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Geometric approach to Lieb-Schultz-Mattis theorem without translation symmetry under inversion
or rotation symmetry
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We propose a geometric approach to the Lieb-Schultz-Mattis theorem for quantum many-body systems
with discrete spin-rotation symmetries and lattice inversion or rotation symmetry, but without translation
symmetry assumed. Under symmetry twisting on a (d − 1)-dimensional plane, we find that any d-dimensional
inversion-symmetric spin system possesses a doubly degenerate spectrum when it hosts a half-integer spin at the
inversion-symmetric point. We also show that any rotation-symmetric generalized spin model with a projective
representation at the rotation center has a similar degeneracy under symmetry twisting. We argue that these
degeneracies imply that a unique symmetric gapped ground state that is smoothly connected to product states is
forbidden in the original untwisted systems—generalized inversional or rotational Lieb-Schultz-Mattis theorems
without lattice translation symmetry imposed. The traditional Lieb-Schultz-Mattis theorems with translations
also fit in the proposed framework.
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I. INTRODUCTION

Strongly interacting many-body systems are central topics
in condensed-matter and statistical physics. An important con-
cept in the study of these systems is the Lieb-Schultz-Mattis
(LSM) theorem [1] and its generalizations [2–5] that state an
ingappability—an inability of having a unique gapped ground
state that belongs to the phase of a trivial product state—of
the systems respecting U(1) and translation symmetries with a
fractional filling. Recent works study the ingappabilities from
the interplay between translations and other symmetries, e.g.,
SU(2) [6,7] and SU(N ) [2,8] symmetries, or even discrete
subgroup symmetries [9–14].

The lattice translation symmetry is essential in these LSM-
type theorems. Several generalizations have been recently
proposed to systems with other lattice symmetries than trans-
lations [11–13,15–17]. Such extensions have been made in
spin systems with rotation or inversion symmetry in low di-
mensions by employing lattice homotopy principles [15,17]
and even proven in a rigorous manner in one dimension
[12,13]. The ingappabilities of these systems are also re-
lated to the quantum anomaly of field theories [7,17,18].
Nevertheless, higher-dimensional generalizations are not well
established and require further studies, e.g., inversions beyond
one and two dimensions in a unifying way. Moreover, con-
vincing lattice-based arguments are still lacking for systems
with general lattice rotational and inversional symmetries.

In this paper, we propose a geometric picture to study
LSM-type (in)gappabilities for generic lattice systems without
translation symmetries. As concrete examples, we first focus
on spin systems with discrete spin-rotation symmetries [rather

*yuan.yao@riken.jp

than the full SO(3) for generality] and site-centered inversions
in arbitrary dimensions, and general lattice rotations in two
dimensions. We consider the closed geometry of finite lat-
tice systems by identifying boundary spins, consistent with
the lattice symmetries. We then twist the boundary condition
using spin-rotation symmetries in a certain geometric pattern.
Assuming that bulk properties are insensitive to such twisting
at the boundary [14,19,20], we can extract ingappabilities of
the original (untwisted) system from the interplay between
the geometric pattern and lattice symmetries. This geometric
picture is expected to apply to broader classes of systems, e.g.,
with nonsymmorphic symmetries [11,21].

II. GEOMETRIC PATTERNS OF SYMMETRY-TWISTED
BOUNDARY CONDITIONS

An important indicator of the LSM-type ingappabilities is
the ground-state degeneracies of a many-body system on a
closed lattice that take values larger than unity in the presence
of spontaneous symmetry breaking (SSB) or fractionaliza-
tion. Quite often, periodic boundary conditions (PBCs) are
assumed for Hamiltonians on square lattices with sizes Li

by identifying sites �ri ∼ �ri + Li. However, in the following
discussion, except for certain symmetry requirements, we do
not specify any concrete form of the Hamiltonian in advance,
and we will choose boundary conditions that are compat-
ible with all possible Hamiltonians respecting the required
symmetries. For instance, when the imposed symmetry is
the inversion �r → −�r about the origin �r = �0, an inversion-
symmetric Hamiltonian cannot be closed by the PBC, as
shown in Fig. 1(a); the PBC is inapplicable when only the
inversion is imposed [22]. In contrast, the boundary closing
shown in Fig. 1(b) is compatible with the inversion symmetry.
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FIG. 1. (a) An inversion-symmetric Hamiltonian with coupling
constants ±J has a boundary that cannot be closed by the PBC.
(b) The boundary closing by identifications �r ∼ −�r is compatible
with any inversion-symmetric Hamiltonian. The resultant manifold
in the continuum limit is a real projective plane RP 2.

