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We study field theories with global dipole symmetries and gauge dipole symmetries. The famous Lifshitz
theory is an example of a theory with a global dipole symmetry. We study in detail its 1 + 1D version with a
compact field. When this global symmetry is promoted to a U (1) dipole gauge symmetry, the corresponding
gauge field is a tensor gauge field. This theory is known to lead to fractons. To resolve various subtleties in the
precise meaning of these global or gauge symmetries, we place these 1 + 1D theories on a lattice and then take
the continuum limit. Interestingly, the continuum limit is not unique. Different limits lead to different continuum
theories, whose operators, defects, global symmetries, etc., are different. We also consider a lattice gauge theory
with a ZN dipole gauge group. Surprisingly, several physical observables, such as the ground state degeneracy
and the mobility of defects, depend sensitively on the number of sites in the lattice. Our analysis forces us to
think carefully about global symmetries that do not act on the standard Hilbert space of the theory, but only on
the Hilbert space in the presence of defects. We refer to them as timelike global symmetries and discuss them in
detail. These timelike global symmetries allow us to phrase the mobility restrictions of defects (including those
of fractons) as a consequence of a global symmetry.
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I. INTRODUCTION

Symmetric tensor gauge theories [1–9] are nonrelativistic
field theories, which have been studied extensively in recent
years due to their association with fracton models [10–12].
(See [13–15] for a review on this subject.) The simplest theory
in this class, commonly known as the “rank-2 scalar charge
theory” [10,11], involves U (1) gauge fields (Aτ , Ai j ) with
gauge symmetry

Aτ ∼ Aτ + ∂τα, Ai j ∼ Ai j + ∂i∂ jα. (1.1)

Here, α is the gauge parameter, and Ai j is symmetric in the
spatial indices i, j, i.e., Ai j = Aji.1

Most of the discussion in this paper with be in Euclidean
signature spacetime and we will denote the Euclidean time
direction by τ . In the few places where we will rotate to a
Lorentzian signature, we will denote the Lorentzian signature
time by t . We will often abuse the terminology and use the
phrase “timelike” to mean “along the Euclidean time direc-
tion.”

When this gauge theory is coupled to a matter theory, the
gauge field (Aτ , Ai j ) couples to Noether current (Jτ , Ji j ). The
gauge symmetry (1.1) shows that the Noether current (Jτ , Ji j )

1A variant of the above theory has only off-diagonal components
of the gauge field Ai j , i.e., Ai j = 0 for i = j [4,16–27]. Its properties
and dynamics are quite different from the theory we will study here.

must satisfy a dipole current conservation equation

∂τ Jτ = ∂i∂ jJ
i j, Ji j = J ji. (1.2)

This global symmetry and the current conservation have been
studied in [9,11,12,28–35]. A matter theory containing the
Noether current (Jτ , Ji j ) has a dipole global symmetry gen-
erated by the conserved scalar and dipole charges2

Q =
∫

space
Jτ , Qi =

∫
space

xiJτ . (1.4)

As we will discuss below, such global symmetries should be
handled with care. The factor of xi in the charge is not well
defined in compact space. And even on Rd it grows at infinity

2The variant of the tensor gauge theory with only off-diagonal
terms is coupled to a matter theory whose Noether current (Jτ , Ji j )
satisfies (1.2), but it has only off-diagonal components, i.e., Ji j = 0
for i = j. As for the gauge theory, this matter theory is quite different
from the theory with diagonal elements in Ji j . In particular, its
Noether current leads to a subsystem global symmetry generated by
the charges

Qi(x
i ) =

∫
fixedxi

Jτ , (1.3)

where the integral is over the subspace with fixed xi. This symmetry
is significantly larger than the dipole symmetry (1.4). Examples of
such theories were analyzed in [20,22,24,25,36].

2469-9950/2022/106(4)/045112(37) 045112-1 ©2022 American Physical Society

https://orcid.org/0000-0002-5926-1059
https://orcid.org/0000-0003-1294-2786
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.045112&domain=pdf&date_stamp=2022-07-11
https://doi.org/10.1103/PhysRevB.106.045112


GORANTLA, LAM, SEIBERG, AND SHAO PHYSICAL REVIEW B 106, 045112 (2022)

and the action of this Qi might take us out of the allowed space
of fields.

If the matter theory is invariant under spatial translations,
there is also a conserved momentum operator Pi. Together,
they satisfy

[Pj, Qi] = −iδi
jQ. (1.5)

This mixture between the global symmetry and translations
will be important below.

A typical matter theory in d spatial dimensions with the
conservation equation (1.2) is the Lifshitz theory (see [37],
and references therein) with the action

S =
∮

dτdd x

[
μ0

2
(∂τφ)2 + 1

2μ

(∑
i

∂2
i φ

)2]
. (1.6)

In this case, the conserved current (1.2) is3

Jτ = iμ0∂τφ, Ji j = i

μ
∂ i∂ jφ,

∂τ Jτ = ∂i∂ jJ
i j (1.7)

and the conserved charges are the scalar and dipole charges
(1.4) implementing

φ → φ + c + cix
i, (1.8)

with constants c and ci. As we commented after (1.4), such a
transformation is subtle. If we work in compact space, it is not
well defined. And if we work on Rd , then this shift changes
the behavior of φ at infinity and takes us out of the allowed
space of fields.4

In most papers on the Lifshitz theory, the scalar field φ is
noncompact. Instead, following the discussion of the 2 + 1D
case in [39–47], we will be interested in the case where the
scalar is compact, i.e., φ ∼ φ + 2π . This compactness will
have important consequences below. Among other things, the
theory (1.6) has more global symmetries in addition to (1.7).

We can also go in the reverse direction. Given a matter the-
ory containing the Noether current (Jτ , Ji j ) satisfying (1.2),
we can gauge the dipole global symmetry by coupling the
current to the gauge field (Aτ , Ai j ) as

iAτ Jτ + iAi jJ
i j . (1.9)

We can also add kinetic terms for the gauge fields, such as E2
i j

and B2
[i j]k , where

Ei j = ∂τ Ai j − ∂i∂ jAτ ,

B[i j]k = ∂iA jk − ∂ jAik (1.10)

3Here we follow the conventions in [38] where when we analyt-
ically continue to a Lorentzian signature, Jτ does not get another
factor of i due to its subscript.

4Actually, in this case, the equation of motion μ0∂
2
τ φ = 1

μ
∂i∂

i∂ j∂
jφ

suggests that there are additional conserved charges—multipole
charges, e.g., Qi j = ∫

space xix jJτ and Qi jk = ∫
space xix jxkJτ , im-

plementing the transformations φ → φ + ci jxix j and φ → φ +
ci jkxix jxk , respectively. These transformations are even more sin-
gular than the shift (1.8) and might not even leave the action (1.6)
invariant.

are the electric and magnetic fields. Then, we can study the
pure gauge theory of (Aτ , Ai j ) without matter.

There are some important questions and subtleties in both
the matter and gauge theories mentioned above:

(i) It is common to analyze a theory in finite volume by
placing it on a compact space, such as a flat spatial torus with
periodic boundary conditions. However, if we place the matter
theory with a dipole global symmetry on a compact space, the
dipole charge Qi is not well defined even if the scalar charge
Q vanishes [31]. See also the comment after (1.4).

(ii) The pure gauge theory of (Aτ , Ai j ) famously has frac-
ton defects, i.e., defects that describe world-lines of immobile
particles, or fractons. The immobility of fractons is usually
attributed to conservation of scalar and dipole charges [10].
However, in a gauge theory, the notion of “conservation of
charge” does not make sense in compact space because the
global symmetry generated by that charge is gauged.5 Here,
“charge” refers to both scalar and dipole charges.

(iii) What is the geometric setup for such tensor gauge
theories? What are the allowed gauge transformations and
transition functions? What are the nontrivial bundles and
how are they characterized? What replaces the notion of
holonomies?

The goal of this paper is to address these subtleties,
and make the statement of immobility of fractons in theo-
ries with dipole global symmetries more precise. Following
[24–26,31,38,48–52], we will focus on the global symmetries
and their consequences and then we will study the correspond-
ing gauge theory.

For simplicity, let us consider the 1 + 1D continuum theory
described by the action

S =
∮

dτdx

[
μ0

2
(∂τφ)2 + 1

2μ

(
∂2

x φ
)2
]
, (1.11)

where φ ∼ φ + 2π is a compact scalar, and μ0 and μ are
coupling constants with mass dimensions 0 and 2. Due to
the mass dimension and periodicity of φ, the local operators
eiφ and ∂xφ exist in this continuum theory. The obvious fact
that since φ is dimensionless, ei∂xφ does not exist, will have
important consequences below.

The theory has a dipole global symmetry that shifts φ as

φ(τ, x) → φ(τ, x) + c + cxx. (1.12)

We will comment on the global properties of c and cx momen-
tarily. This is the simplest scalar field theory with a dipole
global symmetry, while more general ones with multipole
global symmetries have been discussed extensively in 12,28–
30,32–35].

We now turn to the global aspects of the above dipole
global symmetry. The parameter c ∼ c + 2π is a circle-valued
constant, which generates an ordinary U (1) symmetry. Fol-
lowing the standard terminology in string theory, we will refer

5When the theory is placed on a space with a boundary, the notion
of gauge charge depends on the boundary conditions, and in a non-
compact space, we can discuss the total gauge charge measured at
infinity.
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to this symmetry as the U (1) momentum global symmetry.6

On the other hand, cx is a real constant with mass dimension
1, which generates a momentum dipole symmetry. On non-
compact space, the symmetry group of the momentum dipole
symmetry is the noncompact group of real numbers R [rather
than the compact group U (1)]. If we place the theory on a
spatial circle of length �x, the shift cxx is not well defined
unless cx ∈ 2π

�x
Z. So, on a compact space, the symmetry group

generated by cx is actually the discrete group of integers Z.
The action (1.11) is also invariant under spatial transla-

tions. Denote the U (1) charge of momentum symmetry by Q,
the generator of Z momentum dipole symmetry by U , and the
generator of spatial translations by P. They satisfy

[P,U ] = 2π

�x
QU . (1.13)

It differs from (1.5) because on a compact space the dipole
symmetry is Z rather than R.

Interestingly, the continuum theory (1.11) has an infinite
ground state degeneracy.7 This can be understood as a result
of the symmetries of the model as follows.

In addition to the U (1) momentum and the Z momentum
dipole symmetries discussed above, the continuum theory
(1.11) has a U (1) winding dipole global symmetry. We will
discuss it in detail below. Denoting the U (1) charge of the
winding dipole symmetry by Q̃, we have

[Q̃,U ] = U, (1.14)

or, in terms of the more general group elements Um = U m and
eiθQ̃,

UmeiθQ̃ = e−imθ eiθQ̃Um. (1.15)

This lack of commutativity between the group elements of
the momentum and winding dipole symmetries means that
the Hilbert space realizes this symmetry projectively. And
as a result, the ground state is infinitely degenerate. More
abstractly, this can be described as a ’t Hooft anomaly between
these symmetries.

In Sec. II, we will analyze the theory (1.11) in more detail.
In order to regularize the infinite ground state degeneracy, we
will formulate it on a finite Euclidean lattice. And then, in
order to preserve the symmetries of the continuum theory, we
will study its modified Villain version following [38,54]. On a
lattice with Lx sites, the modified Villain model has Lx ground
states. It becomes infinite in the continuum limit. Curiously,
there are at least three natural continuum limits of this lattice
model. They have the same action (1.11), but differ in the
identifications on the scalar field.

6Here by “momentum” we mean the momentum in the target space,
rather than on the worldsheet. In the condensed matter literature, this
symmetry is referred to as the “particle number symmetry.”

7A similar phenomenon has been noted in the 2 + 1D quantum
dimer model at the Rokhsar-Kivelson point [53] and in the 2 + 1D
quantum Lifshitz model [39,40].

It turns out that this lattice model is the same as the mod-
ified Villain version of the 2 + 1D φ-theory8 of [38] on a
slanted spatial 2-torus (as in [50]) with identifications

(x̂, ŷ) ∼ (x̂ + Lx, ŷ) ∼ (x̂ + 1, ŷ − 1), (1.17)

where the integers (x̂, ŷ) label the sites of the spatial lattice,9

and Lx is the number of sites in the x direction. This equiv-
alence between the 1 + 1D theory and the 2 + 1D theory on
a slanted torus exists even for the U (1) and ZN dipole gauge
theories described below. The agreement between the analyses
of the 1 + 1D theory here and the 2 + 1D theory in [50]
provides an interesting perspective and a good check on these
two independent discussions.

In Sec. III, we will study the pure gauge theory of the
U (1) dipole gauge fields (Aτ , Axx ) that couple to the U (1)
dipole global symmetry of the 1 + 1D dipole φ-theory. It
is the 1 + 1D version of the pure gauge theory of (Aτ , Ai j )
mentioned around (1.1). The gauge theory has defects that
describe world-lines of fractons. Which defects should be
considered and their properties depend on the second and third
subtleties above.

A crucial element in the analysis of gauge theories is their
electric and magnetic global symmetries [55]. The electric
global symmetries are associated with shifts of the gauge
fields that leave the action invariant, but are not gauge trans-
formations.

In a pure gauge theory like ours, the system does not
have charged dynamical fields and the objects charged under
the global symmetry are various line operators and defects.
In a relativistic system, people often abuse the terminology
and do not distinguish between line operators, which acts
at a given time, and line defects, which are supported on a
timelike line.10 The latter represent the world-line of a probe
of massive particles.

However, in our case, which is not relativistic, the dis-
tinction between these two notions is important. We refer
to symmetries that act on operators as ordinary or spacelike
global symmetries, and to symmetries that act on defects,
but not on operators, as timelike global symmetries. See Ap-
pendix A for a more detailed discussion of timelike global
symmetries.

Let us return to the U (1) dipole gauge theory. It was origi-
nally argued in [10–12] that when it is coupled to matter fields,
the matter fields are immobile. We will study the theory with-
out dynamical matter fields. Instead, the theory has defects

exp

(
i
∮

dτAτ (τ, x)

)
, (1.18)

8The continuum 2 + 1 φ-theory is described by the action

S =
∮

dτdxdy

[
μ0

2
(∂τφ)2 + 1

2μ
(∂x∂yφ)2

]
. (1.16)

9Note that x̂ and ŷ are not unit vectors, but integers labeling the
sites.

