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Satoka Yamada and Yoshifumi Noguchi *

Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University,
3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan

Kohei Ishii , Daichi Hirose, and Osamu Sugino
Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Kaoru Ohno
Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai,

Hodogaya, Yokohama 240-8501, Japan

(Received 8 May 2022; revised 22 June 2022; accepted 27 June 2022; published 12 July 2022)

We derive two second-order exchange terms in the GW electron-hole interaction kernel. The contributions
of these terms have been neglected in the conventional GW + Bethe-Salpeter method, and we implement them
in an all-electron mixed basis program. To reveal the effect of these terms, we apply them to 28 molecules
of Thiel’s benchmark set and compare the S1 excitation energies with those obtained from the conventional
GW + Bethe-Salpeter method. In addition, using the exciton analysis method with exciton wave functions, we
estimate the expectation values for each term in the GW electron-hole interaction kernel. The contribution of the
two second-order exchange terms is approximately 0.1–0.2 eV at the exciton states of the n → π∗ transition;
however, the contributions are smaller for the π → π∗ and π → Rydberg transitions. Our findings reveal that
the errors of the conventional GW + Bethe-Salpeter method are potentially reduced by considering these terms;
however, the extent of the corrections is insufficient for the underestimated excitation energies. We believe that
our findings are a significant step towards advancing the conventional GW + Bethe-Salpeter method.
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I. INTRODUCTION

The Green’s function method based on the many-body
perturbation theory [1] beyond the density-functional theory
(DFT) framework is a powerful first-principles tool that is
capable of simulating the accurate excitation energy spectra
of a wide range of materials in isolated and extended systems
[2–7]. The excitonic states closely related to the photoabsorp-
tion spectra and photoemission spectra can be simulated by
solving the Bethe-Salpeter equation (BSE) to determine the
response function: L = L0 + L0�

GW L [8–10]. An electron-
hole interaction kernel within the GW approximation (GWA)
[11] �GW in BSE describes an exciton binding energy and is
defined as the functional derivative of Hartree and GW one-
electron self-energy operators using the one-particle Green’s
function: �GW = ∂

∂G (�H + �GW ). The exciton binding en-
ergies can be expressed in this method using four terms:
the first term corresponds to the direct dynamically screened
Coulombic interaction between excited electrons and holes.
The remaining consist of one first- and two second-order
exchange terms corresponding to the repulsive Coulombic
interactions between electron–hole pairs. The conventional
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method has been completely ignores the two second-order
exchange terms (=iG ∂W

∂G ) based on the assumption that
these have negligibly small contributions; however, this
has not been confirmed yet [3,8–10], except for Na2 clusters
[12].

Several benchmark tests reveal that errors of the GW
+ BSE method can be estimated for small-sized molecules
composed of up to a few tens of atoms compared with
other high-level quantum chemistry simulation methods or
experimental data [13–26]. The one-shot method has been
investigated abundantly as a starting point dependency and
revealed that the use of underestimated DFT gaps causes the
underestimation of the GW gap because of the overscreen-
ing problem [6,27,28]. Additionally, we demonstrated that
the GW + BSE method of one-shot version starting from
DFT-LDA underestimates the optical gaps by approximately
1 eV for extremely small sized molecules with significant
exciton binding energies (5–12 eV), and we attempted to
improve the errors within the framework of the GW methods.
We concluded that neither the partially self-consistent GW
nor the complete BSE Hamiltonian without a Tamm-Dancoff
approximation could significantly improve the error of 1 eV,
and more intrinsic development, particularly for the treatment
of the exciton binding energies, is necessary [29]. Recently,
Azarias et al. [30] focused on the excited states with the
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significant contribution of the n → π∗ transition and dis-
cussed the functional dependence of errors for several
molecules. The authors reported that their one-shot GW
method underestimated the optical gaps by 0.2–0.3 eV. The
more systematic error estimations of the GW + BSE method
have been performed for the standard organic molecules
set (or Thiel’s set [31,32]) by several groups [20–26].
According to their benchmark simulations, the GW + BSE
method underestimates the optical gaps. Therefore, the de-
velopment of accurate and reliable computational methods is
necessary.

Before investigating the beyond-GW method [28], we
need to arrive at the “exact” GW + BSE method that
considers the second-order exchange corrections [33]. Es-
timating and understanding the effect of the second-order
exchange corrections is for advancing the conventional GW
+ BSE method. Therefore, we formulate the two second-
order exchange terms and implement them in our original
all-electron mixed basis program, in which the one-electron
wave function is expanded using numerical atomic orbitals
and plane waves. Subsequently, we apply these terms to 28
molecules composed of H, C, N, and O [32], and com-
pare the simulated S1 excitation energies with those obtained
from the conventional GW + BSE method without the
second-order exchange corrections. To reveal the effect of
these corrections, we employ the exciton analysis method
comprising the exciton wave function and estimate the ex-
pected values for the each of the four terms in the GW
electron-hole interaction kernel. The second-order exchange
corrections shows somewhat larger positive values of 0.1–
0.2 eV for the S1 states, in which n → π∗ transition is
a significant contribution, negative values of approximately
−0.1 eV for π → π∗ transition dominant S1 states of ben-
zene and naphthalene with flat molecular geometries, and
negligible small values (< + 0.05 eV) for the π → Rydberg
transition. In addition, our exciton analysis revealed that the
current corrections tend to be proportional to the exciton
binding energy: larger corrections for larger exciton binding
energy.

This paper is organized as follows: Section II presents
a summary of the formulations of the Bethe-Salpeter equa-
tion and the two second-order exchange terms, and the exciton
analysis methods. Section III presents the comparison be-
tween conventional and present GW + BSE methods and the
results of exciton analysis. We revealed there that the effect
of second-order exchange corrections. The main findings are
summarized in Sec. IV. Details of the present method’s for-
mulation are given in the Appendix.

