time inversion symmetry can be realized in the
WGs preserving inversion symmetry. Hence, only ten WGs
which possess inversion symmetry can be studied for the gen-
eralized no-go theorem. Lastly, in 2D non-Hermitian systems
without symmetries, EPs/FPs are characterized by integer
discriminant/winding numbers [9,23,24,36], whose mathe-
matical structures are similar to the winding number quantized
by chiral symmetry. In this regard, we extend the general-
ized no-go theorem of the nodal chiral-symmetric systems
in class AIII to the topological points in the non-Hermitian
systems for all 17 WGs with small modifications. In addi-
tion, in non-Hermitian systems, the transpose operation and
the complex-conjugation operation are not equivalent [35].
When those operations combine with crystalline operations,
combined crystalline symmetries emerge. We also expand
the generalized no-go theorem for the combined crystalline
symmetries.

This generalized no-go theorem provides an approach to
understand the topological phases beyond the methodology of
the symmetry indicators [48–56]. In particular, the indicator
approach can detect nodal points located at symmetric points
and lines [57,58] but cannot sense most of the nodal points
at general points in the BZ. Our generalization of the no-go
theorem for the 17 WGs serves as a paradigm to classify
topological nodal platforms and thoroughly shows the min-
imal configurations for the topological points at all possible
locations of the BZ, particularly including the general points.
Furthermore, this generalized theorem can be applied for any
topological points characterized by Z and Z2 invariants and
governs various topological systems. For instance, spinless
and spinful topological nodal time-reversal symmetric super-
conductors in class BDI and class DIII are two of the physical
examples [22,59]; the nodal points in the bulk Bogoliubov-
de-Gennes Hamiltonian connect Majorana flat bands on the
edges [21,60,61]. The generalized no-go theorem lists the
minimal multiplicity and configurations of the nodal points
for different symmetries. Furthermore, our theorem can be di-
rectly extended to 2D non-Hermitian systems and captures the
minimal configuration of the EPs, which connect bulk Fermi
arcs [62]. In addition, Dirac semimetals are another promising
example [38–41,45,63–70]. For free fermion systems, space-
time inversion symmetry protects Dirac points unfixed at any
energy level. This theorem exhaustively provides the possible
configurations of the Dirac points in 2D lattice and serves a
guide to hunt undiscovered Dirac semimetals.

The remainder of this paper is organized as follows. In
Sec. II, before going through the technicality, we provide an
overview of the no-go theorem for the 17 WGs in topological
points Hermitian and non-Hermitian lattices. In Sec. III, we
thoroughly study the generalized no-go theorem for zero-
energy nodal points protected by chiral symmetry. In Sec. IV,
using a similar approach, we extend the no-go theorem to
Dirac nodes protected by space-time inversion symmetry for
the ten WGs possessing inversion symmetry. In Sec. V, we
show that the non-Hermitian no-go theorem for EPs and FPs
inherits some features from the Hermitian chiral-symmetric
one and distinctly have additional restrictions from rotation
symmetries. In Sec. VI, we implement the generalization no-
go theorem for various condensed matter studies, such as layer
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FIG. 1. Seventeen 2D lattice structures illustrate the simplest examples for the 17 wallpaper groups. The red and green colors indicate
different types of atoms, and translational symmetries and crystalline symmetries connect identical atoms.

groups (LGs), 3D bulk topology, and twistronics. Lastly, we
conclude with a summary in Sec. VIII. Some technical details
have been relegated to Appendices.

II. OVERVIEW OF THE NO-GO THEOREM FOR THE
17 WALLPAPER GROUPS

We begin with the overview of the generalized no-go the-
orem for 2D Hermitian and non-Hermitian lattices for the 17
WGs, and the following sections will provide all of the details.
The 17 WGs exhaustively classify 2D lattices with crystalline
symmetries and Fig. 1 shows the simplest examples of the
crystal structures for each WG, where different types of atoms
are colored by red and green. In general, in the 2D BZ, a
stable topological point at ki is characterized by a nonzero
charge C(ki ), and the charge can be a Z or Z2 invariant. The
key of the no-go theorem is that the summation of the charges
carried by the topological points in the entire BZ must vanish
as charge neutralization, i.e.,∑

ki∈BZ

C(ki ) = 0. (1)

This neutralization equation directly leads to the well-known
statement of the Nielsen-Ninomiya theorem [26–28] that a
stable topological point must be accompanied by at least an-
other topological point in the 2D BZ. To quantify the minimal
multiplicity of the topological points, we define the absolute
charge number:

νabs =
∑

ki∈BZ

|C(ki )|. (2)

In the chosen symmetry class, the minimum of this number
corresponds to the minimal multiplicity and configuration of
the topological points. The standard Nielsen-Ninomiya the-
orem [26–28] shows νabs � 2 and νabs is always an even
number. We note that νabs can be an integer greater than one,
even though the charge C(ki ) might have Z2 property. The rea-
son is that the topological points may be at different locations
and cannot be annihilated. Beyond the Nielsen-Ninomiya

theorem, our generalized no-go theorem shows that for
some WGs, νabs is always greater than 2 so the minimal
number of the topological points with charge weights is
greater than 2. The main results of our generalized no-
go theorem for Hermitian and non-Hermitian 2D lattices,
which show the minimal number of νabs, are summarized in
Table I.

First, let us introduce the no-go theorem for 2D Hermitian
lattices preserving chiral symmetry for the 17 WGs in Table I.
Chiral symmetry makes the nodal points carry nonzero Z
winding numbers [5,11] stable and locked at zero energy. The
17 WGs are simplified to 11 equivalent sets based on point
groups, and five AZ symmetry classes (AIII, BDI, DIII, CI,
and CII) can also be divided into four categories, since BDI
and CII share the same no-go theorem. Hence, the number
of symmetry combinations is 44 effective WG-AZ symme-
try classes. With translation symmetry, each WG is formed
by rotation symmetry operation Cn or/and mirror symmetry
operation Mx as generators. Here we fix the direction of
the mirror Mx along �X for the rectangle (square) BZ and
�M for the hexagonal BZs. The minimal configuration of
the nodal points further depends on the algebra between the
chiral-symmetry operator S and the two generators Cn, Mx.
In Table I, C±

n represents the rotation symmetry operator
commutes/anticommutes with S, while M±

x indicates the mir-
ror symmetry operator commutes/anticommutes with S. (We
note that WG#14 without Mx, which is an exception, has
mirror symmetry My along �K .) The numbers listed in the
last four columns of the table represent the minimal absolute
number νabs for each WG-AZ symmetry class. Since some
symmetries can trivialize the nodal points, 0 indicates the ab-
sence of the stable nodal points protected by chiral symmetry.
Most of the remaining numbers represent the minimal num-
bers of the Dirac nodes with ±1 charge, with the exceptions
labeled by ∗; due to the symmetry constraints, the minimal
configurations of the exceptions require the presence of nodal
points with high charges, whose absolute values are greater
than one |C| > 1. For example, in class CI in WG#10, with
C+

4 the minimal configuration for νabs = 4 only includes one
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TABLE I. The minimum multiplicity list for topological points in Hermitian and non-Hermitian lattices. The entire table exhaustively
lists minimal νabs describing the minimal multiplicities of the nodal points at zero energy for space-time-inversion-symmetric, non-Hermitian,
and chiral-symmetric systems. For each WG in chiral-symmetric systems, one or two point group generators with signs indicate the algebra
between the chiral-symmetry operator and the generators. While 0 indicates the absence of nodal points protected by chiral symmetry, nonzero
νabs indicates the minimal number of Dirac points with ±1 charges for most of the WG-AZ symmetry classes, with the exceptions labeled by
∗. That is, in the exceptions the minimal configurations require the presence of at least one high-ordered nodal point, of which the charge is
not ±1.

Space-time inversion Non-Hermitian
WG symmetric systems systems Generators AIII BDI/CII DIII CI

#1 2 2 2 4 4

#2 2 4
C+

2

C−
2

4
2

0
2

4
0

4
0

#3−5 2
M+

x

M−
x

2
2

2
2

4
4

4
4

#6−9 2 4
C+

2 and M+
x

C+
2 and M−

x

C−
2 and M±

x

4
4
2

0
0
2

4
4
0

4
4
0

#10 4 8
C+

4

C−
4

4
4

0
0

4
4

4∗

4

#11−12 4 8
C+

4 and M+
x

C+
4 and M−

x

C−
4 and M±

x

8
4
4

0
0
0

8
4
4

8
4∗

4

#13 6
C+

3

C−
3

2
0

2
0

4∗

0
4∗

0

#14 6
C+

3 and M+
y

C+
3 and M−

y

C−
3 and M±

y

2
6
0

2
6
0

12
4∗

0

12
4∗

0

#15 6
C+

3 and M+
x

C+
3 and M−

x

C−
3 and M±

x

6
2
0

6
2
0

12
4∗

0

12
4∗

0

#16 2 12
C+

6

C−
6

4∗

2
0
2

4∗

0
4∗

0

#17 2 12

C+
6 and M+

x

C+
6 and M−

x

C−
6 and M+

x

C−
6 and M−

x

12
4∗

6
2

0
0
6
2

12
4∗

0
0

12
4∗

0
0

nodal point with +2 winding number and the other with −2
winding number.

For other Hermitian systems, stable nodal points protected
by space-time inversion symmetry [(C2T )2 = 1] carry only
±1 charge due to the Z2 invariant of the Berry phase [37,47].
That is, there is only one type of stable nodal point. Being
different from topological points with Z charges, two of the
nonzero Z2 nodal points together are annihilated. In this re-
gard, the no-go theorem with Z2 invariants is distinct from
the theorem with Z invariants. On the other hand, inversion
symmetry is required in the WGs to form space-time inversion
symmetry with time-reversal symmetry. Only ten of the 17
WGs preserving inversion symmetry can possess Z2 nodal
points. Furthermore, the (anti)commutation relation between
C2T and the generators (Cn, Mx) does not affect the no-go
theorem. In the second column of Table I, the numbers νabs

indicate the minimal numbers of the protected nodal points for
the ten WGs. We note that those numbers also represent the

minimal absolute numbers νabs for chiral symmetric lattices
in class AIII. The reason is that simple two-band Hamilto-
nians can simultaneously describe minimal node models in
space-time inversion symmetric lattices and chiral symmetric
lattices.

Lastly, for 2D non-Hermitian lattices, any symmetry is
no longer required to protect topological points; robust FPs
and EPs carrying nonzero charges naturally arise [9,23,24].
In the absence of the symmetry requirement for protection,
the algebra between the symmetry operators is inapplicable
to classify the minimal configuration of the non-Hermitian
systems. Hence, the 17 WGs are the only symmetry classes
in this classification. Since the charges of the FPs and EPs
share the same Z properties, these two distinct types of topo-
logical points obey the same generalized rules of the no-go
theorem. The non-Hermitian lattices and the Hermitian chiral-
symmetric ones share Z invariant, so the restriction of the
nodal points in the chiral-symmetric systems with C+

n , M+
x
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can be applied to the non-Hermitian for the 17 WGs. The only
difference is that the charges of the non-Hermitian topological
points at rotation centers, say Cn, must be the multiple of n:

C(krotation ) = n j, j ∈ Z. (3)

Following this additional rule, we note that the non-Hermitian
no-go theorem does not always share the same minimal ab-
solute numbers νabs with the chiral-symmetric lattices in class
AIII. In Table I, the generalized no-go theorem for the non-
Hermitian lattices is shown by the absolute charge numbers in
the third column.

Table I serves as a dictionary showing the minimum of the
absolute charge numbers νabs for the three distinct 2D lattice
systems as the generalized no-go theorem. For most of cases,
νabs is greater than 2 due to the symmetries; hence, the gen-
eralized no-go theorem goes beyond the doubling theorem.
We note that for the minimal configurations, the topological
points have to be located at specific momenta in the BZ.
That is, the multiplicity of the topological points profoundly
depends on their locations. The location-dependent multiplic-
ities of the topological points are studied in great detail in the
following sections. Furthermore, our generalized theorem lists
all of possible configurations of Dirac nodes; this prediction
can lead to possible discoveries of exotic Dirac materials.
The following sections provide the tight-binding models for
the potential realization and the detailed derivation of the
generalized no-go theorem.

III. 2D HERMITIAN CHIRAL-SYMMETRIC LATTICES

We start with 2D Hermitian lattices preserving chiral sym-
metry. Since there are five AZ symmetry classes with chiral
symmetry, the generalized no-go theorem for chiral sym-
metry is much more complicated than space-time-inversion-
symmetric systems and non-Hermitian lattices. After going
through the details of all the chiral-symmetry classes, we
directly extend these results of the no-go theorem to the two
other cases.

A. Nodal points protected by chiral symmetry

We review the interplay of nodal points, chiral symmetry,
and winding numbers by showing that the nonzero wind-
ing number quantized by chiral symmetry can protect the
nodal point. Furthermore, we build the relation between wind-
ing numbers for two nodal points connected by crystalline
symmetries or time reversal symmetry. This relation is an
important building block for our no-go theorem.

Chiral symmetry is our focus of symmetry protecting nodal
points with nonzero winding numbers in this section. We
consider an (effective) noninteracting system and the Bloch
Hamiltonian preserving chiral symmetry obeys

SH(k)S−1 = −H(k), (4)

where unitary matrix S is defined as a chiral-symmetry oper-
ator. One of the ideal platforms to realize chiral symmetry is
time-reversal symmetric superconductors [21,22,59–61]. Su-
perconductor systems can be described by a Bogoliubov-de
Gennes Hamiltonian [71] obeying particle-hole symmetry

CH(−k)C−1 = −H(k), (5)

where particle-hole symmetry operator C is antiunitary. The
time-reversal symmetric Hamiltonian also satisfies

TH(−k)T −1 = H(k), (6)

where time-reversal symmetry operator T is also antiunitary.
Consequently, the combination of particle-hole symmetry and
time-reversal symmetry becomes chiral symmetry with chiral-
symmetry operator S = CT as a unitary one.

When an eigenstate |�(k)〉 possesses energy E , the chiral
symmetry (4) leads to another eigenstate S|�(k)〉 having en-
ergy −E ; zero energy (E = 0) is a special point. Furthermore,
it will be shown later that stable nodal points are locked in
zero energy, so we choose zero energy as the Fermi level.

Here we review the definition of the winding number quan-
tized by chiral symmetry. By choosing a proper basis, the
chiral-symmetry operator is written as S = τz ⊗ In×n so the
Hamiltonian is in the block off-diagonal form

H(k) =
(

0 h(k)
h†(k) 0

)
. (7)

Assuming h(k) is invertible [det(h(k)) �= 0], we can define the
winding number in a closed loop integral path in the BZ:

ν = i

2π

∮
dk · Tr[h−1(k)∂kh(k)]

= i

2π

∮
dk · ∂kTr[ln h(k)]

= i

2π

∮
d (ln det[h(k)]). (8)

By rewriting det h(k) ≡ f (k)eiα(k), where f (k) is a single-
valued function and α(k) is a multivalued function, the
winding number is given by

ν = −1

2π

∮
dα(k). (9)

Since in the loop the start and end points of the integral are
identical,

∮
dα(k) = 2π l and then the winding number ν is

quantized. We note that the definition of the winding number
is equivalent to the one using the flattened Hamiltonian (see
Appendix B for the detail).

We demonstrate the interplay of nodal point protection,
chiral symmetry, and winding number by using a simple 2 × 2
Hamiltonian

Hn(k) =
(

0 (	kx − i	ky)n

(	kx + i	ky)n 0

)
, (10)

where n is a positive integer and

	kx = kx − kx0, 	ky = ky − ky0. (11)

The nodal point appears at K0 = (kx0, ky0) in the BZ with E =
0. The energy dispersion E = ±	kn and q = 	keinθ , where

	k =
√

	k2
x + 	k2

y . The meaning of the winding number is

the change of the U (1) phase of det h(k) along the close loop
�(K0) encircling K0 in the counterclockwise direction. The
chiral-symmetry operator is given by S = τz and H(k) obeys
chiral symmetry (4). Here we use the polar coordinate 	kx ≡
k0 cos θ and 	ky ≡ k0 sin θ . With the integral path encircling
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K0, by Eq. (8) the winding number ν(K0) = n. (n = ±1 cor-
responds to a Dirac point.) This node is equivalent to |n| Dirac
nodes with ν = sign(n). Chiral symmetry quantizes the wind-
ing number and forbids the presence of τz destroying the nodal
point. Moreover, the zero energy of the nodal point cannot be
lifted, since the identity matrix, which is the only one chang-
ing the nodal point energy, is forbidden by chiral symmetry. In
this regard, the nonzero winding number n indicates the pres-
ence of the stable nodal point. We note that without breaking
chiral symmetry, the nodal point with winding number n can
be deformed to several nodal points and the summation of the
winding numbers for the nodal point is still n.

Likewise, the Hamiltonian having another nodal point with
−n winding number is written as

H−n(k) = kn
0einθ τ+ + kn

0e−inθ τ−, (12)

where τ± = (τx ± iτy)/2. When we merge these two systems
[Hn(k) and H−n(k)], the Hamiltonian is given by

Hsum(k) = kn
0 cos nθσ0 ⊗ τx + kn

0 sin nθσz ⊗ τy, (13)

which still preserves chiral symmetry with the symmetry oper-
ator S = σ0 ⊗ τz. Since the total winding number for the nodal
point vanishes, we simply find a symmetry-preserving mass
term mσy ⊗ τy destroying the nodal point, and the gapped en-

ergy dispersion is given by E = ±
√

k2n
0 + m2, namely, the two

nodal points at the same locations with the opposite winding
numbers are unstable.

A symmetry operator g acts on the k space in the following
form:

gk =
(

g11 g12

g21 g22

)(
kx

ky

)
. (14)

Suppose there exists a generic nodal point at K0, which is
protected by chiral symmetry but not necessarily described
by the simple model (10). The winding number of the nodal
point is given by

ν(K0) = i

2π

∮
�(K0 )

∇k(ln det[h(k)]) · dk, (15)

where �(K0) indicates an infinitesimal loop of the integral
encircling K0 counterclockwise. The symmetry results in the
presence of a nodal point at gK0, while this symmetry operator
can be time reversal or crystalline. To count the number of the
nodal points in the BZ, it is important to study the relation
between the two winding numbers [ν(K0), ν(gK0)] of the
two nodal points connected by the symmetry g; the winding
numbers [ν(K0), ν(gK0)] are computed in the integral loops
�(K0) and �(gK0) encircling K0 and gK0 points, respectively,
as illustrated in Fig. 2.

The algebra of the chiral-symmetry operator and g sym-
metry operator determines the connection between the two
winding numbers at K0 and gK0. The derivation details of
the connections for crystalline symmetry operators and time-
reversal symmetry operators are given in Appendix B. As
we first consider crystalline symmetry, the Hamiltonian pre-
serving crystalline symmetry obeys (See Appendix A for the
derivation)

H(gk) =U ±
g (k)H(k)U ±†

g (k), (16)

FIG. 2. The two Dirac points at K0 and gK0 are connected by
symmetry g. The two dashed circles represent the counterclockwise
integral loops �(K0 ) and �(gK0 ) for the winding numbers ν(K0) and
ν(gK0 ), respectively.

where U ±
g represents the unitary crystalline symmetry

operator in the momentum basis and ± signs indicate
(anti)commutation relation between the two symmetry opera-
tors (U ±

g S ∓ SU±
g = 0). We note that H(k) and U (k)±, which

are single-valued (Appendix A), obey

H(k + Gi ) = H(k), U (k + Gi )
± = U (k)±, (17)

where Gi is a reciprocal lattice vector. In the following, we al-
ways use +(−) to indicate that the chosen symmetry operator
(anti)commutes with chiral-symmetry operator (S). These two
possible forms of U ±

g lead to the different connections of the
winding numbers between K0 and gK0:

ν(g±K0) = ± det(g±)ν(K0). (18)

There are two types of crystalline symmetries in WGs—
(glide) mirror symmetries and rotation symmetries. The
mirror operators satisfy det g = −1, whereas the rotation op-
erators obey det g = 1. For g+, the two nodal points (K0 and
gK0) connected by the mirror symmetry possess the oppo-
site winding numbers, while the nodal points linked by the
rotation symmetry have identical winding numbers. On the
contrary, for g−, the two winding numbers linked by the mirror
operator are identical and the ones linked by the rotation
operator have different signs.

We note that the generic forms of the crystalline symme-
try operators in Eq. (16) are momentum dependent. That is,
nonsymmorphic symmetry operations, which are glide mirror
ones only in 2D systems, have the same winding number
relations at K0 and gK0 with mirror symmetry operations.
Therefore, in the next subsection when we classify the min-
imal multiplicities of the nodal points, we treat the WGs
3–5 as one set together since the three WGs have the same
effective mirror symmetries in momentum space, regardless
of the glide operations. Similarly, WGs 6–9 and 11 and 12
are, respectively, gathered into two sets for the classification
of the generalized no-go theorem in the next subsection.