10As we said above, our discussion will be mostly in Euclidean
spacetime. Then, when we say that the defect is supported on a time-
like line, we mean that it is supported on a line along the Euclidean
time direction.
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which represent the world-lines of probe charged particles.
As in the discussion in [24–26] of a different theory, it is
easy to see, using the gauge transformation laws of the gauge
field (1.1), that these defects are immobile—these defects are
fractons.

Below, we will derive the immobility of the defect (1.18) as
a consequence of a global symmetry. The theory has a timelike
global symmetry that acts on this fracton defect as

exp

(
i
∮

dτAτ (τ, x)

)
→ exp

(
icτ + 2π im

x

�x

)

× exp

(
i
∮

dτAτ (τ, x)

)
, (1.19)

where cτ ∼ cτ + 2π is circle-valued, and m is an integer.
Fracton defects at different positions carry different timelike
dipole charges, so they cannot be deformed to each other with-
out violating the timelike global symmetry. This explains the
restricted mobility of fractons using global symmetry, rather
than gauge symmetry. It also gives a more precise explanation
of the intuitive “dipole moment conservation” discussed in
[10–12].

Curiously, the operator
∮

dx Axx, which is a line observable
acting at a fixed time, does not need exponentiation for gauge
invariance. This will be discussed in detail below.

We will see that there are other consistent continuum tensor
gauge theories with the same Lagrangian, but with different
global properties of the fields where the fractons (1.18) are
absent.

In Sec. IV, we will study the 1 + 1D ZN dipole gauge
theory. Following [38], we will consider a BF version of the
theory on a Euclidean lattice. It has a ground state degeneracy
of N gcd(N, Lx ), where Lx is the number of sites in the x di-
rection. This is a consequence of the mixed ’t Hooft anomaly
in the spacelike symmetry of the model.

Surprisingly, unlike the U (1) theory, the ZN dipole gauge
theory has no fractons on the lattice. (This was pointed out in a
closely related model in [17–19].) First, a particle can hop by
N sites. In addition, on a finite lattice with Lx sites, a particle
can move around the whole space a number of times and
end up hopping by gcd(N, Lx ) sites. Once again, the relaxed
restriction on the mobility is explained by the timelike global
symmetry of the model.

To summarize, the ground state degeneracy of these models
follows from their spacelike global symmetries and the re-
stricted mobility of their defects is controlled by their timelike
global symmetries.

Observe that both the ground state degeneracy and the
mobility of defects depend on the number-theoretic properties
of Lx. Consequently, this theory does not have a smooth Lx →
∞ continuum limit, which is a manifestation of the UV/IR
mixing of such theories [24,51]. Related phenomena have also
been observed in various models, for example [50,56–59].
Our example is presumably the simplest setup exhibiting this
phenomenon.11

11This phenomenon in our 1 + 1D model is perhaps not as surpris-
ing as the UV/IR mixing in other exotic models in higher spacetime
dimensions. Indeed, it is common for standard lattice systems, such

In Appendix, we will introduce and explain the notion of
timelike global symmetry in various well-known theories. In
an ordinary gauge theory, it is part of the one-form global
symmetry. In exotic gauge theories with subsystem symme-
tries, including models containing fractons, it explains the
restricted mobility of fractons, lineons, etc. In particular, using
timelike global symmetries, we will show that the mobility of
fractons and lineons in the X-cube model, which is naively a
local property, can depend sensitively on the global geometry
of the lattice. In all these examples, the timelike symmetry
is a consequence of Gauss law in the presence of defects.
However, gauge fields are not essential for the existence of
timelike symmetry, as we will demonstrate in the case of a
2 + 1D compact boson.

II. 1 + 1D DIPOLE φ-THEORY

In this section, we will study a compact scalar field theory
in 1 + 1D with dipole global symmetries. We will place the
modified Villain version of this theory on a finite Euclidean
space-time lattice with Lx sites in the x-direction and Lτ sites
in the τ -direction, and impose periodic boundary conditions.
This will lead us to explore various different continuum limits.

A. First look at the continuum theory—compact Lifshitz theory

Consider the continuum action

S =
∮

dτdx

[
μ0

2
(∂τφ)2 + 1

2μ

(
∂2

x φ
)2
]
, (2.1)

where φ is a dimensionless compact scalar with the identifi-
cation φ(τ, x) ∼ φ(τ, x) + 2π . We will refer to this theory as
the 1 + 1D dipole φ-theory.

The action (2.1) is the same as that of a 1 + 1D version of
Lifshitz scalar field theory (see [37], and references therein).
However, it differs from the conventional Lifshitz theory in
that our scalar field is compact. Hence the term “compact
Lifshitz theory.” It is also similar to that of a 1 + 1D version
of the 2 + 1D quantum Lifshitz model [39–47], which has a
compact scalar field. The relation to Lifshitz theory will be
reviewed in Sec. II D 3.

Let us place this continuum system on the circle of length
�x and analyze its global symmetries:

(i) A U (1) momentum symmetry shifts φ → φ + c, where
c is a real constant. The periodicity of φ makes c circle-valued.
The Noether current is12

Jτ = iμ0∂τφ, Jxx = i

μ
∂2

x φ,

∂τ Jτ = ∂2
x Jxx. (2.2)

systems with frustration, to exhibit a ground state degeneracy that
depends sensitively on the number of lattice sites. It would be nice to
understand whether a similar interpretation of the degeneracy exists
in our example.

12Recall our conventions, as discussed in footnote 3. They guaran-
tee that in Lorentzian signature the charge operator is Hermitian.
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The conserved charge is

Q =
∮

dxJτ . (2.3)

The operators charged under this symmetry are einφ with
integer n.

(ii) A U (1) winding dipole symmetry has Noether cur-
rent13

J̃τ = − 1

2π
∂xφ, J̃x = − 1

2π
∂τφ,

∂τ J̃τ = ∂xJ̃x. (2.4)

The conserved charge is

Q̃ =
∮

dxJ̃τ . (2.5)

A configuration that carries a nontrivial U (1) winding dipole
charge p ∈ Z is

φ(τ, x) = −2π p
x

�x
. (2.6)

Since this charge is quantized, this symmetry is U (1), rather
than R.

(iii) A Z momentum dipole symmetry acts on φ as

Um : φ(τ, x) → φ(τ, x) + 2πm
x

�x
(2.7)

for some integer m. Here we use Um to denote the corre-
sponding symmetry operator. This symmetry acts on the local
operator ∂xφ inhomogeneously. Importantly, ei∂xφ is not a
well-defined local operator in this continuum theory because
∂xφ has mass-dimension 1. Note that because of the compact
space and the compact target space, this dipole symmetry
action does not suffer from the subtlety mentioned after (1.4).

The Z momentum dipole symmetry does not commute
with the U (1) winding dipole symmetry

UmeiθQ̃ = e−imθ eiθQ̃Um. (2.8)

The minimal representation of this algebra is infinite dimen-
sional with states |p〉, p ∈ Z,

Q̃|p〉 = p|p〉,
Um|p〉 = |p + m〉. (2.9)

It implies that all energy levels, in particular the lowest energy
level, are infinitely degenerate and the states transform in a
projective representation of the two symmetries. This signals
a mixed ’t Hooft anomaly.

It is easy to see that the theory is not invariant under any
scale transformation. For example, under the scale transfor-
mation of the Lifshitz theory with a noncompact φ,

x → λx, τ → λ2τ, (2.10)

the couplings scale as

μ0 → μ0

λ
, μ → λμ. (2.11)

13We refer to this U (1) symmetry as a dipole symmetry for reasons
that will become clear in Sec. II B.

Alternatively, we can keep the coupling constants unchanged,
but scale φ. This has the effect of changing the periodicity
of φ from 2π to 2π/

√
λ. Either way, we see that the dipole

φ-theory (2.1) is not scale invariant.
Since the continuum theory is very singular, we would

like to regularize it on a lattice, while preserving its global
symmetries. Below we will discuss the modified Villain model
of (2.1), which provides an unambiguous regularization of the
continuum theory.

B. Modified Villain formulation

In the Villain form, the continuum theory is associated with
the lattice action14

S = β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
site

(
�2

xφ − 2πnxx
)2

,

(2.12)

where �2
x f (x̂) = f (x̂ + 1) + f (x̂ − 1) − 2 f (x̂). Here, φ is a

real-valued scalar field and (nτ , nxx ) are integer-valued gauge
fields with gauge symmetry

φ ∼ φ + 2πk,

nτ ∼ nτ + �τ k, (2.13)

nxx ∼ nxx + �2
xk,

where k are integer gauge parameters. This Z gauge symmetry
effectively makes φ compact.

We can further deform the action (2.12) to the modified
Villain version:

S = β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
site

(
�2

xφ − 2πnxx
)2

+ i
∑
τ -link

φ̃
(
�τ nxx − �2

xnτ

)
, (2.14)

where φ̃ is a Lagrange multiplier that makes the integer gauge
fields (nτ , nxx ) flat. It has a gauge symmetry

φ̃ ∼ φ̃ + 2π k̃, (2.15)

where k̃ are integer gauge parameters. Physically, the above
deformation suppresses all topological excitations, or vor-
tices.

In the rest of this subsection, we will analyze this modified
Villain model (2.14) following similar steps in [38].

1. Relation to 2 + 1D φ-theory

First, we will provide an alternative interpretation of
the 1 + 1D action (2.14). We will show that it arises
from the modified Villain version of the 2 + 1D φ-theory15

14In Sec. II D 2, we will comment on the relation between them.
15The continuum limit of this modified Villain lattice model is

the 2 + 1D φ-theory of [24,36] with Lagrangian (1.16). See also
[21,22,51,52,60–64] for related discussions.
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[38]

S = β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
xy-plaq

(�x�yφ − 2πnxy)2

+ i
∑
cube

φxy(�τ nxy − �x�ynτ ) (2.16)

on a special torus. This relation can be viewed roughly as a
dimension reduction, but we emphasize that this is an exact
equivalence with no approximation involved.

We place this 2 + 1D lattice model (2.16) on a slanted
spatial torus with identifications

(x̂, ŷ) ∼ (x̂ + Lx, ŷ) ∼ (x̂ + 1, ŷ − 1). (2.17)

On this slanted torus, we have the following relations:

�yφ(τ, x̂, ŷ) = �xφ(τ, x̂, ŷ),

�x�yφ(τ, x̂, ŷ) = �2
xφ(τ, x̂ + 1, ŷ). (2.18)

In [50], the continuum 2 + 1D φ-theory was studied on a torus
with more general complex structure.

Next, we treat the y-direction as the compactified direction,
and view the resulting system as 1 + 1 dimensional. More
specifically, we can always use the identification (2.17) to
bring any field to ŷ = 0. We thus replace the fields of the
2 + 1D model by the fields in 1 + 1D:

φ(τ, x̂, 0) = φ(τ, x̂), �x�yφ(τ, x̂ − 1, 0) = �2
xφ(τ, x̂),

nτ (τ, x̂, 0) = nτ (τ̂ , x̂), nxy(τ, x̂ − 1, 0) = nxx(τ, x̂),

φxy(τ, x̂ − 1, 0) = φ̃(τ, x̂). (2.19)

Under this replacement, the 2 + 1D action (2.16) on this elon-
gated torus (2.17) is exactly equivalent to the 1 + 1D model
(2.14). From this exact equivalence, all the analysis in the rest
of this section follows from the 2 + 1D φ-theory on a slanted
torus [50].x

2. Global symmetry

The global symmetry of the modified Villain model (2.14)
includes the following:

(i) The U (1) momentum symmetry acts as φ → φ + c,
where c is a real constant. The Noether current is

Jτ = iβ0(�τφ − 2πnτ ), Jxx = iβ(�2
xφ − 2πnxx ),

�τ Jτ = �2
xJxx, (2.20)

which follows from the equation of motion of φ. The charge
is

Q =
∑

τ -link: fixed τ̂

Jτ , (2.21)

and the charged operators are einφ with charge n ∈ Z. The
symmetry transformations with c and with c + 2π are related
by a gauge transformation. Therefore, this symmetry group is
U (1) rather than R.

(ii) The ZLx momentum dipole symmetry acts as

φ → φ + 2πm
x̂

Lx
for 0 � x̂ < Lx,

nxx → nxx + m(δx̂,0 − δx̂,Lx−1),
(2.22)

where m = 0, 1, . . . , Lx − 1, and δx̂,x̂0 is the Kronecker delta
function. It is a ZLx rather than a Z symmetry, because the
shift corresponding to m ∈ LxZ is a gauge transformation
(2.13). The symmetry operator is16

Um = exp

(
2π im

Lx

∑
τ -link: fixed τ̂

x̂Jτ − im[φ̃(τ̂ , 0)

− φ̃(τ̂ , Lx − 1)]

)
. (2.23)

Here the sum is restricted to the fundamental domain 0 � x̂ <

Lx. It can be understood in a simple way: the first and second
terms shift φ and nxx, respectively, as in (2.22). The charged
operators are eiφ and eip�xφ with p ∈ Z. The operator eip�xφ

has ZLx charge p mod Lx. See below how the symmetry acts
on these charged operators.

(iii) There is a U (1) winding symmetry that shifts φ̃ →
φ̃ + c̃, where c̃ is a circle-valued real constant. The Noether
current is

J̃τ = 1

2π
(�2

xφ − 2πnxx ), J̃xx = 1

2π
(�τφ − 2πnτ ),

�τ J̃τ = �2
x J̃xx, (2.24)

which follows from the equation of motion of φ̃. The charge
is

Q̃ =
∑

site: fixed τ̂

J̃τ = −
∑

site: fixed τ̂

nxx. (2.25)

The charged operators are eiñφ̃ with charge ñ ∈ Z.
(iv) Finally, there is a ZLx winding dipole symmetry that

shifts

φ̃ → φ̃ + 2πm̃
x̂

Lx
for 0 � x̂ < Lx, (2.26)

where m̃ ∈ Z. It is a ZLx rather than a Z symmetry because
the shift corresponding to m̃ ∈ LxZ is a gauge transformation
(2.13). The symmetry operator is

Ũm̃ = exp

(
−2π im̃

Lx

∑
site: fixed τ̂

x̂nxx

)
. (2.27)

The charged operators are eiφ̃ and eip̃�x φ̃ with p̃ ∈ Z. The
operator eip̃�x φ̃ has ZLx charge p̃ mod Lx. See below how the
symmetry acts on these charged operators.