II. METHODS

This study employs a one-shot GW method composed
of three-step calculations. The first step is a standard DFT
calculation to generate Kohn-Sham orbital energies and Kohn-
Sham one-electron wave functions (note that, in general, the
one-shot GW method depends on the DFT functionals used
in the starting point, and the results will also be affected
when the self-consistent procedure in GW is employed in-
stead of the one-shot version). Additionally, we employ the
local density approximation (LDA) in this step. Using the

approximated energies and wave functions, in the second step,
we construct the one-particle Green’s function (G0), which
is a dynamically screened Coulombic interaction within the
random-phase approximation (W0), and GW one-electron
self-energy operator (�GW = iG0W0). Additionally, we solve
Dyson’s equation within the GWA (G = G0 + G0�

GW G) in a
one-shot manner. GW quasiparticle energies (EGW ) are deter-
mined with a Z factor as the solutions to the Dyson’s equation.
In the last step, the BSE for the response function is solved
within the GWA; however, an additional approximation is em-
ployed in the conventional GW + BSE method, as discussed
in this section.

A. Bethe-Salpeter equation within the GW approximation

Following formulations in this study were all derived
within the Tamm-Dancoff approximation. The BSE within the
GWA for the response function (L) is

L(1, 1′; 2, 2′) = L0(1, 1′; 2, 2′)

+
∫

d3d3′d4d4′L0(1, 1′; 3, 3′)�GW (3, 3′; 4, 4′)L(4, 4′; 2, 2′),

(1)

where 1 ≡ (x1, y1, z1, t1), L0 is the lowest-order response
function expressed as a simple product of two one-particle
Green’s functions [L0(1, 1′; 2, 2′) = −iG(1, 2)G(2′, 1′)].
Note that, because we used the one-shot GW (or G0W0)
in this study, the notations of G0 and G are properly used
in this section. The G0 should be replaced with G when
a self-consistent GW procedure is employed. The GW
electron-hole interaction kernel (�GW ) is defined as a
functional derivative of the Hartree (�H = iG0v) and GW
(�GW = iG0W0) one-electron self-energy operators by the
one-particle Green’s function:

�GW (3, 3′; 4, 4′) = i
∂�H (3, 3′)
∂G0(4, 4′)

+ i
∂�GW (3, 3′)
∂G0(4, 4′)

= Kex(3, 3′; 4, 4′) + Kd(3, 3′; 4, 4′)

+ K ′(3, 3′; 4, 4′), (2)

where Kex expressed as

Kex(3, 3′; 4, 4′) = i
∂�H (3, 3′)
∂G0(4, 4′)

= δ(3, 3′)δ(4, 4′)v(r3, r4)δ(t3, t4) (3)

is the first-order exchange term for describing the repulsive
Coulombic interactions between electron-hole pairs. The re-
maining two terms on the right-hand side of Eq. (2) are
Kd = −W0

∂G0
∂G0

and K ′ = −G0
∂W0
∂G0

, respectively. The direct
term below is a dynamically screened Coulombic interac-
tion between excited electrons and holes. Note that we
do not employ the static approximation for the Kd term,
which takes the limit of ω → 0 and removes the ω
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L L0 L0 LΞGW= +

ΞGW

Kd Kex Ka Kb
= + + +

FIG. 1. Feynman diagrams of the BSE and GW electron-hole
interaction kernel (�GW ). The solid line with an arrow denotes the
one-particle Green’s function, the double wavy line denotes the dy-
namically screened Coulombic interaction W (ω), single wavy line
denotes the static screened Coulombic interaction [W (ω = 0)], and
dotted line denotes the bare Coulomb interaction.

dependence of W0. The dynamical effect of W0 was investi-
gated in Refs. [34–37]:

Kd(3, 3′; 4, 4′) = −δ(3, 4)δ(3′, 4′)W0(3+, 3′). (4)

Using the following relationship:

∂W0

∂G0
= ∂ (v + vPW0)

∂G0
= v

∂P

∂G0
W0 + vP

∂W0

∂G0
(5)

= v(1 − vP)−1 ∂P

∂G0
W0 = W0

∂P

∂G0
W0

= iW0
∂ (G0G0)

∂G0
W0, (6)

the K ′ term can be divided into the two exchange terms
(=Ka2nd-ex + Kb2nd-ex) according to

Ka2nd-ex(3, 3′; 4, 4′) = iG(3, 3′)G(4′, 4+)

× W0(3+, 4)W0(3′, 4′), (7)

and

Kb2nd-ex(3, 3′; 4, 4′) = iG(3, 3′)G(4′, 4+)W0(3+, 4′)W0(3′, 4).
(8)

These two terms are called the second-order exchange terms
in this study. Figure 1 shows the Feynman diagrams of the
BSE in Eq. (1) and GW electron-hole interaction kernel in
Eq. (2).

B. Eigenvalue problem

We solved the BSE via an eigenvalue problem,∑
e′,o′

[(
EGW

e − EGW
o

)
δe,e′δo,o′ + Kd

eo,e′o′
]
Ae′o′

+ 2
∑
e′,o′

[
Kex

eo,e′o′ + Ka2nd-ex
eo,e′o′ + Kb2nd-ex

eo,e′o′
]
Ae′o′ = �SAeo.