On the other hand, the time-reversal symmetry operator can
commute (T +) or anticommute (T −) with chiral-symmetry
operator S. For T ±, the connection between the two winding
numbers is given by (see the derivation in Appendix B)

ν(−K0) = ∓ν(K0). (19)
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TABLE II. Symmetry-related winding numbers for nodal points.
The operator labels T ±, C±

n , M± indicate time reversal, n-fold
rotation, and mirror, respectively. The signs +(−) indicate the corre-
sponding symmetry operator (anti)commuting with chiral-symmetry
operator S.

T ± C±
n M±

ν(−K0 ) = ∓ν(K0) ν(gK0) = ±ν(K0 ) ν(gK0 ) = ∓ν(K0)

The winding number relations at K0 and gK0 for different
symmetry operators are summarized in Table II. This table
is our fundamental tool to study the minimal multiplicity of
the nodal points for 17 WGs and five AZ symmetry classes
possessing chiral symmetry.

B. Nodal points for the 17 wallpaper groups and the five AZ
symmetry classes

Symmetries different from chiral symmetry crucially affect
the minimal multiplicity of the stable nodal points in the BZ.
For 2D lattice systems with chiral symmetry, symmetries can
be classified by 17 WGs and fiive AZ symmetry classes.
While the 17 WGs include various crystalline symmetries
and translational symmetries in the two spatial directions,
the AZ symmetry classes can only have nonspatial (global)
symmetries: chiral symmetry, time-reversal symmetry, and
particle-hole symmetry. As we consider the combination of
crystalline symmetries and AZ symmetry classes, there are
85 WG-AZ symmetry classes. However, we will show later
that the number of effective WG-AZ symmetry classes for
the no-go theorem can be reduced. Let us first review the
properties of the 17 WGs. Figure 1 illustrates the simplest
crystal structures of the 17 WGs and the WGs are classified to
four crystal systems (monoclinic, orthorhombic, square, and
hexagon) as well as five Bravais lattices. In the WGs, Cn and
Cnv (n = 1, 2, 3, 4, 6) are the only ten types of point groups,
while mirror M and rotation Cn operations can be the only two

generators for these point groups. When conventional cells are
chosen, the point groups can reduce the first BZ to the irre-
ducible BZ as shown in Fig. 3, since the crystalline symmetry
connects any point in the BZ from the irreducible BZ. In this
regard, all of the nodal points in the irreducible BZ can be
easily extended to the entire BZ by using those two generators
of the point group. The irreducible BZ is our building block
to study the minimal multiplicity and configuration of nodal
points in the no-go theorem.

It has been shown in Table II that the algebra between the
chiral-symmetry operator and the other symmetry operators
determines the winding numbers of the nodal points extended
by the symmetry operators from the irreducible BZ. On the
other hand, although the crystalline symmetry operators can
be momentum dependent, regardless of the algebra between
the symmetry operators, different forms of the symmetry op-
erators do not affect the winding numbers of the extended
nodal points. For example, WGs 3 and 4 only preserve re-
flection symmetry and reflection glide symmetry, respectively,
and their symmetry operators are in different forms. Since
these two symmetry operations flip momentum only in one
direction in the same BZ, these two WGs are classified as
the same set to discuss the no-go theorem. Furthermore, we
note that in conventional cell basis, WGs 5 and 9 preserve
additional translational symmetry with a half length of the
unit cell shift. Since the translational symmetry and chiral
symmetry are unrelated, chiral operator S commutes with this
shift operator; this additional translation symmetry does not
affect the nodal points; we can classify WGs 3–5 in a set and
WGs 6–9 in another set for the no-go theorem. Thus, the 17
WGs are classified to 11 equivalent sets for the no-go theorem
as shown in Fig. 3. Although WGs 14 and 15 have the same
C3v point group, their mirror lines are along �-M and �-K
differently. Hence, these groups belong to different sets for
the no-go theorem.

The five AZ symmetry classes (AIII, BDI, DIII, CI, and
CII), which preserve chiral symmetry, can possess nodal
points characterized by winding numbers. By considering the

#(6, 7, 8, 9)

#13 #15#14 #17#(11, 12)

#(3, 4, 5)#1

Y M

X

(a) (b) (c)

(i)(h)(g)(f)

(e)(d)

(j)

#2

Y M

X

Y M

X

#10

Y M

X

M

M1

2M3

#16

M

M1

2M3

Y M

X

Y M

X

M

M1

2M3 M

M1

2M3 M

M1

2M3

(k)

FIG. 3. The irreducible BZs (purple) for the 17 wallpaper groups. Based on the crystalline symmetry operations, the 17 wallpaper groups
are classified to 11 equivalent sets for the classification of the no-go theorem. The red numbers denote nonsymmorphic wallpaper groups. The
black lines indicate the boundary of the BZ, the solid dots indicate TRI points, and the (red) dashed lines indicate mirror lines (inside the BZ).
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FIG. 4. The survival of nodal points protected by chiral sym-
metry in the presence of time-reversal symmetry and C2 rotation
symmetry. The green and red cones represent nodal points with +1
and −1 winding numbers, respectively. (a), (b) T ± time-reversal
operator and C∓ rotation operator act on the nodal point at K0. The
nodal point goes back to the same point with the same winding
number. (c), (d) T ± time-reversal operator and C± rotation operator
act on the nodal point at K0. The two nodal points with the opposite
winding number at the same point lose the protection from chiral
symmetry.

11 distinct sets of the WGs, we can directly study the no-go
theorem for class AIII, since this symmetry class preserves
only chiral symmetry. The remaining four symmetry classes
have additional time-reversal symmetry. Because chiral sym-
metry is the combination of time-reversal symmetry and
particle-hole symmetry (S = TC), we treat particle-hole sym-
metry as a redundancy. The AZ symmetry classes determine
the algebra between the chiral operator and the time-reversal
operator. While classes BDI and CII have T + time-reversal
operators, classes DIII and CI have T − time-reversal opera-
tors (see the proof in Appendix C). In two of the following
subsections, classes BDI and CII have the same minimal
configurations for each of the 17 WGs. In total, there are
44(= 11 × 4) effective WG-AZ symmetry classes for the gen-
eralized no-go theorem.

Time-reversal and C2 symmetry operators both map nodal
points at ±K0 to ones at ∓K0, respectively. There are two pos-
sibilities of the operator algebra arrangements to determine
the existence of the protected nodal points. We assume the
winding number at K0 to be w and time-reversal operation
T ± leads to the winding number at −K0 to be ∓w. On the
one hand, we use the C∓

2 operation, which corresponds to the
first operation T ±, respectively, to map the winding number
at −K0 back to the one at K0 as illustrated in Figs. 4(a) and
4(b). After the two symmetry operations, the winding number
w at K0 is identical to the original one. Hence, this nodal
point survives in the symmetry operations. On the other hand,
after the T ± operation, we exchange the two algebra types
of C2 operations so C±

2 correspond to the first operation T ±,

respectively, as illustrated in Figs. 4(c) and 4(d). After the two
symmetry operations, the mapping winding number −w at
K0 coexists with the original winding number w at the same
location. Since the total winding number at K0 vanishes, T ±
time-reversal symmetry and C±

2 symmetry always force nodal
points to lose the protection from chiral symmetry in the entire
BZ. Thus, when a WG in some symmetry class preserves T ±
and C±

2 symmetries, the number of nodal points protected by
chiral symmetry is always zero. Similarly, in the presence
of C−

3 symmetry, by performing three times the C−
3 rotation

operation, the nodal point moving back to K0 = (C−
3 )3K0 has

w, −w winding number together. Since the total winding
number vanishes at K0, which can be any point in the BZ,
a nodal point protected by chiral symmetry is absent in the
entire BZ.

The trivialization of the nodal points can be extended
to nodal points at symmetry-invariant points. According to
Table II, any of T +, C−

n , and M+ operations leads to ν(K0) =
−ν(gK0). Hence, when a nodal point is located at the cor-
responding time-reversal, rotation, or mirror invariant points,
its winding number must vanish and the nodal point does not
have chiral symmetry protection.

The charge of the nodal point is defined by the winding
number C(K0) = ν(K0) and the absolute charge number νabs

is defined in Eq. (2). Given WG-AZ symmetry classes and
the algebra of the symmetry operators, the smallest number
of the absolute charge number νabs indicates the minimal
configuration of the nodal points. We note that the minimal
configuration of nodal points in BZ might not be unique. Since
the winding numbers of the nodal points have the weight in
this indicator number, the minimal number of the nodal points
cannot directly indicate the minimal configuration. The only
exception is that all of the nodal points in the BZ are Dirac
node with ν = ±1. In this case, the number of the Dirac nodes
is equal to νabs.

Since a nodal point at a time-reversal invariant (TRI) point
inherits additional constraints from the tenfold classification
of the topological nodal superconductors [5,11], we separate
the classification of the no-go theorem to two categories: off
and at TRI points. We note that class AIII, which does not
have TRI points, is studied only in the off-TRI point case due
to the absence of time-reversal symmetry.

C. Nodal points off time-reversal invariant points

According to the classification of topological semimetals
and nodal topological superconductors [5,11], for the five AZ
symmetry classes preserving chiral symmetry, nodal points
away from TRI points can be characterized by winding num-
ber. In the presence of crystalline symmetries, focusing on
the irreducible BZs is sufficient to study the minimal con-
figuration of the nodal points in the entire BZ. The number
of nodal points crucially depends on their locations in the
irreducible BZ and the algebra between chiral operator and
other symmetry operators. We provide the complete no-go
theorem for nodal points away from TRI points in Table III
by using the following four steps to find the minimal νabs of
the nodal points in the different configurations.

(a) We check if the symmetries force nodal points to pos-
sess zero winding number. For example, when the system
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TABLE III. The absolute winding number νabs for nodal points protected by chiral symmetry away from TRI points. The table exhaustively
provides the values of νabs for all possible minimal configurations for each WG-AZ symmetry classes. The two point group generators (M±

x ,C±
n )

with signs indicates the algebra between the chiral-symmetry operator and the generators. While 0 indicates the absence of nodal point protected
chiral symmetry, the nonzero number νabs indicates the minimal number of Dirac points with ±1 winding numbers. The nonzero νabs without
location specification denotes that all Dirac points in the minimal configuration are located at general points. Label ∼ above some numbers
indicates all nodal (Dirac) points connected by symmetries in the minimal configuration and label ∗ indicates some nodal points possess high
charges (|ν| > 1). Furthermore, while MLs is an abbreviation for mirror lines, label ◦ indicates that the Dirac points are in the effective mirror
lines (T ∗ M invariant lines), and label • indicates that Dirac nodes can be located in ordinary and effective mirror lines.

WG Generators AIII BDI/CII T + DIII/CI T −

#1 2 2̃ 4

#2
C+

2 4 or 4 (�, M, X, Y) 0 4
C−

2 2̃ 2̃ 0

#3−5
M+

x 2̃ 2̃◦MLs or 4̃ 4̃
M−

x 2 MLs including (�, M, X, Y) or 4 2̃ MLs or 4̃ 4•MLs or 8

#6−9
C+

2 and M+
x 4̃ 0 4̃

C+
2 and M−

x 4 MLs or 4 (�, M, X, Y) or 8 0 4 MLs or 8
C−

2 and M±
x 2̃ MLs or 4̃ 2̃ MLs or 4̃ 0

#10
C+

4 4 (�, M, X, Y) or 8 0 8
C−

4 4̃ 0 4̃

#11−12
C+

4 and M+
x 8̃ 0 8̃

C+
4 and M−

x 4 (�, M, X, Y) or 8 MLs or 16 0 8 MLs or 16
C−

4 and M±
x 4̃ MLs or 8̃ 0 4̃ MLs or 8̃

#13
C+

3 2(K, K′) or 4∗(K, K′, �) or 6 (K, K′, �,
M1/2/3) or 6∗(�, M1/2/3) or 6

2̃(K, K′) or 6̃ 12

C−
3 0 0 0

#14

C+
3 and M+

y 2̃(K, K′) or 6̃ 2̃(K, K′) or 6̃◦MLs or 1̃2 1̃2
C+

3 and M−
y 4∗(K, K′, �) or 6 MLS or 6(K, K′, �,

M1/2/3) or 6∗(�, M1/2/3) or 12
6̃ MLs or 1̃2 12•MLs or 24

C−
3 and M±

y 0 0 0

#15

C+
3 and M+

x 6̃ 6̃◦MLs or 1̃2 1̃2
C+

3 and M−
x 2(K, K′), 4∗(K, K′, �), 6 MLs, 6(K, K′,

�, M1/2/3), 6∗(�, M1/2/3), or 12
2̃(K, K′) or 6̃ MLs or 1̃2 12•MLs or 24

C−
3 and M±

x 0 0 0

#16
C+

6 4∗(K, K′, �) or 6(K, K′, �, M1/2/3) or
6∗(�, M1/2/3) or 12

0 12

C−
6 2̃(K, K′) or 6̃ 2̃(K, K′) or 6̃ 0

#17

C+
6 and M+

x 1̃2 0 1̃2
C+

6 and M−
x 4∗(K, K′, �) or 6(K, K′, �, M1/2/3) or

6∗(�, M1/2/3) or 12 MLs or 24
0 12 MLs or 24

C−
6 and M+

x 6̃ MLs or 1̃2 6̃ MLs or 1̃2 0
C−

6 and M−
x 2̃(K, K′) or 6̃ MLs or 1̃2 2̃(K, K′) or 6̃ MLs or 1̃2 0

preserves T ± time-reversal symmetry and C±
2 symmetry, there

are no nodal points protected by chiral symmetry. Allowing
nodal points with nonzero winding number, the symmetries
do not restrict the value of the winding number away from
any TRI points. To find the minimal configuration of the nodal
points, we first place one Dirac point with winding number
ν = 1 in the irreducible BZ but not at TRI points.

(b) Different placements of the Dirac point lead to differ-
ent configurations of the Dirac points in the entire BZ. We
separately consider the location of the Dirac point at mirror
lines, rotation centers, and general points. Commonly, rotation
centers are in mirror lines, although K and K ′ points for
WG#14 are two of the exceptions. If the Dirac point is located

at a symmetry-invariant point, we have to further check if the
symmetry corresponding to the invariant point trivializes the
Dirac point. For example, according to Table II, M+ forces
the winding number of the Dirac point at the mirror line
to vanish since K0 = M+K0 and ν(K0) = −ν(M+K0). If the
nonzero winding number survives, we can continue to discuss
the configuration of the nodal points.

(c) Using the symmetry operation (rotation, mirror, or
time-reversal), we extend the nodal point from the irreducible
BZ to the remaining area of the BZ. Following Table II, we
determine the winding numbers of the extended nodal points
based on the algebra between the chiral-symmetry operator
and the symmetry operators for the extension.
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(d) Since the summation over the winding numbers of
all nodal points in the entire BZ must vanish as the key
result of the original Nielsen-Ninomiya theorem (1) (see
Appendix D for the proof),

∑
i

ν
(
K i

0

) = 0, (20)

we have to check if the summation is zero after the extension
of nodal points. If so, this configuration has the minimal
configuration of the nodal points. If not, we add an additional
nodal point and repeat step (b) and (c) until the total winding
number vanishes Eq. (20). We note that when we place a new
nodal point, its winding number is usually chosen to be either
+1 or −1 to neutralize the entire BZ and to have minimal νabs,
but exceptions are possible.

Table III shows that the smallest absolute winding numbers
νabs subtly depend on WG-AZ symmetry classes, locations
of the nodal points, and algebra between the symmetry op-
erators. In particular, choosing different locations of the first
Dirac point in the irreducible BZ in step (c) leads to different
configurations of nodal points. Table III shows all the minimal
nodal point configurations in the BZ for each WG with the
five AZ symmetry classes, namely, the different locations of
the nodal points correspond to different numbers νabs even if
the nodal points are away from TRI points.

Now we consider a specific WG-AZ symmetry class to
demonstrate the aforementioned approach for the general-
ized no-go theorem by using WG#15 with C+

3 , M− in class
BDI/CII (T +) as an example. (a) The symmetries do not kill
winding numbers of any nodal points. (b) There are three
types of locations to place the first nodal point—rotation cen-
ters (�, K, K ′), mirror lines (�K , �K ′), and general points.
Let us first focus on the rotation centers by placing a Dirac
point at K with +1 winding number, since � is a TRI point,
which will be discussed in the next subsection. (c) Time-
reversal symmetry T + maps the Dirac point at K to the Dirac
point at K ′ with −1 winding number. In other words, these
two Dirac points are connected by time-reversal symmetry.
(d) The total winding number at K and K ′ is zero. Hence, the
Dirac points at K, K ′ are the minimal configuration as shown
in Fig. 5(a) and νabs = 2 is the absolute winding number.

Alternatively, when the first Dirac point with −1 winding
number is placed at one point of the mirror lines (�K , �K ′, not
K, K ′), C+

3 rotation symmetry generates two additional copies
of the Dirac points with the same winding number. Further-
more, from these three Dirac points, time-reversal symmetry
produces other three Dirac points with −1 winding numbers
as shown in Fig. 5(b). Since the total winding number of the
six Dirac points vanishes, the six Dirac points are the minimal
configuration for mirror lines. Similarly, for the first Dirac
point located at a general point, as illustrated in Fig. 5(c),
mirror symmetry doubles the number of the six Dirac points,
which are extended by time-reversal symmetry and C3 rotation
symmetry. In this case, νabs = 12. For the three types of nodal
point locations, each nodal point can connect any other nodal
point through symmetries. That is, once we fix the location of
the first Dirac point, all nodal point locations are determined.
Hence, for this WG-AZ symmetry class with T +,C+

3 , M−
x , all

nodal points in each configuration are connected by symme-

FIG. 5. Examples of the configuration for nodal points away
from TRI points. The green and red cones represent nodal points with
+1 and −1 winding numbers, respectively, while the dashed lines
indicate the mirror lines. (a)–(c) show that the nodal points are in the
three different types of locations: rotation centers, mirror lines, and
general points. (a)–(d) In the configurations, all nodal points in the
BZ can be connected by symmetries. (e) The symmetry do not link all
nodal points since the two red nodal points with ν = −1 connected
by the symmetries can move freely without affecting the green nodal
points with ν = 1. (f) Four Dirac points located at (�, M, X,Y ) are
the minimal configuration for WG#2 with C+

2 .

tries. To mark the connections of the nodal points, we put ∼
on the minimal absolute number 2, 6, 12 in Table III.

Let us consider another example for WG#15 in class AIII
with C+

3 , M+. Reflection symmetry M+ enforces a vanishing
winding number for any nodal point located at a mirror line
(�K , �K ′). In this regard, nodal points protected by chiral
symmetry can survive only at general points and then we place
the first Dirac point with +1 winding number at a general
point. Using reflection symmetry and C3 rotation symmetry,
there are three 3 Dirac points with +1 winding number and
other three with −1 winding number; as shown in Fig. 5(d)
this minimal configuration with six nodal points connected by
the symmetries is labeled by 6̃.

Another example is WG#2 in class DIII, CI with T − and
C+

2 . (a) With these symmetries, nodal points with nonzero
winding numbers survive. (b) We place a Dirac point with
+1 winding number at a general point (say K0). (c) These
two symmetries (T −,C+

2 ) lead to another Dirac point with
+1 winding number at −K0. (d) However, the total wind-
ing number is two, so we have to place another Dirac point
with −1 winding number at another general point. Due to
the symmetries, there are two additional Dirac points with
−1 winding numbers. With the four Dirac points as shown
in Fig. 5(e), the total winding number is neutralized. In the
literature, it has been shown that the number of the Dirac
nodes must be a multiple of 4 due to C+

2 symmetry [72]. The
Dirac points with opposite winding numbers are not directly
connected by the symmetries, so we can freely choose their
locations even when the Dirac points with ν = 1 are spatially
fixed.

Most of the WG-AZ symmetry classes follow the afore-
mentioned recipe to search for the minimal configuration of
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(a) (c)(b)

Y M

X
M

M1

2M3
Y M

X

(#2) (# 3---12) (# 14,16,17)

FIG. 6. The dashed lines are the integral paths of the winding
numbers through the entire BZs. Due to C+

2 rotation symmetry or
M− reflection symmetry, the two winding numbers of the separate
dashed lines, which are quantized, in each BZ are identical. Through
the integral path deformation, the summation of the two winding
numbers is identical to (a), (b) ν(�) + ν(Y ) and (c) ν(�) + ν(M2).

the protected nodal points. However, for class AIII there are
some exceptions, which are nodal points located in the special
points (�, M, X,Y ) and (�, Mi ) for the two types of BZs,
respectively. An additional step of the recipe has to be con-
sidered in these special cases.

