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The spectral functions of the one-band half-filled one-dimensional Hubbard chain are calculated using the
exchange-correlation potential formalism developed recently. The exchange-correlation potential is adopted
from the exact potential derived from the Hubbard dimer. Within an approximation in which the full Green’s
function is replaced by a noninteracting one, the spectral functions can be calculated analytically. Despite
the simplicity of the approximation, the resulting spectra are in favorable agreement with the more accurate
results obtained from the dynamic density-matrix renormalization group method. In particular, the analytically
calculated band gap as a function of U is in close agreement with the exact gap obtained from the Bethe ansatz.
In addition, the formal general solution to the equation of motion of the Green’s function is presented, and the
difference between the traditional self-energy approach and the exchange-correlation potential formalism is also
discussed and elaborated. A simplified Holstein Hamiltonian is considered to further illustrate the general form
of the exchange-correlation potential.
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I. INTRODUCTION

Very recently, a completely different route for calcu-
lating the Green’s function was proposed. The formalism
replaces the traditional self-energy by a time-dependent
exchange-correlation potential, Vxc(r, r′; t ), which acts as a
multiplicative potential on the Green’s function, in contrast
to the self-energy, which acts as a convolution in space and
time [1].

In Ref. [1], the formalism was illustrated by deriving the
exact Vxc of the Hubbard dimer expressed in the site orbitals.
In this paper, the formalism is applied to calculate the Green’s
function of the one-dimensional Hubbard chain at half filling
by utilizing the Vxc derived from the Hubbard dimer, rewrit-
ten in the bonding and antibonding orbitals appropriate for
extension to the one-dimensional (1D) chain. Under certain
approximations, the Green’s function can be calculated ana-
lytically, providing explicit insights into the dependence of the
spectra on the parameters of the model. Despite the simple ap-
pearance of the Hamiltonian of the one-dimensional Hubbard
chain, it is actually a rather stringent test for a many-electron
theory. It is well known that the exact solution based on the
Bethe ansatz yields two branches of collective excitations
corresponding to the holon and the spinon [2,3]. While the
Bethe-ansatz solution provides the dispersion of the holon and
the spinon, it does not contain information about the spectral
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distribution. The spectral functions, however, have been cal-
culated within the dynamical density-matrix renormalization
group method [4] and furnish comparison with the present
work. Earlier calculations are limited to the large-U limit
[5,6], and there are also related investigations on Luttinger
liquids [7,8]. The 1D Hubbard model is physically relevant
as shown, for example, in the case of SrCuO2, which has been
found to exhibit the spinon and holon excitations [9,10].

Apart from application to the 1D Hubbard chain, a formal
solution of the equation of motion of the Green’s function
is derived, which provides an iterative scheme in practical
calculations.

To contrast the traditional self-energy approach and the
exchange-correlation formalism, comparison between the two
is made and discussed from a historical perspective, and the
differences are emphasized and elaborated.

In addition, the exchange-correlation potential of a simpli-
fied Holstein Hamiltonian, describing a coupling between a
core electron and a set of bosons (e.g., plasmons or phonons),
is derived analytically and serves as a further illustration of the
exchange-correlation potential formalism. This sheds light on
the form of Vxc, which offers a very simple physical interpre-
tation.

II. THEORY

The exchange-correlation potential formalism developed in
Ref. [1] is summarized, and the main results are presented.

A. Equation of motion of the Green’s function

The zero-temperature time-ordered Green’s function is de-
fined as [11]

iG(rt, r′t ′) = 〈T [ψ̂ (rt )ψ̂†(r′t ′)]〉, (1)
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where r = (r, σ ) labels both space and spin variables, ψ̂ (rt ) is
the Heisenberg field operator, T is the time-ordering symbol,
and 〈·〉 denotes the expectation value in the ground state.
Extension to finite temperature is quite straightforward. The
many-electron Hamiltonian defining the Heisenberg operator
is given by

Ĥ =
∫

dr ψ̂†(r)h0(r)ψ̂ (r)

+ 1

2

∫
drdr′ ψ̂†(r)ψ̂†(r′)v(r − r′)ψ̂ (r′)ψ̂ (r), (2)

where h0 = − 1
2∇2 + Vext (r) and v(r − r′) = 1/|r − r′|. In

our notation,
∫

dr = ∑
σ

∫
d3r, and atomic units are used

throughout, in which the Bohr radius a0, the electron mass me,
the electronic charge e, and h̄ are set to unity. For a system in
equilibrium, the Hamiltonian is time independent, and t ′ may
be set to zero. The equation of motion of the Green’s function
is given by(

i
∂

∂t
− h0(r)