When the system possesses internal symmetries, such as
U(1) or discrete Zm symmetry, we can “mix” them into the
boundary condition as follows. Let us take Zm twisting in
tight-binding models with charged operator c†

i for illustration.
In one dimension, angle-(2πn/m) twisting with an integer
n can be introduced by substituting the boundary hopping
term [cLc†

1 + H.c.] with [exp(i2πn/m)cLc†
1 + H.c.]. For gen-

eral coupling terms involving multiple sites crossing the bond
between sites L and 1, we can apply the U(1) transformation
c†

j → exp(i2πn/m)c†
j only on the sites j on the “right” of the

bond [23]. This twisting has two equivalent geometric presen-
tations in Fig. 2(a). The first one is the obvious type, where
a twisted boundary bond is marked in bold with an arrow
pointing to the “right.” The second type is the dual one: An
arrowed dot is drawn on this bond to indicate that interaction
terms across this dot get twisted by the phase specified with
the integer n. These two dual pictures are almost the same in
one dimension, but their differences will be clear in higher
dimensions, making one of them more convenient than the
other depending on the situation.

In two dimensions, we can similarly twist all bonds cross-
ing the boundary line by the internal symmetries as shown
in Fig. 2(b). The dual picture is exactly the boundary line
which transversally intersects those bond centers, and the
line is labeled by n ∈ Zm with oriented arrows. In general d
dimensions, we twist the bonds intersected by the (d − 1)-
dimensional boundary hypersurface. The dual picture has a
certain hypersurface with an orientation and its symmetry
label, which is a special case of the Poincaré duality.

Since the boundary of the boundary is always empty, the
boundary line or face (transversal to all the twisted bonds)

(a) (b)

FIG. 2. Two equivalent representations of n ∈ Zm twisting in one
dimension (a) and higher dimensions (b). We will use either of them,
whichever is convenient.
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FIG. 3. The n ∈ Zm twisting can be moved or deformed
by a gauge transformation: Htw → U −1HtwU with
U = exp(i2πc†

1(A)c1(A)n/m).

must be closed itself, i.e., closed loops or surfaces. It exactly
means that the total net symmetry twisting around any plaque-
tte must be zero. In the dual picture of symmetry twisting, we
can argue that this mixture of twisting into the boundary con-
dition does not introduce any boundary modes at the twisted
bonds. It is a direct consequence of the following gauge invari-
ance. We can use a gauge degree of freedom to rename the
charged operator by a unitary operator. For example, in one
dimension, the transformation c†

1 → c†
1 exp(−i2πn/m) with

a unitary operator U = exp(i2πc†
1c1n/m) undoes the earlier

twisting of the bond between sites L and 1. However, it creates
a new twisting between sites 1 and 2, and so effectively the
twisting is moved by one site as shown in the upper panel of
Fig. 3. Thus we can move the twisting freely by unitary trans-
formations, which implies the absence of physical boundary
modes there.

The above argument using gauge degrees of freedom ap-
plies to higher dimensions as shown in Fig. 3; the loop or
surface transversal to the twisted bonds can be deformed ar-
bitrarily by local unitary transformation, thereby unchanging
any energy-spectrum property. It should be noted that such
deformations are performed only locally in that they cannot
make a noncontractible loop into a contractible one. These
gauge properties of twisting induce the concept of bulk in-
sensitivity, i.e., the insensitivity of the LSM-type gappability
to the symmetry twisting. In other words, if the system has
a unique symmetric gapped ground state that is in the same
phase as trivial product states, it will still have a unique
symmetric gapped ground state after the symmetry twisting.
The bulk insensitivity is physically reasonable although not
proven in general. In fact, it is only proven under a certain
assumption on the first excited state in one dimension [19]
and justified by a quantum-transfer-matrix formalism [14] in
higher dimensions. In the following discussion, we will as-
sume the insensitivity to twisted boundary conditions to derive
LSM-type theorems.