The operator einφ (eiñφ̃), which is charged under the U (1)
momentum (winding) symmetry, does not transform simply
under the ZLx momentum (winding) dipole symmetry. The
reason is that the ZLx spatial translation symmetry does not
commute with the dipole symmetries. Let T be the generator
of the lattice translation x̂ → x̂ + 1. Then,

TUmT −1 = e
2π i
Lx

mQUm,

TŨm̃T −1 = e
2π i
Lx

m̃Q̃Ũm̃. (2.28)

16The current Jτ is imaginary in Euclidean signature. Following the
comment in footnote 3, it is Hermitian in Lorentzian signature and
consequently, Um is unitary.
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Note that this lack of commutativity is not a central extension
of the symmetries generated by the dipole symmetries and the
translations. It is not an anomaly.

On the other hand, the noncommutativity of the two ZLx

dipole symmetries,

UmŨm̃ = e− 2π i
Lx

mm̃Ũm̃Um, (2.29)

does signal a mixed ’t Hooft anomaly between them. [This
follows from using (2.22) and (2.26) in the operators (2.27)
and (2.23).] As a result, every energy level is Lx-fold degen-
erate. In particular, there is a large ground state degeneracy,
which depends on the number of lattice sites Lx. As in [51],
this degeneracy, which depends on the number of sites, is a
manifestation of UV/IR mixing.

As discussed in Sec. II B 1, the 1 + 1D modified Villain
model (2.14) is equivalent to the 2 + 1D φ-theory on a slanted
torus (2.17). Indeed, the algebra (2.29) arises from the pro-
jective ZM × ZM symmetry discussed in Sec. 3 of [50], with
M = Lx in that reference for the torus (2.17).

3. Self-duality

Using Poisson resummation of the integers (nτ , nxx ), the
modified Villain model (2.14) is self-dual with φ ↔ φ̃ and
β0 ↔ 1

(2π )2β
. The dual action is

S = 1

2(2π )2β

∑
site

(�τ φ̃ − 2π ñτ )2

+ 1

2(2π )2β0

∑
τ -link

(
�2

x φ̃ − 2π ñxx
)2

− i
∑
site

φ
(
�τ ñxx − �2

x ñτ

)
, (2.30)

where (ñτ , ñxx ) are integer gauge fields that make φ̃ compact.
Under the gauge symmetry (2.15), they transform as

ñτ ∼ ñτ + �τ k̃, ñxx ∼ ñxx + �2
x k̃. (2.31)

4. Gauge fixing the integers

Following the same procedure as in [38], after integrating
out φ̃ and gauge fixing the integer gauge fields, the action
(2.14) can be written in terms of a new field φ̄ as

S = β0

2

∑
τ -link

(�τ φ̄)2 + β

2

∑
site

(
�2

x φ̄
)2

. (2.32)

The new field is defined as

φ̄(0, 0) = φ(0, 0), �xφ̄(0,−1) = �xφ(0,−1),

�2
x φ̄ = �2

xφ − 2πnxx,

�τ φ̄ = �τφ − 2πnτ . (2.33)

The integer gauge fields are gauge fixed to zero except that

nτ (Lτ − 1, x̂) = −n̄τ ,

nxx(0, 0) = −n̄xx − p̄xx, (2.34)

nxx(0, Lx − 1) = p̄xx,

where n̄τ , n̄xx, p̄xx ∈ Z. The residual gauge symmetry acts on
φ̄ as

φ̄(τ̂ , x̂, ŷ) ∼ φ̄(τ̂ , x̂, ŷ) + 2πk0 + 2πkxx̂, k0, kx ∈ Z.

(2.35)

The remaining gauge parameters k0, kx are constant on the
lattice.

Unlike φ, the field φ̄ need not be single-valued. Instead, it
can wind with the boundary condition

φ̄(τ̂ + Lτ , x̂) = φ̄(τ̂ , x̂) + 2π n̄τ ,

φ̄(τ̂ , x̂ + Lx ) = φ̄(τ̂ , x̂) + 2π n̄xxx̂ + 2π p̄xx. (2.36)

Because of the gauge symmetry (2.35), p̃xx ∼ p̃xx + Lx. One
configuration that winds in the x-direction is

φ̄(τ̂ , x̂) = 2π n̄xx
x̂(x̂ − Lx )

2Lx
+ 2π p̄xx

x̂

Lx
. (2.37)

5. Spectrum

We will now determine the spectrum of the theory. We
will work with a continuous Lorentzian time, denoted by t ,
while keeping the space discrete. We do this by introducing a
lattice spacing aτ in the τ -direction, taking the limit aτ → 0,
while keeping β ′

0 = β0aτ and β ′ = β/aτ fixed, and then Wick
rotating from Euclidean time to Lorentzian time.

The spectrum of the modified Villain model (2.14) in-
cludes plane waves with nonzero spatial momentum and states
charged under the U (1) momentum and winding symmetries.
The dispersion relation for the plane waves is

ωnx = 4

√
β ′

β ′
0

sin2

(
πnx

Lx

)
. (2.38)

The winding configuration (2.37) has the minimal energy
with those charges:

H = β ′

2

∑
site: fixed τ

(
�2

x φ̄
)2 = (2π )2β ′

2Lx
ñ2. (2.39)

Note that the energy does not depend on p̃. This is related to
the fact that the two ZLx dipole symmetries have a mixed ’t
Hooft anomaly resulting in a degeneracy in the spectrum.

Similarly, the minimal energy of a state with U (1) momen-
tum charge n is

H = n2

2β ′
0Lx

. (2.40)

For fixed lattice parameters (recall that we have taken
aτ → 0 and rotated to Lorentzian signature), the energies of
the three kinds of states scale with Lx as

Ewave ∼ 1

L2
x

, Emom ∼ 1

Lx
, Ewind ∼ 1

Lx
, (2.41)

i.e., for large Lx, the states charged under the U (1) momen-
tum or winding symmetry are parametrically heavier than the
plane waves.

Finally, recall that each state appears Lx times forming
a projective representation of the two ZLx momentum and
winding symmetries.
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TABLE I. Relation between the global symmetries on the lattice and in various continuum limits. The global symmetries of the continuum
dipole �-theory are the same as in the second column after swapping “momentum” and “winding.”

Lattice Continuum dipole φ-theory Continuum dipole φ̂-theory

U (1) momentum U (1) momentum Does not act
U (1) winding Does not act Does not act
ZLx momentum dipole Z momentum dipole R momentum dipole
ZLx winding dipole U (1) winding dipole R winding dipole

The above degeneracy is lifted if we impose only the mo-
mentum symmetries. Indeed, the deformation of the modified
Villain model (2.14) by the winding dipole operator ei�x φ̃

breaks the ZLx winding dipole symmetry explicitly and lifts
the ground state degeneracy.

C. Continuum limits

Now that we understand the modified Villain model (2.14),
we can explore its continuum limit. Surprisingly, there are
three possible continuum limits. All of them have the same
continuum Lagrangian, but their fields have different prop-
erties. Consequently, the three different continuum theories
have different global symmetries (see Table I) and different
spectra (see Table II). One of these theories corresponds to
the continuum theory (2.1).

In all these limits, we introduce the spatial lattice spacing a,
and take the limit a, aτ → 0 and Lx, Lτ → ∞ such that �x =
aLx and �τ = aτ Lτ are fixed.

Before analyzing the system in detail, let us discuss the
limit of the algebra of dipole symmetries (2.29)

UmŨm̃ = e− 2π i
Lx

mm̃Ũm̃Um. (2.42)

As we take Lx → ∞, we can focus on different elements of
this algebra to find different limits. Here are some options.

(i) We can focus on Um and Ũm̃ with finite m and m̃. In this
limit, these operators lead to two commuting copies of Z.

(ii) We can focus on Um with finite m and Ũm̃ with m̃ → ∞
and finite m̃

Lx
→ r̃. (Clearly, r̃ is circle-valued.) In this limit,

the operators Um lead to Z, the operators Ũm̃ → Ũr̃ lead to
U (1), and they do not commute,

UmŨr̃ = e−2π imr̃Ũr̃Um. (2.43)

(iii) We can exchange U ↔ Ũ in the previous limit.

TABLE II. Energies of the three kinds of states on the lattice and
in various continuum limits. The energies of the continuum dipole �-
theory are the same as in the third row after swapping “momentum”
and “winding.” The fact that the energies of the winding states of the
φ-theory diverge in the continuum limit is compatible with the lack of
local winding operators in this theory (Table III). A similar comment
applies to the momentum and winding states in the φ̂-theory.

Theory Ewave Emom Ewind

Modified Villain model 1
L2

x

1
Lx

1
Lx

Continuum dipole φ-theory 1
�2

x

1
�x

1
a2�x

Continuum dipole φ̂-theory 1
�2

x

1
a�x

1
a�x

(iv) We can focus on Um and Ũm̃ with m, m̃ → ∞, with
fixed m√

Lx
, m̃√

Lx
. In this limit, we can write Um → exp(i m√

Lx
U )

and Ũm̃ → exp(i m̃√
Lx
Ũ ). U and Ũ generate two copies of R,

which do not commute,

[U , Ũ ] = 2π i. (2.44)

Below we will see these algebras (except the first one) in
various limits of the lattice system.

1. 1 + 1D dipole φ-theory

To obtain the continuum dipole φ-theory (2.1), we scale the
lattice coupling constants with a, aτ as

β0 = μ0a

aτ

, β = aτ

μa3
, (2.45)

where μ0 and μ are fixed continuum coupling constants with
mass dimensions 0 and 2, respectively.

In this continuum limit, the global symmetries of the mod-
ified Villain model reduce to the ones discussed in Sec. II A.
This is the second option in the list following (2.42). See
Table I for the relation between the global symmetries in this
continuum limit and on the lattice. In particular, the U (1)
winding symmetry of the modified Villain lattice model does
not act in the continuum theory. Since ∂xφ is a well-defined
operator, the U (1) winding charge associated with (2.24) van-
ishes,17

Q̃ = 1

2π

∮
dx∂2

x φ = 0. (2.46)

Relatedly, the lattice operator ei�xφ becomes neutral under
the momentum dipole symmetry. It does not lead to expo-
nential operators, but to operators of the form ∂xφ, which
transforms under the Z momentum dipole symmetry inho-
mogeneously. In contrast, eiφ is a well-defined local operator
charged under the U (1) momentum symmetry. See Table III
for a comparison of charged operators on the lattice and in the
continuum theory.

As mentioned around (2.10), the dipole φ-theory is not
scale invariant under any scaling of x and τ because the
periodicity of φ is not preserved under this scaling.

17We see here an interesting analogy with the φ-theories with
subsystem symmetry in 2 + 1D. There, the momentum and winding
subsystem symmetry currents exist in the continuum limit. But the
continuum theory has no charged finite energy states [24,38,51].
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TABLE III. Some local operators that transform under various
symmetries on the lattice and in the three continuum limits. The
exponentiated operators shown here transform linearly under their
respective symmetry transformations, whereas the others transform
inhomogeneously. Here, φ and φ̃ have mass dimension 0, � and �̃

have mass dimension −1, and φ̂ and φ̌ have mass dimension − 1
2 .

Note that the exponent is always dimensionless, and its coefficient
is always an integer. Consequently, no continuum theory has local
operators of the form eiφ and ei∂xφ at the same time. The continuum
fields � and φ̃ are dual to each other as discussed in Sec. II C 2.
Similarly, the continuum fields φ and �̃ are dual to each other. The
continuum fields φ̂ and φ̌ are dual to each other, as discussed in
Sec. II C 3.

Symmetry Lattice φ-theory �-theory φ̂-theory

Momentum eiφ eiφ

Winding eiφ̃ eiφ̃

Momentum dipole ei�xφ ∂xφ ei∂x� ∂xφ̂

Winding dipole ei�x φ̃ ei∂x�̃ ∂xφ̃ ∂xφ̌

The energies of the three kinds of states in this limit are
(see Table II)

Ewave ∼ 1√
μ0μ

1

�2
x

, Emom ∼ 1

μ0�x
, Ewind ∼ 1

μa2�x
.

(2.47)

We see that the plane waves and momentum states have finite
energy, but the winding states are infinitely heavy. This is
consistent with the fact the U (1) winding symmetry of the
lattice model does not exist in this continuum limit. Here we
see that the dipole φ-theory is not self-dual. We will study the
dual theory in Sec. II C 2.

2. 1 + 1D dipole �-theory

We consider a different continuum limit of (2.14) by scal-
ing

β0 = M0a3

aτ

, β = aτ

Ma
, (2.48)

where M0 and M are fixed continuum coupling constants with
mass dimensions 2 and 0, respectively. At the same time, we
define the continuum field � as

� ≡ aφ̄. (2.49)

Recall that φ̄ is the gauge-fixed version of φ on the modified
Villain lattice model. The action of this continuum limit is

S =
∮

dτdx

[
M0

2
(∂τ�)2 + 1

2M

(
∂2

x �
)2
]
. (2.50)

This action is very similar to that of the dipole φ-theory
(2.1), but � has a different mass dimension of −1, and a
different identification

�(τ, x) ∼ �(τ, x) + c + 2πx, (2.51)

where c is an arbitrary constant. We will refer to this theory as
the 1 + 1D dipole �-theory.

Using the standard duality transformation in the contin-
uum, we find that the �-theory is dual to the 1 + 1D dipole

φ-theory (2.1):

S =
∮

dτdx

[
μ̃0

2
(∂τ φ̃)2 + 1

2μ̃

(
∂2

x φ̃
)2
]
, (2.52)

with the following identification of the couplings:

M0 = μ̃

(2π )2
, M = (2π )2μ̃0. (2.53)

Here, φ̃ has mass-dimension 0. It is subject to the identifica-
tion φ̃ ∼ φ̃ + 2π and has the same global properties as φ of
Sec. II C 1. The currents from the two dual descriptions are
mapped to each other as follows:

iM0∂τ� = 1

2π
∂2

x φ̃,
i

M
∂2

x � = 1

2π
∂τ φ̃. (2.54)

This is the continuum version of the duality in the modified
Villain lattice model discussed in Sec. II B 3.

We now discuss the global symmetries in this continuum
limit. This theory corresponds to the third option in the list
following (2.42).

(i) Since the constant shift of the continuum field � is part
of the gauge symmetry (2.51), the U (1) momentum charge
(2.21) vanishes:

Q = iM0

∮
dx∂τ� = 0. (2.55)

We conclude that the U (1) momentum symmetry on the lat-
tice does not act in the continuum �-theory. This is consistent
with the fact that the would-be charged local operator ei� does
not exist in the continuum theory because � has mass di-
mension −1 and has the gauge symmetry (2.51). The analogy
mentioned in footnote 17 is applicable also here.