)
G(r, r′; t )

+ i
∫

dr′′v(r − r′′)〈T [ρ̂(r′′t )ψ̂ (rt )ψ̂†(r′)]〉

= δ(t )δ(r − r′). (3)

Since the Green’s function was conceived in the 1950s, the
traditional approach is to introduce the self-energy � and
truncate the hierarchy of higher-order Green’s functions such
that [11]

− i
∫

dr′′v(r − r′′)〈T [ρ̂(r′′t )ψ̂ (rt )ψ̂†(r′)]〉

= VH(r)G(r, r′; t ) +
∫

dr′′dt ′′�(r, r′′; t − t ′′)G(r′′, r′; t ′′).

(4)

The equation of motion then becomes(
i
∂

∂t
− h(r)

)
G(r, r′; t )

−
∫

dr′′dt ′′�(r, r′′; t − t ′′)G(r′′, r′; t ′′)

= δ(r − r′)δ(t ), (5)

where h = h0 + VH with VH being the Hartree potential.
As shown in Ref. [1], it is possible to define an exchange-

correlation potential Vxc so that the Green’s function fulfills
the following equation of motion:(

i
∂

∂t
− h(r) − Vxc(r, r′; t )

)
G(r, r′; t ) = δ(r − r′)δ(t ), (6)

where Vxc is the Coulomb potential of the time-dependent
exchange-correlation hole, ρxc,

Vxc(r, r′; t ) =
∫

dr′′v(r − r′′)ρxc(r, r′, r′′; t ), (7)

and ρxc is given by

ρxc(r, r′, r′′; t ) = [g(r, r′, r′′; t ) − 1]ρ(r′′), (8)

in which the correlator g is defined according to

〈T [ρ̂(r′′t )ψ̂ (rt )ψ̂†(r′)]〉
= iG(r, r′; t )g(r, r′, r′′; t )ρ(r′′)

= iG(r, r′; t )[ρ(r′′) + ρxc(r, r′, r′′; t )]. (9)

The exchange-correlation hole fulfills the sum rule∫
d3r′′ρxc(r, r′, r′′; t ) = −δσσ ′′θ (−t ), (10)

and it has the property

ρxc(r, r′, r; t ) = −ρ(r) (11)

for any r, r′, and t . The sum rule and the above property may
be seen as the dynamic version of the corresponding prop-
erties of the static exchange-correlation hole [12] originating
from the seminal work of Slater on the exchange hole [13,14].
For a given r′, Vxc(r, r′; t ) may be interpreted as a local time-
dependent one-particle potential in which the added hole or
electron moves.

In the language of the functional derivative technique, the
exchange-correlation hole can be related to the functional
derivative of the Green’s function with respect to a probing
field ϕ [15,16]. Since

〈T [ρ̂(3)ψ̂ (1)ψ̂†(2)]〉 = iρ(3)G(1, 2) − δG(1, 2)

δϕ(3)
, (12)

it follows that

iρxc(1, 2, 3)G(1, 2) = −δG(1, 2)

δϕ(3)
, (13)

where 1 = (r1, t1), etc. Using the identity

δG = −G(δG−1)G, (14)

one obtains from the equation of motion of the Green’s func-
tion

ρxc(1, 2, 3)G(1, 2)

= i
∫

d4G(1, 4)

{
δ(4 − 3) + δVH(4)

δϕ(3)

}
G(4, 2)

= i
∫

d4G(1, 4)ε−1(4, 3)G(4, 2), (15)

where we have only kept the variation of the Hartree po-
tential (random-phase approximation) and ε is the dielectric
matrix. This provides an explicit formula for calculating the
exchange-correlation hole in terms of the response function.

B. General iterative solution

From the equations of motion for G and GH of the Hartree
approximation, a Dyson-like equation can be constructed as
follows:

G(r, r′; t ) = GH(r, r′; t )

+
∫

dr′′dt ′GH(r, r′′; t − t ′)

× Vxc(r′′, r′; t ′)G(r′′, r′; t ′). (16)

By operating i∂/∂t − h(r) on both sides of the equation, it can
be verified that the above G fulfills the equation of motion.
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This Dyson-like equation can be used as an iterative scheme
for solving for G. The iteration is started by setting G = GH

on the right-hand side and continued until self-consistency is
achieved. One may choose a different starting point, such as
the Kohn-Sham [17] Green’s function GKS, in which case Vxc

must be replaced with Vxc − V KS
xc .