A comment is here in order. When we impose the bound-
ary condition of Fig. 1(b) on a ground state in an invertible
or intrinsic topological ordered phase [24] (e.g., a quantum
Hall phase or one of its higher-dimensional generalizations)
that has (chiral) boundary modes, the chiral boundary modes
remain gapless because two modes with the same chiral-
ity cannot be gapped. Therefore our theory with inversion
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symmetry does not apply to invertible or intrinsic topological
ordered phases.

III. INVERSIONAL LSM THEOREMS

Let us consider a spin chain H0 with length L respecting a
site-centered inversion symmetry

I−1 �S jI = �S− j (1)

and Z2 × Z2 discrete spin-rotation symmetry

Rπ
x = exp

(
iπ

L∑
j=1

Sx
j

)
, Rπ

z = exp

(
iπ

L∑
j=1

Sz
j

)
, (2)

where the spin operator �S j ≡ [Sx
j , Sy

j , Sz
j] is not necessarily of

the same spin representation for all sites j, except for those
related by the inversion symmetry, and the spin of �S j=0 at the
inversion center is s. Considering the inversion symmetry, we
can close the chain by identifying the boundary sites at the two
ends that are related by inversion to each other. We then twist
the chain by Z2 symmetry: Rπ

z . Since the twisting position can
be changed freely by gauge invariance, we put the twisting
on the bond between sites −1 and 0 and denote the twisted
Hamiltonian as Htw. A typical example is the XY Z model:

HXY Z
tw =

∑
j �=0

hXY Z
j − JxSx

−1Sx
0 −JySy

−1Sy
0 + JzS

z
−1Sz

0,

where hXY Z
j ≡ ∑

α=x,y,z JαSα
j−1Sα

j . The twisted Hamiltonian
Htw is represented in the upper left panel of Fig. 4, where
the arrows are irrelevant in the case of Z2 twisting. It still
respects Z2 × Z2 symmetry but explicitly breaks the inversion
symmetry I since the twisting is moved to the bond between
sites 0 and 1 by I , as shown in the upper right panel of Fig. 4.
Nevertheless, we can map it back by a gauge transformation
rπ

z,0 ≡ exp(iπSz
j=0). It implies that Htw respects the modified

inversion symmetry

Ĩ ≡ I · rπ
z,0, [Ĩ,Htw] = 0, ĨRπ

x = (−1)2sRπ
x Ĩ (3)

and Htw still respects Rπ
x,z. Here, the factor (−1)2s comes from

the commutator

rπ
z,0rπ

x,0 = (−1)2srπ
x,0rπ

z,0. (4)

It implies that Htw must have a doubly degenerate energy
spectrum if s = 1/2, 3/2, . . ., i.e., a half-integer spin at the
origin. Thus the original Hamiltonian H0 cannot have a
unique gapped ground state when s = 1/2, 3/2, . . .: Either a
gapless or degenerate ground state should result in the ther-
modynamic limit, because, otherwise, the bulk insensitivity
would mean that Htw could also have a unique gapped ground
state that contradicts the above double degeneracy. Note that
the twofold degeneracy discussed above is not due to the
Kramers theorem (applicable only when the total spin is a
half-integer) but comes from the projective representation of
�S0.

This approach can be generalized to arbitrary higher di-
mensions with Z2 × Z2 and inversion I about the origin �r →
−�r, but the boundary closing needs more consideration. For
instance, in two dimensions, the PBC is not consistent as
shown in Fig. 1(a), and the only sensible way of closing is

FIG. 4. The twisted Hamiltonians Htw on the left side
are transformed by inversions to I−1HtwI on the right side.
I−1HtwI can be transformed back by the gauge transformation
(rπ

z,0)−1(I−1HtwI )rπ
z,0 = Htw, which implies that Htw is symmetric

under Ĩ in Eq. (3). The sites on the boundary are identified by
�r ∼ −�r, so the continuum limit of the lattice in d dimensions is a
real projective hyperplane RP d .

identifying boundary sites �S�r ∼ �S−�r in Fig. 1(b), which is
compatible with any inversion-symmetric Hamiltonian H0.
Then we twist H0 by Z2 : Rz

π as in the middle left panel of
Fig. 4 with a series of twisted bonds or, in the dual picture,
a closed loop. The twisted Hamiltonian Htw softly breaks I
and has the modified inversion Ĩ in the same form as Eq. (3).
Therefore, by employing a similar argument as above, we see
that H0 cannot have a unique gapped ground state when the
spin s at �r = 0 is a half-integer.