(ii) The momentum dipole symmetry (2.22) shifts � →
� + θx with θ ∼ θ + 2π . The charged operator on the lattice
is ei�xφ , which becomes a nontrivial local operator ei∂x� in the
continuum. The ZLx momentum dipole symmetry becomes a
U (1) symmetry in the continuum.

(iii) The symmetry group of the winding symmetry (2.25)
is still U (1) in the continuum �-theory. The U (1) winding
charge Q̃ is

Q̃ = 1

2π

∮
dx ∂2

x �. (2.56)

The minimally charged configuration is

� = 2πx(x − �x )

2�x
. (2.57)

The charged local operator is eiφ̃ , where φ̃ is the dimensionless
dual field of �.

(iv) The ZLx winding dipole symmetry operator (2.27) on
the lattice becomes a Z symmetry in the continuum �-theory.
The symmetry operator in the continuum is

Ũm̃ = exp

[
− im̃

�x

(∫ x0+�x

x0

dx∂x� − 2πx0Q̃

)]
for m̃ ∈ Z.

(2.58)

Although ∂x� is not a well-defined operator, the symmetry
operator Ũm̃ is well defined. Moreover, it is independent of
x0. A configuration that carries a nontrivial Z dipole charge is
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� = θx (where we identify θ ∼ θ + 2π ). The charged local
operator is ∂xφ̃, which realizes the Z winding dipole symme-
try inhomogeneously.

See Table I for the relation between the global symmetries
in this continuum limit and on the lattice.

As in the discussion of the φ-theory in Sec. II C 1, because
of the identification (2.51), this theory is also not scale invari-
ant under any scaling of x and τ .

The energies of the three kinds of states in this limit are

Ewave ∼ 1√
M0M

1

�2
x

, Emom ∼ 1

M0a2�x
, Ewind ∼ 1

M�x
.

(2.59)

3. 1 + 1D dipole φ̂-theory

We can also study the low-energy limit with fixed lattice
couplings (2.41) and focus on the lightest states, the plane
waves, ignoring the momentum and winding states. (In ad-
dition, each state appears an infinite number of times because
of the momentum and winding dipole symmetry). This leads
to a self-dual spectrum.

We scale the lattice coupling constants as

β0 = μ̂0a2

aτ

, β = aτ

μ̂a2
, (2.60)

where μ̂0 and μ̂ are fixed continuum coupling constants with
mass dimension 1.18 We also define a new continuum field,

φ̂ = √
a φ̄, (2.61)

with mass dimension − 1
2 . Then the action (2.32) becomes

S =
∮

dτdx

[
μ̂0

2
(∂τ φ̂)2 + 1

2μ̂

(
∂2

x φ̂
)2
]
. (2.62)

The field φ̂ has gauge symmetry

φ̂(τ, x) ∼ φ̂(τ, x) + ĉ, (2.63)

where ĉ is a real constant. In other words, the zero mode of
φ̂ is removed. This means that ∂xφ̂ is a well-defined operator.
We will refer to this theory as the 1 + 1D dipole φ̂-theory.

The dipole φ̂-theory is self-dual with μ̂0 ↔ μ̂

(2π )2 . The field

φ̂ and its dual field φ̌ are related by the duality map

iμ̂0∂τ φ̂ = 1

2π
∂2

x φ̌,
i

μ̂
∂2

x φ̂ = 1

2π
∂τ φ̌. (2.64)

φ̌ has the same gauge symmetry (2.63) as φ̂.
Let us study the fate of various global symmetries of the

modified Villain model in this continuum limit. This theory
corresponds to the fourth option in the list following (2.42).

(i) The U (1) momentum symmetry φ̂ → φ̂ + ĉ does not
act in the dipole φ̂-theory because it is part of the gauge
symmetry (2.63).

18We will soon see that this theory is scale invariant, so fixing the
lattice coupling constants β0, β is equivalent to fixing the continuum
coupling constants μ̂0, μ̂.

(ii) The U (1) winding symmetry does not act in the dipole
φ̂-theory because ∂xφ̂ is a well-defined operator and the wind-
ing charge vanishes,

Q̃ = 1

2π

∮
dx∂2

x φ̂ = 0. (2.65)

This is consistent with the self-duality of φ̂-theory.
(iii) The ZLx momentum dipole symmetry becomes an R

momentum dipole symmetry, which acts as

φ̂(τ, x) → φ̂(τ, x) + c
x

�x
, (2.66)

where c is a real constant. This action seems inconsistent
with the periodic boundary conditions in space. However,
because of the gauge symmetry (2.63) it maps φ̂ between
different twisted sectors of the same theory and therefore it
is an allowed transformation.

(iv) Similarly, the ZLx winding dipole symmetry becomes
an R winding dipole symmetry. A nontrivial charged configu-
ration with charge q ∈ R is

φ̂(τ, x) = −q
x

�x
. (2.67)

Again, because of the gauge symmetry (2.63), this is a valid
configuration.

The self-duality exchanges the two R dipole symmetries.
Moreover, they do not commute with each other, resulting in
infinite ground state degeneracy.

See Table I for the relation between the global symmetries
in this continuum limit and on the lattice.

Under the scale transformation, x → λx, τ → λ2τ , we can
scale the field φ̂ as

φ̂ →
√

λφ̂, (2.68)

which leaves the action (2.62) invariant. It does not change the
identification (2.63). Therefore, the dipole φ̂-theory is scale
invariant.

The energies of the three kinds of states in this limit are

Ewave ∼ 1√
μ̂0μ̂

1

�2
x

, Emom ∼ 1

μ̂0a�x
, Ewind ∼ 1

μ̂a�x
.

(2.69)

We see that the plane waves have finite energy, but the
momentum and winding states are infinitely heavy. This
is consistent with the facts that the U (1) momentum and
winding symmetries of the lattice model do not act in this
continuum limit, and the dipole φ̂-theory is scale invariant.

Again, the analogy mentioned in footnote 17 is applicable
also here. In fact, here the analogy is even better because there
are no finite energy states charged under either the momentum
or the winding symmetry.

D. More comments

1. Local operators in different continuum limits

Let us compare the local operators that transform under the
global symmetries in the modified Villain lattice model and its
three continuum limits.

The modified Villain lattice model (2.14) has two dimen-
sionless compact scalar fields, φ and φ̃. The local operators
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include eiφ, ei�xφ, eiφ̃ , ei�x φ̃ , which are charged under the four
global symmetries discussed in Sec. II B 2. eiφ is charged
under the two momentum symmetries, while ei�xφ is invariant
under the U (1) momentum symmetry, but transforms under
the ZLx momentum dipole symmetry. Similarly, eiφ̃ is charged
under the two winding symmetries, while ei�x φ̃ is invariant
under the U (1) winding symmetry, but transforms under the
ZLx dipole winding symmetry.

In the continuum φ-theory, we have the local operators eiφ

and ∂xφ, but not ei∂xφ because φ has mass dimension 0.19 On
the other hand, in the continuum �-theory, we have the local
operators ei∂x�, but not ei� because � has mass dimension
−1. Finally, in the continuum φ̂-theory, we have the local
operators ∂xφ̂, but not eiφ̂ because φ̂ has mass dimension − 1

2 .
There are other local operators that cannot be written in

terms of the fundamental fields in the Lagrangian, but rather
in terms of their dual fields. The dual fields of φ, �, and φ̂ are
�̃, φ̃, and φ̌, respectively. They have mass-dimensions −1, 0,
and − 1

2 , respectively, and the same identifications as �, φ,
and φ̂, respectively. See Secs. II C 2 and II C 3 for the duality
transformations.

In terms of the dual field, the continuum φ-theory has
an additional local operator ei∂x�̃, but not ei�̃. On the other
hand, the continuum �-theory has additional local operators
eiφ̃ and ∂xφ̃, but not ei∂x φ̃ . Finally, the continuum φ̂-theory has
additional local operator ∂xφ̌, but not eiφ̌ .

Importantly, none of the three continuum theories has local
operators of the form eiφ and ei∂xφ at the same time. These
operators are summarized in Table III.

2. Robustness

The Lifshitz theory (1.6) and specifically its 1 + 1D ver-
sion (2.1) is natural in the high energy physics sense. The
absence of potential terms and two-derivative terms for φ is
natural because such terms violate a global symmetry—the
two momentum symmetries. Furthermore, this continuum the-
ory also has the winding symmetries, and therefore it is natural
to set the coefficients of all the winding violating operators to
zero.

However, this theory might not be robust. If we start at
short distances with a UV theory without some of these sym-
metries, some level of fine tuning might be needed in order to
end up at long distances with this continuum theory. (See [24]
for a review of naturalness versus robustness in high energy
physics and in condensed matter physics.)

Let us study a concrete example. Consider a lattice action
with U (1) variables eiϕ at each site and the action

−β0

∑
τ -link

cos(�τϕ) − β
∑
site

cos
(
�2

xϕ
)
. (2.70)

For β0, β � 1, it is similar to the Villain theory (2.12)

β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
site

(
�2

xφ − 2πnxx
)2

. (2.71)

19Note that ∂xφ is invariant under the U (1) momentum symmetry,
but is not invariant under the Z momentum dipole symmetry. It
transforms inhomogeneously under it.

These two theories preserve the U (1) momentum and ZLx mo-
mentum dipole symmetries, but they do not have the winding
symmetries of the modified Villain action (2.14)

β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
site

(
�2

xφ − 2πnxx
)2

+ i
∑
τ -link

φ̃
(
�τ nxx − �2

xnτ

)
, (2.72)

or the continuum theory.
Following [38], we can explore the relation between the

theory (2.70) [or (2.71)] and (2.72) by perturbing the latter by
the winding dipole violating operator

cos(�xφ̃). (2.73)

Starting with (2.72), we flow in the IR to the continuum
theory. Then, we deform it by (2.73) to check whether the
IR behavior changes. If this deformation is irrelevant, then
the modified Villain theory (2.72) is robust and the contin-
uum theory captures the long distance behavior of (2.70) and
(2.71). If, however, it is relevant, then the modified Villain
theory (2.72) is not robust and the lattice actions (2.70) and
(2.71) do not flow in the IR to the theory described by the
continuum model.

In our case, it is easy to see that the deformation (2.73) is
relevant. The operator (2.73) carries dipole winding charge,
and therefore when it acts on a state with a given dipole
charge, it changes this charge. In particular, it acts nontriv-
ially in the space of ground states. As a result, if we deform
the modified Villain model by this operator, the ground state
degeneracy is removed.20

We could reach the same conclusion if we deformed the
action by cos(�xφ) instead of (2.73). This would violate the
momentum symmetries, but preserve the winding symmetries.

A closely related question is whether the infinite volume
limit of our system exhibits spontaneous symmetry breaking
(see [35,47] for a recent discussion). Naively, the answer is
yes. We have an infinite number of ground states carrying
various charges under the dipole symmetries and as we take
the volume to infinity, the Hilbert space of the theory could
split into separate superselection sectors and lead to sponta-
neous symmetry breaking. However, because of the singular
nature of these states, we do not have a coherent picture of this
phenomenon. It would be nice to understand this issue better.

3. Relation to Lifshitz theory

The theory (2.1) can be viewed as the 1 + 1D version of
the Lifshitz theory

S =
∮

dτdd x

[
μ0

2
(∂τφ)2 + 1

2μ

(∑
i

∂2
i φ

)2]
. (2.74)

20Note that the discussion of the spectrum in Sec. II B 5 and, in
particular, the ground state degeneracy of states charged under the
two dipole symmetries is unlike the situation in [24,51], where the
charged states are heavier than the plane waves. Consequently, the
theory discussed in [24,51] is robust.
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In most of the literature, the scalar field φ is taken to be
noncompact and the theory has a Lifshitz scale symmetry

τ → λ2τ, xi → λxi, φ → λ2−dφ. (2.75)

In this section, we have considered various versions of
the 1 + 1D Lifshitz theory with different identifications
on φ. Typically, imposing identification on φ breaks the
Lifshitz scale symmetry. For example, the identifications φ ∼
φ + 2π in Sec. II C 1 and � ∼ � + c + 2πx in Sec. II C 2
make the theory incompatible with the Lifshitz scale
symmetry.

The situation in the φ̂-theory in Sec. II C 3 is differ-
ent. Here, the identification φ̂ ∼ φ̂ + ĉ removes the zero
mode of the field and it is compatible with the scale
symmetry. Indeed, it describes the low-energy limit of the
1 + 1D modified Villain lattice model (2.14) with fixed
coupling.

In 2 + 1D, the Lifshitz scale transformation does not act on
the scalar field φ, so it is natural to consider a compact version
of the Lifshitz theory with identification φ ∼ φ + 2π [39–47].
Such a theory arises naturally in the study of quantum dimer
models [39,40,53] and the dipolar Bose-Hubbard model [47].
Most of our discussions about 1 + 1D compact Lifshitz the-
ories, including their global symmetries and infinite ground
state degeneracy, are applicable in 2 + 1D. In particular, the
infinite ground state degeneracy due to different winding sec-
tors has been noticed in the quantum dimer model [53] and its
effective description in terms of the compact Lifshitz theory
in [39,40].

Unlike the 1 + 1D theory, the winding symmetry of the
2 + 1D theory is actually robust. In 2 + 1D, the states charged
under the winding dipole symmetry are extended in space.
They are not created by pointlike operators, but by line opera-
tors. Consequently, the theory is robust under adding operators
violating this winding symmetry. This is similar to the fact that
the standard 2 + 1D U (1) gauge theory is not robust under
deformations breaking its magnetic symmetry, which is the
famous Polyakov mechanism, while the similar 3 + 1D theory
is robust.

III. 1 + 1D U (1) DIPOLE GAUGE THEORY

A. First look at the continuum theory

We can gauge the momentum global symmetries of the
dipole φ-theory by coupling it to the gauge fields (Aτ , Axx ) of
mass dimensions 1 and 2, respectively. The gauge symmetry
is

Aτ ∼ Aτ + ∂τα, Axx ∼ Axx + ∂2
x α, (3.1)

where α is the gauge parameter with mass dimension 0. The
global properties of α are the same as those of φ in Sec. II C 1.
The continuum action of the pure gauge theory is

S =
∮

dτdx
1

2g2
E2

xx, (3.2)

where

Exx = ∂τ Axx − ∂2
x Aτ (3.3)

is the electric field with mass dimension 3. Here, g is a fixed
continuum coupling of mass dimension 2. We will refer to this

continuum action as the 1 + 1D U (1) dipole A-theory. Below
we will discuss some unusual subtleties of this continuum
theory.