(e) The winding number with the integral path through the
entire BZ (the dash lines in Fig. 6) must be quantized. Rotation
symmetry (C2) and mirror symmetry (m) can connect the
two winding numbers with these two integral paths. For C+

2
and M−, these two winding numbers with the two symmetry
related paths are identical. Furthermore, by considering nodal
points located at the aforementioned special points, these two
paths together can deform to two infinitesimal circles sur-
rounding two of the special points, and the winding numbers
are unchanged. Hence, the total winding number of the two
special points must be even. For the WGs (2, 6–12) possessing
a C+

2 generator, the winding numbers in two of the special
points obey

ν(�) + ν(Y ) = 0 (mod 2), ν(�) + ν(X ) = 0 (mod 2). (21)

For the WGs (3 − 9, 11, 12) possessing an M−
x generator, the

constraint is reduced to

ν(�) + ν(Y ) = 0 (mod 2). (22)

On the other hand, the hexagonal BZ has different special
points. For WGs (14,17) possessing an M−

y generator and
WGs (16,17) possessing a C+

2 generator, we have

ν(�) + ν(Mi ) = 0 (mod 2). (23)

Thus, in this final step we have to check if the configu-
ration of the nodal points satisfies Eqs. (21), (22), or (23)
for the corresponding WG-AZ symmetry classes. If so, the
minimal configuration is found. If not, steps (b)–(d) are need
to be repeated until the constraint conditions are fulfilled.
We note that the discussion above is also valid for general
nodal points. However, the symmetry (C+

2 or M−) connect
two general nodal points with same winding numbers, which
spontaneously satisfy one of the constraints Eqs. (21)–(23).
Therefore, it is unnecessary to check the constraint equa-
tions for general points.

Let us use WG#2 with C+
2 in class AIII as an example.

We place two Dirac points with ±1 winding number at � and
M separately. Although the entire BZ is neutralized, Eq. (21)
is violated. In fact, no matter how the two Dirac points are

located at two of the rotation invariant points (�, X,Y, M),
Eq. (21) does not hold. The only way is to have four Dirac
points placed at the four invariant points separately—Fig. 5(f)
illustrates one of the valid minimal configurations.

D. Nodal points at time-reversal invariant points

The TRI points are special for nodal points. Since
TRI points obey K0 = −K0, in the presence of T + time-
reversal symmetry, the winding number of the nodal point
at this invariant point vanishes. The reason is that, based on
Table II, T + gives the opposite winding number at the same
point. Class BDI/CII with T + never possesses a nodal point
with a nonzero winding number at any TRI points. Hence,
we discuss the no-go theorem for only two nontrivial AZ
symmetry classes: DIII and CI. The absolute numbers νabs of
the minimal configurations for the WG-AZ symmetry classes
are shown in Table IV. This nontrivial property is consistent
with the classification of topological semimetals and nodal
topological superconductors [5,11], which shows that in these
two AZ symmetry classes the nodal points at TRI points can
be characterized by a nonzero winding number, namely, class
DIII and CI correspond to Z and 2Z invariants, respectively.

Class AIII and CII may possess protected nodal points,
since according to the classification table, nodal points in class
AIII and CII can be characterized by Z and Z2 invariants,
respectively. However, TRI points are absent in class AIII,
which has been exhaustively studied in the previous subsec-
tion. In addition, although in class CII the nonzero Z2 invariant
can protect the nodal point, here we focus only on nodal points
protected by winding numbers. Hence, classes AIII and CII
are excluded in the no-go theorem for TRI nodal points.

The recipe to find the smallest absolute winding number
νabs for each WG-AZ symmetry class is identical to the previ-
ous subsection for the off-TRI point. Additional care is needed
for class DIII with T 2 = −1 and for class CI with T 2 = +1.
First, due to T 2 = −1, the Kramers degeneracy leads to dou-
ble degeneracy for each band at all the TRI points. In addition,
chiral symmetry pairs two energy bands with ±E . Hence,
for the odd number of the energy band pairs in the system,
there must exist an energy band pair at E = 0 at all four
TRI points in the BZ. Since we assume that nodal lines are
absent, the nodal points always appear at the four TRI points.
On the other hand, since in class CI, the 2Z invariant given
by the classification table [5,11] indicates that the winding
number of the nodal point located at a TRI point must be
even. Hence, in step (b) the winding number of the first nodal
point should be chosen to be +2, instead of +1. The Kramers
degeneracy in class DIII and even winding numbers in class
CI automatically fulfill the constraints in Eqs. (21)–(23) in
step (e). The remaining steps to find the minimal configuration
of the nodal points are identical to the previous subsection.

We demonstrate three examples to show how to find the
minimal configurations of the nodal points. We first consider
WGs 11 and 12 with C+

4 and M− in class DIII [(T −)2 = −1].
These two WGs share the same point groups. In the BZ,
�, X,Y, M are TRI points and three of them (except for Y )
are in the irreducible zone as shown in Fig. 3(g). As dis-
cussed previously, due to the Kramers degeneracy, in class
DIII once a nodal point at E = 0 appears at one of the TRI

045126-11



LE, YANG, CUI, SCHNYDER, AND CHIU PHYSICAL REVIEW B 106, 045126 (2022)

TABLE IV. The absolute winding number νabs for nodal points protected by chiral symmetry at TRI points. The table shows the minimal νabs

for the 17 WGs in classes DIII and BDI. The two point group generators (C±
n , M±

x ) with signs indicate the algebra between the chiral-symmetry
operator and the generators; νabs = 0 indicates the absence of nodal points protected by chiral symmetry. In the table, there are some cases
where nodal points are forced to be placed at K, K ′, which are not TRI points, due to the charge neutralization. In some cases, high-ordered
nodal points with |ν| > 1 must be present in the minimal configurations; hence, we use * to distinguish the particular cases from the case
possessing only Dirac nodes.

WG Generators DIII T − CI T −

#1 4 (�, M, X, Y) 4∗

#2
C+

2 4 (�, M, X, Y) 4∗

C−
2 0 0

#3−5
M+

x 0 0
M−

x 4 (�, M, X, Y) 4∗

#6−9
C+

2 and M+
x 0 0

C+
2 and M−

x 4 (�, M, X, Y) 4∗

C−
2 and M±

x 0 0

#10
C+

4 4 (�, M, X, Y) 4∗ (�, M) or 8∗

C−
4 0 4∗ (X, Y)

#11−12
C+

4 and M+
x 0 0

C+
4 and M−

x 4 (�, M, X, Y) 4∗ (�, M) or 8∗

C−
4 and M±

x 0 0

#13
C+

3 4∗ (K, K′, �), 6 (K, K′, �, M1/2/3), or 6∗ (�, M1/2/3) 4∗ (K, K′, �), 12∗{(K, K′, �, M1/2/3), or
(�, M1/2/3)}

C−
3 0 0

#14

C+
3 and M+

y 0 0
C+

3 and M−
y 4∗(K, K′, �), 6(K, K′, �, M1/2/3), or 6∗(�, M1/2/3) 4∗(K, K′, �), 12∗{(K, K′, �, M1/2/3), or

(�, M1/2/3)}
C−

3 and M±
y 0 0

#15

C+
3 and M+

x 0 0
C+

3 and M−
x 4∗(K, K′, �), 6(K, K′, �, M1/2/3), or 6∗(�, M1/2/3) 4∗(K, K′, �), 12∗{(K, K′, �, M1/2/3), or

(�, M1/2/3)}
C−

3 and M±
x 0 0

#16
C+

6 4∗(K, K′, �), 6(K, K′, �, M1/2/3), or 6∗(�, M1/2/3) 4∗(K, K′, �), 12∗{(K, K′, �, M1/2/3), or
(�, M1/2/3)}

C−
6 0 0

#17

C+
6 and M+

x 0 0
C+

6 and M−
x 4∗(K, K′, �), 6(K, K′, �, M1/2/3), or 6∗(�, M1/2/3) 4∗(K, K′, �), 12∗{(K, K′, �, M1/2/3), or

(�, M1/2/3)}
C−

6 and M±
x 0 0

points, all the TRI points must be nodal points. Since C+
4

rotation symmetry or M− mirror symmetry forces the winding
numbers at X,Y to be identical. The only minimal configura-
tion is formed by Dirac points with +1 winding numbers at
�, M and ones with −1 winding numbers at X,Y as shown
in Fig. 7(a).

Another example is WG#15 in class DIII with
T −, C+

3 , M−. The four points (�, M1, M2, M3) are TRI points
in the hexagonal zone as shown in Fig. 3(j). The Kramers
degeneracy leads to nodal points located at these four points
together. Due to C+

3 rotation symmetry, M1, M2, M3 possess
the same winding number (say −1). However, � with +1
winding number cannot neutralize the entire zone. Therefore,
we place two Dirac points with +1 winding numbers at K, K ′
and the total winding number vanishes as shown in Fig. 7(b).
However, the minimal configuration with νabs is not unique.

Alternatively, we choose a nodal point with +3 winding
number at � and three Dirac points with −1 winding number
at three Mi points as shown in Fig. 7(c); this choice is the
other minimal configuration.

We consider WG#14 in class CI with T −,C+
3 , M− as the

last example. We place the first nodal point at �. Since in
class CI any nodal point at a TRI point must possess even
winding number, the simplest choice for the nodal point at �

is +2 winding number. With C+
3 rotation symmetry, a nodal

point in the most area of the BZ has three copies with the
same winding number, except for K ′, K, �. Therefore, a Dirac
point with −1 winding number is placed at K . Due to T −
time-reversal symmetry or M− reflection symmetry, another
Dirac point appears at K ′ with −1 winding number. The total
winding number vanishes and, as shown in Fig. 7(d), this
configuration with νabs = 4 is minimal.
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Y M

X

#11,12 DIII (    ,     ,    )C M T4

M

M1

2M3

K

K,

#15 DIII (    ,     ,    )C M T3

M

M1

2M3

K

K,

#15 DIII (    ,     ,    )C M T3

M

M1

2M3

#14 CI (    ,     ,    )C M T3

K

K,

(a) (b)

(c) (d)

abs abs 

abs abs 

FIG. 7. Examples of the configuration for nodal points at the TRI
points. The green and red cones with linear dispersions represent
nodal points with +1 and −1 winding numbers, respectively, the
green cones with quadratic and cubic dispersions represent nodal
points with +2 and +3 winding numbers in (d) and (c), respectively.
The dashed lines indicate the mirror lines.

E. Examples

The symmetry constraints control the configurations of the
nodal points protected by chiral symmetry. Tables III and IV
provide all of the possible minimal configurations for each
WG-AZ symmetry class. The minimal configurations can be
building blocks to understand realistic systems possessing the
nodal points. Here we study several examples in condensed
matter systems to show that the examples of the nodal points
cannot escape from the predicted configurations in our gener-
alized no-go theorem.

1. Off time-reversal invariant points

Nodal points protected by chiral symmetry away from
TRI points can be realized in 2D Dirac materials and time-
reversal symmetric superconductors. 2D Dirac materials,
such as graphene, may preserve accidental chiral (sublattice)
symmetry, whereas time-reversal symmetric superconductors
naturally preserve chiral symmetry stemming from in intrinsic
time-reversal symmetry and particle-hole symmetry.

D-wave superconductors: WG#11 in class CI. We first
consider a two-dimensional nodal Cu-based superconductor
with d-wave pairing [73,74] with spin SU(2) symmetry. The
Bogoliubov-de Gennes Hamiltonian [75] in the 2 × 2 Nambu
basis can be written in the second quantization form of

H =
∑

k

ψ†(k)H(k)ψ (k)

=
∑

k

ψ̂†(k)[ε(k)τz + 	(k)τx]ψ̂ (k), (24)

FIG. 8. Time-reversal symmetric superconductors possess pro-
tected nodal points. The color bar from blue to yellow indicates the
value of the order parameter 	(k), and the black lines represent the
Fermi lines in the absence of superconductivity. Their crossings form
the nodal points with ν = +1 (red) and ν = −1 (blue). (a) The d-
wave SC belonging to WG#11 in class CI has four nodal points in the
BZ. (b) The crystal structure for the toy model of the glide-reflection
symmetric superconductor belongs to WG#4 in class BDI. (c) There
are two nodal points with ν = ±1 in the BDI superconductor.

where ψ̂ (k) = (ĉk,↑, ĉ†
−k,↓), ε(k) = −2t1(cos kx + cos ky) −

4t2 cos kx cos ky − μ, and 	(k) = 	0(cos kx − cos ky). We
choose the parameters as t1 = 0.25, t2 = −0.05, μ = −0.18,
and 	0 = 0.1. First, the system preserves particle-hole sym-
metry (5) with C = τyK. Second, time-reversal symmetry (6)
is also preserved with T = K. By combining the two sym-
metry operators above, chiral symmetry (4) is also preserved
with S = τy. We have C2 = −1 and T 2 = 1 correspond-
ing to class CI, which is consistent with the symmetry
class of time-reversal symmetric superconductor with spin
SU(2) symmetry in the literature [34]; furthermore, the
time-reversal operator T − anticommutes with the chiral-
symmetry operator S. On the other hand, the system belongs
to WG#11 possessing C4v point-group symmetry with gener-
ators C4 = τz and Mx = τ0, which obey C4HBdG(kx, ky)C−1

4 =
HBdG(−ky, kx ) and MxHBdG(kx, ky)M−1

x = HBdG(−kx, ky), and
the (anti)commutation relations of the generator operators are
given by C−

4 and M+
x .

This d − wave superconductor has four nodes located at
the mirror lines as shown in Fig. 8(a). The Hamiltonian of
the low-energy expansion near the four nodal points k0± =
(0.44π,± 0.44π ), k′

0± = (− 0.44π,∓ 0.44π ) are in the form
of

Hr
±(k) � α(δkx± ∓ δky±)σx + β(δkx± ± δky±)σy,

Hl
±(k) � −α(δk′

x± ± δk′
y±)σx − β(δk′

x± ∓ δk′
y±)σy,

(25)

where δk± = k − k0±, δk′
± = k − k′

0±, α = 0.98, and β =
0.45. Since chiral symmetry is still preserved with S = σz

and the linear dispersions lead to the four Dirac points
with ±1 winding numbers, with the low-energy Hamiltonians
H r/l

± (k) = δkiAi jδk j , sign(det A) corresponds to ±1 winding
numbers of the Dirac points. Therefore, ν=+1 for k0+, k′

0+
and ν=-1 for k0−, k′

0− as shown in Fig. 8(a).
Back to our no-go theorem in Table III, for WG#11 with

C−
4 and M+

x in class CI, we have νabs = 4 for nodal points
located at mirror lines. This is consistent with the presence
of the four nodal points with ±1 winding numbers in the
d − wave SC model. By using C−

4 and M+
x operations, we can

generate the same distribution of the four Dirac points.
Glide reflection symmetric superconductors: WG#4 in class

BDI. The classification of our no-go theorem depends on
point groups, regardless of symmorphic and nonsymmorphic
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symmetries. Glide reflection symmetry is the only type of
nonsymmorphicsymmetry in the 17 WGs. We study a toy
model of a 2D glide plane symmetric superconductor in class
BDI. Figure 8(b) shows a 2D orthorhombic lattice of non-
symmorphic WG#4 with A and B sites in the primitive cell.
The glide reflection symmetry, which is the only crystalline
symmetry in WG#4, has its operator ĝδ = {Mx|δ = (0, b

2 )}
exchanging sites A and B with a reflection Mx in the x direc-
tion and half-lattice-constant movement along the y direction.
Then, we provide a toy model of the spinless fermion in the
lattice

HBdG(k) = (ε(k) − μ)τzσ0 + β(k)τzσx + γ (k)τzσy

− 	(k)τyσ0 (26)

in the basis of ψ (k) = (Ck,A,Ck,B,C†
−k,A,C†

−k,B)T ,
where ε(k) = m0 + 2t2 cos(kx ) + 2t3 cos(ky), β(k) =
2t1 cos( ky

2 ) cos(kx + ky

2 ), γ (k) = 2t1 cos( ky

2 ) sin(kx + ky

2 ),
and superconductor gap 	(k) = 	0 sin(ky). We choose the
parameters as t1 = 1.2, t2 = 0.2, t3 = 0.3, m0 = 2, μ = 0,
and 	0 = 0.3 so two nodal points appear at (±2π/3,0).

The spinless superconductor system naturally preserves
particle-hole symmetry (5) with its operator C = τxσ0K and
time-reversal symmetry (6) with its operator T = τ0σ0K.
Hence, this belongs to class BDI and chiral symmetry (4)
is preserved with S = τxσ0. By using the chiral-symmetry
operator, the winding numbers for nodal points at (±2π/3,0)
are given by ±1; time-reversal symmetry T + connects these
two nodal points with opposite winding numbers. Due to
the glide reflection symmetry, the BdG Hamiltonian obeys
MgH (kx, ky)M−1

g = H (−kx, ky), where the symmetry operator

Mg = e−i
ky
2 (cos( ky

2 )τ0σx + sin( ky

2 )τ0σy). Since this operator
M+

g commutes with S, M+
g also connects the two nodal points

with opposite winding numbers. Away from TRI points, the
two nodal points with ±1 winding numbers are consistent
with Table III for WG#4 in class BDI.

Graphene: WG#17 in class BDI. It is known that there are
two Dirac points in the graphene model, which can be simply
described by the pz orbital containing nearest-neighbor hop-
pings [17]. The spinless Hamiltonian in the basis of (CA

k ,CB
k )

can be written as

Hg(k) =
(

0 h12(k)
h∗

12(k) 0

)
, (27)

where h12(k) = t[ei( 1
2 ky−

√
3

6 kx ) + ei
√

3
3 kx + ei(− 1

2 ky−
√

3
6 kx )] and t is

hopping parameter. Since the system preserves sublattice chi-
ral symmetry S = σz, time-reversal symmetry T = K, and
effective particle-hole symmetry C = σzK, we have class
BDI with T +. We note that the graphene is a noninteract-
ing electron system in this case so the effective particle-hole
symmetry, which stems from the combination of the sublat-
tice symmetry and time-reversal symmetry, is unrelated to
superconductivity. On the other hand, the graphene belongs
to WG#17 with two generators M−

x = σx and C−
6 = σx. The

crystalline symmetries lead to

MxHg(−kx, ky)M−1
x = Hg(kx, ky), (28)

C6Hg

(
kx

2
+

√
3ky

2
,

ky

2
−

√
3kx

2

)
C−1

6 = Hg(kx, ky ). (29)

(a)

K

K

d id

d id

K

(b) # 16   CII

K

K

x

y

K

FIG. 9. The nodal points in the graphene without or with d + id-
wave SC. (a) The graphene Hamiltonian Hg hosts two Dirac nodes at
K, K ′. (b) By introducing d + id-wave SC pairing, each of the nodal
points at K, K ′ become four separate Dirac nodes. By using K point
as an example, three of them move along K� with ν = 1 in the three
directions and the remaining Dirac point stays at K with ν = −1.

The nodal points are present at K : (2π/
√

3, 2π/3) and K ′ :
(2π/

√
3,−2π/3) with +1 and −1 winding numbers, respec-

tively. Table III indicates νabs = 2 at K, K ′ for WG#17 with
M−

x and C−
6 . It is not surprising that our no-go theorem covers

the two Dirac points in the graphene.
d + id superconductors: WG#17 in class CII. We add

d + id-wave superconductor pairing in the graphene. Its BdG
Hamiltonian in the basis of �(k) = (CA

k↑,CB
k↑,CA,†

−k↓,CB,†
−k↓)T is

written as [76]

HBdG(k) =

⎛
⎜⎝

0 h12(k) 0 	(k)
h∗

12(k) 0 	(−k) 0
0 	∗(−k) 0 −h∗

12(−k)
	∗(k) 0 −h12(−k) 0

⎞
⎟⎠,

(30)
where the d + id-wave pairing by nearest-neighbor antiferro-
magnetic exchange coupling in a honeycomb lattice [77] is

	(k) ≡ 	0

3
ei kx√

3

[
2 cos

(
− ky

2
+ 2π

3

)
e−i

√
3kx
2 + 1

]
. (31)

Since this spinless SC model stems from the spinful system
with spin SU(2) symmetry, we have particle-hole symme-
try with C = τyσ0K and C2 = −1 [34]. The SC system
inherits chiral symmetry from the graphene with S = τ0σz;
hence, effective time-reversal symmetry is preserved with
T + = τyσzK, although the physical time-reversal symmetry
is broken in the d + id-wave superconductor. Furthermore,
the graphene structure leads to the same WG#17 with two
extended generators M−

x = τyσy and

C−
6 =

(
1 0
0 ei2π/3

)
⊗ σx. (32)

Therefore, the Hamiltonian HBdG(k) preserves reflection sym-
metry (28) and sixfold rotation symmetry (29). The systems
belongs to WG#17 with M−

x and C−
6 in class CII in Table III.