In practice, it is convenient to express the equation of
motion in a set of base orbitals {ϕi}:

i
∂

∂t
Gi j (t ) −

∑
k

hikGk j (t ) −
∑

kl

V xc
ik,l j (t )Gkl (t ) = δi jδ(t ),

(17)

where Gi j and hik are the matrix elements of G and h in the
orbitals and

V xc
ik,l j (t ) =

∫
d3rd3r′ ϕ∗

i (r)ϕk (r)Vxc(r, r′; t )ϕ∗
l (r′)ϕ j (r

′).

(18)
The Dyson-like equation becomes

Gi j (t ) = GH
i j (t ) +

∑
k

∫
dt ′GH

ik (t − t ′)Fk j (t
′), (19)

in which

Fk j (t
′) =

∑
lm

V xc
kl,m j (t

′)Glm(t ′). (20)

Fourier transformation leads to

Gi j (ω) = GH
i j (ω) +

∑
k

GH
ik (ω)Fk j (ω) (21)

and

Fk j (ω) =
∑
lm

∫
dω′

2π
V xc

kl,m j (ω − ω′)Glm(ω′). (22)

This yields an integral equation for F (ω):

Fk j (ω) =
∑
lm

∫
dω′

2π
V xc

kl,m j (ω − ω′)

×
[

GH
lm(ω′) +

∑
n

GH
ln(ω′)Fnm(ω′)

]
. (23)

Since GH is a noninteracting Green’s function, the integrals
over ω′ can be performed analytically.

Alternatively, by isolating the terms containing Gi j , the
equation of motion can be rewritten as follows:{

i
∂

∂t
− hii − V xc

ii, j j (t ) − Di j (t )

}
Gi j (t ) = δi jδ(t ), (24)

where

Di j (t ) = 1

Gi j (t )

⎧⎨
⎩

∑
k �=i

hikGk j (t ) +
∑

k �=i,l �= j

V xc
ik,l j (t )Gkl (t )

⎫⎬
⎭.

(25)

The formal iterative solution is given by

Gi j (t ) = [Gi j (0
−)θ (−t ) + Gi j (0

+)θ (t )]

× exp

{
−i

∫ t

0
dt ′[hii + V xc

ii, j j (t
′) + Di j (t

′)
]}

,

(26)

where

iGi j (0
+) − iGi j (0

−) = δi j, (27)

which is obtained by integrating the equation of motion from
0− to 0+. Since the Green’s function to be solved appears
on the right-hand side of the equation, the formal solution in
Eq. (26) facilitates an iterative scheme for solving the Green’s
function.

C. Self-energy versus exchange-correlation potential

A fundamental difference between the traditional self-
energy and the exchange-correlation potential approaches is
that the former acts on the Green’s function as a convolution
in space and time whereas the latter acts multiplicatively. The
multiplicative property of Vxc has consequences. One of these
is that the equation of motion in Eq. (6) separates into an equa-
tion for the hole Green’s function (t < 0) and an equation for
the electron Green’s function (t > 0). In contrast, due to the
convolution in time in the self-energy term, solving for the
hole Green’s function using the equation of motion in Eq. (5)
requires explicit knowledge of the electron Green’s function
and vice versa. On the other hand, the self-energy formalism
is advantageous when expressed in frequency space since the
Dyson equation can be solved for each frequency whereas the
exchange-correlation potential formalism involves a convolu-
tion in frequency. Thus the two approaches complement one
another.

It was recently shown for the half-filled one-band Hubbard
model in a square lattice that the use of the self-energy, cal-
culated to a finite order of expansion in the interaction, to
determine the Green’s function via the Dyson equation can
lead to incorrect physics [18]. While a direct expansion of
the Green’s function to the same order yields an insulat-
ing behavior, the Green’s function obtained from the Dyson
equation results in a metallic behavior. This discrepancy can
be traced back to the reducible diagrams implicitly summed
when solving the Dyson equation, which generally differ from
those in the direct expansion of the Green’s function at each
order. This finding raises questions as to the appropriateness
of using the Dyson equation. The exchange-correlation po-
tential formalism, on the other hand, is not meant to rely
upon many-body perturbation theory but rather on direct con-
struction based on known exact or accurate results of model
systems and on exact properties of the exchange-correlation
hole.