On a Euclidean torus, we can consider the following large
gauge transformation:

α = 2πnτ τ

�τ

+ 2πnxx

�x
, nτ , nx ∈ Z. (3.4)

It shifts the gauge fields by

(Aτ , Axx ) →
(

Aτ + 2πnτ

�τ

, Axx

)
. (3.5)

Note that the gauge transformation associated with nx acts
trivially on the gauge fields.

The theory has gauge invariant line defects

exp

(
in
∮

dτAτ (τ, x)

)
, (3.6)

with the integer n quantized by the large gauge transformation
(3.5).

The Lorentzian signature version of (3.6),

exp

(
in
∫ +∞

−∞
dtAt (t, x)

)
, (3.7)

represents the world-line of a charged particle at x. Because of
the gauge symmetry, this particle cannot move continuously.
Hence, it is a fracton. (Below, we will discuss it in more
detail.)

However, for n �= 1, the particle is not completely immo-
bile. It can hop from x to x + k�x

n with any integer k. One way
to see that is to consider the defect

exp

(
in
∫ +∞

t
dt ′At (t

′, x′)
)

O(t, x, x′)

× exp

(
in
∫ t

−∞
dt ′At (t

′, x)

)
. (3.8)

Here, the first and the last factors represent the motion of
the particle. And the operator O(t, x, x′) acts at time t and
moves the particle from x to x′. Gauge invariance restricts the
hop to satisfy x − x′ ∈ �x

n Z. Specifically, the shortest hop is
implemented using

O

(
t, x, x + �x

n

)

= exp

(
−i

n−1∑
r=1

∫ x+ �x
n

x
dy
∫ y+ r�x

n

y
dy′Axx(t, y′)

)
. (3.9)

It is easy to check that with this operator, the combination
(3.8) is gauge invariant. A crucial point is that the operator
O(t, x, x + �x

n ) is supported over the whole space. The motion
of the particle from x to x + �x

n takes place by acting on the
entire system. In this sense, this is not a local operation.
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We also have another observable,∮
C

[dτ∂xAτ (τ, x) + dxAxx(τ, x)], (3.10)

where C is a closed curve in the spacetime. When C is purely
spacelike, (3.10) simplifies to a gauge invariant operator∮

dx Axx (3.11)

at a fixed time. Both the general observable (3.10) and the
special case (3.11) are gauge invariant, including under the
large gauge transformation (3.5), and they do not need to be
exponentiated. In fact, they have dimension +1 and therefore
it makes no sense to exponentiate them.

Instead, the integrated version of (3.10),

∮
C

[
dτ [Aτ (τ, x + x0) − Aτ (τ, x)] + dx

∫ x+x0

x
dx′Axx(τ, x′)

]
,

(3.12)

with fixed x0 is dimensionless and can be exponentiated to the
defect

exp

(
ir
∮
C

[dτ [Aτ (τ, x + x0) − Aτ (τ, x)]

+ dx
∫ x+x0

x
dx′Axx(τ, x′)

])
, (3.13)

with any real r. In the special case where r is an integer, this
can be interpreted as a dipole of fractons (3.6) with opposite
charges ±r separated by x0. More generally, for real r it is a
dipole of fractional charged sources.

We have seen that the fracton defect (3.6) cannot move
continuously—all it can do is to hop as in (3.8). This is to
be contrasted with the dipole defect (3.13), which is mo-
bile. Below, in Sec. III C, we will discuss this fact in more
detail.

We see that the line defects and the line operators are very
different. The defects (3.6) are exponentials with quantized
coefficients, while the observables (3.10) and their special
cases, the operators (3.11), do not have to be exponentiated.
To understand this better, we will regularize the continuum
theory using a Villain lattice model.

B. Villain formulation

The Villain version of the continuum U (1) dipole gauge
theory is described by the lattice action

S = �

2

∑
τ -link

(
�τAxx − �2

xAτ − 2πnτxx
)2 = �

2

∑
τ -link

E2
xx,

(3.14)

where � is a coupling constant, nτxx is an integer-valued
gauge field, and Aτ ,Axx are real-valued gauge fields. Here,
the electric field,

Exx = �τAxx − �2
xAτ − 2πnτxx, (3.15)

is the only gauge invariant field strength under the gauge
symmetry

Aτ ∼ Aτ + �τα + 2πkτ ,

Axx ∼ Axx + �2
xα + 2πkxx,

nτxx ∼ nτxx + �τ kxx − �2
xkτ ,

α ∈ R,

kτ , kxx ∈ Z. (3.16)

The gauge parameters have their own gauge symmetries,

α ∼ α + c + 2πmx̂

Lx
+ 2πk,

kτ ∼ kτ − �τ k,

kxx ∼ kxx − �xxk − m(δx̂,0 − δx̂,Lx−1), (3.17)

c ∈ R,

m, k ∈ Z,

with c and m constants on the lattice.
The gauge configurations have a quantized Z-valued elec-

tric flux

1

2π

∑
τ -link

Exx = −
∑
τ -link

nτxx ∈ Z, (3.18)

and a quantized ZLx -valued electric dipole flux

−
∑
τ -link

x̂nτxx mod Lx. (3.19)

Both (3.18) and (3.19) are gauge invariant.
In contrast to the dipole φ-theory, the U (1) dipole gauge

theory has no “vortices.” Relatedly, there is no gauge invariant
field strength of the integer gauge field nτxx. So we do not
modify the Villain action (3.14).

We can add a theta-term to the action (3.14):

iθ

2π

∑
τ -link

Exx = −iθ
∑
τ -link

nτxx, (3.20)

where θ ∼ θ + 2π .21 The full action is

S = �

2

∑
τ -link

E2
xx + iθ

2π

∑
τ -link

Exx. (3.21)

Note that we could not add such a θ -term to the continuum
action (3.1) since the electric field Exx has mass dimension
+3. Below, this will be discussed further.

The Villain model (3.21) has gauge invariant operators

exp

(
in

∑
site: fixed τ̂

Axx

)
, n ∈ Z. (3.22)

21We could also add a discrete theta-term associated with the ZLx -
valued dipole flux (3.19). However, the dipole flux is not invariant
under the timelike ZLx dipole symmetry (see Sec. III B 2). Therefore,
adding a nontrivial discrete theta-term makes the partition function
vanish.
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Unlike the operators (3.11) in the continuum, these lattice operators are gauge invariant only after exponentiation due to the
integer kxx symmetry.

The model also has defects that describe fractons

exp

(
in

∑
τ -link: fixed x̂

Aτ

)
, n ∈ Z. (3.23)

These are the lattice counterparts of the continuum defects (3.6). Moreover, for gcd(n, Lx ) �= 1, the particle can hop by
kLx/ gcd(n, Lx ) sites for any integer k. For k = 1, this is captured by the defect

exp

(
in

∑
τ -link: τ̂ ′�τ̂

Aτ

(
τ̂ ′, x̂ + Lx

gcd(n, Lx )

))
exp

⎛
⎜⎝− in

gcd(n, Lx )

gcd(n,Lx )−1∑
r=1

x̂+ Lx
gcd(n,Lx )∑

ŷ=x̂+1

∑
site: ŷ�ŷ′<ŷ+ rLx

gcd(n,Lx )

Axx(τ̂ , ŷ′)

⎞
⎟⎠

× exp

(
in

∑
τ -link: τ̂ ′<τ̂

Aτ (τ̂ ′, x̂)

)
. (3.24)

This is the lattice counterpart of the Euclidean version of the continuum defect (3.8). The first and the third lines represent the
motion of the particle in (Euclidean) time. And the second line represents an operator moving the particle from x̂ to x̂ + Lx

gcd(n,Lx ) .
A dipole can move as long as its separation is fixed. This is described by

exp

⎛
⎝in

∑
τx-plaq: τ̂<τ̂0

�xAτ (τ̂ , x̂1) + in
∑

site: x̂1<x̂�x̂2

Axx(τ̂0, x̂) + in
∑

τx-plaq: τ̂�τ̂0

�xAτ (τ̂ , x̂2)

⎞
⎠. (3.25)

The coefficients of these defects are quantized because of the integer gauge symmetry of (kτ , kxx ) in (3.16).
Given the gauge invariant defects (3.23) and the gauge invariant field strength (3.15) we can write additional gauge invariant

defects

exp

(
in
∑
τ -link

�xAτ (τ̂ , x̂ + x̂0)

)
exp

(
in

x̂0

∑
τ -link: x̂<x̂′<x̂+x̂0

(x̂′ − x̂)Exx(τ̂ , x̂′)

)

= exp

(
in

x̂0

∑
τ -link

[Aτ (τ̂ , x̂ + x̂0) − Aτ (τ̂ , x̂)] − 2π in

x̂0

∑
τ -link: x̂<x̂′<x̂+x̂0

(x̂′ − x̂)nτxx(τ̂ , x̂′)

)
(3.26)

for any x̂0, where n ∈ Z.
These defects can be interpreted as the worldlines of a dipole of fractional charges ± n

x̂0
at x̂ and at x̂ + x̂0. Surprisingly, these

dipoles are mobile as long as their separation is fixed:

exp

⎛
⎜⎝ in

x̂0

∑
τ -link: τ̂<τ̂0

[Aτ (τ̂ , x̂1 + x̂0) − Aτ (τ̂ , x̂1)] − 2π in

x̂0

∑
τ -link: τ̂<τ̂0

x̂1<x̂′<x̂1+x̂0

(x̂′ − x̂1)nτxx(τ̂ , x̂′)

⎞
⎟⎠

× exp

(
in

x̂0

∑
x̂1<x̂�x̂2

∑
site: x̂�x̂′<x̂+x̂0

Axx(τ̂0, x̂′)

)

× exp

⎛
⎜⎝ in

x̂0

∑
τ -link: τ̂�τ̂0

[Aτ (τ̂ , x̂2 + x̂0) − Aτ (τ̂ , x̂2)] − 2π in

x̂0

∑
τ -link: τ̂�τ̂0

x̂2<x̂′<x̂2+x̂0

(x̂′ − x̂2)nτxx(τ̂ , x̂′)

⎞
⎟⎠. (3.27)

This is the lattice version of (3.13). Unlike the continuum
problem, here the real charge r is restricted to be the rational
number n/x̂0.

1. Relation to the 2 + 1D U (1) tensor gauge theory

Similar to the discussion in Sec. II B 1, here we will relate
the 1 + 1D model (3.14) to a 2 + 1D model.

In [38], the Villain version of the 2 + 1D U (1) tensor gauge
theory of [24] was studied:

S = �

2

∑
τ -link

E2
xy + iθ

2π

∑
τ -link

Exy. (3.28)

Here Exy = �τAxy − �x�yAτ − 2πnτxy is the gauge-
invariant electric field, Aτ ,Axy are real-valued gauge fields,
and nτxy is the Villain integer gauge field. The gauge
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transformations are

Aτ ∼ Aτ + �τα + 2πkτ ,

Axy ∼ Axy + �x�yα + 2πkxy, (3.29)

nτxy ∼ nτxy + �τ kxy − �x�ykτ ,

where α is a real-valued gauge parameter and kτ , kxy are
integer-valued gauge parameters. We refer the readers to [38]
for more details of this 2 + 1D lattice model.

We will now place this 2 + 1D model on the slanted torus
(2.17). Following an identical discussion in Sec. II B 1, we
find the exact equivalence between the 2 + 1D model (3.28)
and the 1 + 1D model (3.14) under the identification

Axx(τ̂ , x̂) = Axy(τ̂ , x̂ − 1, 0), Aτ (τ̂ , x̂) = Aτ (τ̂ , x̂, 0),

nτxx(τ̂ , x̂) = nτxy(τ̂ , x̂ − 1, 0). (3.30)

Due to this equivalence, the analysis in the rest of this subsec-
tion follows from the discussion of the 2 + 1D U (1) tensor
gauge theory on a slanted torus in [50].

2. Global symmetry

In the Villain model (3.21), the global electric symmetry
acts as

Aτ →Aτ + �τ , Axx →Axx + �xx, nτxx → nτxx + mτxx,

(3.31)

where (�τ ,�xx; mτxx ) is a flat gauge field, i.e.,

�τ�xx − �2
x�τ − 2πmτxx = 0. (3.32)

The Noether current is22

J xx
τ = i�Exx − θ

2π
,

�τJ xx
τ = 0, �2

xJ xx
τ = 0,

(3.33)

where the equations in the second line are the conservation
equation and the Gauss law, respectively.

Using the freedom in α and (kτ , kxx ), we can set

�τ = cτ

Lτ

+ 2πm
x̂

Lx
δτ̂ ,0, 0 � x̂ < Lx,

�xx = cxx

Lx
,

mτxx = −m(δx̂,0 − δx̂,Lx−1)δτ̂ ,0, (3.34)

with m = 0, 1, . . . , Lx − 1, and circle-valued cτ ∼ cτ + 2π

and cxx ∼ cxx + 2π . This will ultimately lead to (1.19). As
we will discuss below, the parameters cxx and (cτ , m) gen-
erate spacelike and timelike global symmetries, respectively.
In the rest of this subsubsection, we will discuss the spacelike
symmetry, and leave the timelike symmetry to the next one.

In terms of a Hilbert space interpretation, the transforma-
tion associated with cxx is a standard symmetry transforma-
tion, acting on states and operators such as (3.22). Since cxx

is circle-valued, it is related to a U (1) spacelike symmetry.
This is to be contrasted with the R spacelike symmetry in the

22Recall our conventions, as discussed in footnote 3.

FIG. 1. The Euclidean configuration for the action (3.38) of the
U (1) timelike symmetry operator (red dots) with a circle-valued
parameter cτ on the fracton defect (blue line) of charge n.

continuum theory discussed in Sec. III A. The charge of the
symmetry is

Qxx(x̂) = J xx
τ . (3.35)

Using the Gauss law and the fact that it should be single-
valued, Qxx(x̂) = Q̄xx is an integer constant, independent
of x̂.

3. Restricted mobility of defects

How should we interpret the symmetries associated with cτ

and m in (3.34)?
The circle-valued parameter cτ does not correspond to a

standard symmetry. It does not act on states or operators.
Instead, it acts on defects, such as (3.23), so it is a U (1) time-
like symmetry. The symmetry operator of this U (1) timelike
symmetry is the bilocal operator

Ucτ
(τ̂ ; x̂1, x̂2) = exp

(
icτ

[
�xJ xx

τ (τ̂ , x̂2) − �xJ xx
τ (τ̂ , x̂1)

])
.