(9)

The prefactor of two for the exchange terms in Eq. (9) denotes
the freedom of spin, i.e., the up-spin electron-hole pair (e ↑
, o ↑) that can interact with both of (e′ ↑, o′ ↑) and (e′ ↓, o′ ↓)
pairs. Furthermore, the freedom of spin is reduced to 1 for
the direct (Kd) term. The dynamical effect (ω �= 0) for the Kd

term is introduced using the generalized plasmon-pole model

[11], and the matrix element of the term is derived in Ref. [3].
Consequently, our Kd term and the left-hand-side of Eq. (9)
show the �S-dependent form [see also Eq. (B7)]. However,
�S as a solution is insensitive to an input �S value. Therefore,
we solved Eq. (9) only once as a standard eigenvalue problem
by simply setting �S = 0. In this study, we employed a static
approximation (ω = 0) for Ka2nd-ex and Kb2nd-ex terms but not
for Kd. These terms can subsequently be expressed as

Ka2nd-ex(3, 3′; 4, 4′) ≈ iG(3, 3′)G(4′, 4+)W0(3+, 4)

× W0(3′, 4′)δ(t+
3 , t4)δ(t ′

3, t ′
4), (10)

Kb2nd-ex(3, 3′; 4, 4′) ≈ iG(3, 3′)G(4′, 4+)W0(3+, 4′)

× W0(3′, 4)δ(t+
3 , t ′

4)δ(t ′
3, t4), (11)

and the corresponding matrix elements are denoted as

Ka2nd-ex
eo;e′o′ = −

∑
e1,o1

[
Wee1;e′o1We1o;o1o′

�S + (
EGW

o − EGW
e1

) + (
EGW

o1
− EGW

e′
)

+ Weo1;e′e1Wo1o;e1o′

�S − (
EGW

e − EGW
o1

) − (
EGW

e1
− EGW

o′
)]

,

(12)

Kb2nd-ex
eo;e′o′ =

[ ∑
e1,e2

Wee1;e2o′We1o;e′e2

�S + (
EGW

o − EGW
e1

) − (
EGW

e2
− EGW

o′
)

+
∑
o1,o2

Weo1;o2o′Wo1o;e′o2

�S − (
EGW

e − EGW
o1

) + (
EGW

o2
− EGW

e′
)]

,

(13)

where Wi, j;k,l is a matrix element of the W0. The difference
between Ka and Kb is the sum of the intermediate states.
Ka is the sum of the electrons and holes, and Kb is the sum
of the electrons and electrons (holes and holes). The detailed
formulas can be found in the Appendix.

C. Exciton analysis

The exciton wave function (	) can be constructed using
the eigenvalues A in Eq. (9) and a LDA Kohn-Sham one-
electron wave function (φ) [38],

	i(re, rh) =
emp∑
ν

occ∑
μ

Ai
ν,μφν (re)φμ(rh), (14)

where re (rh) and the index (i) denote the coordination of
the electrons or holes and the exciton level, respectively. The
exciton wave functions include detailed information on the
excitons. We can evaluate an expectation value for an arbitrary
operator (O) according to:

〈O〉i =
∫

dredrh	
∗
i (re, rh)O(re, rh)	i(re, rh)∫

dredrh	
∗
i (re, rh)	i(re, rh)

. (15)

The values estimated in this manner indicate the details of the
exciton properties in a two-particle picture. We estimate the
exciton binding energy (Eb) as follows:

Eb = 〈i|�GW |i〉, (16)

where �GW is

�GW = Kd − 2(Kex + Ka2nd-ex + Kb2nd-ex). (17)
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(d)(c)

(b)(a)

FIG. 2. Convergence behavior of (a) LDA Kohn-Sham orbital energies (=ELDA), (b) Fock-exchange terms (=iG0v), and (c), (d) GW
correlation terms [=iG0(W0 − v)] checked for acetamide molecule. See the main text for more details.

Additionally, we estimate the overlap strength of the Kohn-
Sham one-electron wave functions at the excited electron and
hole states according to

� =
∑

e,h |Ai
e,h|2

∫
dr|ψe(r)||ψh(r)|∑

e,h |Ai
e,h|2

. (18)

In addition, to visualize the exciton states, we estimated the
distribution functions of the electrons and holes [39–41] as
follows:

	e
i (re) =

∫
drh|	i(re, rh)|, (19)

	h
i (rh) =

∫
dre|	i(re, rh)|. (20)

	e
i (re) [	h

i (rh)] is different from that of the Kohn-Sham one-
electron wave function because of the excitonic effect from
holes (electrons) [39–42].

D. Calculation setup

To systematically discuss the effect of the second-order
exchange corrections, we propose a common computational
condition comprising 28 molecules in Thiel’s set [31,32].
First, we optimize the molecular geometries of the 28
molecules using B3LYP/cc-pVTZ in vacuum [43]. Next, we
simulate the S1 excitation energies of the ground-state molec-
ular geometries using our original all-electron mixed-basis

program [44]. Subsequently, the molecules are placed in sim-
ilarly sized face-centered-cubic unit cells of a cubic edge of
approximately 34 Å. We used large unit cells and a Coulombic
cutoff technique [45,46] to completely eliminate the interac-
tions from the molecules in other unit cells. We checked some
parameters to get a good convergence for oxygen-included
acetamide and employed them for all other molecules because
the oxygen-included systems require higher cutoff energies
than nitrogen-carbon- or carbon-included systems [6,7,42,47–
51]. A PW cutoff energy of 284.3 eV was sufficient to con-
verge the LDA Kohn-Sham orbital energies within 0.01 eV.
Additionally, the cutoff energy of G vectors is 528.6 eV for
the Fock exchange term, and the 51.2 eV cutoff energy of G
(G′) vectors and 12 000 empty states for the GW correlation
term is sufficient converging the GW quasiparticle energies
within 0.1 eV. We plotted the behavior of LDA Kohn-Sham
orbital energies (=ELDA), Fock-exchange terms (=iG0v), and
GW correlation terms [=iG0(W0 − v)] checked for acetamide
molecule in Fig. 2. Subsequently, these parameters are used in
the Bethe-Salpeter method.

III. RESULTS AND DISCUSSION

Tables I and II show, together with the theoretical best
estimates (TBE) [31] for comparison, the S1 excitation ener-
gies simulated using the conventional GW + BSE methods,
in which the GW electron-hole interaction kernel is approxi-
mated using the first-order exchange term and the dynamically
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TABLE I. Simulated S1 excitation energies (in eV) and the ratios (in%) at the transition states for the most significant contribution. TBE
results [31] are listed for comparison.