The choice of the self-energy as a truncation scheme may
be understandable from a historical perspective. In the 1950s
and early 1960s it was presumably inconceivable to even
consider many-body calculations on real materials. The com-
monly used model of solids at that time was the electron gas.
For the electron gas, the definition of the self-energy acting on
the Green’s function as a convolution in space and time has a
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great advantage in that it allows for a simple expression for
the equation of motion or the Dyson equation when Fourier
transformed:

G(k, ω) = G0(k, ω) + G0(k, ω)�(k, ω)G(k, ω), (28)

where G0 is the Green’s function of the free-electron gas. The
self-energy has since then been synonymous with the Green’s
function and become the accepted route for calculating the
Green’s function to this day.

The important role that the self-energy has played in
electronic structure theory is not to be undermined. In the
self-energy formalism an iterative equation for the self-energy
can be derived yielding [15,16]

�(1, 2) = i
∫

d3d4v(1 − 3)G(1, 4)

×
[{

δ(4 − 3) + δVH(4)

δφ(3)

}
δ(4 − 2) + δ�(4, 2)

δφ(3)

]
.

(29)

Here, 1 = (r1t1), etc., and φ is a probing field which is set to
zero after the derivative is taken. Neglecting the term δ�/δφ

leads to the well-known GW approximation. This kind of
iterative or perturbative equation is more difficult to establish
for Vxc since the equation of motion in Eq. (6) cannot be easily
inverted to obtain G−1.

From the definition of the self-energy in Eq. (4), it can be
seen that the Coulomb interaction has been lumped into the
self-energy. While it is formally and mathematically correct,
the definition makes no use of the fact that the Coulomb
interaction is known explicitly. The definition of the correlator
g in Eq. (9), on the other hand, is not explicitly dependent on
the Coulomb interaction. The special property of the Coulomb
interaction being dependent only on the distance between
two electrons can be exploited leading to the conclusion that
only the spherical average of the exchange-correlation hole
is relevant [19,20]. This should greatly simplify the search
for a good approximation for the exchange-correlation hole
or potential.

III. MODEL SYSTEMS

To illustrate the form of the time-dependent exchange-
correlation potential, the half-filled Hubbard dimer is consid-
ered. The exchange-correlation potential extracted from the
Hubbard dimer is then used as an approximate Vxc for the 1D
Hubbard chain.

Another example is a simplified Holstein model, describing
a core electron coupled to a set of bosons such as plasmons or
phonons. This Hamiltonian is appropriate to model solids in
which the valence electrons are relatively delocalized, resem-
bling electron gas. The alkalis and s-p semiconductors and
insulators are examples of such systems.

The fourth example is the hydrogen atom. Although it is
not a many-electron system, it illustrates explicitly the sum
rule and condition fulfilled by the exchange-correlation hole.

A. Hubbard dimer

In Ref. [1], the exchange-correlation potential of the
half-filled Hubbard dimer was worked out analytically. The
Hamiltonian of the Hubbard dimer in standard notation is
given by

Ĥ = −�
∑
i �= j

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓, (30)

where i, j = 1, 2. The results are given by

V xc
11,11(t > 0) = αU

2

1 + e−i2�t

1 + α2e−i2�t
, (31)

V xc
11,22(t > 0) = αU

2

1 − e−i2�t

1 − α2e−i2�t
, (32)

where

α = 1 − x

1 + x
, (33)

x = 1

4�
(
√

U 2 + 16�2 − U ) (34)

is the relative weight of double-occupancy configurations in
the ground state and

2� = E−
1 − E−

0 = E+
1 − E+

0 > 0 (35)

are the excitation energies of the (N ± 1) systems. From sym-
metry,

V xc
22,22 = V xc

11,11, V xc
22,11 = V xc

11,22, (36)

Vxc(−t ) = −Vxc(t ). (37)

For convenience and for comparison, the results expressed in
the site orbitals shown in Ref. [1] are shown in Figs. 1 and 2
but with different values of U .

It is perhaps more insightful to express Vxc in the bonding
and antibonding orbitals, V xc

AA,AA and V xc
BB,BB. In these orbitals,

the Green’s function is diagonal, and Vxc in the bonding state
is identical to that in the antibonding one:

V xc(t > 0) = 1

2

(
V xc

11,11 + V xc
11,22

) = αU

2

1 − α2e−i4�t

1 − α4e−i4�t
. (38)

The other matrix element, V xc
AB,BA = V xc

BA,AB, is given by

�V xc(t > 0) = 1

2

(
V xc

11,11 − V xc
11,22

)
= αU

2

(1 − α2)e−i2�t

1 − α4e−i4�t
. (39)

The results are shown in Fig. 3 for the real parts and in
Fig. 4 for the imaginary parts. The dependence of the corre-
lation strength on time is revealed clearly: the stronger the U ,
the more pronounced the variation of Vxc with time.