The twisted Hamiltonian Htw in three dimensions is
sketched in the bottom panel of Fig. 4. The twisting satisfies
the closed-form condition that the total twisting around any
plaquette is zero. The same result as in the lower-dimensional
cases follows since Htw respects Ĩ . The geometric situation
in arbitrary dimensions is that when we perform the inversion
transformation, the spin at �r = 0 is wrapped by the hypersur-
face (in the dual picture) spanned by the centers of twisted
bonds together with the hypersurface inverted by I . The wrap-
ping is exactly canceled by the gauge transformation rπ

z,0,
which gives the commutator as in Eq. (3). It follows that H0

respecting Z2 × Z2 and I is LSM-type ingappable in arbitrary
dimensions when s is not an integer.

IV. ROTATIONAL LSM THEOREMS

In two dimensions, the inversion �r → −�r is equivalent to
lattice rotation by 180◦. It is natural to generalize I to be
N-fold rotations CN generated by a lattice rotation by 2π/N
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FIG. 5. The only boundary closing compatible with any C3-
symmetric Hamiltonian is to identify three boundary edges. The
continuum limit is a pseudo projective plane of order 3 with a
three-page intersection (upper right) which is realized by a simple
identification of three edges at the lattice scale (bottom right).

around the origin �r = �0, e.g., C3 on a honeycomb lattice:

CN : �r →
[

cos(2π/N ) − sin(2π/N )
sin(2π/N ) cos(2π/N )

]
�r. (5)

However, even with translation symmetries, spin-1/2 systems
on the honeycomb lattice admit a unique gapped ground state
with C3 and SO(3) spin-rotation symmetries [7,25]. This mo-
tivates us to consider SU(3) “spin” degrees of freedom or
generally SU(N ) “spins” obeying an su(N ) algebra [26,27].
However, the only condition to be used here is that there is a
discrete “spin”-rotation symmetry ZN × ZN (known as shift
symmetries [28,29]) by

VN =
∏

�r
vN,�r and WN =

∏
�r

wN,�r, (6)

which generalize Rπ
z and Rπ

x of the N = 2 case in Eq. (2) [30].
There is a number b called the Young-tableau box number
[31], analogous to the spin s above, to characterize the SU(N )
“spin” at the origin by the following commutator:

vN,�r=0wN,�r=0 = exp

(
i
2πb

N

)
wN,�r=0vN,�r=0. (7)

Thus b = 2s when N = 2, and we do not need detailed forms
of vN,�r and wN,�r .

Let us first consider an SU(3) “spin” system on a hon-
eycomb lattice respecting C3 and Z3 × Z3 symmetries with
a “spin” of b at the rotation center �r = 0. In closing the
boundary, the PBC is incompatible for a similar reason to the
one given before, and the only consistent way is to identify
or paste the boundary sites by C3 as in the left panel of
Fig. 5. In the continuum limit, the resultant space is called
a pseudo projective plane of order 3, and it has a threefold
intersection at the boundary closing, which is realized at the
lattice scale by gluing the three edges together, i.e., boundary-
site identifications �r ∼ C3(�r) as in Fig. 5. Then we twist the
Hamiltonian by Z3,V3 symmetry and deform the twisting
configuration as shown in the upper left panel of Fig. 6. The
twisted Hamiltonian Htw preserves Z3 × Z3 symmetry but
breaks C3. Nevertheless, as shown in the upper right panel of

FIG. 6. The twisted Hamiltonian Htw is presented on the left
side, which is transformed to C−1

M HtwCM on the right side and can be
transformed back by (vN,0 )τ : (vN,0 )−τC−1

M HtwCM (vN,0 )τ = Htw with
τ = N/g.c.d.(M, N ). The twisting numbers should be understood as
modN , so a p twisting is equal to an (N − p) twisting with the
opposite arrow direction.

Fig. 6 it preserves a modified rotation

C̃3 ≡ C3vN=3,�r=0, (8)

which implies a nontrivial commutator between symmetries
C̃3 and W3:

C̃3W3 = exp(i2πb/3)W3C̃3. (9)

Thus, when 3 does not divide b, Htw must possess a triply
degenerate spectrum, and the bulk insensitivity implies that
the original Hamiltonian H0 cannot have a unique gapped
ground state when the central “spin” b is not a multiple
of 3.