Conventional GW + BSE Present GW + BSE TBE

S1 n(O)→ π∗ S1 n(O)→ π∗

(eV) (%) (eV) (%) (eV)

Acetamide 4.625 93.0 4.714 93.1 5.80
Acetone 3.261 96.2 3.455 96.5 4.40
Cytosine 4.647 62.4 4.673 61.0 4.87
Formaldehyde 3.106 98.8 3.203 98.8 3.88
Formamide 4.773 99.2 4.862 99.4 5.63
p-Benzoquinone 1.908 90.4 2.038 92.0 2.80
Propanamide 4.211 81.4 4.310 81.3 5.72
Thymine 4.165 79.9 4.251 81.8 4.82
Uracil 4.393 78.9 4.468 81.4 4.80

S1 n(N)→ π∗ S1 n(N)→ π∗

(eV) (%) (eV) (%) (eV)

Pyridine 4.202 99.6 4.241 99.6 4.59
Pyrazine 3.572 99.6 3.615 99.6 3.95
Pyridazine 3.347 99.4 3.408 99.4 3.78
Pyrimidine 3.888 99.7 3.925 99.7 4.55
s-Tetrazine 2.120 98.5 2.218 98.9 2.24
s-Triazine 4.181 51.4 4.249 51.8 4.60

screened direct term according to �GW ∼ Kd − 2Kex. Fur-
thermore, the present GW + BSE is used, in which two
second-order exchange terms (Ka2nd-ex and Kb2nd-ex) are con-
sidered in addition to the two terms in the conventional GW +
BSE method. The 28 molecules in the Thiel’s set are divided
into four categories according to the symmetries of the most
significant transition states: n(O) → π∗, n(N)→ π∗, π →
π∗, and π → Rydberg. The n orbital means a noncovalently

bonded electron pair of oxygen or nitrogen atom, thereby
localizing around oxygen or nitrogen atom. We denote the n
orbitals of oxygen and nitrogen as n(O) and n(N), respectively,
in this study. Simultaneously, the π , π∗, and Rydberg orbitals
are considered to be delocalized and possess amplitudes cov-
ering the entire molecules.

A total of 15 molecules, of which the most significant
transition at S1 is n → π∗, are listed in Table I. The molecules’

TABLE II. Simulated S1 excitation energies (in eV) and the ratios (in percent) at the transition states for the most significant contribution.
TBE results [31] are listed for comparison.

Conventional GW + BSE Present GW + BSE TBE

S1 π → π∗ S1 π → π∗

(eV) (%) (eV) (%) (eV)

Benzene 4.795 87.9 4.725 87.9 5.08
Naphthalene 3.898 50.0 3.805 50.0 4.24
Norbomadiene 4.723 56.7 4.737 56.9 5.34

S1 σ → π∗ S1 σ → π∗

(eV) (%) (eV) (%) (eV)

Cyclopropene 5.421 96.9 5.488 96.8 6.76

S1 π → Rydberg S1 π → Rydberg
(eV) (%) (eV) (%) (eV)

Adenine 4.355 58.6 4.422 61.7
(All-E )-Hexatriene 4.649 44.3 4.665 44.4
(All-E )-Octatetraene 4.300 44.2 4.323 44.5
Cyclopentadiene 4.416 53.9 4.430 54.0
E -Butadiene 5.165 47.9 5.180 47.9
Ethene 6.156 51.3 6.169 51.3
Furan 4.783 47.4 4.795 47.5
Imidazole 4.716 66.2 4.707 65.9
Pyrrole 4.069 61.0 4.076 60.8
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FIG. 3. Plots of the 	h(rh ) and 	e(re) for acetamide, cytosine,
pyradine, and s-Triazine.

S1 states commonly display weak-state hybridization where
the contribution of the n → π∗ transition is higher than 80%,
except for cytsine (61.0%) and s-Triazine (51.8%). Any sig-
nificant differences between the conventional and present GW
+ BSE methods cannot be found in either the S1 excita-
tion energies or ratios of the state hybridizations of these
molecules. However, slightly larger energy differences can
be observed for n(O)→ π∗ than for n(N)→ π∗: the second-
order exchange corrections are approximately 0.1–0.2 eV for
n(O)→ π∗ and less than 0.1 eV for n(N)→ π∗. These energy
differences are discussed in detail in a later section. In compar-
ison with TBE [31], the conventional GW + BSE results, as
well as those of other previously reported GW + BSE meth-
ods [20–26], overestimate the S1 energies. The second-order
exchange corrections improve the S1 energies; however, this
improvement is insufficient; that is, the present GW + BSE
results are still underestimated.

As shown in Figs. 3 and 4, π∗ characteristics can be
commonly observed in the 	e plots for all the molecules
(refer to the Supplemental Materials section for further in-
formation [52]). The 	h plots clearly reveal the n character
of the weak-state hybridized acetamide (93.1%) and pyridine
(99.6%); however, this is unclear for cytsine (61%) and s-
Triazine (51.8%). Notably, 	h and 	e become equal to the
Kohn-Sham orbitals (|φ(r)|) at the highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied molecular orbital

FIG. 4. Plots of 	h(rh ) and 	e(re) for benzene and (all-E )-
Hexatriene.

FIG. 5. The optical gap (equal to the S1 excitation energy) was
simulated using the conventional GW + BSE (denoted by the
red circle) and present GW + BSE (denoted by the blue square)
methods. The lower figure shows the difference between the con-
ventional and present GW + BSE; the positive and negative values
indicate the positive and negative contributions of the K ′ term,
respectively.

(LUMO) only when the state hybridization does not occur.
	h of acetamide is localized at the oxygen atom as the 2p
orbital, and the main amplitude is around the oxygen atom.
In contrast, the 	h of the strong state hybridized cytosine
is delocalized and observing the character of the oxygen 2p
orbital is difficult.