Back to nodal points, when the superconducting gap van-
ishes, in the BdG Hamiltonian each of K and K ′ possesses
two Dirac points with the same winding numbers—one from
the particle part and the other from the hole part. Let us
focus on K possessing the two Dirac points with +1 winding
number. As the superconductor gap gradually increases from
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zero, a Dirac nodal point with −1 winding number stays at K
and three Dirac nodal points with +1 winding number move
away from K along three �K lines separately, as illustrated in
Fig. 9(b). The reason is that the combination symmetry of the
time-reversal T + and the reflection M−

x symmetries locks the
three Dirac points at �K . The total winding number of the four
Dirac points near K is still 2, whereas the four Dirac points
near K ′ with the opposite winding numbers have identical
distribution. The SC system possesses three Dirac points with
−1 winding numbers in the three effective mirror lines (�K)
and three Dirac points with −1 winding numbers the three
mirror lines (�K ′), while two other Dirac points with +1 and
+1 are located at K and K ′. On the other hand, for WG#17
with M−

x and C−
6 in class CII, Table III shows νabs = 2 in K, K ′

and νabs = 6 in the mirror lines. Thus, the table of the no-go
theorem shows the building blocks of the nodal points for this
d + id wave superconductor.

2. At time-reversal symmetry points

The key difference between nodal points located at and
away from TRI points is that time-reversal symmetry imposes
an additional constraint at TRI points. For class DIII, nodal
points exhibit Kramers degeneracy at TRI points, while for
class BDI, the winding numbers of the nodal points are always
even. We provide several examples to show these special
properties.

p + ip superconductors: WG#6 in class DIII. To illustrate
the Dirac points at TRI points, we study an effective Hamil-
tonian of a p + ip wave superconductor with C2v point-group
symmetry in the rectangular lattice:

H (k) = a sin kxσx + b sin kyσy. (33)

Particularly, we remove the diagonal term so the Hamiltonian
preserves chiral symmetry (4) with S = σz. Four Dirac points
are located at TRI momenta (0,0), (0,π ), (π ,0), (π, π ) because
Kramers degeneracy and chiral symmetry force twofold de-
generate states with zero energy at all TRI points. The system
preserves time-reversal symmetry (6) with T − = iσyK and
particle-hole symmetry (5) with C = σxK. Since T 2 = −1
and C2 = +1, the system belongs to class DIII. On the other
hand, the system possesses C2v point-group symmetry with
generators C2 = σz and Mx = σy, which obey C2H (k)C−1

2 =
H (−k) and MxH (kx, ky)M−1

x = H (−kx, ky), and the algebra
of the crystalline symmetry operators is given by C+

2 and M−
x .

According to Table II, the algebra of the symmetry operators
(T −, M−

x ,C+
2 ) does not trivialize winding numbers at TRI

points, where nodal points are located.
Table IV shows that in class DIII WG#6 with C+

2 and M−
x

has νabs = 4, indicating four nodal points with ±1 winding
numbers at TRI points as shown in Fig. 10(a). As expected,
the distribution of the nodal points in the model is in agree-
ment with the generalized no-go theorem. Furthermore, we
find that the winding number of the system is in the form of
v = i

2π

∮
h−1dh, with

h(k) = a sin kx − ib sin ky. (34)

By choosing the integral path encircling one of the nodal
points, we obtain ν=+1 for the nodes at (0,0) and (π, π ),
whereas ν=-1 for the nodes at (0,π ) and (π ,0).

(a) (b)

# 6   DIII # 11   CI

FIG. 10. The nodal points at TRS points (a) class DIII with C+
2

and M−
x , and (b) class CI.

Quadratic nodal superconductors: WG#11 in class CI. The
symmetries in class CI force nodal points at TRI points to have
even winding numbers. Since T 2 = 1, Kramers degeneracy
is absent at TRI points; hence, unlike class DIII, it is not
necessary that all TRI points in the BZ possess nodal points
at zero energy when the number of the energy band pairs is
odd. To demonstrate these properties, we consider a simple
2D tight-binding Hamiltonian:

H (k) = (cos ky − cos kx )σx + sin kx sin kyσy. (35)

The system preserves chiral symmetry (4) with S = σz,
time-reversal symmetry (6) with T = σxK, and particle-hole
symmetry (5) with C = σyK. Furthermore, the Hamilto-
nian obeys C4H (kx, ky)C−1

4 = H (−ky, kx ) and MxH (k)M−1
x =

H (−kx, ky ), where symmetry operators C+
4 = σz and M−

x =
σx. Since T 2 = 1 and C2 = −1, the system belongs to WG#11
in class CI.

Two nodal points with quadratic energy dispersions are
located at TRI momenta �:(0,0) and M:(π, π ) as shown in
Fig. 10(b). The Hamiltonian of the low-energy expansion near
the nodal points � and M is in the form of

H�/M (δk) � ± 1
2

(
δk2

x − δk2
y

)
σx + δkxδkyσy, (36)

where δk = k − k�/M indicates momentum expansion at the
nodal points. Using S = σz, we have the values of the winding
number ν� = 2 and νM = −2. The distribution of the nodal
points with ±2 winding numbers is consistent with Table IV
for WG#11 in class CI with C+

4 and M−
x .

Six Dirac nodes: WG#17 in class DIII. We provide a two-
band tight binding model possessing six Dirac nodes located
at high-symmetry points (�, K, K ′, M1, M2, M3) as shown in
Fig. 7(b). Starting with each site having a spin-1/2 degree of
freedom in a triangular lattice, we consider only the nearest-
neighbor hoppings with the Pauli matrices depending on the
directions. The Hamiltonian in real space is written in the form
of the second quantization,

Ĥ6 =1

2

∑
r

{
iD†

r+aŷσyDr + iD†
r+C6(aŷ)C6(σy)Dr

+ iD†
r+C2

6 (aŷ)
C2

6 (σy)Dr + H.c.
}
, (37)

where the rotation operator obeys C6(x̂) = (x̂ + √
3ŷ)/2 and

C6(ŷ) = (ŷ − √
3x̂)/2. Furthermore, the rotation operation C6

acting on σx and σy exhibits the same basis changing as x̂ and
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FIG. 11. The energy dispersion of the hexagonal BZ for the
nodal points located at TRI points. (a) Three Dirac points with
ν = 1 are separately located at �, K, K ′, whereas the other three with
ν = −1 are separated located at M1, M2, M3. (b) One nodal point
with quadratic dispersion at � carries −2 winding number, while the
remaining two Dirac points with ν = 1 is separately located at K, K ′.

ŷ. We rewrite the Hamiltonian in the momentum space,

H6(k) =
(

0 h6(k)
h∗

6(k) 0

)
, (38)

where h6(k) = −i sin ky − i sin[−(ky + √
3kx )/2)e−2π i/3 −

i sin((−ky + √
3kx )/2]e2π i/3. Since chiral symmetry with S =

σz, time-reversal symmetry with T = σyK, and particle-hole
symmetry with C = σxK are preserved, T 2 = −1 and C2 = 1
lead to class DIII. Moreover, the system preserves reflection
symmetry MxH6(−kx, ky)M−1

x = H6(kx, ky) with Mx = σy

and C6H6(kx/2 + √
3ky/2, ky/2 − √

3kx/2)C−1
6 = H (kx, ky)

with

C6 =
(

e−π i/6 0
0 eπ i/6.

)
. (39)

Based on the algebra between the crystalline symmetry op-
erators and the chiral-symmetry operator, the model belongs
to WG#17 with M−

x and C+
6 . The energy dispersion in

Fig. 11(a) shows that three Dirac nodes with ν = 1 are located
at �, K, K ′ and the other three with ν = −1 are located at
M1, M2, M3. We note that this tight-binding model can be
used in any WG-AZ symmetry classes possessing the same
minimal configuration of the nodal points in Tables III and IV.
For example, the model can be attached to another breaking
the time reversal symmetry and the C2 rotation symmetry but
preserving the remaining symmetries. The WG-AZ symmetry
class, which is class AIII with C+

3 and M−
x , possesses the six

nodal points at (�, K, K ′, M1/2/3) as predicted in Table III.
Quadratic node at �: WG#17 in class CI. We build a

tight-binding model hosting a quadratic node at � and two
Dirac nodes at K, K ′ separately. Consider each site has a
spin-1/2 degree of freedom in a triangular lattice. The 2 × 2
Hamiltonian in real space is written as

Ĥ4 = 1

2

∑
r

{
D†

r+aŷσyDr + D†
r+C3(aŷ)C3(σy)Dr

+ D†
r+C2

3 (aŷ)
C2

3 (σy)Dr + H.c.
}
, (40)

where C3 = C2
6 . In this regard, the Hamiltonian in the momen-

tum space is given by

H4(k) =
(

0 h4(k)
h∗

4(k) 0

)
, (41)

where h4(k) = −i( cos ky + cos((ky + √
3kx )/2)e−2π i/3 +

cos((−ky + √
3kx )/2)e2π i/3). The symmetry class corre-

sponds to CI, since one can check that chiral symmetry
with S = σz, time-reversal symmetry with T = σxK, and
particle-hole symmetry with C = σyK are preserved.
Moreover, the system preserves reflection symmetry
MxH4(−kx, ky )M−1

x = H4(kx, ky) with M−
x = σy and

C6H4(kx/2 + √
3ky/2, ky/2 − √

3kx/2)C−1
6 = H4(kx, ky )

with

C6 =
(

eπ i/3 0
0 e−π i/3

)
. (42)

As shown in Fig. 11(b), one quadratic node with ν = −2 is
located at �, while two Dirac nodes with ν = 1 are separately
located at K, K ′.

This tight-binding model can be used for the same minimal
configuration in different WGs (12–17) in class CI as listed
in Table IV and in class AIII as listed in Table III. That is,
since H4(k) belongs to WG#17 in class CI, we can simply
break selected symmetries without destroying the Dirac nodes
so the WG-AZ symmetry classes can be changed to any of
the aforementioned symmetry classes with the same minimal
configuration. However, the only problem is that H4(k) cannot
be directly transformed from class CI to class DIII, although
the same minimal configuration with νabds = 4 in class DIII is
listed in Table III. Instead, we provide the four-band tight-
binding model H4×4(k), which belongs to WG#17 in class
DIII, having the same minimal configuration in Appendix E.

The tight-binding models H6(k), H4(k), H4×4(k) in the ex-
ample and Appendix E are types of topological nodal systems.
Being different from graphene, these nodal systems can host a
Dirac node at �, M1,2,3 or a quadratic node at �. Furthermore,
for the hexagonal BZ (WGs 13–17), these three models are
the only building blocks for any minimal configuration with
nodal points located at TRI points. For example, a nodal
point carries ν = 3 at � and three nodal points separately at
M1,2,3 carry ν = −1 as the minimal configuration belonging
to WG#17 in class DIII. This configuration can be realized by
putting H6(k) and H4×4(k) together.

IV. DIRAC NODES PROTECTED BY SPACE-TIME
INVERSION SYMMETRY

For 2D lattices, chiral symmetry is not the only symmetry-
protecting nodal point. Space-time inversion symmetry, which
is the combination of time-reversal symmetry and inver-
sion symmetry, is another option and its symmetry operator
obeying (C2T )2 = ±1 represents the two distinct types of
space-time inversion symmetry. Particularly, the space-time
inversion symmetry with (C2T )2 = 1 can protect nodal
points. While chiral symmetry intrinsically appears in time-
reversal-symmetric superconductors, the space-time inversion
symmetry with (C2T )2 = 1 can naturally arise in most of
the inversion-symmetric materials preserving time-reversal
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symmetry; the symmetry-preserving Hamiltonian in the mo-
mentum space obeys

VkH∗(k)V ∗
k = H (k), (43)

where the symmetry operator C2T = VkK and VkV ∗
k = 1. In

this regard, to search for new Dirac materials it is important
to study the generalized no-go theorem of the space-time
inversion symmetry for different WGs. However, this no-go
theorem is distinct from the aforementioned theorem of chiral
symmetry because there are two main differences between
chiral symmetry and space-time inversion symmetry. First, the
Z2 Berry phase quantized by space-time inversion symmetry
characterizes the stability of the Dirac nodes, while the Z
winding number quantized by chiral symmetry characterizes
the stability of the node points. Second, the Dirac nodes pro-
tected by space-time inversion symmetry can move freely at
any energy level, whereas the node points protected by chiral
symmetry are locked at zero energy.

To preserve space-time inversion symmetry, we consider
inversion symmetry C2 and time-reversal symmetry T both
are preserved. That is, to simplify the problem, we consider
type-II magnetic WGs (G + T G). Since crystalline symmetry
operator C2 and time-reversal symmetry operator T always
commute, we have (C2T )2 = C2

2 T 2 = +1. For spinless, C2
2 =

1 corresponds to class AI (T 2 = 1), while for spin-1/2, C2
2 =

−1 corresponds to class AII (T 2 = −1). Furthermore, only
10 of the 17 WGs preserve inversion symmetry and their
corresponding point groups are Cn and Cnv with n = 2, 4, 6.
Hence, the generalized no-go theorem of space-time inversion
symmetry in class AI and AII is much simpler than the one of
chiral symmetry.

To study the generalized no-go theorem of space-time
inversion symmetry, in the following we review that the sym-
metry quantizes the Z2 Berry phase, and build the relation
between the Z2 Berry phases for two nodal points connected
by crystalline symmetries or time-reversal symmetry. Then,
we discuss the minimal configurations of the Dirac nodes for
different WGs by borrowing the idea from the discussion of
chiral symmetry. Lastly, we implement the no-go theorem on
the study of two-dimensional Dirac semimetal materials.

A. Z2 Berry phases

For the space-time inversion symmetry, the Berry phase
characterizing the nodal points is the key to its generalized
no-go theorem. The Berry phase for the nodal point K0 can be
in the form of

γ (K0) =
∑

n∈occupied

∮
�(K0 )

An(k) · dk, (44)

where An(k) = i〈un(k)|∂k|un(k)〉 is the Berry connection,
|un(k)〉 is the periodic function of the Bloch wave function, the
summation is for all the occupied states below the energy level
of K0, and �(K0) is the closed integral path encircling K0.
In the literature, the space-time inversion symmetry quantizes
this Berry phase with the only two possible values (0, π ) as
a Z2 invariant [78] (see the derivation in Appendix F). Com-
paring with the definition of the winding number in Eq. (15),
we find the wave function of the Berry phase can go through
gauge transformation so γ (K0) = 0, 2π are equivalent. On

the contrary, for chiral symmetry, any two different wind-
ing numbers correspond inequivalent topological systems.
Furthermore, since γ (K0) = ±π are identical, choosing the
orientation of the integral path does not affect the value of the
Berry phase.

As the Berry phase γ (K0) = π , the integral path cannot
smoothly shrink to a single point and then vanish, due to the
singularity of the nodal point. This leads to the protection of
the nodal point against gap opening without breaking space-
time inversion symmetry. This protected nodal point with the
lowest order of energy dispersion is a Dirac node. Although
there exists a high-ordered nodal point with γ = π , without
breaking the symmetry, the node can be smoothly deformed to
a Dirac node [42]. This is the reason that space-time inversion
symmetry is the essential symmetry for Dirac materials. Here
we focus on Dirac nodes only. The Z2 feature of the Berry
phase is different from the Z feature of the winding num-
ber characterizing a nodal point in chiral-symmetric systems.
While space-time inversion symmetry protects only a single
Dirac cone characterized by the π Berry phase, chiral sym-
metry can protect any number of Dirac cones corresponding
to the winding number.

Next, to include all the nodal points in the BZ, we
consider the relation between the two Z2 Berry phases
[γ (K0), γ (gK0)] of two nodal points connected by crystalline
symmetry or time-reversal symmetry g and this symmetry
operation can be symmorphic or nonsymmorphic. The berry
phase at gK0 point is given by

γ (gK0) =
∑

n∈occupied

∮
�(gK0 )

An(k) · dk. (45)

Since the value of the Berry phase is either 0 or π , it is ex-
pected that the two Berry phases connected by the symmetry
g are identical:

γ (gK0) = γ (K0) (46)

(see the proof in Appendix F). While the relations of the
winding numbers connected by a symmetry in Table II
are complicated, we find that this simple relation for the
Berry phases can be easily applied for the generalized no-go
theorem.

B. Minimal configurations of nodal points

The Z2 property of the Berry phase significantly simplifies
the process to find the minimal configurations of Dirac nodes
as the generalized no-go theorem, when we compare this with
the complexity of chiral symmetry with the Z invariant. In
Sec. III C, the five steps for nodal points protected by chiral
symmetry can be simplified for space-time inversion symme-
try. Let us first provide the recipe for Dirac nodes not located
at TRI points.

(a) We start by placing a Dirac node with γ = π at any
location of the irreducible BZ, except for TRI points, as shown
in Fig. 3. Similarly, different placement leads to different min-
imal configuration; hence, we have to consider all placement
possibilities. Moreover, the Dirac node always survives at any
location even if crystalline symmetries or time-reversal sym-
metry is introduced. The reason is that the symmetry operation
does not bring the opposite charge at the same momentum
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TABLE V. The minimal configurations of Dirac nodes protected by space-time inversion symmetry at and off TRI points for the ten WGs
preserving C2 symmetry. The table exhaustively provides all possible minimal configurations with minimal numbers. The minimal numbers
for off-TRI points without location specification indicate Dirac points located at general points, while the minimal numbers for at-TRI points
without location specification indicate Dirac points located at all the TRI points. Lastly, ∼ indicates all nodal points connected by symmetries.

WG Generators Off-TRI (AI/AII) At-TRI (AII) Materials

#2 C2 2̃ 4
#6–9 C2 and mx 2̃ MLs or 4̃ 4 Pmmn boron [79], 6,6,12 graphyne [40]
#10 C4 4̃ 4
#11–12 C4 and mx 4̃ MLs or 8̃ 4 Square graphyne [80]
#16 C6 2̃(K, K ′) or 6̃ 4(M1,2,3, �)
#17 C6 and mx 2̃(K, K ′) or 6̃ MLs or 1̃2 4(M1,2,3, �) β-graphyne [40], TiB2 [81], NiPSe2 [82]

point. This ubiquity of the Dirac node is different from the
chiral-symmetric systems, since the symmetries can trivialize
nodal points protected by chiral symmetry at some locations
with zero winding number in total.

(b) This step is similar to the one for chiral symmetry.
That is, using all of the symmetry operations, we duplicate
the node point inside of the irreducible BZ to the remaining
area of the BZ. We note that space-time inversion symmetry
is used to quantize the Berry phase, only one of time-reversal
symmetry and inversion symmetry can duplicate the Dirac
node. We always use inversion for duplication unless mention
otherwise.

(c) Finally, we have to check if the summation of the Berry
phases from all the Dirac nodes in the BZ obeys∑

i

γ
(
K i

0

) = 0 (mod 2π ), (47)

which is the Nielsen-Ninomiya theorem for the Z2 charges.
The derivation is similar with the one for the Z charges in
Appendix D. Since inversion symmetry is always preserved,
the duplication in step (b) leads to an even number of Dirac
nodes. Hence, the summation condition is naturally satisfied.
This is the end of searching for the minimal configuration of
the Dirac nodes. In the minimal configurations, all the Dirac
nodes are connected by symmetries; to mark this symmetry
connection, we put ∼ on the corresponding minimal numbers
in Table V.

On the other hand, for the Dirac node placed at one of
the TRI points, the procedure is identical to the point off
TRI points till step (c). It has be proved that for class AI
any Dirac node cannot be located at any TRI points [11].
Hence, only class AII is considered for TRI points. Inver-
sion symmetry cannot directly lead to an even number of
Dirac nodes, since inversion symmetry operation cannot du-
plicate any nodal point located at a TRI point. Therefore, we
have to add another Dirac node and repeat the procedure for
the charge neutralization. At the same time, we need to make
sure the constraint conditions similar to Eqs. (21)–(23) for
specific Dirac nodes are satisfied. That is, the Berry phases
at some TRI points obey

γ (�) + ν(Y ) = 0 (mod 2π ), γ (�) + ν(X ) = 0 (mod 2π ),
(48)

for WGs 2 and 6–12 respectively, and

ν(�) + ν(Mi ) = 0 (mod 2π ), (49)

for WGs 16 and 17. The reason is that the two quantized
Berry phases calculated in the two dashed lines as shown in
Fig. 6 must be quantized separately and identical due to C2

rotation symmetry and the two integral paths together can
be deformed to the paths encircling two TRI points; hence,
the summation of these two Berry phases, characterizing two
TRI points, must vanish. Once the summation condition (47)
holds, searching for the minimal configurations ends.

After considering all possible placement of Dirac nodes,
we can build Table V to show the minimal numbers and
configurations of the Dirac nodes for the ten WGs with time-
reversal symmetry. Furthermore, the minimal configurations
in Table V are the basic building blocks for any configuration
of Dirac nodes in any Dirac semimetals. That is, the combi-
nations of the minimal configurations exhaustively cover all
possible configurations of Dirac nodes due to the absence of
the high-ordered nodes.