An interesting feature is the discontinuity of V xc at t = 0,
which is the difference between the particle (t = 0+) and
the hole (t = 0−) values, reminiscent of the discontinuity
in the exchange-correlation potential in density functional
theory [21].

One also notices that the time dependence is dictated by
the excitation energies of the (N ± 1) systems and, in gen-
eral, these excitations include collective ones. For example,
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FIG. 1. The real parts of the exchange-correlation potentials
V xc

11,11 and V xc
11,22 of the Hubbard dimer as a function of time for

U = 2, 4, 6, and 8 with � = 1. Due to the particle-hole symmetry,
Vxc(−t ) = −Vxc(t ).

for solids one expects a time-dependent term of the form
exp(−iωpt ), where ωp is the plasmon energy. Vxc acts then
as an effective external field, exchanging an energy ωp with
the system, as illustrated more explicitly later in the example
on the Holstein Hamiltonian.

B. 1D Hubbard chain

To calculate the Green’s function for the 1D Hubbard chain
with the same Hamiltonian as in Eq. (30) but with i, j =
1, . . . ,∞, the Vxc of the Hubbard dimer will be used as a
model. This approximation neglects components of Vxc be-
yond nearest neighbors. Due to translational lattice symmetry
it is convenient to introduce Bloch base functions,

ϕk (r) = 1√
N

∑
T

eikT ϕ(r − T ), (40)

FIG. 2. The imaginary parts of the exchange-correlation poten-
tials V xc

11,11 and V xc
11,22 of the Hubbard dimer as a function of time for

U = 2, 4, 6, and 8 with � = 1. Due to the particle-hole symmetry,
Vxc(−t ) = −Vxc(t ).

where T denotes a lattice site. The Green’s function expressed
in these Bloch functions takes the form

G(r, r′; t ) =
∑

k

ϕk (r)G(k, t )ϕ∗
k (r′), (41)

where

G(k, t ) =
∫

drdr′ϕ∗
k (r)G(r, r′; t )ϕk (r′). (42)

The equation of motion in the Bloch base functions is given
by

(i∂t − εq)G(q, t ) − F (q, t ) = δ(t ), (43)

where

εq =
∫

drϕ∗
q (r)h(r)ϕq(r)

= 1

N

∑
T T ′

e−iq(T −T ′ )ϕ∗(r − T )h(r)ϕ(r − T ′)

= −2� cos q (44)
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FIG. 3. The real parts of the exchange-correlation potential in
the bonding state φB = 1√

2
(ϕ1 + ϕ2) and antibonding state φA =

1√
2
(ϕ1 − ϕ2) as a function of time for U = 2, 4, 6, and 8 with � = 1.

and

F (q, t ) =
∑

k

∫
drdr′

× ϕ∗
q (r)ϕk (r)Vxc(r, r′; t )ϕ∗

k (r′)ϕq(r′) × G(k, t ).
(45)

Since the Hartree potential is a constant, it can be absorbed
into the chemical potential.

To solve the equation of motion, one makes use of the V xc

deduced for the Hubbard dimer. The equations of motion of
the Green’s function in the bonding and antibonding orbitals
are given by

[i∂t − εA − V xc(t )]GA(t ) − �V xc(t )GB(t ) = δ(t ), (46)

[i∂t − εB − V xc(t )]GB(t ) − �V xc(t )GA(t ) = δ(t ), (47)

FIG. 4. The imaginary parts of the exchange-correlation poten-
tial in the bonding and antibonding states as a function of time for
U = 2, 4, 6, and 8 with � = 1.

where

εA = �, εB = −� (48)

are the one-particle antibonding and bonding energies. V xc

and �V xc are given in Eqs. (38) and (39), respectively.
The bonding and antibonding states of the Hubbard dimer

are the analog of the Bloch states of the 1D chain corre-
sponding to the centers of the occupied and unoccupied bands,
respectively. Based on the form of the equations of motion of
the bonding and antibonding Green’s functions of the Hub-
bard dimer, a physically motivated approximation is to replace
GA(GB) by G(q, t ) and GB(GA), which represents the rest of
the Green’s functions, by the average 1

N

∑
k G(k, t ):

[i∂t − εq − V xc(t )]G(q, t ) − 1

N

∑
k

�V xc(t )G(k, t ) = δ(t ).