For general N , we consider an SU(N ) spin system with
ZN × ZN and general CM symmetries, where M and N are
unnecessarily equal and there is an SU(N ) spin of box b at
�r = 0. As shown in the bottom left panel of Fig. 6, we close
the lattice to form a pseudo projective plane of order M and
introduce M lines of VN twisting to the τ th power radiating
from �r = 0 with τ ≡ N/g.c.d.(M, N ) to have a well-defined
twisting, i.e., twisting around any plaquette is 0 modN . Here,
“g.c.d.” denotes the greatest common divisor. The modified
C̃M = CM (VN )τ is respected by Htw and

C̃MWN = exp

(
i

2πb

g.c.d.(M, N )

)
WNC̃M . (10)

Together with the bulk insensitivity, the above phase factor
gives the rotational LSM theorem: When a two-dimensional
SU(N ) system preserves ZN × ZN and CM symmetries, a
unique gapped ground state is forbidden when the box number
b of the “spin” at the rotational center is not a multiple of
g.c.d.(M, N ). This explains why C3 and spin-rotation sym-
metries cannot ensure any ingappability on the spin-1/2
honeycomb lattice [7,25] where b = 2s ∈ Z and N = 2, M =
3 coprime.
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For example, the SU(4) Kugel-Khomskii (KK) model with
b = 1 on the square lattice [32,33] is ingappable from Eq. (10)
with M = 4 or 2, which is consistent with the CM-SSB plaque-
tte phase obtained by numerics [34,35]. In contrast, the same
SU(4) KK model is found to be ingappable (gappable) on
the triangular lattice [36] from Eq. (10) with M = 2 (M = 3),
which favors SSB of C2 symmetry while C3 symmetry is kept
intact; see Ref. [37].

V. CONCLUDING REMARKS

Our geometric paradigm suggests the following general
framework in arbitrary dimensions: (1) We close the lattice
tentatively in all compatible ways with lattice symmetries; (2)
we do the symmetry twisting on the bonds transversal to a
noncontractible hypersurface of codimension one; and (3) the
ingappability is extracted from the algebra of the modified
lattice symmetry. Thus it is not restricted to the symmetries
discussed in this paper, and we expect that it can be applied to
more general settings, e.g., the systems with nonsymmorphic
symmetries [11,21] and other rotationlike symmetries such
as space dihedral symmetries [7,15,17]. It is applicable to
traditional LSM theorems with translations as shown in the
Appendix.
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APPENDIX: GEOMETRIC DERIVATION OF LSM
THEOREMS WITH TRANSLATION SYMMETRY

In the main text, we have focused on LSM-type theorems
for lattice Hamiltonians without any translation symmetry
imposed. We have developed a geometric approach using
symmetry-twisted boundary conditions to studying ingappa-
bility of spin systems or SU(N ) generalizations from rotation,
inversion, and discrete spin-rotation symmetries. In fact, such

FIG. 7. The twisted Hamiltonian Htw is presented on the left
side, where we suppress the arrows and numbers of twisting for sim-
plicity. Htw is transformed by the translation T1 and can be mapped
back by a following gauge transformation vN, �C with �C indicated
above. This argument is generalizable to arbitrary dimensions.

a geometric approach can also be applied to traditional LSM
theorems with translation symmetries and b boxes per unit
cell, reviewed in Fig. 7, where we close the lattice by a tilted
boundary condition which is compatible with translations.
The SU(N ) symmetry per unit cell at �r is generated by vN,�r
and wN,�r satisfying

vN,�rwN,�r = exp

(
i
2πb

N

)
wN,�rvN,�r, (A1)

where b is �r independent due to the imposed translation sym-
metry.

The modified translation symmetry T̃1 = T1vN, �C , where �C
is the spin position imposed by the gauge transformation vN, �C ,
is preserved by the twisted Hamiltonian and has a commutator
with WN symmetry:

T̃1WN = exp

(
i2π

b

N

)
WN T̃1. (A2)

When b is indivisible by N , the LSM-type ingappability is
concluded from the bulk insensitivity.
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