Now let us use WGs 6–9 to demonstrate the procedure
obtaining the three minimal configurations of the Dirac nodes
with Hamiltonians. (a) We place a Dirac point with γ = π

in one of the mirror lines at momentum K0. (b) Since C2

inversion symmetry is the only symmetry for duplication,
the duplicated Dirac node is located at −K0. (c) There are
two Dirac nodes with γ = π as shown in Fig. 12(a), the
total Berry phase in the BZ is neutralized. Hence, the pres-
ence of the two Dirac nodes is the minimal configuration.
The example Hamiltonian is given by H2(k) = (cos kx + 1 −
cos ky)σx + sin kyσy. The two Dirac nodes with ν = π are
located at (±π/2, 0) in the My mirror line. It is easy to check
the Hamiltonian preserving space-time inversion symmetry,
inversion symmetry, and mirror symmetry with C2T = K,

FIG. 12. The minimum number of nodal points (a) at the mirror
lines, (b) at general points and (c) at TRI points in WGs 6–9. The
dashed lines are the integral paths of the quantized Berry phase
through the entire BZs. Due to C2 rotation symmetry or m reflection
symmetry, the quantized Berry phases of the separate dashed lines
are identical.
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FIG. 13. The crystal and band structures of (a), (b) Pmmn boron
[79] and (c), (d) 6,6,12 graphyne [40]. The red dots denote the
locations of Dirac points.

C2 = σx, My = σx, respectively. On the other hand, if the first
Dirac node is placed at a general point, C2 inversion symmetry
and the Mx mirror generate three other Dirac nodes as shown
in Fig. 12(b). Hence, there are four Dirac nodes as the minimal
configuration. The Hamiltonian H4(k) = cos kxσx + cos kyσy

is a simple example. Four Dirac nodes with ν = π are located
at ±(π/2, π/2) and ±(π/2,−π/2), respectively. The three
symmetries are preserved with symmetry operators C2T = K,
C2 = I, Mx = I. Furthermore, in these two configurations all
Dirac nodes are connected by symmetries. Thus, the minimal
number of the Dirac nodes off TRI points is either 2̃ or 4̃ as
listed in Table V.

When we place a Dirac node at TRI point, say �, any
symmetry is unable to duplicate the Dirac point, which vi-
olates the neutralization (47). Furthermore, the distribution
of the Dirac nodes must obey the additional condition (48)
so two other Dirac nodes have to be present at X and Y ,
respectively. Due to the charge neutralization (47), another
Dirac must appear at M. Thus, there are four Dirac nodes sep-
arately located at the four TRI points as shown in Fig. 12(c).
The example Hamiltonian is identical to Eq. (33) (HTRI(k) =
a sin kxσx + b sin kyσy). It is known that HTRI(k) preserves
chiral symmetry, inversion symmetry, and mirror symmetry
with symmetry operators S = σz, C2 = σz, Mx = σy. Also,
space-time inversion symmetry is preserved with C2T = σxK.
Four Dirac nodes with ν = 1 are located at the four TRI points
(�, X,Y, M).

C. Examples

Over hundreds of 2D and quasi-2D materials, graphene
[38,64,65], silicene, and germanene [39], and several gra-
phynes [40,66] have been predicted to be Dirac materials.
Particularly, Dirac cones in graphene have been truly con-
firmed experimentally. Since graphene preserves space-time
inversion symmetry and chiral (sublattice) symmetry, its Dirac
nodes are under double protection. However, chiral symmetry
is fragile for most free-fermion materials, while space-time
inversion symmetry can be naturally preserved. By imple-
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FIG. 14. The crystal and band structures of (a), (b). Square gra-
phyne [80]. (c), (d) β graphyne [40]. (e), (f) TiB2 [81]. The red dots
denote the locations of Dirac points.

menting our generalized no-go theorem (Table V), we review
Dirac semimetals in the literature [83] and show that the min-
imal configurations of our theorem include the configurations
of the Dirac nodes in the material examples.

(a) WG#6—Pmmn boron and 6,6,12-graphyne: The Pmmn
boron with WG#6 is a 2D layer structure as shown in
Fig. 13(a). Figure 13(b) shows two Dirac points connected
by C2 rotational symmetry in the mirror line �X in agree-
ment with Table V. Similarly, 6,6,12-graphyne also belongs
to WG#6, see Fig. 13(c). Two Dirac nodes connected by C2

rotational symmetry are separately located in the mirror line
�X, while two others are present in the mirror line YM.
The material possesses the combination of the two minimal
configurations of the Dirac nodes in Table V.

(b) WG#11—square graphyne: The crystal structure of
S-graphyne in Fig. 14(a) indicates the system belongs to
WG#11. Figure 14(b) shows a Dirac point located at XM as
the mirror line. C4 rotation symmetry produces three other
Dirac nodes in the mirror lines. The total number of the Dirac
nodes is four in agreement with Table V.

(c) WG#17—β graphyne and TiB2: Figure 14(c) shows
that the crystal structures of β-graphyne belongs to WG#17.
For β graphyne, the band structure in Fig. 14(d) shows a
Dirac point located in the mirror line �M, and there are six
Dirac points in the BZ due to C6 rotation symmetry. On the
other hand, TiB2 is a 3D layer structure described by layer
group P6/mmm. The 2D projection in Fig. 14(e) shows the
subgroup of the layer group is WG#17. In the band structure
of Fig. 14(f), six Dirac nodes are located in the six different
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FIG. 15. The crystal and band structures of the monolayer
NiPSe3 [82]. The red dots denote Dirac points located at nonzero
energy.

mirror lines (�K and �K′) are connected by C6 rotational
symmetry. Indeed, the number of Dirac nodes is consistent
with Table V.

(d) WG#17—NiPSe2: The monolayer NiPSe3 belongs to
the layer group P3̄1m, including point group D3d and its crys-
tal structure is shown in Fig. 15(a). Although the layer does
not include C2 rotation symmetry, its inversion symmetry can
be treated as an effective C2 symmetry after the monolayer is
projected to the 2D plane. Hence, the 2D projection belongs to
WG#17, which is a subgroup of P3̄1m with additional C2 rota-
tion symmetry. Since the monolayer in the paramagnetic state
preserves time-reversal symmetry and spin-orbital coupling is
absent, the system is equivalent to two identical subsystems
preserving time-reversal symmetry with its symmetry opera-
tor T = K. Hence, space-time inversion symmetry (C2T ) is
preserved to protect Dirac nodes.

Near the Fermi level, the valence and conduction bands
are predominantly attributed to the Ni-3dxz/yz orbitals. With
Ni-3dxz/yz orbitals and two bases of the sublattice the effective
four-band tight-binding model [82,84] can capture the Dirac
points near Fermi level. The band structures of the effective
model [Fig. 15(b)] show that two Dirac nodes are separately
located at K and K ′ as well as six Dirac nodes separately
located at three �K lines and three �K ′ lines. By choosing the
integral path of nodal points, we obtain Z2 Berry phase ν = π

for every Dirac point. The total number of Dirac points for this
system is the sum of the two minimum number [2(K, K ′) and
six mirror lines] in Table V.

V. 2D NON-HERMITIAN LATTICES

Beyond the Hermitian systems, non-Hermitian physics
[6,9,23,24,35,36,85–128] has emerged in a variety of quantum
platforms, such as open quantum systems [87], wave systems
with gain and loss [6,88–91], and interacting electron systems
[105]. The origin of non-Hermitian terms can stem from the
self-energy correction of the Green’s function [87,103–105]
as an example. We focus on a 2D non-Hermitian lattice model
in periodic boundary condition. The eigenenergy of the sys-
tem can be complex, En(k) = εn(k) + i�n(k), where the real
part εn(k) represents the renormalized band dispersion and the
imaginary part �n(k) represents the inverse of a quasiparticle
lifetime, which is affected by environment dissipation [87] or
many-body interactions [103–105].

In a 2D non-Hermitian Hamiltonian HnH (k), FPs and EPs
can be topologically protected and immune from any pertur-

bations [9,24,105]. The topological invariants, which identify
the robustness of these two distinct points, share the mathe-
matical similarity of the winding number [24], characterizing
Dirac nodes in Hermitian chiral symmetric systems. In this
regard, the non-Hermitian no-go theorems for FPs and EPs
can smoothly inherit the Hermitian no-go theorem. Due to the
constraints of the WGs, the minimal number of the protected
points might be greater than 2. We first study the no-go theo-
rem for the EPs and then extend the discussion to the FPs.

In the following, we first review the topological invariants
of EPs and then show that the relation of the EPs connected
by crystalline symmetries is identical to the chiral-symmetric
lattices. Being different from Hermitian chiral-symmetric
systems, rotation symmetry in the non-Hermitian systems
imposes an additional constraint on EPs located at rotation
centers. Finally, we generalize the corresponding no-go the-
orems to the 17 WGs. Likewise, the no-go theorem of FPs
follows the same recipe in the next subsection.

A. Non-Hermitian exceptional points

In 2D BZ, non-Hermitian degeneracy points can be topo-
logical stable points and are categorized into exceptional
(defective) points and nondefective points. That is, at an EP
the corresponding eigenstates coalesce [129] (become identi-
cal), while at a nondefective degeneracy point the eigenstates
remain distinct. It has been shown that without any symme-
try a degeneracy point can be characterized by an integer
discriminant number (νdisc) and this nonzero number leads
to the robustness of the degeneracy point [24]. However, the
presence of the EPs with high topological charges (|νdisc| > 1)
or nondefective degeneracy points requires fine-tuned param-
eters. In the presence of arbitrarily small perturbations, these
points can be easily deformed to EPs with νdisc = ±1. Since
the only EPs with νdisc = ±1 are stable, we focus on the
physics of these EPs. In the literature [24], the EPs obey the
Fermion doubling theorem,∑

j

νdisc
(
K j

EP

) = 0, (50)

where K j
EP is the momentum of the EP in the BZ.

Before extending the no-go theorem of the EPs to the 17
WGs, let us review the definition of the discriminant number
νdisc(KEP). For a generic m-band non-Hermitian Hamilto-
nian HnH(k), the characteristic equation determines all of the
eigenenergies,

f (E , k) = det[E − HnH(k)] =
m∏

α=1

[E − Eα (k)] = 0, (51)

where Eα (k) is the band dispersion of the αth band and is the
roots of the polynomial f (E , k). To identify EPs, we use the
discriminant of the polynomial f (E , k):

DiscE [HnH](k) =
∏
α<β

[Eα (k) − Eβ (k)]2. (52)

The EP momentum KEP corresponds to the vanishing of the
discriminant DiscE [HnH](kEP) = 0. We note that although
this equation can also identify nondefective degeneracy
points, the points are unstable and can be easily deformed
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to EPs [24]. The discriminant DiscE [HnH](k) for EPs and
det[h(k)] for Hermitian Dirac nodes share similar mathe-
matical roles. That is, when the discriminant vanishes, its
vanishing real and imaginary parts form 0D points in the 2D
BZ. Furthermore, the important property of the discriminant
is a single-valued function of k. The reason is that the dis-
criminant, which is the determinant of the Sylvester matrix
of the polynomials f (E , k) and ∂E f (E , k) [130–132], inherits
the single-valued property from the Hamiltonian HnH(k). In
this regard, by comparing with the winding number (15) for
the Dirac node, one can define the discriminant number,

νdisc(KEP) = i

2π

∮
�(KEP )

dk · ∇k ln DiscE [HnH](k), (53)

where the integration path �(KEP) is a loop encircling KEP

counterclockwise. Due to the single-valued discriminant func-
tion, the discriminant number is always an integer. Since the
topological numbers from the two distinct origins (chiral-
symmetric systems and EPs) share the same mathematical
structure, we can derive the doubling theorem for EPs by
following the same recipe in chiral-symmetric systems (Ap-
pendix D). That is, the sum over the discriminant numbers of
all the EPs vanishes as previously shown in Eq. (50).

1. Conditions from crystalline symmetries

To extend the the EP no-go theorem to the 17 WGs,
we study the relation of the discriminant numbers for EPs
connected by symmetries. It is known that the two symme-
try generators Cn and M form the 17 WGs, with crystalline
symmetry operator matrix Ug(k). The symmetry-preserved
Hamiltonian obeys

HnH(gk) = Ug(k)Hη

nH(k)U −1
g (k), (54)

where Ug is a unitary matrix and particularly η = 1 for the
conventional crystalline symmetry. The crystalline symmetry
generators can be extended to the combination symmetry
of crystalline operation and complex-conjugation/transpose
[35]. In this regard, Ug(k)Kt , Ug(k)K∗, and Ug(k)K†

indicate the combination crystalline operators of the
transpose/complex-conjugation/conjugate-transpose, respec-
tively. The corresponding Hamiltonians obey the symmetry
(54) with η = t, ∗, †. Hence, conventional (Ug), transpose
(UgKt ), conjugation (UgK∗), and conjugate-transpose (UgK†)
crystalline generators correspond to the four types of symme-
tries.

For η = 1, t , using the symmetry equation, we have
En(gk) = En(k). Similarly, for η = ∗, †, En(gk) = E∗

n (k). In
the following discussion, we label g to indicate Ug(k) and
Ug(k)Kt symmetry operators and ḡ to indicate Ug(k)K∗/† sym-
metry operators. We are interested in WGs formed by one or
two generators and the generators can either be g or ḡ. The
generators are either rotation or mirror. To be specific, the WG
with one generator is in form of g or ḡ, while the WG with two
generators is in form of (Cn, M ), (Cn, M̄ ), (C̄n, M ), (C̄n, M̄ ).
We study the no-go theorem for the WGs in those forms and
build Table VI in the following. Particularly, the EP no-go
theorem for the 17 conventional WGs correspond to the cases
with the generator g.

We use examples to illustrate the distinct combination sym-
metries above. Consider a Hermitian Hamiltonian HH(k) =
H†

H(k) which preserves inversion symmetry, i.e., HH(−k) =
UIHH(k)U −1

I . When a non-Hermitian term iλ(k)� (which
is typically a perturbation) is added, where λ(k) = λ(−k)
is a real even function and � is a real Hermitian matrix,
the Hamiltonian becomes HnH(k) = HH(k) + iλ(k)�. One
can easily check that when [�,UI ]± = 0, the correspond-
ing inversion symmetry representation becomes UI/UIK†,
respectively. On the other hand, UT (k)K∗ is equivalent
to time reversal symmetry operator. We start with a
Hermitian Hamiltonian preserving time-reversal symmetry
[HH(−k) = UT (k)H∗

H(k)U −1
T (k)]. Similarly, when a non-

Hermitian perturbation is introduced, the Hamiltonian reads
HnH(k) = HH(k) + iλ(k)�, where � is still a real Hermi-
tian matrix. As [�,UT ]± = 0, transpose inversion symmetry
[UT (k)Kt ]/time-reversal symmetry [UT (k)K∗] is preserved,
respectively.

Before building the generalized no-go theorem for g and
ḡ, where g = Cn, M, in Table VI, we provide a guide to read
the non-Hermitian table. We use the absolute number νabs to
indicate the minimal configuration of the EPs, where νabs =∑

ki
EP∈BZ |νdisc(ki

EP)|. For all WGs, νabs can indicate the num-
ber of the EPs with νdisc = ±1 in the minimal configuration,
except for EPs located at rotation centers. It will be shown
later that a charge for an EP located at a Cn rotation center
must be a multiple of n. For a WG with one/two symmetry
generator Cn and/or M̄, symmetries cannot connect all nodal
points in the minimal configuration. This is an important prop-
erty leading to the anomalous surface BZ (SBZ) violating the
no-go theorem. The details are discussed in Sec. VI B. For the
remaining WGs, all nodal points are connected by symme-
tries. After this overview of the table, we provide step-by-step
instructions for the non-Hermitian no-go theorem table in the
following.

(a) We first consider the conventional crystalline symme-
tries and the transpose symmetries with the generators all
indicated by g. Since no global symmetries are required to
protect EPs in 2D non-Hermitian systems, unlike the Her-
mitian Hamiltonian preserving chiral symmetry, there is no
algebra between crystalline symmetry operators and other
global symmetry operators. By using the symmetry (54), the
Hamiltonians at these two points possess the identical charac-
teristic polynomial:

det[E − HnH(k)] = det
[
E − U −1

g (k)H1/t
nH (gk)Ug(k)

]
= det[E − HnH(gk)]. (55)

Hence, the discriminants at these two points are identical:

DiscE [HnH](k) = DiscE [HnH](gk). (56)

As symmetry g connects two EPs (gKEP and KEP), the re-
lation of the discriminant numbers at these two points is
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TABLE VI. The minimal absolute topological number νabs for non-Hermitian exceptional points and Fermi points. In the column of rotation
centers,×indicates the absence of the topological points with nonzero charges in the rotation centers, while the labels of the rotation centers
with nZ indicates that topological points can be located at the listed centers and the topological numbers must be multiples of integer n.
Label ∼ above some absolute numbers νabs indicates all topological points connected by symmetries in the minimal configuration. MLs is an
abbreviation for mirror lines and G indicates topological points at general points. The nonzero νabs without location specification denotes that
all topological points in the minimal configuration are located at general points.

WG Generators Rotation centers νabs

#1 No centers 2

#2
C2 (�, X,Y, M ) : 2Z 4 (G, �, X, Y, or M )
C̄2 × 2̃

#3−5
Mx × 2̃
M̄x No centers 2 (MLs, �, X, Y, or M ) or 4

#6−9
C2 and Mx × 4̃
C2 and M̄x (�, X,Y, M ) : 2Z 4 (MLs, �, X, Y, or M ) or 8

C̄2 and Mx/M̄x × 2̃ MLs or 4̃

#10
C4 (�, M ) : 4Z & (X,Y ) : 2Z 8 (G, �, X, Y, or M )
C̄4 × 4̃

#11−12
C4 and Mx × 8̃
C4 and M̄x (�, M ) : 4Z & (X,Y ) : 2Z 8 (MLs, �, X, Y, or M ) or 16

C̄4 and Mx/M̄x × 4̃ MLs or 8̃

#13
C3 (�, K, K ′) : 3Z 6 (G, �, K, K ′, or M1/2/3)
C̄3 × 0

#14
C3 and My (K, K ′) : 3Z 6̃ or 6̃(K, K ′)
C3 and M̄y (�, K, K ′) : 3Z 6 (MLs, �, or M1/2/3) or 12 (G, K, or K ′)

C̄3 and My/M̄y × 0

#15
C3 and Mx × 6̃
C3 and M̄x (�, K, K ′) : 3Z 6 (MLs, �, K, K ′, or M1/2/3) or 12

C̄3 and Mx/M̄x × 0

#16
C6 (�) : 6Z& (K, K ′) : 3Z& (M1/2/3) : 2Z 12 (G, �, K, K ′, or M1/2/3)
C̄6 (K, K ′) : 3Z 6̃ or 6̃(K, K ′)

#17

C6 and Mx × 1̃2
C6 and M̄x (�) : 6Z& (K, K ′) : 3Z& (M1/2/3) : 2Z 12 (MLs, �, K, K ′, or M1/2/3) or 24
C̄6 and Mx × 6̃ MLs or 1̃2
C̄6 and M̄x (K, K ′) : 3Z 6̃ MLs or 6̃(K, K ′) or 1̃2

given by

νdisc(gKEP) = i

2π

∮
�(KEP )

det(g)d (ln(DiscE [HnH](gk)))

= i

2π

∮
�(KEP )

det(g)d (ln(DiscE [HnH](k)))

= det(g)νdisc(KEP). (57)

The explicit relations between the two EPs for the two differ-
ent types of crystalline symmetries are given by

νdisc(ĈnKEP) = νdisc(KEP), νdisc(M̂KEP) = −νdisc(KEP),
(58)

which are identical to the relation of the generators C+
n

and M+ in Table II for the Hermitian chiral-symmetric sys-
tems without any time-reversal symmetry. Thus, as shown in
Table VI, the list of the EP no-go theorem for the 17 WGs

formed by Ug and UgKt can inherit the cases of C+
n and M+

in class AIII in Table III, except for EPs located at rotation
centers.

To understand an EP located at a rotation center, we
consider n-fold rotation symmetry Cn. Being different from
Hermitian chiral symmetric systems, the charge of the non-
Hermitian EP at a rotation center, say Kr

EP, is limited by an
additional restriction. To show the restriction, in the expres-
sion (53) of the discriminant number, the integral path �

enclosing Kr
EP is divided into n integral paths related by the

Cn rotation symmetry

�
(
Kr

EP

) = ∪n−1
l=0 Ĉl

n�1/n(Kr
EP), (59)

where �1/n(Kr
EP) denotes the one nth of the closed integral

path �(Kr
EP) with the two end points ko and Ĉnko. After de-

composing the integral of the winding number to n separate
integral paths, we can reorganize the discriminant number
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equation

νdisc
(
Kr

EP

) = i

2π

∫
�1/n(Kr

EP )

n−1∑
l=1

d
(

ln
(

DiscE [HnH]
(
Ĉl

nk
)))

= n × i

2π

∮
�1/n(Kr

EP )
d (ln(DiscE [HnH](k)))

= n j, (60)

where j is an integer. The second line stems from the sym-
metry relation (54) between the two points (k, Ĉnk) keading
to DiscE [HnH](k) = DiscE [HnH](Ĉnk). Since the integrands
at ko and Ĉnko are identical, the integral path of �1/n(Kr

EP)
is effectively closed so the integral is quantized. Hence, as
an EP is located at an n − fold rotation symmetry center, its
discriminant number is a multiple of n. This constraint for the
value of the discriminant number does not allow the EPs to
inherit some of the minimal configurations from the chiral
symmetric systems. For example, for WG#10 with C+

4 , one of
the chiral symmetric minimal configurations is that four Dirac
points with ±1 charges quantized can be separately located
at �, X,Y, M, which are rotation centers. However, the C4

rotation symmetry from WG#10 forbids any non-Hermitian
EP with ±1 charge to appear at any rotation center. Hence,
this configuration is excluded in Table VI. On the other hand,
we note that the non-Hermitian cases in Table I only show the
no-go theorem for the 17 conventional WGs (Cn, Mx). There
is a general rule for the minimum multiplies — νabs = 2n for
any WG preserving Cn rotation symmetry.