(49)
Formally, this approximation can also be seen to follow from
Eqs. (43) and (45), in which the off-diagonal components of
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V xc in the Bloch functions ϕk , which express the coupling
between different k points, are approximated by �V xc of the
Hubbard dimer, independent of k.

One may rewrite the above equation as follows:

[i∂t − εq − V xc(t ) − �V xc(q, t )]G(q, t ) = δ(t ), (50)

where

�V xc(q, t ) = 1

N

∑
k

�V xc(t )
G(k, t )

G(q, t )
. (51)

The solution for the electron case is assumed to be given by

Ge(q, t ) = −iθ (t )e−iεqt−i
∫ t

0 dt ′[V xc(t ′ )+�V xc(q,t ′ )]. (52)

A similar result can be readily derived for the hole Green’s
function, keeping in mind that V xc(−t ) = −V xc(t ).

To proceed further analytically, the Green’s function ap-
pearing in Eq. (51) is approximated by a noninteracting one,

G(k, t ) ≈ G0(k, t ) = ie−iεkt [θ (−t ) − θ (t )], (53)

leading to

�V xc(q, t ) ≈ 1

N

∑
k

�V xc(t )e−i(εk−εq )t . (54)

This approximation keeps the main excitation component of
G but neglects the incoherent part, which would contribute to
some structure in the spectral functions at high energy but is
not expected to alter the main spectral features at low energy.
The presence of the gap in the renormalized Green’s function
has no effect since it is the ratio that matters.

Furthermore, to facilitate analytical calculations, V xc and
�V xc in Eqs. (38) and (39) are expanded as follows:

V xc(t ) ≈ αU

2
, (55)

�V xc(t ) ≈ αU

2
(1 − α2)e−i2�t . (56)

In the above approximation the constant term that shifts the
one-particle energy and the main excitation term exp (−i2�t )
that generates the main satellites are kept, whereas the higher-
excitation term exp (−i4�t ) is neglected. One obtains to first
order in �V xc

Ge(q, t )

= −iθ (t )e−i(εq+ αU
2 )t

×
{

1 − i
αU

2
(1 − α2)

1

N

∑
k

∫ t

0
dt ′e−i(εk−εq+2�)t ′

}
.

(57)

Performing the time integral, one finds

Ge(q, t ) = − iθ (t )e−i(εq+ αU
2 )t

×
{

1 + αU

2
(1 − α2)

1

N

∑
k

e−i(εk−εq+2�)t − 1

εk − εq + 2�

}
.

(58)

Fourier transformation to the frequency domain yields

Ge(q, ω) = Ae
0

ω − (
εq + αU

2

) + iη

+ 1

N

∑
k

Ae(k)

ω − (
εk + αU

2 + 2�
) + iη

, (59)

where

Ae
0 = 1 − αU

2
(1 − α2)

1

N

∑
k

1

εk − εq + 2�
, (60)

Ae(k) = αU

2
(1 − α2)

1

εk − εq + 2�
. (61)

A similar derivation can be carried out for the hole Green’s
function, and the result is given by

Gh(q, t ) = iθ (−t )e−i(εq− αU
2 )t

×
{

1 − αU

2
(1 − α2)

1

N

∑
k

e−i(εk−εq−2�)t − 1

εk − εq − 2�

}
,

(62)

Gh(q, ω) = Ah
0

ω − (
εq − αU

2

) − iη

− 1

N

∑
k

Ah(k)

ω − (
εk − αU

2 − 2�
) − iη

, (63)

where

Ah
0 = 1 + αU

2
(1 − α2)

1

N

∑
k

1

εk − εq − 2�
, (64)

Ah(k) = αU

2
(1 − α2)

1

εk − εq − 2�
. (65)

For the electron or hole case it is understood that both εk and
εq correspond to unoccupied or occupied states.