(3.36)

Because of the Gauss law and the conservation equation, it is
invariant under deformations of x̂1, x̂2, and τ̂ as long as they
do not cross any defect. In particular, when there is no defect,
the U (1) timelike symmetry operator is trivial because of the
Gauss law:

Ucτ
(τ̂ ; x̂1, x̂2) = exp

(
icτ

∑
τ -link: x̂1<x̂�x̂2

�2
xJ xx

τ (τ̂ , x̂)

)
= 1.

(3.37)

However, it is nontrivial in the presence of defects because
the presence of the defect changes the Gauss law. The action
of this timelike symmetry on defects is

Ucτ
(τ̂ ; x̂1, x̂2) exp

(
in

∑
τ -link: fixed x̂

Aτ

)

= eincτ exp

(
in

∑
τ -link: fixed x̂

Aτ

)
, x̂1 < x̂ < x̂2. (3.38)

The action is trivial if x̂ is not in between x̂1 and x̂2. See Fig. 1.
This U (1) timelike symmetry leads to a selection rule

stating that amplitudes like〈∏
i

eiqi
∑

τ̂ Aτ (τ̂ ,x̂i )

〉
(3.39)
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are nonzero only when ∑
i

qi = 0. (3.40)

In infinite volume, we can send one of these defects to
infinity and then the sum of the charges qi of the remaining de-
fects can be nonzero. In that case, this selection rule becomes

the statement of total charge conservation. The discussion
here, using the timelike symmetry, gives a precise meaning
to this charge conservation in compact space.

The ZLx -valued parameter m in (3.34) also does not act on
states and operators. Instead, it acts on the defects (3.23) and
(3.25), so it generates a ZLx timelike symmetry. The symmetry
operator is the bilocal operator

Um(τ̂ ; x̂1, x̂2) = exp

(
2π im

Lx

[
x̂2�xJ xx

τ (τ̂ , x̂2 − 1) − J xx
τ (τ̂ , x̂2)

])
exp

(
−2π im

Lx

[
x̂1�xJ xx

τ (τ̂ , x̂1 − 1) − J xx
τ (τ̂ , x̂1)

])
. (3.41)

The exponent of Um(τ̂ ; x̂1, x̂2) in (3.41) is not well-defined because of the identification x̂ ∼ x̂ + Lx. In contrast, Um(τ̂ ; x̂1, x̂2)
itself is well-defined because, under this identification, it changes by exp[2π im

∑
τ -link: x̂1�x̂<x̂2

�2
xJ xx

τ (τ̂ , x̂)], which is trivial
because �2

xJ xx
τ is an integer even in the presence of defects. This ZLx timelike symmetry becomes the Z timelike symmetry of

the continuum theory in Sec. III A.
Because of the Gauss law and the conservation equation, the operator Um(τ̂ ; x̂1, x̂2) is invariant under deformations of x̂1, x̂2,

and τ̂ as long as they not cross any defects. In particular, when there is no defect, the ZLx timelike symmetry operator is trivial
because of the Gauss law:

Um(τ̂ ; x̂1, x̂2) = exp

(
2π im

Lx

∑
τ -link: x̂1�x̂<x̂2

x̂�2
xJ xx

τ (τ̂ , x̂)

)
= 1. (3.42)

However, it is nontrivial in the presence of defects because the presence of the defect changes the Gauss law. The action of
this timelike symmetry on defects is

Um(τ̂ ; x̂1, x̂2) exp

(
in

∑
τ -link: fixed x̂

Aτ

)
= e

2π inmx̂
Lx exp

(
in

∑
τ -link: fixed x̂

Aτ

)
, x̂1 < x̂ < x̂2. (3.43)

The action is trivial if x̂ is not in between x̂1 and x̂2.

The dipole defects (3.25) and (3.26) [or (3.27)] carry
charge n under the ZLx timelike dipole symmetry. This is
obvious in (3.25) and in the first line of (3.26). The second
line of (3.26) can be interpreted as smearing this dipole charge
over the interval (x̂, x̂ + x̂0).

As with the U (1) timelike symmetry, the ZLx timelike
symmetry leads to a selection rule on correlation functions
of defects. In particular, (3.39) is nonzero only when∑

i

x̂iqi = 0 mod Lx. (3.44)

The selection rule (3.44) implies that two fractons of
U (1) timelike charge n carry the same ZLx timelike sym-
metry charges only if their positions differ by a multiple
of Lx/gcd(n, Lx ). This implies that a single fracton cannot
move by itself arbitrarily but it can hop by kLx/gcd(n, Lx )
sites for any integer k. Comparing with (3.24), this explains
the allowed mobility of the fracton defect in terms of global
symmetries.

Again, in infinite volume, we can send some of these
defects to infinity, and then the sum of the dipoles x̂iqi of
the remaining defects can be nonzero.23 In that case, this
selection rule becomes the statement of total dipole charge
conservation.

23Note that when we do that and the remaining defects in the
interior of the space have nonzero U (1) charge, their dipole moment
depends on the origin of the coordinate.

As for the ordinary charge conservation, our discussion us-
ing the timelike symmetry gives us a precise way to formulate
the notion of conserved dipole charges in compact space.

4. Gauge fixing the integers

Following the same procedure as in [38], after gauge fixing
the integer gauge fields, the action (3.21) can be written in
terms of a new gauge field (Āτ , Āxx ) as

S = �

2

∑
τ -link

E2
xx + iθ

2π

∑
τ -link

Exx, (3.45)

where Exx = �τ Āxx − �2
xĀτ is the electric field. The new

gauge field (Āτ , Āxx ) is defined as

�τ Āxx − �2
xĀτ = �τAxx − �2

xAτ − 2πnτxx. (3.46)

It has the gauge symmetry

Āτ ∼ Āτ + �τ ᾱ,

Āxx ∼ Āxx + �2
x ᾱ. (3.47)

More generally, ᾱ may not be single-valued, in which case the
above corresponds to a change of trivialization.

Unlike (Aτ ,Axx ), the new gauge fields (Āτ , Āxx ) need not
be single-valued. Instead, they can have transition functions.
Around the τ -cycle, we have

Āτ (τ̂ + Lτ , x̂) − Āτ (τ̂ , x̂) = �τ γ̄T (τ̂ , x̂),

Āxx(τ̂ + Lτ , x̂) − Āxx(τ̂ , x̂) = �2
x γ̄T (τ̂ , x̂). (3.48)
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Around the x-cycle, we have

Āτ (τ̂ , x̂ + Lx ) − Āτ (τ̂ , x̂) = �τ γ̄X (τ̂ , x̂),

Āxx(τ̂ , x̂ + Lx ) − Āxx(τ̂ , x̂) = �2
x γ̄X (τ̂ , x̂). (3.49)

These transition functions are subject to the cocycle condition

γ̄T (τ̂ , x̂ + Lx ) − γ̄T (τ̂ , x̂) − γ̄X (τ̂ + Lτ , x̂) + γ̄X (τ̂ , x̂)

= 2πnx̂ + 2π p, n, p ∈ Z. (3.50)

They transform under the gauge transformation (3.47) as

γ̄T (τ̂ , x̂) ∼ γ̄T (τ̂ , x̂) + ᾱ(τ̂ + Lτ , x̂) − ᾱ(τ̂ , x̂),

γ̄X (τ̂ , x̂) ∼ γ̄X (τ̂ , x̂) + ᾱ(τ̂ , x̂ + Lx ) − ᾱ(τ̂ , x̂). (3.51)

In addition, they are also subject to the same identifications
(2.35) as φ̄. This implies that p ∼ p + Lx. The cocycle con-
dition (3.50) is invariant under both the gauge transformation
and the identifications.

(Āτ , Āxx ) can have nontrivial electric fluxes. For example,
the configuration

Āτ (τ̂ , x̂) = 0, Āxx(τ̂ , x̂) = 2πn
τ̂

Lτ Lx
(3.52)

has a transition function

γ̄T (τ̂ , x̂) = 2πn
x̂(x̂ − Lx )

2Lx
(3.53)

in the τ -direction. It gives rise to a nontrivial Z-valued electric
flux:

1

2π

∑
τ -link

Exx = 1

2π
�x[γ̄T (τ̂ , x̂ + Lx ) − γ̄T (τ̂ , x̂)

− γ̄X (τ̂ + Lτ , x̂) + γ̄X (τ̂ , x̂)]

= n ∈ Z. (3.54)

In terms of the original integer gauge fields, it is −∑τ -link nτxx

(3.18).
There is also another ZLx -valued dipole electric flux. Con-

sider the configuration

Āτ (τ̂ , x̂) = 2π p
x̂

LxLτ

, Āxx(τ̂ , x̂) = 0. (3.55)

It has a transition function

γ̄X (τ̂ , x̂) = 2π p
τ̂

Lτ

(3.56)

in the x-direction. This configuration carries a nontrivial ZLx

dipole flux

− 1

2π
[γ̄T (τ̂ , Lx ) − γ̄T (τ̂ , 0) − γ̄X (τ̂ + Lτ , 0) + γ̄X (τ̂ , 0)]

= p mod Lx. (3.57)

In terms of the original integer gauge fields, it is
−∑τ -link x̂nτxx mod Lx.

5. Spectrum

We will now determine the spectrum of the theory. We
will work with a continuous Lorentzian time, denoted by t ,
while keeping the space discrete. We do this by introducing a
lattice spacing aτ in the τ -direction, taking the limit aτ → 0,

while keeping �′ = �aτ fixed, and then Wick rotating from
Euclidean time to Lorentzian time. We pick the temporal
gauge Ā0 = 0, and Gauss law tells us that

�2
xExx(t, x̂) = 0. (3.58)

It is solved by

Exx(t, x̂) = Ěx(t )x̂ + Ěxx(t ). (3.59)

Since Exx is single-valued, Ěx has to vanish. Up to a time-
independent gauge transformation, the solution is

Āxx = 1

Lx
f (t ), (3.60)

where f (t ) has periodicity f (t ) ∼ f (t ) + 2π .24

The effective Lorentzian action is

S =
∮

dt

[
�′

2Lx
ḟ (t )2 − θ

2π
ḟ (t )

]
. (3.61)

Let � be the conjugate momentum of f (t ). The periodicity of
f (t ) implies that � is an integer. The Hamiltonian is

H = Lx

2�′

(
� + θ

2π

)2

. (3.62)

This theory is reminiscent of the ordinary U (1) gauge
theory in 1 + 1D. It has no local degrees of freedom. All the
gauge invariant information is summarized in the holonomy
(3.22). And its dynamics is that of a quantum mechanical
rotor.

C. Continuum limit

Below, we will consider three continuum limits. They have
similar Lagrangians, but they are different in various global
aspects, such as their global symmetries and fluxes, summa-
rized in Table IV. The gauge parameters of these continuum
gauge theories have the same global properties as the contin-
uum scalar fields in Sec. II C. One of these theories reproduces
the continuum theory in Sec. III A. In all these limits, we in-
troduce the spatial and temporal lattice spacings a, aτ , and we
take the limit a, aτ → 0 and Lx, Lτ → ∞ such that �x = aLx

and �τ = aτ Lτ are fixed.

1. 1 + 1D U (1) dipole A-theory

Following Sec. II C 1, we scale the lattice coupling constant
as

� = 1

g2aτ a3
, (3.63)

where g is a fixed continuum coupling constant with mass
dimension 2. We define new continuum gauge fields,

Aτ = a−1
τ Āτ , Axx = a−2Āxx, (3.64)

with mass dimensions 1 and 2, respectively. Recall that
(Āτ , Āxx ) are the gauge-fixed versions of the lattice gauge
fields (Aτ ,Axx ). Then the theory reduces to the continuum

24This follows from the identification ei f = exp(i
∑

site: fixed τ̂ Axx )
[see (3.22)].
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TABLE IV. Relation between symmetries and fluxes of the lattice theory of Sec. III B, and its continuum limits in Sec. III C. All these
symmetries are electric symmetries. There is another continuum theory, the Â-theory, whose gauge parameter has the same global properties
as φ̂ of Sec. II C 3. All of its global symmetries are noncompact. We discuss it briefly in Sec. III C 3.

Lattice gauge theory Dipole A-theory Dipole Ã-theory

Gauge parameter φ of Sec. II B φ of Sec. II C 1 � of Sec. II C 2
Spacelike symmetry U (1) R U (1)
Timelike symmetry U (1) U (1)

ZLx dipole Z dipole U (1) dipole
Fluxes Z-valued flux Z-valued flux

ZLx -valued dipole flux Z-valued dipole flux Circle-valued dipole flux
Basic defect exp(i

∑
τ -link: fixed x̂ Aτ ) exp(i

∮
dτ Aτ ) Not present

Basic operator exp(i
∑

site: fixed τ̂ Axx )
∮

dx Axx exp(
∮

dx Ãxx )

theory discussed in Sec. III A, and it reproduces the defects
and the operators discussed there. Recall that there is no theta-
term in Sec. III A.

Defects and operators. Let us substitute (3.64) in the de-
fects (3.23) and (3.25), and take their continuum limit to find
the defects in this continuum theory.

There are particles that cannot move continuously:

exp

(
in
∮

dτAτ (τ, x)

)
, (3.65)

where n is quantized by the large gauge transformation
α(τ, x) = 2π τ

�τ
. For n �= 1, while they cannot move contin-

uously, they can hop from x to x + k�x
n for any integer k.

We also have the observables∮
C

[dτ∂xAτ (τ, x) + dxAxx(τ, x)], (3.66)

where C is a closed curve in the spacetime. Note that (3.66)
does not have to be exponentiated.25 The integrated version of
(3.66) can be exponentiated

exp

(
ir
∮
C

[dτ [Aτ (τ, x + x0) − Aτ (τ, x)]

+ dx
∫ x+x0

x
dx′Axx(τ, x′)

])
, (3.67)

with any real r. When r is quantized, (3.67) represents a defect
of a dipole of probe particles with charges ±r separated by
fixed amount, x0. It is the continuum limit of (3.26) with x0 =
ax̂0, and r = na/x0 fixed, where n, x̂0 are scaled appropriately.

Finally, when C is purely spacelike, (3.66) is a gauge in-
variant operator.

Global symmetry. It is interesting that unlike the lattice
theory, in this continuum theory the quantization of the line
defects and the line operators is very different. Below, we
will discuss the spacelike and timelike symmetries that act on
them.