Table II lists the results of the molecules, of which the most
significant transition at S1 are π → π∗ and π → Rydberg.
Unlike the n → π∗ dominant molecules in Table I, strong
state hybridizations occur in these molecules, i.e., the ratios
of the most significant transition states are less than 66%.
The state hybridization is weak only for benzene because the
twofold-degenerate π at the HOMO and twofold-degenerate
π∗ at the LUMO, respectively, i.e., the large contribution
of 88.0%, is the result of the strong state hybridization that
occurs among these four orbitals. Although significant dif-
ferences between the conventional and present GW + BSE
cannot be found in this case either, the S1 excitation energies
of the present GW + BSE for benzene and naphthalene are
approximately 0.1 eV smaller than those obtained for the
conventional GW + BSE. This is, however, not observed for
any other molecule listed in Tables I and II.

We use the |	h| and |	e| plots of benzene and (all-E )-
Hexaatriene molecules as typical examples of the S1 states,
of which the most significant transitions are π → π∗ and
π → Rydberg. (|	h| and |	e| plots for all other molecules
can be found in the Supplemental Materials section [52]). Al-
though the state hybridizations are strong for these molecules,
the characteristics of the one-electron Kohn-Sham orbitals,
i.e., π and Rydberg, remain clear. This indicates that the
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FIG. 6. Expectation values of the exciton binding energy and second-order exchange terms.

state hybridization mainly occurs among other π or Rydberg
states [note that, for example, the HOMO and LUMO of
benzene are twofold-degenerate π (π∗)]. The contributions
of π → π∗ and π → Rydberg become more significant than
other molecules in Table II.

Next, to clarify the effect of the second-order exchange
corrections on the S1 excitation energies, we plot these S1

excitation energies and the energy differences in Fig. 5. As
listed in Tables I and II, the energy differences between
the conventional and present GW + BSE are not significant
for all the molecules. The tendencies that can be observed
in the lower figure are as follows: the largest energy dif-

FIG. 7. Dependence of the first-order exchange (red) and two
second-order exchange [Ka (blue) and Kb (green)] terms on � values
simulated for S1 states of the 28 molecules. The molecules with
a main transition at S1 state are n(O)→ π∗ n(N)→ π∗, π → π∗,
and π → Rydberg, are marked using circles, squares, triangles, and
diamonds, respectively.

ferences (0.1–0.2 eV) for n(O)→ π∗, and large negative
contributions for the two completely flat molecular molecules,
namely, benzene and naphthalene. The second-order correc-
tions of the absolute values are in order of n(O)→ π∗ >

n(N)→ π∗ > π → π∗ > π → Rydberg. However, the
corrections are larger for the molecules with flat molecular
geometries.

We plotted the expectation values of Ka2nd-ex and Kb2nd-ex

as a function of the exciton binding energies (Eb) in Fig. 6. Ka
and Kb are proportional to Eb. Because of the strongly local-
ized n(O) orbital, for n(O)→ π∗ dominant S1, Eb tends to be
larger than those of other transitions from the extended n(N)
and π orbitals. Ka has a large positive contribution for larger
Eb. Although a similar tendency can be observed for n(N)→
π∗, the contribution of Ka is smaller than that of n(O) because
the localization of n(N) is weaker than n(O). Furthermore,
because the Rydberg orbitals have the amplitudes outside
the molecules, for π → Rydberg, the Eb becomes smaller
(<5 eV). In this case, Ka contributes negligibly (<0.05 eV).
A similar concept can be applied to Kb, except to the negative
sign of Kb. Kb has the largest contribution to n(O)→ π∗ with
the largest Eb and the smallest contribution to π → Rydberg
with the smallest Eb. Because Ka and Kb have opposite signs,
they canceled each other, making the second-order corrections
small [12]. However, because the absolute value of Kb is
smaller than Ka, the second-order exchange corrections con-
tribute positively to most molecules in this study (the energy
differences are positive in Fig. 5).

As discussed in Fig. 6, the Ka and Kb values are pro-
portional to the exciton binding energies Eb; however, Ka
and Kb are not necessarily sensitive to the overlap strength
between the excited electron and hole distribution (�) [see
Eq. (18)]. Figure 7 shows the dependence of the first and
second-order exchange terms dependence on the �. The �

values are approximately in order of π → π∗ > n(N)→
π∗ > n(O)→ π∗ > π → Rydberg. As expected, the first-
order exchange term is proportional to the � because the
overlap matrix elements of the excited electron and the hole
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distribution are simulated therein (refer to the Supplemental
Material [52]). Ka and Kb are difficult to formulate, and the
energy denominators determine the amplitudes of the correc-
tions [Eqs. (7) and (8)]. This behavior can be explained using
x-ray absorption spectra (XAS) simulations as a typical exam-
ple, in which the extremely localized core electron is excited
to the empty states. We simulated the XAS for acetone in this
study. However, the second-order exchange corrections are
not large enough (≈0.7 eV) for O 1s XAS because the overlap
matrix in the numerator and the energy denominator on the
second-order exchange terms increase. Notably, a correction
of approximately 0.7 eV may appear more significant than that
of S1; however, O 1s excitation energy is more than 500 eV.
As a final remark of this section, we mention a potential
application of the second-order exchange terms for the future
work. It is possible that these corrections could improve the
description of the double excitation (2h, 2e) energies [26] and
hence the satellite peaks more importantly than the single
excitation (1h, 1e) as investigated in this study, because the
double excitation energies appear in the denominators of Ka
and Kb terms [see Eqs. (12) and (13)].

This study simulated the excitation energies of 28
molecules in Thiel’s set considering the second-order ex-
change corrections and revealed the characteristics using the
exciton analysis method. The amplitudes of the corrections
were sufficiently large to reduce the underestimation errors
of 0.2–0.3 eV for n → π∗ excitation in the conventional
one-shot GW method [30]. However, the amplitudes are not
sufficiently large to reduce the detected for the extremely
small-sized molecules composed of less than six atoms, which
can be up to 1 eV [29]. According to our exciton analysis, the
second-order exchange corrections increase for the excitonic
states with the large exciton binding energies. We believe that
our findings are a significant step towards advancing the con-
ventional GW + BSE method and will be essential knowledge
for considering the beyond GW method.