The calculated total spectral functions for U = 2, 4, 6, and
8 are shown in Fig. 5, and the k-resolved spectra are illus-
trated in Fig. 6 for a few k points corresponding to U = 7.74.
This value has been chosen in order to make a comparison
with the results obtained using the dynamical density-matrix
renormalization group method [4]. Due to the approximation
made in replacing G with G0 in Eq. (51), there is no spectral
weight below the chemical potential arising from the electron
Green’s function, and similarly, there is no spectral weight
above the chemical potential arising from the hole Green’s
function. For this reason, there is no spectral weight below the
chemical potential for k = 75π

91 and k = 90π
91 when compared

with the results shown in Fig. 11 of Benthien and Jeckelmann
[4]. Furthermore, the peaks are sharp δ functions but with
some weight transferred to higher or lower energy. It is known
that for a one-dimensional interacting system, a removal or
addition of an electron results in two branches consisting
of a spinless holon or antiholon dispersion with a hole or
electron charge and a charge-neutral spinon dispersion of
spin 1

2 .
Although the approximations used are very simple, the

k-resolved spectra shown in Fig. 6 are in favorable agreement
with those calculated using the dynamical density-matrix
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FIG. 5. The calculated total spectral functions of the 1D Hubbard
chain for U = 0, 4, 6, and 8 using approximations described in the
text. A broadening of 0.1 has been used.

renormalization group method [4]. A notable discrepancy
is the dispersion widths for both the spinon and the holon
branches. Thus the peak positions at small k are lower in
energy compared with those in the work of Benthien and
Jeckelmann [4]. This is understandable since within the ap-
proximations used, the dispersion is pinned down by the
noninteracting G0 and the use of the Hubbard dimer V xc ne-
glects long-range correlations, which tend to narrow the band
dispersion.

The structure of the calculated k-resolved hole spectra in
Fig. 6 can be understood from the explicit expression for the

FIG. 6. The k-resolved spectral functions of the 1D Hubbard
chain for U = 7.74. The U and k values have been chosen to facili-
tate comparison with Fig. 11 of Benthien and Jeckelmann [4]. Within
the approximations used, there is no spectral weight for k = 75π

91
and 90π

91 below the chemical potential, as explained in the text. A
broadening of 0.1 has been used.

FIG. 7. The calculated band gap, αU , compared with the exact
gap obtained from the Bethe ansatz as a function of U . The calculated
gap approaches the exact result as U increases.

hole Green’s function in Eq. (63). The imaginary part of the
first term is the main peak centered at ω = εq − αU

2 , which is
interpreted as the spinon excitation. The imaginary part of the
second term with the weight Ah(k) set to unity is the noninter-
acting occupied density of states shifted by −( αU

2 + 2�). For
q = 45π

91 (green curve), the one-particle energy, εq, is approx-
imately zero, and the main peak is located at the top of the
band edge at ω = −αU

2 . The remaining spectrum stretching
approximately from −6.5 to −4.5 is the shifted occupied
density of states weighted by Ah(k). The peak feature at the
lower edge at −6.5 reflects the same feature present in the
shifted noninteracting occupied density of states (U = 0 in
Fig. 5) and may be interpreted as the holon excitation. The
structure at the upper edge at around −4.5, on the other hand,
arises from the enhanced weight of Ah(k), which is largest for
q around the bottom of the noninteracting band, giving rise
to a steplike structure [4]. For q = π

91 (black curve), the main
peak is centered at ω = −αU

2 − 2�, and it merges with the
shifted density of states. For q = 13π

91 the main peak still lies
outside the shifted density of states, and a three-peak structure
is then observed, as also found in the calculated spectra using
the dynamical density-matrix renormalization group method
[4]. It is not immediately evident from the expressions for
the Green’s function in Eqs. (59) and (62) how to interpret
the two branches as spinon and holon excitations. Such an
interpretation would probably require analysis in terms of
state vectors.

The calculated band gap, which is given by αU , is dis-
played in Fig. 7 and compared with the exact result [22],

Egap = 16�2

U

∫ ∞

1
dy

√
y2 − 1

sinh
( 2π�y

U

) , (66)

obtained from the Bethe ansatz. The agreement between
the analytically calculated gap and the exact gap is very
close, despite the simplicity of the approximation. The
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calculated gap approaches the exact gap in the limit of
large U , and a gap opens as soon as U is finite, as in the
exact case. The discrepancy is largest at small values of
U , which may be understood from the lack of long-range
screening effects in V xc of the Hubbard dimer. It should
be noted that in the widely used dynamical mean-field the-
ory (DMFT) [23] within the single-site approximation, the
gap is not opened up until U > 6. Only within the cluster
DMFT with an even number of sites does the gap form
for any finite U , whereas with an odd number of sites a
metallic region remains until U exceeds a certain value be-
fore entering the Mott insulating phase through a coexistence
region [24].