For the transpose symmetries with UgU ∗
g = −1, we have

to take special care of degeneracy points. Back to the ten-
fold classification of the Hermitian systems, the different
values of the symmetry operator squares (T 2,C2 = ±1) cor-
respond to distinct AZ symmetry classes. In particular, class
AII (T 2 = −1) leads to the Kramers degeneracy at TRI
points. On the contrary, the Kramers degeneracy does not
hold in the time-reversal symmetric non-Hermitian systems.
Instead, only when transpose symmetry with UgU ∗

g = −1
leads to HnH(gk) = UgHt

nH(k)U −1
g , where g = Cn, Mi, these

g-symmetry-invariant points must exhibit at least twofold non-
defective degeneracy [35]. In other words, the invariant points
cannot be a twofold defective degeneracy EP. Although with-
out any symmetry constraint a nondefective degeneracy point
can be easily deformed to an EP [24], under this transpose
symmetry with UgU ∗

g = −1 the degeneracy point in the g-
symmetry-invariant location is nondefective.

(b) Consider the conjugation crystalline symmetries and
the conjugate-transpose ones; their generators are all indicated
by ḡ. By using the symmetry (54), we can directly connect the
determinant at k and ḡk:

det[E − HnH(ḡk)] = det
[
E − Uḡ(k)H∗/†

nH (k)U −1
ḡ (k)

]
= det[E − H∗

nH(k)]. (61)

The conjugation adds an extra minus sign to the relation (57)
between the two symmetry-connected discriminant numbers:

νPF(ḡKEP) = − det(ḡ)ν(KEP). (62)

Hence, in Table VI the EP no-go theorem for the conjugate 17
WGs (C̄n, M̄) corresponds to the Hermitian no-go theorem for
C−

n and M− in class AIII as listed in Table III.
(c) For a WG containing two generators, there are

four groups based on the combinations: (Cn, M ), (Cn, M̄ ),
(C̄n, M ), (C̄n, M̄ ). The last two can be easily extended by the
recipe above. Due to the relations between the symmetry-
connected EPs (57) and (62), the non-Hermitian no-go
theorem for Cn, M̄/C̄n, M inherits the Hermitian no-go the-
orem for C+

n , M−/C−
n , M+ in class AIII. However, we note

that the constraint (60) for EP at rotation centers also excludes
some minimal configurations from the inheritance of C+

n in
Table III. For example, WG#14 with C3 and My, WG#16 with
C̄6, and WG#17 with C̄6 and M̄x can have an EP at K with +3
charge and another EP at K ′ with −3 charge and the minimal
configuration of the two EPs connected by symmetries labeled
by 6̃(K, K ′).

2. Examples

To host EPs, the minimal dimension of the non-Hermitian
Hamiltonian must be 2 × 2, since at least two states coalesce.
First, we calculate the explicit form of the discriminant for a
generic 2 × 2 non-Hermitian Hamiltonian

H2×2(k) = h0(k)σ0 + hx(k)σx + hy(k)σy + hz(k)σz. (63)

The eigenenergies are given by E± = h0 ±
√

h2
x + h2

y + h2
z .

Using Eq. (52), we have a simple form of the discriminant:

DiscE [H2×2](k) = (E+ − E−)2

= 4
(
h2

x + h2
y + h2

z

) = 4
(
h2

0 − det H2×2
)
. (64)

This form is employed to compute the discriminant for the
following examples.

(a) We start with a 2 × 2 off-diagonal Hamiltonian:

H(k) =
(

0 1
cos kx + cos ky + i(cos kx − cos ky) 0

)
. (65)

The Hamiltonian preserves the following symmetries:

C̄4H∗(kx, ky)C̄−1
4 = H(ky,−kx ), (66)

MxH(kx, ky)M−1
x = H(−kx, ky), (67)

where C̄4 = σ0 and Mx = σ0. Table VI shows the minimal
configuration of WG#11 is either four EPs at the mirror lines
or eight EPs at general points.

To find EPs in this model, we obtain the discriminant
DiscE [H](k) = 4[cos kx + cos ky + i(cos kx − cos ky)] by us-
ing Eq. (64). As the discriminant vanishes, the Hamiltonian
becomes a Jordan canonical form and the two eigenstates
coalesce as an EP. In this regard, the four EPs are located
at (±π/2,±π/2) and (±π/2,∓π/2) in the mirror lines. To
compute the discriminant number of the EPs, we particularly
consider the EP at (π/2, π/2). Near the EP, the leading order
of the discriminant is given by

DiscE [H](k) = −(1 + i)dkx − (1 − i)dky + O(dk2), (68)

where dkx/y = kx/y − π/2. By the definition (53) of the
discriminant number, we have νdisc = +1 for the EP
at (π/2, π/2). The C̄4 rotation symmetry extends to
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this EP to the remaining three by implementing the
discriminant number relation (62). Hence, the EPs at
(±π/2,±π/2)/(±π/2,∓π/2) possess +1/ − 1 charge.

(b) Consider a non-Hermitian Hamiltonian preserving C4

rotation symmetry and M̄x reflection symmetry,

H(k) =
(

0 1
(h(k) − m)(h(k) + m) 0

)
, (69)

where h(k) = cos kx − cos ky + i sin kx sin ky. We can check
that the Hamiltonian obeys

C4H(kx, ky)C−1
4 = H(ky,−kx ), (70)

M̄xH∗(kx, ky)M̄−1
x = H(−kx, ky), (71)

where C4 = σ0 and M̄x = σ0. According to Table VI, for
WG#11 there are three types of EP minimal configurations:
two EPs at �, M with νdisc = ±4, eight EPs at mirror lines
with νdisc = ±1, and 16 EPs at general points with νdisc = ±1.

To study EPs in this model, we use Eq. (64) and then ob-
tain the discriminant DiscE [H](k) = 4(h(k) − m)(h(k) + m).
First, starting with m = 0, we find two EPs are located at �

and M. The discriminant near these two points can be written
as

DiscE [H](k) = (kx − iky)4 + O(k5) (72)

= (dkxπ + idkyπ )4 + O
(
dk5

π

)
, (73)

where dkxπ = kx − π, dkyπ = ky − π . Therefore, by using
the definition (53) of the discriminant number, νdisc = +4 for
the EP at � and νdisc = −4 for the EP at M. This minimal
configuration possesses the EPs located at the C4 rotation
centers. The C4 rotation symmetry (60) forces the discriminant
numbers to be a multiple of 4.

When we increase m from 0, the EP at � is split into
four EPs at (0,± cos−1(1 − m)) and (± cos−1(1 − m), 0) in
the mirror lines. Since the original EP at � possesses a +4
discriminant number and the four EPs connected by the C4

rotation symmetry share the same charge, each EP has a +1
discriminant number. Similarly, the EP at M is split into four
EPs with −1 discriminant number at (± cos−1(−1 + m), π )
and (π,± cos−1(−1 + m)).

(c) Being a fundamental 2D example with nontrivial band
topology, the Chern insulator has been widely studied in Her-
mitian topological band theory. One of the simplest Hermitian
Hamiltonians describing the Chern insulator [133] is given by

HC(k) = sin kxσx + sin kyσy + (cos kx + cos ky + M )σz.

(74)

In the region 0 < |M| < 2, the nonzero Chern number leads to
the presence of the chiral edge states and the quantized con-
ductance. Then we add on-site dissipations uniformly to the
Chern insulator so the Hamiltonian becomes non-Hermitian,

HnC(k) = HC(k) − iγzσz − iγ0σ0, (75)

where γ0 ± γz are the on-site dissipations for the different
orbitals. Due to the dissipative nature, γ0 ± γz must be greater
than zero, namely, γ0 ± γz � 0. The reason is that due to
the dissipative energies −i(γ0 ± γz ), the corresponding time
evolution operator on each site exhibits an exponential decay
trend (e−(γ0±γz )t ) as time evolves.

In the presence of the on-site dissipation, this non-
Hermitian Chern insulator preserves the following
two symmetries: C4HnC(kx, ky)C−1

4 = HnC(ky,−kx ) and
MxHt

nC(kx, ky)M−1
x = HnC(−kx, ky), where C4 = eiπσz/4 and

Mx = σz, which belongs to WG#11. That is, the minimal
number of EPs with charge ±1 is given by eight, according to
Table VI.

By Eq. (64), the discriminant can be written in the explicit
form

DiscE [H](k)

= −4[sin2 kx + sin2 ky + (cos kx + cos ky + M − iγz )2].
(76)

To demonstrate the evolution of the EPs, we particularly
choose γ0 = 0 and M = 1/2 and start with γz = √

7/2.
The vanishing discriminant determines eight EPs in the 2D
BZ — (±2π/3,±π/2), (±2π/3,∓π/2), (±π/2,±2π/3),
(±π/2,∓2π/3) as shown in Fig. 16(a). Knowing one of the
EP discriminant numbers, we can obtain the other discrimi-
nant numbers by using C4 rotation symmetry and Mx transpose
reflection symmetry, because the symmetry relations (58) con-
nect the discriminant numbers of the eight EPs. The function
of the discriminant is expanded to the linear order near k1 =
(2π/3, π/2):

DiscE [H](k) = −2
√

3(1 − i
√

7)

(
kx − 2π

3

)

+ 4i
√

7
(

ky − π

2

)
+ O((k − k1)2). (77)

Using the definition (53) of the discriminant number, we have
νdisc(k1) = 1. In this regard, the C4 rotation symmetry dupli-
cates the three EPs at (−2π/3,−π/2), (±π/2,±2π/3) with
νdisc(k1) = 1, while Mx transpose reflection symmetry leads
to the four remaining EPs with νdisc(k1) = −1. The presence
of the eight EPs is the minimal configuration consistent with
Table VI.

On the one hand, as we increase γz to
√

15/8, the
two EPs from (2π/3, π/2) and (π/2, 2π/3) are merged
into one EP at [cos−1(−1/4), cos−1(−1/4)] as shown in
Fig. 16(b). The charge at the merging point is neutralized.
The C4 rotation symmetry duplicates the merging to the
six remaining EPs; there are four EPs with zero discrim-
inant numbers located at [± cos−1(−1/4),± cos−1(−1/4)]
and [± cos−1(−1/4),∓ cos−1(−1/4)]. When γz >

√
15/8,

the four neutralized EPs vanish and the non-Hermitian system
has a line gap.

On the other hand, as γz is decreased to
√

3/2, the two
EPs at (±2π/3, π/2) merged into one EP at (π, π/3) and the
merge neutralizes the charge. Similarly, by merging, the six
remaining EP are reduced to three neutralized EPs separately
located at (π,−π/3) and (±π/3, π ) as shown in Fig. 16(c).
As γz <

√
3/2, the four EPs vanish and the bulk spectrum

has a line gap as shown in FIg. 16(d). In the open boundary
condition, the robust edge states connect the two separate bulk
regions in the complex plane; hence, this gapped phase is
topologically nontrivial [23].

In short, |γz| <
√

3/2 is the topological region, while γz >√
15/8 is the trivial region. As

√
3/2 < γz <

√
15/8, the

eight EPs with νdisc = ±1 represent the topological phase
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FIG. 16. The spectrum of the dissipative Chern insulator shows the locations of the EPs. (a) Eight EPs with νdisc = ±1 appear as
√

3/2 <

γz <
√

15/8. (b), (c) The eight EPs merge to four EPs with νdisc = 0 as γ = √
15/8 and γ = √

3/2, respectively. (d) In the region of |γz| <√
3/2, the non-Hermitian phase with a line gap is topological.

transition region. Therefore, the EP minimal configurations
listed in Table VI can indicate the topological phase transition
for the non-Hermitian line-gap phases.

B. Non-Hermitian FPs

We briefly introduce the topological protection for FPs
in 2D non-Hermitian models, which was recently studied in
the literature [9,24]. Next, we directly extend our new no-go
theorem of the 17 WGs to the FPs.

The FPs are the direct generalization of Fermi surface
from Hermitian to non-Hermitian systems. We first recall the
Fermi surface defined for a Hermitian Hamiltonian HH(k).
In the 2D BZ, the Fermi surface, which is determined
by det[HH(k) − μ] = 0, is 1D closed lines. Given a com-
plex chemical potential μ and a non-Hermitian Hamiltonian
HnH(k), the non-Hermitian Fermi surface is located at k,
satisfying En(k) − μ = 0. That is, the two constraints of the
equation in the real and imaginary parts form two separate
closed lines in the BZ and the non-Hermitian Fermi surface
is the crossing points of the two lines; hence, we call them
FPs for non-Hermitian Fermi surfaces in 2D non-Hermitian
systems. This is different from 1D Fermi lines in 2D Her-
mitian systems, since there exists a well-defined invariant
characterizing any non-Hermitian FP in the BZ. To identify
all the FPs KFP in the BZ, we use determinant

det[HnH(KFP) − μ] =
∏

n

(En(KFP) − μ) = 0. (78)

These FPs KFP can be characterized by the winding number
as an invariant,

νFP(KFP) = i

2π

∮
�(KFP )

∇k(ln det[HnH(k) − μ]) · dk, (79)

where �(KFP) is a loop counterclockwise encircling the FP at
KFP. Since in a proper basis the Hamiltonian HnH (k) is single
valued in the entire BZ and the integrand is a singularity at
the FP, the winding number νFP of the FP is always quantized
as an integer. For any nonzero winding number, the integral
loop is not contractable, so the FP KFP inside the loop is a sta-
ble singularity point, which cannot be removed. Furthermore,
only FPs with nonzero winding numbers are singularities in
the entire BZ.

Here we point out that the (non-Hermitian) FPs and the
(Hermitian) Dirac points share an identical mathematical
structure. To see this, we map the non-Hermitian Hamiltonian
HnH(k) to a Hermitian Hamiltonian with chiral symmetry
[122]:

HH(k) =
(

0 HnH(k) − μ

H†
nH(k) − μ∗ 0

)
. (80)

The zero energy nodes of the Hermitian Hamiltonian HH(k)
appear when the determinant of the off-diagonal matrix van-
ishes det[HnH(k) − μ] = 0. The equation is exactly identical
to Eq. (78), determining the non-Hermitian FPs. Furthermore,
the definitions of the topological invariants (15) for the Her-
mitian nodes and the non-Hermitian FPs are the same. Hence,
these non-Hermitian FPs in HnH (k) are mathematically equiv-
alent to the nodal points in HH (k) with the same winding
numbers. The no-go theorem for chiral symmetry can be
directly extended to the non-Hermitian FP no-go theorem [24]
described by ∑

j

νFP
(
K j

FP

) = 0. (81)

This charge neutralization manifests that in the BZ an FP with
nonzero winding number must be accompanied by another FP
with the opposite winding number.

1. Conditions from crystalline symmetries

To study the relations of FPs connected by symme-
tries, we consider four types of combination crystalline
symmetries: conventional crystalline, transpose crystalline,
complex-conjugation, and conjugate-transpose symmetries.
We use g to indicate the generators of the first two symmetries
(Ug,UgKt ), while ḡ is used to indicate the generators of the
last two symmetries (UgK∗,UgK†). Transferring from the EP
no-go theorem for the 17 WGs to the FP cases, we simply
replace the discriminant in the integrand of the discriminant
number (53) by the determinant for the FP winding number
(79):

DiscE [HnH](k) → det[HnH(k) − μ]. (82)

It is straightforward that the FP no-go theorem follows the
same rules of the EPs as listed in Table VI and we use the
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absolute number νabs = ∑
ki

FP∈BZ |νFP(ki
FP)| to express the FP

no-go theorem. The reason for the identical rules is that the
relations between two FPs (KFP and gKFP) connected by the
symmetries are identical to the EP cases (57) and (62),

νFP(gKFP) = det(g)ν(KFP), (83)

νFP(ḡKFP) = − det(ḡ)ν(KPF), (84)

and for Cn the charges of the FPs at rotation centers (Kr
FP) are

limited by the same constraint (60):

νFP
(
Kr

FP

) = n j. (85)

The only difference between the FPs and the EPs is that the
chemical potential has to be included in the symmetry (54) to
build the FP connections. For g,

det[HnH (gk) − μ] = det
[
UgH1/t

nH (k)U −1
g − μ

]
= det[HnH (k) − μ]. (86)

The chemical potential μ can be any complex number, then
the FP relation (83) still holds. On the other hand, for ḡ, there
is an additional complex conjugation so

det[HnH (ḡk) − μ] = det
[
UḡH∗/†

nH (k)U −1
ḡ − μ

]
= det[HnH (k) − μ∗]∗. (87)

To satisfy the FP relation (84), the chemical potential must
be real; hence, the Fermi energy of the FP has to be a real
number.

2. Examples

We use three examples to demonstrate that our no-go the-
orem in table VI covers the minimal configurations of the
non-Hermitian FPs.

(a) We first consider a one-band model with the Hamilto-
nian

H (k) − μ = cos kx − cos ky − μ + i sin kx sin ky, (88)

where μ is the chemical potential and imposed to be real
to preserve M̄ symmetry. By checking the symmetries, the
Hamiltonian obeys

C2(H (kx, ky) − μ)C−1
2 = H (−kx,−ky ) − μ, (89)

where C2 = 1, and

M̄x(H (kx, ky) − μ)M̄−1
x = H (−kx, ky) − μ, (90)

where M̄x = K∗. Hence, the system belongs to WG#6 with
C2 and M̄x. When μ = 0, two FPs are located at (0,0) and
(π, π ) separately. By expanding the energy near these points,
we have

E (k) = −(kx − iky)2/2 + O(k2) (91)

= −(dkxπ + idkyπ )2/2 + O
(
dk2

π

)
, (92)

where dkxπ = kx − π, dkyπ = ky − π . Hence, by using the
winding number (79) of the FP, the FP at (0,0) possesses +2
charge, while the one at (π, π ) possesses −2 charge. The even
numbers of the charges at the C2 rotation centers are consistent
with the rotation constraint (85).

Now we adjust the value of the chemical potential to 0 <

μ < 2. The two FPs at μ = 0 are split into four FPs located
at (0,± cos−1(1 − μ)), (± cos−1(−1 + μ), π ) as shown in
Fig. 17(a). The FPs at (0,± cos−1(1 − μ)), which inherit the
charge from the FP at (0,0), both have +1 winding number.
Similarly, the FPs at (± cos−1(−1 + μ), π ) have −1 winding
number. The distribution of the four FPs at the mirror lines is
consistent with WG#6 with C2 and M̄x in Table VI. Finally,
as μ = 2, the four FPs merge at (0, π ) and the total charge of
this single FP is neutralized.

(b) For the second example, we change the one-band model
to

H (k) − μ = cos kx + cos ky − μ + i(cos kx − cos ky). (93)

The Hamiltonian with real chemical potential μ obeys

C̄4(H (kx, ky) − μ)C̄−1
4 = H (ky,−kx ) − μ, (94)

Mx(H (kx, ky) − μ)M−1
x = H (−kx, ky) − μ, (95)

where C∗
4 = K∗ and Mx = 1. Hence, the system belongs to

WG#10 with C̄4 and Mx.
We start with the chemical potential μ = 2. The FP satis-

fying E (KPF) = μ is located at (0,0). Because this is the only
FP in the entire system, to preserve the charge neutralization
(81), the winding number of this FP must be zero. Then, as
μ is decreased, the FP at (0,0) is split into four FPs located at
(± cos−1 μ

2 ,± cos−1 μ

2 ) and (± cos−1 μ

2 ,∓ cos−1 μ

2 ) as shown
in Fig. 17(b). To identify the charge of the FP, we particularly
consider the FP at (π/2, π/2) for μ = 0. The leading order
of the energy with respect to the chemical potential can be
written as

E (k) − μ = −(1 + i)dkx − (1 − i)dky + O(dk2), (96)

where dkx/y = kx/y − π/2. By using the definition
(79) of the winding number, the charge of the FP at
(π/2, π/2) is given by +1. The C̄4 rotation and reflection
symmetries extend this FP to the remaining three with
the winding number relation (84). Hence, the FPs at
(± cos−1 μ

2 ,± cos−1 μ

2 )/(± cos−1 μ

2 ,∓ cos−1 μ

2 ) possess
+1/ − 1 charge.