IV. SUMMARY

We derived the two second-order exchange terms (or
iG0

∂W0
∂G0

) in the GW electron-hole interaction kernel that has

been estimated for the first time and implemented the terms
in our original all-electron mixed basis program. We have
applied these terms to 28 molecules in Thiel’s set and re-
vealed the effect of the second-order exchange corrections
by comparing the conventional and present GW + BSE. The
main conclusions are as follows: (1) the corrections resulting
from the cancellation of Ka with a positive sign and Kb
with a negative sign are insignificant; (2) the corrections in-
crease the S1 excitation energies for the most of the molecules
and decrease the excitation energies for the molecules with
completely flat molecular geometries such as benzene and
naphthalene; (3) the corrections for n → π∗ are large and
those for π → Rydberg are negligibly small; (4) Ka and Kb
are proportional to the exciton binding energies Eb but not
for the overlap strength between the excited electron and hole
distribution (�) unlike the first-order exchange term Kex. The
second-order exchange terms can potentially mitigate the un-
derestimation of optical gaps by the conventional GW + BSE;
however, the extent of correction is insufficient. We conclude
that the valence excitation have a maximum second-order
exchange corrections of ±0.2 eV. Therefore, the conventional
assumption that the second-order exchange corrections have a
small effect, and the conventional GW + BSE method based
on this assumption should be reasonable; meanwhile, the cor-
rections are not negligible for methods beyond the GW +
BSE methods. Although we have considered the second-order
exchange corrections in the one-shot GW , an “exact” GW +
Bethe-Salpeter method that satisfies the Baym–Kadanoff con-
servation law [33] requires a self-consistent procedure. In
the future work, we will estimate the second-order exchange
terms in the self-consistent GW manner.
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APPENDIX A

We start from a definition of electron-hole amplitude,

XS (i, i′) = 〈N, 0|T [ψ (i)ψ†(i′)]|N, S〉 exp (i�St i/2), (A1)

X̃S (i, i′) = 〈N, S|T [ψ (i)ψ†(i′)]|N, 0〉 exp (−i�St i/2), (A2)

where t i = (ti + t ′
i )/2. If t1, t ′

1 < t2, t ′
2 or t1, t ′

1 > t2, t ′
2, the-particle Green’s function becomes

G2(1, 1′; 2, 2′) = −〈N, 0|T [ψ (1)ψ†(1′)]T [ψ (2)ψ†(2′)]|N, 0〉θ (min(t1, t ′
1) − max(t2, t ′

2))

−〈N, 0|T [ψ (2)ψ†(2′)]T [ψ (1)ψ†(1′)]|N, 0〉θ (min(t2, t ′
2) − max(t1, t ′

1)). (A3)

Because min(t1, t ′
1) = t1 − |τ1|/2 and max(t2, t ′

2) = t2 + |τ2|/2, where τi = ti − t ′
i , we have θ (min(t2, t′2) − max(t1, t′1)) =

θ (t2 − t1 − |τ1|/2 − |τ2|/2). Using the completeness relation to Eq. (A3), G2 becomes

G2(1, 1′; 2, 2′) = −
∑

S

XS (r1, r′
1, τ1)X̃S (r2, r′

2, τ2) exp [i�S (t2 − t1)]θ

(
t1 − t2 − 1

2
|τ1| − 1

2
|τ2|

)
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−
∑

S

XS (r2, r′
2, τ2)X̃S (r1, r′

1, τ1) exp [i�S (t1 − t2)]θ

(
t2 − t1 − 1

2
|τ1| − 1

2
|τ2|

)
. (A4)

The response function (L) can be defined as a special case of G2 at limit of 2′ → 2+,

L(1, 1′; 2, 2+) = −i
∑
S �=0

XS (r1, r′
1, τ1)X̃S (r2, r2,−0+) exp [i�S (t2 − t1)]θ

(
t1 − t2 − 1

2
|τ1|

)

− i
∑
S �=0

XS (r2, r2,−0+)X̃S (r1, r′
1, τ1) exp [i�S (t1 − t2)]θ

(
t2 − t1 − 1

2
|τ1|

)
, (A5)

L(1, 1′; r2, r2; ω) ≡ −
∫ +∞

−∞
dt2e−iωt2 L(1, 1′; 2, 2+)

= −e−iω(t1−|τ1|/2)
∑
S �=0

XS (r1, r′
1, τ1)X̃S (r2, r2,−0+)

ω − �S + i0+ e−i�S |τ1|/2

+ e−iω(t1+|τ1|/2)
∑
S �=0

XS (r2, r2,−0+)X̃S (r1, r′
1, τ1)

ω + �S − i0+ e−i�S |τ1|/2. (A6)

The first term of right hand side of Eq. (A6) represents the exciton creation process with a positive energy, while the second term
represents the exciton recombination process with a negative energy. If ω > 0 and ω ∼ �S , then the corresponding term is only
dominant,

L(1, 1′; r2, r2; ω) ∼ e−i�St ′ XS (r1, r′
1, τ1)X̃S (r2, r2,−0+)

ω − �S + i0+ e−i�S |τ1|/2

Thus, BSE becomes

XS (r1, r′
1; τ1) =

∫
d3d3′d4d4′L0(1, 1′; 3, 3′)�(3, 3′; 4, 4′)XS (r4, r′

4; τ4)e−i�St4
. (A7)

Because of t1 → 0 for τ1 → −0+, above BSE becomes

XS (r1, r′
1; −0+) =

∫
d3d3′d4d4′L0(r1, r′

1; 3, 3′)�(3, 3′; 4, 4′)XS (r4, r′
4; τ4)e−i�St4

. (A8)

Using ψ (r1) = ∑
n anφn(r1) and defining Ae,o = 〈N, 0|aea†

o|N, S〉 and Be,o = 〈N, 0|aoa†
e |N, S〉, we obtain

XS (r1, r′
1; τ1) = ei�S |τ1|/2

∑
e,o

{Ae,oφe(r1)φ∗
o (r′

1)[θ (τ1)e−iEoτ1 + e−iEeτ1θ (−τ1)] + Be,oφo(r1)φ∗
e (r′

1)[θ (τ1)e−iEoτ1 + e−iEeτ1θ (−τ1)]}.