C. Holstein Hamiltonian

A simplified Holstein Hamiltonian describing a coupling
between a core electron and a set of bosons, such as plasmons
or phonons, is given by [25]

Ĥ = εĉ†ĉ +
∑

q

ĉĉ†gq(b̂q + b̂†
q ) +

∑
q

ωqb̂†
qb̂q, (67)

where ε is the core electron energy, ωq is the boson energy
of wave vector q, and ĉ and b̂q are the core electron and the
boson operators, respectively. This Hamiltonian can be solved
analytically, and the algebra is simplified if it is assumed
that the boson is dispersionless with an average energy ωp.
Under this assumption, the exact solution for the core-electron
removal spectra yields [25]

A(ω) =
∞∑

n=0

fnδ(ω − ε − �ε + nωp), (68)

where

fn = e−aan

n!
, a =

∑
q

(
gq

ωp

)2

, �ε = aωp. (69)

This exact solution can also be obtained using the cumulant
expansion [26–28]. The hole Green’s function corresponding
to the above spectra is given by

G(t < 0) = i
∞∑

n=0

fne−i(ε+�ε−nωp)tθ (−t ). (70)

It can be verified that the time-dependent exchange-
correlation potential corresponding to the Holstein Hamilto-
nian reads

Vxc(t < 0) = �ε(1 − eiωpt ). (71)

This expression provides a very simple interpretation: The
first term corrects the noninteracting core-electron energy,
whereas the second term describes the bosonic mode inter-
acting with the core electron, which can exchange not only
one but also multiple quanta of ωp with the field. This is
precisely what is accomplished by the cumulant expansion
[26–28] within the self-energy formulation but in an ad hoc
and complicated manner.

D. Hydrogen atom

It may seem trivial to consider the hydrogen atom since
it is not a many-electron system. Nevertheless, it illustrates a
number of exact results such as the sum rule in Eq. (10) and
the condition in Eq. (11). For the hydrogen atom, the hole
Green’s function is given by

G(r, r′; t < 0) = iϕs(r)ϕs(r
′) exp(−iεst )θ (−t ), (72)

where ϕs and εs are the 1s orbital and its energy. The
exchange-correlation potential for t < 0 can be readily de-
duced yielding

Vxc(r, r′; t < 0) = −VH(r) = −
∫

dr′′v(r − r′′)|ϕs(r
′′)|2,

(73)

independent of r′ and t , canceling the spurious Hartree po-
tential. The corresponding exchange-correlation hole is then
given by

ρxc(r, r′, r′′; t < 0) = −|ϕs(r
′′)|2. (74)

It can also be seen that the condition in Eq. (11),

ρxc(r, r′, r; t < 0) = −ρ(r), (75)

as well as the sum rule in Eq. (10),∫
dr′′ρxc(r, r′, r′′; t < 0) = −

∫
dr′′|ϕs(r

′′)|2 = −1, (76)

are both fulfilled, as they should be.

IV. CONCLUSION

The exchange-correlation formalism has been applied to
determine the Green’s function of the 1D Hubbard chain by
utilizing the exchange-correlation potential derived from the
Hubbard dimer. Under the approximation corresponding to re-
placing the full Green’s function by a noninteracting Green’s
function in the first iteration, the spectral functions can be cal-
culated analytically. Despite the very simple approximation,
the results compare favorably with the more accurate results
calculated using the dynamical density-matrix renormaliza-
tion group method. Peak structures corresponding to the holon
and spinon collective excitations are correctly reproduced,
although the positions are too low for small k, due to the
use of a noninteracting Green’s function and the neglect of
long-range correlations in the exchange-correlation potential
of the Hubbard dimer. The calculated gap agrees very well
with the exact result obtained from the Bethe ansatz. These
very encouraging results may indicate the robustness of the
exchange-correlation potential, insensitive to the system size,
allowing for extrapolation from a small to a large system. By
using the exact V xc of the Hubbard dimer, it is ensured that
the sum rule is fulfilled.

An example from the Holstein Hamiltonian further illus-
trates the potential of the exchange-correlation formalism.
The exact V xc has a very simple form, offering a clear
physical interpretation. The main collective charge excita-
tion (plasmon) determines the characteristic energy of the
time-dependent part of V xc, while the constant term provides
a correction to the one-particle energy. One may speculate
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that a generic structure of the exchange-correlation potential
consists of a constant term and a series of time-dependent
terms of exponential form with energies characteristic of the
excitations of (N ± 1) systems.

The example of the hydrogen atom illustrates the exact
properties of the exchange-correlation hole.
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