(c) Consider a non-Hermitian Chern insulator and its
Hamiltonian HC (k) written in Eq. (75). It has been shown
in EP example (c) that the Chern insulator Hamiltonian pre-
serves C4 rotation symmetry and Mx mirror symmetry with
C4 = eiπσz/4 and Mx = σz. Even in the presence of the com-
plex chemical potential μ, the symmetries are still preserved.
According to Table VI, the minimal number of FPs with
charge ±1 is given by eight. To show the distribution of the
FPs concretely, consider γ0 = 0, γz = √

3/2, M = 1/2, and
μ = 1. Therefore, the Fermi momentum KFP is determined by
det(HC(KPF) − 1) = 0. One of the FPs is located at K++

FP =
(π/2, 2π/3). Near this point, we expand the determinant to
the leading order

det(HC(k) − μ) = −i

√
3

2
dkx +

√
3 − 3i

2
dky + O(dk2),

(97)

where dkx = kx − π/2 and dky = ky − 2π/3. The linear
terms determine the winding number ν(K++

FP ) = −1. The C4

rotation symmetry generates other three FPs with ν = −1
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FIG. 17. FPs with nonzero charges (νFP) are located at the crossings of the red lines (Re(det(H (k) − μ)) = 0) and the blue lines
(Im(det(H (k) − μ)) = 0). (a) Two FPs with νFP = ±2 at the rotation centers are split into four FPs with νFP = ±1 in the mirror lines. Finally,
these FPs merge to one FP with νFP = 0. (b) A FP with νFP = 0 is split into four FPs with νFP = ±1 in the mirror lines. (c) Eight FPs νFP = ±1
are the general points.

located at (−π/2,−2π/3), (∓2π/3,±π/2). Furthermore,
the transpose reflection symmetry extends four additional FPs
with ν = +1 located at (±π/2,∓2π/3) and (±2π/3,±π/2)
as shown in Fig. 17(c).

VI. APPLICATIONS

The generalized no-go theorem can lead to three use-
ful applications in condensed matter physics: layer groups,
anomalous topological surface, and twisted bilayer physics.

A. Layer groups

In chiral-symmetric, space-time-inversion symmetric, and
non-Hermitian systems, the no-go theorem for the 17 WGs
can be directly extended to the 80 layer groups. Compared
with WGs, layer groups have an additional degree of freedom
in z direction without translational symmetry. With this ad-
ditional direction, some layer groups can preserve z-flipping
symmetries [134], which can be reflection symmetry Mz, rota-
tion symmetries (C2x,C2y), 3D inversion symmetry (I). Each
layer group can be formed by one of the WGs with/without
one z-flipping symmetry generator [135].

The z-flipping symmetry operation contains Mz operation.
Here we assume Mz commutes with chiral operator (S) and
2D space-time inversion operator (C2zT ). For the discussion
associated with the no-go theorem of the layer groups, for
any related z-flipping symmetry operation, the effect of the
z-flipping can be neglected, and the remaining operation in
the other directions are kept. That is, Mz → no change;
C2x,C2y → My, Mx; I → C2z. In this regard, the layer group
can be projected to one of the WGs. Table VII shows the WG
projections from all the 80 layer groups. The no-go theorem
of the layer group follows the corresponding WG projection;
this projection can be used for nodal points protected by chiral
symmetry and space-time inversion symmetry as well as non-
Hermitian EPs and FPs.

By treating the layer structure as the 2D lattice, we can
project any layer group to one of the WGs. Its no-go theorem
inherits the theorem of the corresponding WG. Let us use two
layer groups as examples to demonstrate the 2D projection.

LG#48 has four symmetry generators: C2z rotation, Mx

reflection, Ty
2
Mz glide reflection, Tx+y

2
half-lattice-constant

translation. Global symmetry operations are usually inde-
pendent of crystalline symmetry operations. Therefore, we
can assume MzTy

2
and Tx+y

2
commute with global symmetry

operations so MzTy
2

and Tx+y
2

do not affect the constraints of
the nodal points. This layer group can be projected into WG#9
with C2z, Mx, Tx+y

2
and its no-go theorem is based on WG#9.

LG#54 possesses two symmetry generators: C4z rotation
and Tx+y

2
C2y screw rotation. Although Tx+y

2
C2y flips the z di-

rection, this operator can be projected to Tx+y
2

Mx. Therefore,
the projection group is WG#12.

B. Anomalous topological surface

The no-go theorem of the WGs also serves as clear guid-
ance to search for 3D nontrivial topological phases with
anomalous surfaces. This anomalous surface stems from the
breaking of the 2D surface no-go theorem. The reason is that
the SBZ can have boundaries and does not cover the entire
2D BZ without boundaries, as shown in Fig. 18. Therefore,
including all charges in the SBZ, the integral path can not
vanish due to the emergence of the SBZ boundaries:∑

ki∈SBZ

C(ki ) �= 0. (98)

The violation of the charge neutralization can occur in the
SBZ and brings anomaly [136,137]. However, symmetries
in the WG might impose additional restrictions to remove
the anomaly. First, in the generalized no-go theorem tables
(Tables III, IV, VI, and V), 0 indicates the absence of the
topological points for the corresponding WG-AZ symmetry
classes; hence, the anomalous surface is forbidden so that the
bulk is trivial. Second, ∼ indicates all nodal points connected
by symmetries in the minimal configuration; meanwhile, the
area of the SBZ also respects the symmetries. The SBZ either
includes or excludes all the nodal points connected by the
symmetries, as illustrated in Fig. 18(a). Thus, the charges are
always neutralized, and the anomalous surface is absent.

TABLE VII. The table shows the corresponding wallpaper groups from the projection of the 80 layer groups. Each layer follows the no-go
theorem of its wallpaper group projection.

LG# 1,4,5 2,3,6,7 8−13, 27−36 14−26, 37−48 49–52 53–64 65,74 67,69,78 68,70,79 66,73,75 71,72,76,77,80

WG# 1 2 3,4,5 6,7,8,9 10 11,12 13 14 15 16 17
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FIG. 18. Topological points (nodal points, Fermi points, and ex-
ceptional points) are located on the top surface. (a) Because two
topological points are connected by C̄2 rotation symmetry, the total
charges on the surface are neutralized. (b) Although in the entire 3D
system the total charges are neutralized in the presence of the green
topological points in the bulk, charge +2 on the top surface violates
the no-go theorem. (c) A topological point with charge +1 is located
at a TRI point. (d) A topological point (quadratic-dispersion nodal
point, FP, and EP) with charge +2 is located at a TRI point.

The way to realize the anomalous surface is to have all
nodal points in the minimal configuration not connected by
symmetries. In the tables, the nonzero numbers without ∼
indicate this case. Although the entire 3D system obeys the 2D
no-go theorem, some of the topological points can be outside
of the SBZ without breaking any symmetries, as illustrated in
Fig. 18(b). In the SBZ, the charges of the remaining topolog-
ical points can violate the neutralization, and the anomalous
surface leads to the nontrivial bulk. The 3D bulk topological
invariant is given by the sum of the nodal-point charges on the
surface:

ν3D =
∑

ki∈SBZ

C(ki ). (99)

Let us investigate the non-trivial bulks by studying the vio-
lation of our generalized no-go theorem on the surfaces for
Hermitian and non-Hermitian systems.

(a) For chiral symmetry, there are five AZ symmetry
classes possessing stable nodal points at zero energy. Since
the absolute numbers in class BDI and CII are either 0 or a
number labeled by ∼, the anomalous surface cannot exist in
these classes. The trivial 3D topology in these two symmetry
classes is consistent with the tenfold classification [32,34]. On
the other hand, for classes AIII, DIII, and CI, to realize the
anomalous surface, for a WG preserving rotation symmetry
or reflection symmetry, it is required that rotation operator
C+

n commutes with S and reflection operator M−
i anticom-

mutes with S. Otherwise, the crystalline symmetries always
keep either the charge neutralization or the trivialization on
the surface. On the anomalous surface, the sum ν3D of the
nodal-point charges is equal to the 3D winding number quan-
tized by chiral symmetry [138]. Hence, for any WGs with
C+

n symmetry or/and M−
i symmetry, chiral-symmetric topo-

logical insulators/superconductors in classes AIII, DIII, or

CI are characterized by this Z winding number. Particularly,
C+

2 -inversion-symmetric and M+
i -refection-symmetric phases

with the winding number have been studied in the literature
[139,140].

Since nodal points off TRI points are connected by symme-
tries, to realize the minimal unneutralized charges, the nodal
point has to be located at a TRI point, as shown in Fig. 18(c).
For classes AIII and DIII, the charge can be ±1 so that the
Z winding number characterizes their bulk topology. On the
other hand, since Table IV shows that for class CI the charge at
a TRI must be an even number as illustrated in Fig. 18(d), the
2Z winding number for the bulk topology is consistent with
the tenfold classification [5].

(b) For space-time inversion symmetry, Dirac nodes off
TRI points for the ten WGs preserving inversion symmetry
are always connected by symmetries. Hence, on the SBZ the
total charges are neutralized. On the other hand, while for
class AI time-reversal symmetry forbids any Dirac node at
any TRI points, for class AII Dirac nodes can be present at
TRI points; the SBZ can include only one TRI point without
breaking symmetries as shown in Fig. 18(c), so the anomalous
surface can exist only in class AII. Furthermore, since the
Dirac cone is characterized by the Z2 invariant (Berry phase),
the bulk invariant in class AII with C2 rotation symmetry has
a Z2 invariant, which is consistent with the literature [139].

(c) For non-Hermitian systems, to realize unneutralized
EPs and FPs on the surface, WG generators must be one or
two of Cn and M̄x, which correspond to the absolute numbers
without ∼ in Table VI. The reason is that C̄n or/and Mx con-
nect all the topological points in the minimal configuration or
trivialize the points. This is in agreement with the non-trivial
3D bulk with the non-Hermitian anomalous surface being
forbidden by reflection symmetry [24]. Back to the anomalous
surface, Cn rotation symmetry leads to a topological point with
nZ charge at the rotation center or n symmetry-connected
topological points with Z charges off the rotation center as
illustrated in Figs. 18(b) and 18(d). The total charge on the
surface is always nZ, and the 3D topological invariant is a
multiple of n,

ν3D = n j, j ∈ Z, (100)

due to Cn rotation symmetry.
The no-go theorem violations of FPs and EPs bring distinct

nontrivial bulks. To keep simplicity, we assume the absence of
the skin effect. First, for the anomalous FP surface, the bulk
Hamiltonian H (�k) must have a point gap where unneutralized
FPs with energy E are located. The topology of the bulk can
be described by a 3D Z topological invariant [35,122,141],

W3D = −
∫

3DBZ

d3�k
(2π )3

εi jlTr[Qi(�k)Qj (�k)Ql (�k)], (101)

where Qi(�k) = (H (�k) − E )−1∂ki (H (�k) − E ). The sum of the
FP charges on the anomalous surface corresponds to the inte-
ger value of the 3D topological invariant. On the other hand,
different from FPs at fixed energy, the EPs on the surface
in the entire energy spectrum are counted to examine the
violation of the no-go theorem as an anomaly. The violation
leads to the nontrivial topological bulk. The sum of the EP
charges on the anomalous surface corresponds to another Z
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bulk topological invariant, which is unknown in the literature.
The hint of the no-go theorem leads to another direction to
study new non-Hermitian topological phase.

VII. TWISTED BILAYER PHYSICS

Two graphene monolayers with a small twisted angle form
a Moiré superlattice. At the magic angle, the emergence of
the flat bands in the Moiré BZ has become an important
playground to explore strongly correlated physics. In the two
monolayers, the Dirac nodes located at K, K ′ evolve to com-
pletely flat bands in the entire Moiré BZ through the interlayer
coupling. The presence of the Dirac nodes is one of the key
elements for the band flatness. Our generalized no-go theorem
can guide us to find other platforms hosting similar Dirac
nodes sorted by symmetries and can extend to square lattice
and non-Hermitian platforms.

As discussed previously in Sec. III E 1, graphene without
spin-orbital coupling can be simplified to an effective spinless
system, which preserves time-reversal symmetry with T 2 = 1
and sublattice (chiral) symmetry, and this monolayer system
belongs to WG#17 in class BDI with C−

6 and M−
x . To re-

alize alternative similar twisted bilayer systems, it is worth
investigating if other platforms can host only two Dirac nodes
at K, K ′. Since the symmetry connection of the two nodes
(∼) is not a factor affecting the Dirac node locations, we are
looking for these two configurations labeled by 2(K, K ′) and
2̃(K, K ′). Table III shows that the same WG in classes AIII,
BDI and CII also can host the two Dirac nodes at K, K ′ as the
minimal configuration. In this regard, the subgroups of these
three symmetry groups possessing identical Dirac physics are
listed as WG#16 with C−

6 , WG#15 with C+
3 , M−

x , WG#14
with C+

3 , M+
y , and WG#13 with C+

3 in classes AIII, BDI,
and CII. Thus, based on those listed symmetry groups, we can
search for graphene like platforms.

Our generalized no-go theorem also shows that in some
WG-AZ symmetry classes the Dirac nodes at K, K ′ must
be accompanied by other Dirac nodes due to the charge
neutralization. Two Dirac nodes with +1 charges located at
K, K ′ can be neutralized by two approaches as illustrated
in Figs. 7(d) and 7(b): (1) a quadratic dispersion node with
−2 charge at �: 4∗(K, K ′, �) and (2) a Dirac node with +1
charge at � and three Dirac nodes with −1 charges at M1/2/3

separately: 6(K, K ′, �, M1/2/3). According to Tables III and
IV, the corresponding WG-AZ symmetry classes are given
by WG#17 with C+

6 , M−
x , WG#16 with C+

6 , WG#15 with
C+

3 , M−
x , WG#14 with C+

3 , M−
y , and WG#13 in class AIII,

DIII, and CI. These WG-AZ symmetry classes provide direc-
tions to search for alternative Dirac platforms.

To extend the twisted physics to square lattices, we con-
sider that the low-energy effective continuum Hamiltonian
of twisted bilayer graphene [142] describes the single-valley
physics of the two Dirac cones at K separately in the different
layers with the interlayer coupling and can be written in the
real space with twisted angle θ and lattice constant a0 [143],

HK =
(−ivF σθ/2 · ∇ T3(r)

T †
3 (r) −ivF σ−θ/2 · ∇

)
, (102)

FIG. 19. Momentum-space geometry of twisted bilayers shows
the similarity between twisted graphene (hexagonal) and square lat-
tices. While green and red Dirac cones are separately located in the
different layers, the blue lines indicate the boundaries of the Moiré
BZs and the dashed lines indicate the momentum hoppings. (a) The
momentum hopping network connecting the Dirac ones captures the
effective physics of the twisted bilayer graphene. (b) The momentum
hoppings qn in the three directions stem from the momentum dif-
ference between the two Dirac cones. (c) The twisted square lattice
with Dirac points at M point can also be described by the hopping
network. (d) Similarly, the momentum difference between the two
Dirac cones leads to the hoppings pm in the four directions.

where σ±θ/2 = e∓iθσz/4(σx, σy)e±iθσz/4, ∇ = (∂x, ∂y), and
T3(r) = ∑3

n=1 Tne−iqn·r. The two diagonal terms represent
the two Dirac cones located at the different layers and the
interlayer coupling T3(r) is composed of three-momentum
hoppings differing by angle ψ = 2π/3,

qn+1 = kθ (sin nψ,− cos nψ ), (103)

Tn+1 = wAAσ0 + wAB(σx cos nψ + σy sin nψ ), (104)

where kθ = 8π sin(θ/2)
3a0

and wAA/BB indicates the strength of the
AA/AB-basis coupling. Figures 19(a) and 19(b) illustrate the
effective physics is captured by the network of the two Dirac
cones with the extension of the momentum hoppings. The
platform for the twisted physics can be naturally extended
to a Dirac node at M point in a square lattice with lattice
constant b0 [144,145]. Consider the low-energy physics of
the twisted square-lattice bilayer and the Hamiltonian, which
shares a similar form of the twisted bilayer graphene (102),
which reads

HM =
(−ivF σθ/2 · ∇ S4(r)

S†
4 (r) −ivF σ−θ/2 · ∇

)
. (105)

The physics describes the coupling between the two Dirac
nodes at M separately located in the two layers. The interlayer
coupling has momentum hoppings in four directions S4(r) =
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∑4
m=1 Sme−ipm·r; Using the form of T3(r) in the graphene, we

can write the details of the hoppings as

pm+1 = pθ (sin(mφ + φ0),− cos(mφ + φ0)), (106)

Sm+1 = d0 + d1(σx cos(mφ + φ0) + σy sin(mφ + φ0)),
(107)

where pθ = π sin(θ/2)/b0, φ = π/2, and φ0 = π/4.
Figures 19(c) and 19(d) illustrate the expansion of the
momentum hoppings forming the network of the two Dirac
cones from the different layers.

Now we are looking for WG-AZ symmetry classes hosting
a Dirac node at M. Due to the no-go theorem, the Dirac node is
always accompanied with other nodes. According to Tables III
and IV, in classes AIII and DIII the minimal configuration
4(�, M, X,Y ) can be realized in WG#11,12 with C+

4 , M−
x and

WG#10 with C+
4 as new platforms for twisted bilayer physics.

Graphene hosts Dirac nodes at K and K ′ points with ±1
charges quantized by chiral (sublattice) symmetry. It is natural
to seek a similar non-Hermitian platform possessing topologi-
cal points (EPs and FPs) at the same locations. However, since
K and K ′ points are the C3 rotation center, different from
the Hermitian nodal phase, the values of the non-Hermitian
charges must be a multiple of 3 Eqs. (85) and (60). On the
other hand, for the square BZ, the charge of the topological
point at the M point, which is the C4 rotation center, must be
a multiple of 4. Thus, nodal points for twisted Hermitian and
non-Hermitian bilayers are different. The charge of the nodal
point at a Cn rotation center in a non-Hermitian layer must
be a multiple of n, while there is no restriction for Hermitian
layers.

VIII. CONCLUSION

The stable topological points in 2D lattices arise in
chiral-symmetric, space-time-inversion-symmetric, and non-
Hermitian systems. In the presence of crystalline symmetries
and time-reversal symmetry, the minimal number of topolog-
ical points might be more than two beyond the original no-go
theorem (the fermion doubling theorem [24,26–28]). We ex-
haustively study the generalized no-go theorem for the three
distinct types of lattice systems and list the minimal numbers
of the topological points with the configurations for given
WGs. This theorem provides an alternative scheme to classify
the nodal topological materials and includes the nodal topo-
logical points located at general points in the BZ, which might
be overlooked in the symmetry indicator schemes [48–52].

This generalized no-go theorem is a unified princi-
ple and a fundamental rule for forming Dirac semimetals,
nodal time-reversal-symmetric topological superconductors,
and non-Hermitian lattices with EPs or FPs. We start with
chiral-symmetric nodal systems for the 17 WGs. Space-time-
inversion-symmetric nodal semimetals and non-Hermitian
nodal systems inherit the principle from the chiral-symmetric
system with small modifications. The examples in the paper
show that the topological materials in the literature must obey
this ground rule, such as graphene and d-wave superconduc-
tors. In addition, the theorem predicts several undiscovered
Dirac semimetals, such as six Dirac nodes in a hexago-
nal lattice (38) and a quadratic node with two Dirac nodes

(41). Following this guidance, we can reveal and realize
additional types of nodal topological materials with topo-
logical nodal points. In particular, these Dirac semimetals
in our prediction can potentially possess Majorana bound
states with superconductivity [146]. On the other hand, the
non-Hermitian topology of FPs and EPs is captured by Z
invariants. Unlike the Hermitian Dirac nodes, the charges of
those non-Hermitian topological points at the rotation center,
say Cn rotation, must be a multiple of n. Although Z invariants
also protect Dirac nodes in chiral-symmetric lattices, the non-
Hermitian no-go theorem is distinct from the Hermitian one.

The generalization of the no-go theorem also leads to
several applications in condensed matter physics. The no-go
theorem for the 17 WGs can be directly extended to the 80
layer groups through the projection. Our classification can
determine if the no-go theorem on the surface can be violated;
since the violation implies nontrivial bulks, this approach
indirectly classifies Hermitian and non-Hermitian 3D topolog-
ical bulk with Z and Z2 invariants. Twisted bilayer graphene
brings fruitfully interesting physics from the coupling of the
Dirac cones. The predicted Dirac semimetals from the gener-
alized no-go theorem can be alternative platforms of twisted
bilayers for strong correlations.
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APPENDIX A: HAMILTONIAN PROPERTIES

In a certain basis, each entry of the Hamiltonian can be
a single-valued function of momentum k; this single-valued
property is the key to prove the fermion no-go theorem. On
the other hand, the symmetry equations for the Hamiltonian
through crystalline symmetry play an essential role to deter-
mine the minimal number of topological points in the BZ. To
set up these foundations of the generalized no-go theorem, we
prove these two features above for 2D lattice systems in this
Appendix.