(A9)

The second term on the right-hand side is vanished by Tamm-Dancoff approximation. Equation (A9) can be simplified assuming
τ1 = 0+,

XS (r1, r′
1; 0+) =

∑
e,o

Ae,oφe(r1)φ∗
o (r′

1). (A10)

Here, we rewrite L0(r1, r′
1; 3, 3′) = −iG(r1, r3; −t3)G(r′

3, r′
1; t ′

3) in explicit form,

L0(r1, r′
1; 3, 3′) =(−i)3

[∑
e

φe(r1)φ∗
e (r3)e+iEet3θ (−t3) −

∑
o

φo(r1)φ∗
o (r3)e+iEot3θ (t3)

]

×
[∑

e

φe(r′
3)φ∗

e (r′
1)e−iEet ′

3θ (t ′
3) −

∑
o

φo(r′
3)φ∗

o (r′
1)e−iEot ′

3θ (−t ′
3)

]
. (A11)

Multiplying Eq. (A8) by φe(r1)φo(r′
1) and integrating with respect to r1 and r′

1, we obtain

Ae,o = −i
∫

d3d3′d4d4′eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)�(3, 3′; 4, 4′)XS (r4, r′
4; τ4)e−i�St4

. (A12)

APPENDIX B: CONVENTIONAL GW + BSE METHOD

The conventional GW + BSE method approximates the electron-hole interaction kernel as

�GW (3, 3′; 4, 4′) ∼ δ(3, 4)δ(3′, 4′)v(r3, r4)δ(t3, t ′
4) − δ(3, 4)δ(3′, 4′)W (3+, 3′). (B1)
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First, we derive the matrix element of the first-order exchange term. Inserting Kex(3, 3′; 4, 4′) = δ(3, 3′)δ(4, 4′)v(r3, r4)δ(t3, t4)
into Eq. (A12), the matrix elements for the first-order exchange term is

Ae,o = −i
∫

d3d3′d4d4′eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)[δ(3, 3′)δ(4, 4′)v(r3, r4)δ(t3, t4)]XS (r4, r′
4; τ4)e−i�St4

= 1

�S − (
EGW

e − EGW
o

) ∑
e′,o′

Kex
e,o;e′,o′Ae′,o′ , (B2)

where we used Eq. (A9) and defined

Kex
e,o;e′,o′ =

∫
dr3dr4φ

∗
e (r3)φo(r3)v(r3, r4)φe′ (r4)φ∗

o′ (r4). (B3)

Next, we insert Kd (3, 3′; 4, 4′) = −δ(3, 4)δ(3′, 4′)W (3+, 3′) into Eq. (A12) to derive the matrix element for the direct term as
well,

Ae,o = −i
∫

d3d3′d4d4′eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)

× (−δ(3, 4)δ(3′, 4′)W (3+, 3′))XS (r4, r′
4; τ4)e−i�St4

= i
∫

d3d3′eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)W (3+, 3′)XS (r3, r′
3; τ3)e−i�St3

= i
∑
e′,o′

Ae′,o′

∫
dt3dt ′

3eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)We,o;e′,o′ (t3 − t ′
3)

× (
ei�S |τ3|/2[θ (τ3)e−iEo′ τ3 + e−iEe′ τ3θ (−τ3)]

)
e−i�St3

= i
∑
e′,o′

Ae′,o′

∫
dt3dt ′

3
dω

2π
e−iω0+

eiω(t3−t ′
3 )eiEet3 e−iEot ′

3θ (−t3)θ (−t ′
3)We,o;e′,o′ (ω)

× (
ei�S |τ3|/2[θ (τ3)e−iEo′ τ3 + e−iEe′ τ3θ (−τ3)]

)
e−i�St3

= i
∑
e′,o′

Ae′,o′

∫
dω

2π
e−iω0+

We,o;e′,o′ (ω)

×
[∫

dt3dτ3θ (−t3)θ (τ3)e−i(�S−(EGW
e −EGW

o ))t3 ei(�S−ω−(EGW
e′ −EGW

o ))τ3

+
∫

dt ′
3dτ3θ (−t ′

3)θ (−τ3)e−i(�S−(EGW
e −EGW

o ))t ′
3 e−i(�S+ω−(EGW

e −EGW
o′ ))τ3

]

= − 1

�S − (
EGW

e − EGW
o

) ∑
e′,o′

Kd
e,o;e′,o′ (�S )Ae′,o′ , (B4)

Kd
e,o;e′,o′ (�S ) in Eq. (B4) is

Kd
e,o;e′,o′ (�S ) = i

2π

∑
l

∫
drdr′dωeiω0+

φ∗
e (r)φo(r′)W (r, r′, ω)φe′ (r)φ∗

o′ (r′)

×
[

1

�S − ω − (
EGW

e′ − EGW
o

) + i0+ + 1

�S + ω − (
EGW

e − EGW
o′

) + i0+

]
, (B5)

where W (r, r′; ω) can be expanded with plasmon frequency ωl as

W (r, r′, ω) =
∑

l

ωl

2
Wl (r, r′)

(
1

ω − ωl + i0+ − 1

ω + ωl − i0+

)
. (B6)

Finally, Eq. (B5) becomes

Kd
e,o;e′,o′ (�S ) =

∑
l

∫
drdr′φ∗

e (r)φo(r′)Wl (r, r′)φe′ (r)φ∗
o′ (r′)

× ωl

2

[
1

ωl − [(
EGW

e′ − EGW
o

) − �S
] + 1

ωl + [(
EGW

e − EGW
o′

) − �S
]]

. (B7)
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APPENDIX C: PRESENT GW + BSE METHOD

To consider the two second–order exchange corrections, we insert Ka(3, 3′; 4, 4′) = iG(3, 3′)G(4′, 4+)W (r3, r4)W (r′
3, r′