There is an R spacelike symmetry Axx(τ, x) → Axx(τ, x) +
cxx. Its charge is found by taking the continuum limit of the

25Indeed, after using the limit (3.64) (and dropping the bar) in
(3.25) with fixed lattice points x̂1 and x̂2, the coefficient in the ex-
ponent vanishes in the limit a → 0, so we can expand it to find the
continuum observable (3.66).

charge (3.35) on the lattice:

i

g2
Exx. (3.68)

It is independent of x. The scaling to the continuum limit
turned the quantized U (1) charge on the lattice to an R charge.
This is the analog of the one-form global symmetry charge of
the standard U (1) 1 + 1D gauge theory. But unlike that case,
here this charge is not quantized.

There is a U (1) timelike symmetry Aτ (τ, x) → Aτ (τ, x) +
cτ

�τ
, where cτ ∼ cτ + 2π . Its symmetry operator is the contin-

uum version of the operator (3.36) on the lattice:

Ucτ
(τ ; x1, x2) = exp

(
−cτ

g2
[∂xExx(τ, x2) − ∂xExx(τ, x1)]

)
.

(3.69)

This is the analog of the U (1) timelike symmetry of the 1 +
1D U (1) gauge theory. Similar to its lattice counterpart (3.36),
it is invariant under deformations of x1, x2, and τ as long as
they do not cross any defect, because of the Gauss law and the
conservation equation. In particular, when there is no defect,
the U (1) timelike symmetry operator is trivial.

More explicitly, in the presence of the defect (3.65),

exp

(
in
∮

dτAτ (τ, x0)

)
, (3.70)

the equation of motion of Aτ (i.e., Gauss law) leads to

1

g2
∂2

x Exx = −inδ(x − x0) (3.71)

and therefore, for x1 < x0 < x2, the value of (3.69) is eincτ .
There is also a Z dipole timelike symmetry Aτ → Aτ +

2πm x
�x�τ

, where m is an integer. Its symmetry operator is
found by taking the continuum limit of the operator (3.41) on
the lattice:

Um(τ ; x1, x2) = exp

(
−2πm

g2�x
[x2∂xExx(τ, x2) − Exx(τ, x2)]

)

× exp

(
2πm

g2�x
[x1∂xExx(τ, x1) − Exx(τ, x1)]

)
.

(3.72)

It is well-defined under x → x + �x because it is shifted
by exp(− 2πm

g2

∫ x2

x1
dx ∂2

x Exx(τ, x)), which is trivial because
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i
g2

∫ x2

x1
dx ∂2

x Exx(τ, x) is an integer even in the presence of
defects. Similar to its lattice counterpart (3.41), it is invariant
under deformations of x1, x2, and τ as long as they do not cross
any defect, because of the Gauss law and the conservation
equation. In particular, when there is no defect, the U (1)
timelike symmetry operator is trivial.

This symmetry was ZLx on the lattice, and became Z in
the continuum limit. Note that this symmetry does not have
an analog in the ordinary 1 + 1D U (1) gauge theory.

Fluxes. In this continuum limit, there are no configurations
with nontrivial electric flux, and therefore there is no θ -term in
the action. However, there are configurations with nontrivial
dipole flux:

Aτ (τ, x) = 2π p
x

�x�τ

, Axx(τ, x) = 0,

γX (τ, x) = 2π p
τ

�τ

, γT (τ, x) = 0, p ∈ Z. (3.73)

Unlike on the lattice, the dipole flux in this continuum limit
becomes Z-valued:

− 1

2π
[γT (0, �x ) − γT (0, 0) − γX (�τ , 0) + γX (0, 0)] = p ∈ Z.

(3.74)

Spectrum. The spectrum consists of states charged under
the R global symmetry. The energy of the state carrying
charge q ∈ R is

E ∼ g2�x

2
q2, (3.75)

which is finite in the continuum limit a → 0. Since q is not
quantized, the spectrum is continuous.

2. 1 + 1D U (1) dipole Ã-theory

Following Sec. II C 2, we scale the lattice coupling con-
stants as

� = 1

g̃2aτ a
, (3.76)

where g̃ is a fixed continuum coupling constant with mass
dimension 1. We define new continuum gauge fields,

Ãτ = a−1
τ aĀτ , Ãxx = a−1Āxx, (3.77)

with mass dimensions 0 and 1, respectively. Then the action
(3.45) becomes

S =
∮

dτdx

[
1

2g̃2
Ẽ2

xx + iθ

2π
Ẽxx

]
. (3.78)

where Ẽxx = ∂τ Ãxx − ∂2
x Ãτ is the electric field with mass di-

mension 2. The gauge symmetry is

Ãτ ∼ Ãτ + ∂τ α̃, Ãxx ∼ Ãxx + ∂2
x α̃, (3.79)

where α̃ is the gauge parameter with mass dimension −1,
which has its own gauge symmetry α̃ ∼ α̃ + c̃ + 2πx, where
c̃ is a real constant. The global properties of α̃ are the same as
those of � of Sec. II C 2.

Defects and operators. Let us substitute (3.77) in the de-
fects (3.23) and (3.25), and take their continuum limit to find
the defects in this continuum theory.

There are no fracton defects because, after substituting
(3.77) in the defect (3.23), the coefficient diverges in the limit
a → 0, unless n = 0. We can also see this in the continuum:
the would-be defect “

∮
dτ Ãτ ” is not invariant under the large

gauge transformation α̃ = c̃τ
�τ

, where c̃ is a real constant. Re-

lated to that,
∮

dτ Ãτ cannot be exponentiated because it is
dimensionful.

However, there are mobile dipole defects:

exp

(
in
∮
C

[dτ∂xÃτ (τ, x) + dxÃxx(τ, x)]

)
, (3.80)

where n is quantized.26 When C is purely spacelike, it is a
gauge invariant operator with a quantized coefficient, whose
lattice counterpart is (3.22).

There are also gauge invariant mobile dipole defects de-
rived from (3.26),

exp

(
in

x0

∮
C

[
dτ [Ãτ (τ, x + x0) − Ãτ (τ, x)]

+ dx
∫ x+x0

x
dx′Ãxx(τ, x′)

])
, (3.81)

where x0 is the (fixed) separation of the dipole, and n is
quantized.

Global symmetry. There is a U (1) global symmetry with
charge

Qxx = i

g̃2
Ẽxx − θ

2π
. (3.82)

It acts on the gauge fields as

Ãxx → Ãxx + c̃xx

�x
, (3.83)

where c̃xx is circle-valued, i.e., c̃xx ∼ c̃xx + 2π . The charged
operator is (3.80) with C purely spacelike, and its charge is
n, which is quantized due to the large gauge transformation
in footnote.26 Unlike the continuum theory of Sec. III C 1,
here the spacelike U (1) global symmetry of the lattice theory
remains U (1) in the continuum.

The U (1) timelike symmetry of the lattice theory is absent
in this continuum limit because the shift

Ãτ (τ, x) → Ãτ (τ, x) + c̃τ

�τ

(3.84)

is a gauge transformation with gauge parameter α̃ = c̃τ
τ
�τ

for any c̃τ ∈ R. So the would-be timelike symmetry operator
− 1

g̃2 [∂xẼxx(τ, x2) − ∂xẼxx(τ, x1)] is trivial. This is consistent
with the fact that there are no fracton defects.

Finally, the ZLx dipole timelike symmetry (3.41) of the
lattice theory becomes a U (1) dipole timelike symmetry with

26When C is spacelike, this can be seen by the large gauge trans-
formation α̃(τ, x) = 2π x(x−�x )

2�x
. Such a gauge transformation has its

own transition functions consistent with its periodicities, α̃ ∼ α̃ +
c̃ + 2πx.
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symmetry operator

Uρ (τ ; x1, x2) = exp

(
− ρ

g̃2
[x2∂xẼxx(τ, x2) − Ẽxx(τ, x2)]

)

× exp

(
ρ

g̃2
[x1∂xẼxx(τ, x1) − Ẽxx(τ, x1)]

)
,

(3.85)

where ρ is a real parameter with ρ ∼ ρ + 2π . The exponent
is well-defined under x → x + �x because it is shifted by
− 1

g̃2 [∂xẼxx(τ, x2) − ∂xẼxx(τ, x1)], which is trivial. Similar to
its lattice counterpart (3.41), it is invariant under deformations
of x1, x2, and τ as long as they do not cross any defects,
because of Gauss law and the conservation equation. In par-
ticular, it is trivial in the absence of any defect insertions.

It acts on the gauge fields, up to gauge transformations, as

Ãτ (τ, x) → Ãτ (τ, x) + ρx

�τ

. (3.86)

The charged defects are (3.80) and (3.81) with C that wraps
around the τ -direction once. Both have charge n.

Fluxes. There are configurations, such as

Ãτ (τ, x) = 0, Ãxx(τ, x) = 2πn
τ

�x�τ

,

γ̃X (τ, x) = 0, γ̃T (τ, x) = 2πn
x(x − �x )

2�x
, k ∈ Z, (3.87)

that realize a nontrivial Z-valued electric flux

1

2π

∮
dτdxẼxx = n. (3.88)

This flux allows a nontrivial θ -term.
There are also configurations that realize a nontrivial dipole

flux, such as

Ãτ (τ, x) = ϑx
1

�τ

, Ãxx(τ, x) = 0,

γ̃X (τ, x) = ϑ�x
τ

�τ

, γ̃T (τ, x) = 0. (3.89)

Importantly, ϑ and ϑ + 2π are related by a change of triv-
ialization with α̃ = 2πx τ

�τ
and the identification γ̃T (τ, x) ∼

γ̃T (τ, x) + 2πx. Thus, they should be identified and the pa-
rameter ϑ is circle-valued, i.e., ϑ ∼ ϑ + 2π . The dipole flux
of this configuration is

− 1

�x
[γ̃T (0, �x ) − γ̃T (0, 0) − γ̃X (�τ , 0) + γ̃X (0, 0)]

= ϑ mod 2π. (3.90)

Unlike on the lattice, the dipole flux is circle-valued in this
continuum limit.

Spectrum. The spectrum consists of states charged under
the U (1) global symmetry. The energy of the state with charge
n ∈ Z is

E ∼ g̃2�x

2

(
n + θ

2π

)2

, (3.91)

which is finite in the continuum limit a → 0. Since n is quan-
tized, the spectrum is discrete.

3. 1 + 1D dipole Â-theory

Following Sec. II C 3, we scale the lattice coupling constant
as

� = 1

ĝ2aτ a2
, (3.92)

where ĝ is a fixed continuum coupling constant with mass
dimension 3

2 . We define new continuum gauge fields, Âτ =
a−1

τ a
1
2 Āτ and Âxx = a− 3

2 Āxx, with mass dimensions 1
2 and 3

2 ,
respectively. Then the action (3.45) becomes

S =
∮

dτdx
1

2ĝ2
Ê2

xx, (3.93)

where Êxx = ∂τ Âxx − ∂2
x Âτ is the electric field with mass

dimension 5
2 . There is no θ -term in this limit. The gauge

symmetry is

Âτ ∼ Âτ + ∂τ α̂, Âxx ∼ Âxx + ∂2
x α̂, (3.94)

where α̂ is the gauge parameter with mass dimension − 1
2 . The

global properties of α̂ are the same as those of φ̂ of Sec. II C 3.
There are no fracton defects, but there are mobile dipole

defects and line operators with real coefficients. There is no
U (1) timelike symmetry, whereas the electric symmetry and
dipole timelike symmetry are noncompact.

D. More comments

We can study another continuum limit, in which we take
the gauge coupling g in the A-theory to be zero. We take g =
εg′ → 0 with fixed g′. This can be absorbed by rescaling Aτ =
εA′

τ and Axx = εA′
xx. Therefore, we should also take the gauge

parameter α′ = 1
ε
α. This has the effect of decompactifying

the underlying gauge group from U (1) to R. Correspondingly,
there are no identifications in the space of gauge parameters
α′. In this case, the fractons are not quantized. In fact, the
observable

∮
dτ A′

τ does not need to be exponentiated to a
defect. Similarly, the operators

∮
dx A′

xx do not need to be
exponentiated, and all the global symmetries are noncompact.

In ordinary classical gauge theory with gauge algebra u(1),
the gauge group can be U (1) or R. Here, we see that there
are more options. All of them arise from the same underlying
lattice theory with U (1) gauge symmetry (or as in the Villain
formulation, R with another Z gauge field), but they arise in
different continuum limits.

Just as the ordinary U (1) and R gauge theories differ in
their fluxes, operators, defects, and global symmetries, the
same is true in the various different continuum theories here.

We have not discussed the higher dimensional versions of
this theory. One difference from the 1 + 1D case we discussed
here is that in order to preserve the magnetic symmetries, the
lattice Villain model should be modified. We expect that the
subtleties we discussed here will still be present in the higher
dimensional theory.

IV. 1 + 1D ZN DIPOLE GAUGE THEORY

In this section, we will study the ZN lattice dipole gauge
theory, and its BF version. Surprisingly, while the U (1) dipole
gauge theory has immobile fracton defects, a particle in the
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ZN theory in noncompact space can hop by N sites on its
own, and is, therefore, not fully immobile. As we will see, in
a lattice with Lx sites with periodic boundary conditions, the
particle can hop by even smaller steps—steps of gcd(N, Lx )
sites.

A. 1 + 1D ZN lattice dipole gauge theory

The ZN lattice dipole gauge theory is defined by the action

S = −�
∑
τ -link

cos

[
2π

N

(
�τ mxx − �2

xmτ

)]
, (4.1)

where � is the gauge coupling constant. The integer fields mτ

and mxx are placed on the τ -links and the sites, respectively.
The gauge symmetry is

mτ ∼ mτ + �τ k + Nkτ , mxx ∼ mxx + �2
xk + Nkxx, (4.2)

where k, kτ , kxx are integer gauge parameters. It has an electric
global symmetry that shifts

mτ → mτ + pτ , mxx → mxx + pxx, (4.3)

where (pτ , pxx ) is a flat ZN gauge field, i.e.,

�τ pxx − �2
x pτ = 0 mod N. (4.4)

Using the gauge freedom of k, we can set pτ = 0 at τ̂ �= 0.
The flatness condition then implies that

�τ pxx(τ̂ , x̂) = 0 mod N,

�2
x pτ (0, x̂) = 0 mod N. (4.5)

Using the residual (time-independent) gauge freedom in k, we
can set

pτ (τ̂ , x̂) =
(

p̄τ + r̄τ

N

gcd(N, Lx )
x̂

)
δτ̂ ,0, 0 � x̂ < Lx,

pxx(τ̂ , x̂) = ( p̄xx + r̄xx )δx̂,0 − r̄xxδx̂,Lx−1, (4.6)

where p̄τ , p̄xx are integers modulo N , whereas r̄τ , r̄xx are inte-
gers modulo gcd(N, Lx ).