We intentionally choose the annihilation operator in the
momentum basis in the unit cell convention,

φ̂αa(k) = 1√
N

∑
Rn

e−ik·Rnψ̂α (Rn + ra), (A1)

where Rn is the central position of the nth unit cell and N is
the number of the unit cell. Label a indicates different spatial
locations of atoms and ra is the location of the atom, whereas
label α indicates a nonspatial-dependent index, such as spin.
In this convention, the phase in the Fourier transformation
does not have ra dependence and the location dependence of
the annihilation operator φ̂αa is absorbed in index a. By the
definition, the annihilation operator has periodicity

φ̂αa(k + m1G1 + m2G2) = φ̂αa(k), (A2)
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where Gi is the reciprocal lattice vector and mi is an integer;
therefore, φ̂αa(k) is single valued in the BZ. On the other
hand, the Hamiltonian in the form of the second quantization
in momentum basis is written as

Ĥ =
∑

k

φ̂
†
βb(k)Hβb,αa(k)φ̂αa(k). (A3)

Thus, each entry Hβb,αa(k) in the free-fermion Hamiltonian
is a single-valued function of momentum in the BZ.

Consider a crystalline symmetry operator with translation
τ acts on the annihilation operator,

ĝτ ψ̂αa(Rn + ra)ĝ−1
τ

=
∑

β

Wαβψ̂β (gτ (Rn + ra))

=
∑

β

Wαβψ̂β

(
R′ab

n +
∑

b

Vabrb

)

=
∑
β,b

WαβVabψ̂β

(
gRn + rb + nab

1 ga1 + nab
2 ga2

)
, (A4)

where Wαβ is a constant transformation unitary matrix for
crystalline operation, such as spin rotation and the orbital
phase changes. We note that the crystalline operator also alters
the location of the annihilation operator,

ĝτ (Rn + ra) = R′
n +

∑
b

Vabrb, (A5)

where R′
n is the central location of another unit cell. Matrix

Vab directly switches the original atom location to another and
does not mix other atom locations. That is, each entry in Vab

is either 0 or 1. In this regard, Vab and the summation of b
in Eq. (A4) can be moved out of the parenthesis. In general,
R′ab

n �= gRn, where the crystalline operator for position vector
g acts on Rn without translation and the invariant point of the
operation (rotation center or reflection) is in the original point;
hence, we have

R′ab
n = gRn + nab

1 ga1 + nab
2 ga2, (A6)

where integer nab
i , which depends on the atom location, in-

dicates the number of the unit cell shift after the crystalline
symmetry operation and ai is the primitive vector obeying

k · (n1a1 + n2a2) = k1n1 + k2n2, (A7)

where k = (k1G1 + k2G2)/2π . Since the crystalline symme-
try is preserved, gai is still the primitive vector; the last two
terms in the equation above represent the shift of the unit cell.

We can discuss the ĝτ acts on the annihilation operator in
the momentum space:

ĝτ φ̂αa(k)ĝ−1
τ

= 1√
N

∑
Rn

e−ik·Rn ĝτ ψ̂α

(
Rn + ra

)
ĝ−1

τ

= 1√
N

∑
Rn,β,b

e−ik·RnWαβVabψ̂β

(
R′ab

n + rb
)

= 1√
N

∑
Rn,β,b

e−igk·gRnWαβVabψ̂β

(
R′ab

n + rb
)

= 1√
N

∑
Rn,β,b

e−igk·(R′ab
n −nab

1 ga1−nab
2 ga2 )WαβVabψ̂β

(
R′ab

n + rb
)

= 1√
N

∑
Rn,β,b

eigk·(nab
1 ga1+nab

2 ga2 )WαβVabe−igk·R′ab
n ψ̂β

(
R′ab

n +rb
)

=
∑
β,b

ei(k1nab
1 +k2nab

2 )WαβVabφ̂βb(gk). (A8)

To simplify the expression of the crystalline symmetry op-
eration, we can define the single-valued k-dependent unitary
matrix:

U †
αa,βb(k) = ei(k1nab

1 +k2nab
2 )WαβVab. (A9)

The annihilation operator and creation operator can be rewrit-
ten in the economic form

ĝτ φ̂(k)ĝ−1
τ = U †(k)φ̂(gk), ĝτ φ̂

†(k)ĝ−1
τ = φ̂†(gk)U (k).

(A10)
Due to the symmetry, the second quantization Hamil-

tonian (A3) is invariant under the crystalline symmetry
operation:∑

k

φ̂†(k)H (k)φ̂(k)

= ĝτ

∑
k

φ̂†(k)H (k)φ̂(k)ĝ−1
τ

=
∑

k

ĝτ φ̂
†(k)ĝ−1

τ ĝτ H (k)ĝ−1
τ ĝτ φ̂(k)ĝ−1

τ

=
∑

k

φ̂†(gk)U (k)H (k)U †(k)φ̂(gk). (A11)

Hence, the symmetry equation for the free fermion Hamilto-
nian is given by

H (gk) = U (k)H (k)U †(k). (A12)

We will frequently use this symmetry equation through the
paper for the generalized no-go theorem.

APPENDIX B: THE WINDING NUMBER CONNECTION
BETWEEN K0 AND gK0

We provide detailed deviations for the relations of the two
winding numbers at K0 and gK0. First, let us show that the def-
inition Eq. (8) of the winding number is equivalent to the one
using the flattened Hamiltonian. The flattened Hamiltonian

Q(k) =
N+∑

0<Eα

|�α (k)〉〈�α (k)| −
N−∑

0>Eβ

|�β (k)〉〈�β (k)|,

(B1)

where |�γ (k)〉 is the eigenstate of the H(k) with energy
Eγ . Assuming the absence of zero-energy states, chiral sym-
metry leads to N+ = N−. Since the flattened Hamiltonian
inherits chiral symmetry (4) from the original Hamiltonian
by choosing a proper basis, the chiral-symmetry operator can
be written as S = τz ⊗ In×n and the flattened Hamiltonian has
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this off-diagonal form

Q(k) =
(

0 q(k)
q†(k) 0

)
. (B2)

Due to Q2 = I2n×2n, q(k) is a unitary matrix and invertible
due to the absence of the zero-energy state. Using q(k), the
winding number is defined in a closed loop integral path in
the BZ

ν = i

2π

∮
dk · Tr[q−1(k)∂kq(k)]

= i

2π

∮
dk · ∂kTr[ln q(k)]

= i

2π

∮
d (ln det[q(k)]) (B3)

This definition of the winding number is regularly used in the
literature [5,34].

To show that h(k) and q(k) lead to the same winding
number, we choose the eigenstates as the basis and then prove
that H(k) commutes with Q(k) since

H(k)Q(k) =
N+∑

0<Eα

Eα (k)|�α (k)〉〈�α (k)|

−
N−∑

0>Eβ

Eβ (k)|�β (k)〉〈�β (k)| (B4)

= Q(k)H(k) (B5)

The commutation relation can be rewritten in the proper basis

0 = [H(k), Q(k)]

=
(

h(k)q†(k) − q(k)h†(k) 0
0 h†(k)q(k) − q†(k)h(k)

)
.

(B6)

One can obtain

det[h(k)q†(k)] = det[q(k)h†(k)]

= det[(h(k)q†(k))†]= det[h(k)q†(k)]∗. (B7)

The above equation implies that det[h(k)q†(k)] is a real num-
ber so that ln det(h(k)) + ln det(q∗(k)) = γ (k) is a single-
valued function, which leads to

∮
dγ (k) = 0. Using the

property of the unitary matrix q(k), we have ln det(q∗) +
ln det(q) = 0. Hence, the winding number with the closed
integral path �(K0) can be directly written in form of h(k)

ν(K0) = i

2π

∮
�(K0 )

d (ln det[q(k)])

= i

2π

∮
�(K0 )

d (ln det[h(k)]). (B8)

To connect the relation between ν(K0) and ν(�K0), we first
consider gτ = {g|τ} with spatial translation τ as a 2D crys-
talline symmetry operator.

Since the matrix form of the symmetry operator commutes
with chiral-symmetry operator S = τz ⊗ 1, the unitary sym-
metry operator in the single-particle basis (or particle-hole

basis for superconductors) is written in a generic form of

U +
g (k) =

(
Ug1(k) 0

0 Ug2(k)

)
, (B9)

where Ugi(k) is a momentum-dependent unitary matrix, which
can describe a nonsymmorphic symmetry operation. The crys-
talline symmetry (16) connects the Hamiltonian at K0 and
gK0:

H(gk) = U +
g (k)H(k)U +†

g (k)

=
(

0 Ug1(k)h(k)U †
g2(k)

Ug2(k)h†(k)U †
g1(k) 0

)
.

(B10)

We have h(gk) = Ug1(k)h(k)U †
g2(k). The integral path �(gK0)

is an infinitesimal close loop encircling nodal point gK0 and
then the winding number at �(gK0) is given by

ν(gK0) = i

2π

∮
�(gK0 )

d (ln det[h(k)])

= i

2π

∮
�(K0 )

det(g)d (ln det[h(gk)])

= i

2π

∮
�(K0 )

det(g)d (ln det[h(k)])

= det(g)ν(K0). (B11)

We use the integral
∮
�(K0 ) d ( ln det Ugi(k)) = 0 since Ugi(k)

does not collect an additional U (1) winding phase in the
infinitesimal integral loop. The reason is that det(Ug±(k)) does
not vanish to create a nodal point due to the nature of unitary
matrix.

Second, consider time-reversal symmetry operator T +
commutes with chiral symmetry operator S,

H(−k) = TH(k)T −1 = UTH∗(k)U †
T , (B12)

where T + = UTK and K is the complex conjugate operator.
The commutation relation between T + and S gives the form
of

T + =
(

UT 1 0
0 UT 2

)
K, (B13)

where UTi is momentum independent since the time-reversal
symmetry operator is nonspatial. In 2D momentum space, the
time-reversal operation is equivalent to the combination of C2

rotation and complex conjugation. Therefore,

ν(−K0) = i

2π

∮
�(−K0 )

d (ln det[h(k)])

= i

2π

∮
�(K0 )

d (ln det[h∗(k)])

= −i

2π

∮
�(K0 )

d (ln det[h(k)])

= −ν(K0). (B14)

Hence, with the commutation relation between T + and S, the
time-reversal operation flips the sign of the winding number
for the nodal point at −K0.

045126-32



GENERALIZED FERMION DOUBLING THEOREMS: … PHYSICAL REVIEW B 106, 045126 (2022)

On the other hand, when the symmetry operator anticom-
mutes with S, the relation of the winding numbers between K0

and gK0 flip the sign. Following a similar derivation, we have
crystalline symmetry operator U −

g (k), which anticommutes
with S, in the form of

U −
g (k) =

(
0 Vg1(k)

Vg2(k) 0

)
, (B15)

where Vgi is a unitary matrix. This symmetry operator links
the Hamiltonian at K0 and gK0:

H(gk) =U −
g (k)H(k)U −†

g (k)

=
(

0 Vg1(k)h†(k)V †
g2(k)

Vg2(k)h(k)V †
g1(k) 0

)
. (B16)

Using h(gk) = Vg1(k)h†(k)V †
g2(k) and following a similar

derivation with U +
g (k), we have this relation of the winding

numbers at the two nodal points:

ν(gK0) = i

2π

∮
�(K0 )

det(g)d (ln det[h(gk)])

= i

2π

∮
�(K0 )

det(g)d (ln det[h†(k)])

= −i

2π

∮
�(K0 )

det(g)d (ln det[h(k)])

= − det(g)ν(K0). (B17)

For time-reversal symmetry operator T − anticommuting
with S, since the complex conjugate operator in T − flips the
sign of the winding number, the relation between K0 and −K0

with time-reversal symmetry is given by

ν(−K0) = ν(K0). (B18)

The results of the winding number relations are summarized
in Eqs. (18), (19), and Table II.

APPENDIX C: THE ALGEBRA BETWEEN CHIRAL
OPERATOR AND TIME-REVERSAL OPERATOR

We know that T 2 = C2 = ±1 in classes BDI and CII and
T 2 = −C2 = ±1 in classes CI and DIII. Let us consider T 2 =
C2 = ±1. We can choose a proper basis and phase so chiral
operator S is Hermitian and S2 = 1. By sandwiching S2 with
T and C, we have

TC = T S2C = T 2CTC2 = CT . (C1)

This commutation relation leads to 0 = T [T,C] = [T, TC] =
[T, S]. That is, class BDI and CII preserve T + time-reversal
symmetry. Following a similar derivation, we have T − time-
reversal symmetry for class CI, DIII.

APPENDIX D: NEUTRALIZED WINDING NUMBER
SUMMATION

Each nodal point in the BZ is characterized by winding
number. The essence of the no-go theorem is that the sum-
mation over winding numbers for all the nodal points must

FIG. 20. The integral paths (red line) of the winding numbers
for the nodal points (black dots) evolve in the BZ. The black box
represents the entire boundary of the BZ. (a) The integral path of
the winding number is an infinitesimal loop encircling a nodal point.
(b) The integral path of the multiple loops grows without passing
through any nodal point and through the deformation two loops
form one big loop. (c) The integral path for all the nodal points is
equivalent to the integral path along the boundary of the BZ, since
through the deformation the path does not pass any nodal points. By
using the periodic boundary condition of the BZ, this integral path
vanishes.

vanish. To prove the neutralization, we simply write the defi-
nition of the winding number summation∑

i

ν
(
K i

0

) =
∑

i

i

2π

∮
�(K i

0 )
d (ln det[h(k)])

= i

2π

∮
∂BZ

d (ln det[h(k)])

= 0, (D1)

where Ki
0 represent all of the nodal points (E = 0) in the BZ.

The integral path of the winding number for any nodal point
is an infinitesimal loop counterclockwise encircling that nodal
point. The integral path for all nodal points can continuously
deform to the boundary of the BZ (∂BZ) as illustrated in
Fig. 20. Importantly, the integral path never passes any nodal
points during the deformation, so the total winding number is
unchanged after the deformation; hence, the second line with
∂BZ in the equation holds. Since h(k) can be single valued in
the entire BZ, by using the periodic boundary, ∂BZ vanishes,
so the summation must be zero.

APPENDIX E: FOUR DIRAC NODES:
WG#17 IN CLASS DIII

In all the WG-AZ symmetry classes, it is the most difficult
task to find a tight-binding model for the minimal configura-
tion of a nodal point with ν = 2 located at � and two nodal
points with ν = −1 at K, K ′ in class DIII. In a two-band
model, time-reversal symmetry (T 2 = −1) limits the winding
number of the nodal point at � to an odd number. Hence,
the two-band model cannot host a nodal point at � carrying
an even winding number. To find the minimal tight-binding
model hosting this high-ordered nodal point, we start with
a four-band model consisting of two six-Dirac-point Hamil-
tonians H6(k) (38) in class DIII. Since H6(k) possesses six
Dirac nodes separately located at �, M1,2,3, K ′, K , two of the
12 Dirac nodes at � carry ν = 2 winding number together,
two nodes at M1,2,3 carry ν = −2, and two nodes at K, K ′
carry ν = 2. However, the nodal points at M1,2,3 should be
removed and the signs of the winding numbers at K, K ′ should
be switched. To achieve this, we intensionally add H4(k) (41)
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FIG. 21. The Dirac points move from M1,2,3 as α varies from
0. (a) The Dirac node moves along MK as 0 < α < 1/

√
3. (b) As

α = 1/
√

3, the moving Dirac node is located at K . The total winding
number of the fourfold degenerate nodal point becomes −1. (c) The
Dirac point moves away from K toward �.

from class CI with real coefficient α as a coupling between
two H6(k)’s. The 4 × 4 Hamiltonian is written in the form of

H4×4(k) =

⎛
⎜⎝

0 h6(k) 0 αh4(k)
h∗

6(k) 0 −αh∗
4(k) 0

0 −αh4(k) 0 −h6(k)
αh∗

4(k) 0 −h∗
6(k) 0

⎞
⎟⎠.

(E1)
Since time-reversal symmetry with T = iτ0σyK and particle-
hole symmetry C = τ0σxK are preserved, the system be-
longs to class DIII. Hence, the chiral symmetry opera-
tor is given by S = τ0σz. Furthermore, this is WG#17
with C6 rotation and Mx generators since the Hamiltonian
obeys MxH4×4(−kx, ky)M−1

x = H4×4(kx, ky) with Mx = τzσy

and C6H4×4( kx+
√

3ky

2 ,
ky−

√
3kx

2 )C−1
6 = H4×4(kx, ky) with C6 =

cos π/6τzσ0 − i sin π/6τzσz. The algebra between the gener-
ators and the chiral symmetry operator is given by M−

x and
C+

6 . According to Table IV, this WG-AZ symmetry classes
can host a nodal point at � with ν = 2, two nodal points with
ν = −1 at K, K ′ separately as the minimal configuration.

To realize the minimal configuration, we begin to in-
crease α from 0, two Dirac points at each of M1,2,3 points
move toward K, K ′ along MK, MK ′ separately as shown in
Fig. 21(a). Since h4(0) vanishes, the node carrying ν = 2 at
� is intact. As α = 1/

√
3, the moving Dirac points carrying

ν = −1 are exactly located at K, K ′; Fig. 21(b) shows the
fourfold degenerate point is located in K . Since originally
each of K ′, K has +2 winding numbers and each of the Dirac
nodes from M1,2,3 carries ν = −1, after merging with the three
Dirac points from M1,2,3, the fourfold degenerate nodal point
at K or K ′ carries ν = −1 winding number in total. Thus, the
Hamiltonian (E1) with α = 1/

√
3 is the tight-binding model

hosting the fourfold degenerate node at � with ν = 2 and
the nodes at K, K ′ with ν = −1. We note this is the minimal
configuration that is unstable. That is, as α > 1/

√
3, from K

or K ′ Dirac nodes separately move along �K or �K ′ toward
� as shown in Fig. 21(c).

APPENDIX F: C2T SYMMETRY

Space-time inversion symmetry (C2T ) can protect 2D
Dirac cones in the presence of disorders, and quantizes the
Z2 Berry phase in the 1D integral path. Here, we provide
the detailed deviations; the Berry phase with the closed in-
tegral path �(K0) at the nodal point K0 can be written
in Eq. (44).

Space-time inversion operator C2T is the combination of
a unitary matrix and complex conjugation C2T = VkK; the
unitary matrix Vk might be k dependent and does not have
any singularity point in the BZ. By assuming the absence of
degenerate states, the relation of wave functions under C2T
symmetry is given by

|un(k)〉 = eiβ j
kC2T |un(k)〉 = eiβ j

kVk|u∗
n(k)〉. (F1)

The Berry phase with a noncontractible integral path can be
written as

γ (K0) = i
∑

n∈occ

∮
〈un(k)|∂k|un(k)〉dk

= i
∑

n∈occ

∮
〈u∗

n(k)|V †
k e−iβ j

k ∂keiβ j
kVk|u∗

n(k)〉dk

= −
∑

n∈occ

(β j
+ − β

j
−) + i

∑
n∈occ

∮
〈u∗

n(k)|∂k|u∗
n(k)〉dk

+ i
∑

n∈occ

∮
〈un(k)|V †

k (∂kVk )|u∗
n(k)〉dk, (F2)

where β
j
∓ represent the phases at the beginning and the end

of the integration path, respectively; since the integration path
is a closed loop, the start point and end point are identical.
Hence, the first summation is 2mπ , where m is an integer.
Furthermore, due to the absence of any singularity in Vk, the
third term vanishes. After using the identity

〈φ∗
k, j |∂k|φ∗

k, j〉 = 〈∂kφk, j |φk, j〉 = −〈φk, j |∂k|φk, j〉, (F3)

we have the quantized Berry phase:

γ (K0) =
∑

n∈occ

(β j
+ − β

j
−)/2 = 0, π (mod 2π ). (F4)

The modulo operation of 2π stems from gauge transform
|u∗

n(k)〉 → eilθ |u∗
n(k)〉 by using K0 as the singularity point for

the transformation; Hence, the two Berry phases differing by
2π l are equivalent.

The crystalline symmetry {g|τ} connects two nodal points
K0 and gK0 so the Hamiltonians at the two points obeys

H(gk) =Ug(k)H(k)U †
g (k), (F5)

where the crystalline symmetry operator Ug(k) is a
momentum-dependent unitary matrix. Therefore, the wave
functions at the two points are connected by

|un(gk)〉 = Ug(k)|un(k)〉. (F6)

With this relation, the Berry phase at the gK0 point is written
in the form of the Berry phase at K0:

γ (gK0) = i
∑

n∈occ

∮
�(gK0 )

〈un(k)|∂k|un(k)〉 · dk

= i det(g)
∑

n∈occ

∮
�(K0 )

〈un(gk)|∂gk|un(gk)〉 · dgk

= i det(g)
∑

n∈occ

∮
�(K0 )

〈Ug(k)un(k)|∂k|Ug(k)un(k)〉 · dk
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= i det(g)
∑

n∈occ

∮
�(K0 )

〈un(k)|∂k|un(k)〉 · dk

= det(g)γ (K0) (F7)

Here we use that Ug(k) does not have any singularity in
the BZ. Since the Berry phase is either 0 or π , the relation

between K0 and gK0 can be simplified to

γ (gK0) = γ (K0). (F8)

Similarly, for time-reversal symmetry, the Berry phases at K0

and −K0 are related by
γ (K0) = γ (−K0). (F9)
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