4)
δ(t+

3 , t4)δ(t ′
3, t ′

4) into Eq. (A12) to obtain the following matrix element:

Ae,o =
∫

d3d3′d4d4′eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)

× [G(3, 3′)G(4′, 4+)W (r3, r4)W (r′
3, r′

4)δ(t+
3 , t4)δ(t ′

3, t ′
4)]XS (r4, r′

4; τ4)e−i�St3

=
∑
e′,o′

Ae′,o′

∫
d3d3′dr4dr′

4eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)

×
[
−i

∑
e1

e−iEGW
e1

τ3φe1 (r3)φ∗
e1

(r′
3)θ (τ3) + i

∑
o1

e−iEGW
o1

τ3φo1 (r3)φ∗
o1

(r′
3)θ (−τ3)

]

×
[
−i

∑
e2

eiEGW
e2

τ3φe2 (r′
4)φ∗

e2
(r4)θ (−τ3) + i

∑
o2

eiEGW
o2

τ3φo2 (r′
4)φ∗

o2
(r4)θ (τ3)

]

× W (r3, r4)W (r′
3, r′

4)φe′ (r4)φ∗
o′ (r′

4){ei�S |τ3|/2[θ (τ3)e−iEo′ τ3 + e−iEe′ τ3θ (−τ3)]}e−i�St3
. (C1)

Here, we used

G(1, 1′) = −i
∑

e

e−iEe(t1−t ′
1 )φe(r1)φ∗

e (r′
1)θ (t1 − t ′

1) + i
∑

o

e−iEo(t1−t ′
1 )φo(r1)φ∗

o (r′
1)θ (t ′

1 − t1). (C2)

And since θ (τ )θ (−τ ) = 0, Eq. (C1) becomes

Ae,o =
∑
e′,o′

Ae′,o′

∫
d3d3′dr4dr′

4eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)φ∗
e (r3)φo(r′

3)

[ ∑
e1,o2

e−i(EGW
e1

−EGW
o2

)τ3φe1 (r3)φ∗
e1

(r′
3)φo2 (r′

4)φ∗
o2

(r4)θ (τ3).

+
∑
o1,e2

e−i(EGW
o1

−EGW
e2

)τ3φo1 (r3)φ∗
o1

(r′
3)φe2 (r′

4)φ∗
e2

(r4)θ (−τ3)

]

× W (r3, r4)W (r′
3, r′

4)φe′ (r4)φ∗
o′ (r′

4){ei�S |τ3|/2[θ (τ3)e−iEo′ τ3 + e−iEe′ τ3θ (−τ3)]}e−i�St3
. (C3)

Here, we define Wα,β;γ ,δ = ∫
dr1dr2φ

∗
α (r1)φβ (r1)W (r1, r2)φγ (r2)φ∗

δ (r2),

Ae,o =
∑
e′,o′

Ae′,o′

∫
dt3dt ′

3eiEet3 e−iEot ′
3θ (−t3)θ (−t ′

3)

×
[∑

e1,o2

e−i(EGW
e1

−EGW
o2

)τ3We,e1;e′,o2We1,o;o2,o′e−iEo′ τ3 ei�Sτ3/2θ (τ3)

+
∑
o1,e2

e−i(EGW
o1

−EGW
e2

)τ3We,o1;e′,e2Wo1,o;e2,o′e−iEe′ τ3 e−i�Sτ3/2θ (−τ3)

]
e−i�St3

=
∑
e′,o′

Ae′,o′

×
[∑

e1,o2

We,e1;e′,o2We1,o;o2,o′

∫
e−i(�S−(EGW

e −EGW
o ))t3θ (−t3)dt3

∫
ei(�S+(EGW

o −EGW
e1

)+(EGW
o1

−EGW
e′ ))τ3θ (τ3)

+
∑
o1,e2

We,o1;e′,e2Wo1,o;e2,o′

∫
e−i(�S−(EGW

e −EGW
o ))t ′

3θ (−t ′
3)dt ′

3

∫
e−i(�S−(EGW

e −EGW
o1

)−(EGW
e1

−EGW
o′ ))τ3θ (−τ3)

]
dτ3

= 1

�S − (
EGW

e − EGW
o

) ∑
e′,o′

Ka2nd−ex
e,o;e′,o′ Ae′,o′ , (C4)

where Ka2nd-ex is

Ka2nd-ex = −
∑
e1,o1

[
We,e1;e′,o1We1,o;o1,o′

�S + (
EGW

o − EGW
e1

) + (
EGW

o1
− EGW

e′
) + We,o1;e′,e1Wo1,o;e1,o′

�S − (
EGW

e − EGW
o1

) − (
EGW

e1
− EGW

o′
)]

. (C5)
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Next, we insert Kb(3, 3′; 4, 4′) = iG(3, 3′)G(4′, 4+)W (r3, r′
4)W (r′

3, r4)δ(t+
3 , t ′

4)δ(t ′
3, t4) into Eq. (A12) as well,

Ae,o =
∫

d3d3′dr4dr′
4eiEet3 e−iEot ′

3θ (−t3)θ (−t ′
3)φ∗

e (r3)φo(r′
3)G(r3, r′

3; τ3)G(r′
4, r4; τ3)W (r3, r′

4)W (r′
3, r4)

×
∑
e′,o′

Ae′,o′φe′ (r4)φ∗
o′ (r′

4)XS (r4, r′
4; −τ3)e−i�St3

= 1

�S − (
EGW

e − EGW
o

) ∑
e′,o′

Kb2nd-ex
e,o;e′,o′Ae′,o′ , (C6)

where Kb2nd-ex is

Kb2nd−ex
e,o;e′,o′ =

∑
e1,e2

We,e1;e2,o′We1,o;e′,e2

�S + (
EGW

o − EGW
e1

) − (
EGW

e2
− EGW

o′
) +

∑
o1,o2

We,o1;o2,o′Wo1,o;e′,o2

�S − (
EGW

e − EGW
o1

) + (
EGW

o2
− EGW

e′
) . (C7)
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