Similar to the electric global symmetries in the dipole U (1)
gauge theory in the previous section, the parameters p̄xx and
r̄xx are associated with ZN and Zgcd(N,Lx ) spacelike global
symmetries, respectively. On the other hand, the parameters
p̄τ and r̄τ correspond to ZN and Zgcd(N,Lx ) timelike symme-
tries, respectively.

B. An integer BF lattice model

For � � 1, the partition function is dominated by config-
urations satisfying �τ mxx − �2

xmτ = 0 mod N . Therefore,
we can replace the action (4.1) by the BF-type action

S = 2π i

N

∑
τ -link

m̃
(
�τ mxx − �2

xmτ

)
, (4.7)

where m̃ is an integer Lagrange multiplier field. In addition to
(4.2), there is another gauge symmetry making m̃ ZN -valued,

m̃ ∼ m̃ + Nk̃, (4.8)

where k̃ is an integer gauge parameter.
The BF-type action (4.7) is similar to the topological ZN

ordinary lattice gauge theory action in [65,66]. Following

steps similar to those in Appendix C.2 of [38], the action (4.1)
and the effective action (4.7) can be related to a number of
other actions of the Villain form and of a modified Villain
form.

There is a related lattice spin model given by the action

S = −�̃0

∑
τ -link

cos

(
2π

N
�τ m̃

)
− �̃

∑
site

cos

(
2π

N
�2

xm̃

)
,

(4.9)

where m̃ is an integer field at each site with identification
(4.8), and �̃0, �̃ are coupling constants. It is natural to re-
fer to it as the dipole ZN clock model. For �̃0, �̃ � 1, the
partition function is dominated by configurations satisfying
�τ m̃ = �2

xm̃ = 0 mod N , so we can replace the action (4.9)
by the BF action (4.7). Now, mτ and mxx are interpreted as
integer Lagrange multiplier fields.

1. Relation to 2 + 1D ZN tensor gauge theory

As in Secs. II B 1 and III B 1, there is an exact equivalence
between the action (4.7) and the integer BF-action of the 2 +
1D ZN tensor gauge theory [38],

S = 2π i

N

∑
cube

m̃xy(�τ mxy − �x�ymτ ), (4.10)

on a slanted spatial torus with identifications (2.17).27 Here
m̃xy, mxy, mτ are the ZN -valued fields of the 2 + 1D model.
The equivalence follows from

�ymτ (x̂, ŷ) = �xmτ (x̂, ŷ)

⇒ �x�ymτ (x̂, ŷ) = �2
xmτ (x̂ + 1, ŷ). (4.12)

The remaining fields are related as mxx(x̂) = mxy(x̂ − 1, 0)
and m̃(x̂) = m̃xy(x̂ − 1, 0).

Due to this equivalence, all the analysis in the rest of this
section follows from the 2 + 1D ZN tensor gauge theory on
this slanted torus [50].

2. Global symmetry

The electric spacelike global symmetries of the original
model (4.1) are also present in the BF model (4.7). It is
generated by the operator e

2π i
N m̃. More specifically, the ZN

electric symmetry associated with p̄xx in (4.6) is generated
by e

2π i
N p̄xxm̃(x̂=0), and the Zgcd(N,Lx ) electric dipole symmetry in

(4.6) associated with r̄xx is generated by e− 2π i
N r̄xx�xm̃(x̂=Lx−1).

In fact, there are additional spacelike symmetries in the BF
model that are not present in the original model (4.1).28 It has

27There is a similar relation between the original 1 + 1D model
(4.1), and the 2 + 1D ZN tensor gauge theory with action

S = −�
∑
cube

cos

[
2π

N
(�τ mxy − �x�ymτ )

]
, (4.11)

on a slanted spatial torus with identifications (2.17).
28This is a common property of BF models and modified Villain

versions of various system and one of the motivations to introduce
them [38]. The original systems or their Villain versions have various
symmetries, like momentum symmetries and electric symmetries.
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magnetic symmetries that shift m̃ by

m̃(τ̂ , x̂) → m̃(τ̂ , x̂) + p̃ + r̃
N

gcd(N, Lx )
x̂, 0 � x̂ < Lx,

(4.13)

where p̃ and r̃ are integers modulo N and gcd(N, Lx ), respec-
tively.

These magnetic symmetries are manifest in the dipole
ZN clock model (4.9), while the electric symmetries are not
present there.

The ZN magnetic symmetry associated with p̃ is imple-
mented by W p̃, with the generator

W = exp

(
2π i

N

∑
site: fixed τ̂

mxx

)
. (4.14)

The Zgcd(N,Lx ) magnetic symmetry associated with r̃ is imple-
mented by Wr̃ , with the generator

W = exp

(
2π i

gcd(N, Lx )

∑
site: fixed τ̂

x̂mxx

)
. (4.15)

3. Ground state degeneracy

We will now count the number of ground states in the
BF lattice model. In this case, it is equivalent to counting
the number of solutions to the “equations of motion.” (The
quotation marks are because, strictly, for integer fields there is
no equation of motion.) Summing over mτ and mxx gives

�2
xm̃ = 0 mod N, �τ m̃ = 0 mod N. (4.16)

The most general solution to these equations is

m̃(τ̂ , x̂) = p̃ + r̃
N

gcd(N, Lx )
x̂, 0 � x̂ < Lx, (4.17)

where p̃ and r̃ are integers modulo N and gcd(N, Lx ), respec-
tively. Therefore, the number of solutions is

N gcd(N, Lx ). (4.18)

As discussed in Sec. IV B 1, this ground state degeneracy
can also be computed from the 2 + 1D ZN tensor gauge theory
of [38] on the slanted torus (2.17). Indeed, the ground state
degeneracy (4.18) agrees with (4.8) of [50] (with Leff

x = Leff
y =

1 and M = Lx).
Another way to count the ground states is to use the algebra

generated by the electric and magnetic spacelike symmetry
operators

e
2π i
N m̃(x̂)W = e−2π i/NWe

2π i
N m̃(x̂),

e
2π i
N m̃(x̂)W = e−2π ix̂/gcd(N,Lx )We

2π i
N m̃(x̂). (4.19)

Using (4.16), the Lx operators e
2π i
N m̃(x̂) can be generated by two

operators e
2π i
N m̃(0) and e

2π i
N �xm̃(0). We then find that the minimal

The BF models and modified Villain versions of these theories, when
they exist, have additional symmetries like winding symmetries and
magnetic symmetries. (The gauge theory in Sec. III B does not have
a modification of its Villain version and therefore all the symmetries
are visible already in the Villain theory.)

representation of the algebra has dimension N gcd(N, Lx ):

e
2π i
N m̃(x̂)| p̃, r̃〉 = e

2π i
N ( p̃+r̃ N

gcd(N,Lx ) x̂)| p̃, r̃〉,
W | p̃, r̃〉 = | p̃ − 1, r̃〉,
W| p̃, r̃〉 = | p̃, r̃ − 1〉. (4.20)

This reproduces the same ground state degeneracy (4.18). To
conclude, the spacelike global symmetries lead to the ground
state degeneracy N gcd(N, Lx ).

Observe that the ground state degeneracy (GSD) is always
between N and N2, but its value depends sensitively on the
number of lattice sites Lx.

One consequence of it is that the GSD does not have a good
Lx → ∞ limit. For example, if we take Lx = sN + 1 with s →
∞, then for every finite but large Lx the GSD is N . In the
other extreme, we can take Lx = sN with s → ∞ to find that
the GSD is N2. This sensitivity to how we take the limit is a
manifestation of UV/IR mixing.

While the strange dependence of the GSD on Lx might
seem peculiar, it is perhaps not as surprising as that in other
exotic models in higher spacetime dimensions (such as the
Haah code [56]). It is well known that certain systems with
frustration exhibit a ground state degeneracy that depends
sensitively on the details of the lattice, such as the number
of lattice sites. It would be nice to understand whether a
similar interpretation of the degeneracy exists in the 1 + 1D
ZN dipole gauge theory.

Since all these degenerate ground states can be distin-
guished by the local operators e2π im̃/N , the large ground state
degeneracy (4.18) is not robust and will be lifted when the
system is perturbed by these local operators. This would be
the case if we start with the lattice theory (4.1), which does
not have the magnetic symmetries. On the other hand, since
the magnetic symmetries are natural in the dipole ZN clock
model (4.9), the ground state degeneracy is robust in this
model.

4. Defects and their restricted mobility

The theory has a defect

Wτ (x̂) = exp

(
2π i

N

∑
τ -link: fixed x̂

mτ

)
, (4.21)

that represents the world-line of a static particle. On a non-
compact space, the particle can hop by kN sites for any integer
k. When k = 1, this is described by the defect

exp

[
2π i

N

( ∑
τ -link: τ̂<0

mτ (τ̂ , 0) +
∑

site: 0<x̂<N

x̂mxx(0, x̂)

+
∑

τ -link: τ̂�0

mτ (τ̂ , N )

)]
. (4.22)

More generally, n particles can simultaneously hop by
kN/ gcd(n, N ) sites for any integer k. When k = 1, this is
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described by the defect

exp

[
2π in

N

∑
τ -link: τ̂<0

mτ (τ̂ , 0)

]
exp

[
2π in

N gcd(n, N )

∑
site: 0<x̂<N

x̂mxx(0, x̂)

]

× exp

⎡
⎢⎣− 2π in

N gcd(n, N )

gcd(n,N )−1∑
r=1

N
gcd(n,N )∑
x̂=1

∑
site: x̂�x̂′<x̂+ rN

gcd(n,N )

mxx(0, x̂′)

⎤
⎥⎦

× exp

[
2π in

N

∑
τ -link: τ̂�0

mτ

(
τ̂ ,

N

gcd(n, N )

)]
. (4.23)

When space is a circle with Lx sites, i.e., x̂ ∼ x̂ + Lx, the
particle can hop by any multiple of gcd(N, Lx ) sites. More
generally, n particles can simultaneously hop by any multiple
of gcd(N, Lx )/ gcd(n, N, Lx ) sites. This, more complicated
hopping is similar to the way the U (1) fracton can hop by
a large amount, as in (3.8).

Let us clarify this fact. For finite Lx � N , the hopping by
N sites is simple. There is also a more complicated possibility
of moving several times around the space always in jumps of
N sites (on the covering space) and ending up only gcd(N, Lx )
sites away from the starting point in real space.

How should we interpret it for infinite Lx?
The simple hopping by N sites is clearly possible. And if

we take a continuum limit, it is a microscopic hop and we
conclude that the fracton is completely mobile. In this case,
there is no need to consider the more complicated process
involving going around the space.

Alternatively, we can think of the limit Lx → ∞ without
taking a continuum limit. Then, for any finite but large Lx,
the more complicated jumps that circle around the space are
also possible. Then the possible hops on the lattice depend on
how we take Lx → ∞. For example, if we take Lx = sN + 1
with s → ∞, then for every finite but large Lx the particle
is completely mobile. In the other extreme, for Lx = sN with
s → ∞, the particle can hop only by N sites.

There is, however, an important difference between the
simple hop by N sites and the shorter hop by gcd(N, Lx )
sites. The former is implemented by an operator stretching
over the N sites, while the latter is implemented by a more
complicated operator affecting degrees of freedom all over the
lattice. This difference becomes more significant as Lx gets
larger.

The fact that the number of sites the particle can hop on the
lattice depends on the long distance geometry of the lattice is
another manifestation of UV/IR mixing.

We conclude that in the ZN dipole gauge theory, the
particle represented by the defect (4.21) is not completely
immobile. This is to be contrasted with the defect (3.23) in
the U (1) dipole gauge theory, which cannot be deformed
and hence represents an immobile fracton. This difference in
the particle mobility between the U (1) and ZN theories has
already been discussed in higher-dimensional tensor gauge
theories in [17–19].

Having discussed the defect for a single particle, we will
now consider it for a dipole of particles with opposite charges.
A dipole of particles can move by an arbitrary number of sites

as long as their separation is fixed. It is described by the defect

exp

⎡
⎣2π i

N

⎛
⎝ ∑

τx-plaq: τ̂<0

�xmτ (τ̂ , x̂1) +
∑

site: x̂1<x̂�x̂2

mxx(0, x̂)

+
∑

τx-plaq: τ̂�0

�xmτ (τ̂ , x̂2)

⎞
⎠
⎤
⎦. (4.24)

The restricted mobility of the particle can be understood as
a result of the timelike symmetries that act on the defects. Let
us discuss the timelike symmetries.

The BF lattice model (4.7) has the same timelike symme-
tries (4.6) as the ZN lattice dipole gauge theory (4.1). The ZN

electric timelike symmetry associated with p̄τ is generated by
the ZN operator

U (τ̂ ; x̂1, x̂2) = exp

(
−2π i

N
[�xm̃(τ̂ , x̂2) − �xm̃(τ̂ , x̂1)]

)
.

(4.25)

The Zgcd(N,Lx ) electric dipole timelike symmetry associated
with r̄τ is generated by the Zgcd(N,Lx ) operator

U(τ̂ ; x̂1, x̂2)

= exp

(
− 2π i

gcd(N, Lx )
[x̂2�xm̃(τ̂ , x̂2 − 1) − m̃(τ̂ , x̂2)]

)

× exp

(
2π i

gcd(N, Lx )
[x̂1�xm̃(τ̂ , x̂1 − 1) − m̃(τ̂ , x̂1)]

)
.

(4.26)

Both U (τ̂ ; x̂1, x̂2) and U(τ̂ ; x̂1, x̂2) are invariant under defor-
mations of x̂1, x̂2, and τ̂ , because of (4.16), as long as they do
not cross any defect. In particular, they are trivial operators in
the absence of any defect insertions.

These timelike symmetries act on the defect Wτ (x̂) as

U (τ̂ ; x̂1, x̂2)Wτ (x̂) = e
2π i
N Wτ (x̂) if x̂1 < x̂ < x̂2,

U(τ̂ ; x̂1, x̂2)Wτ (x̂) = e
2π i

gcd(N,Lx ) x̂Wτ (x̂) if x̂1 < x̂ < x̂2. (4.27)

The action is trivial if x̂ is not in between x̂1, x̂2, which follows
from the Gauss law.

The defects Wτ (x̂)n and Wτ (x̂ + gcd(N,Lx )
gcd(n,N,Lx ) )n carry the same

ZN and Zgcd(N,Lx ) timelike charges. Therefore, the timelike
global symmetry explains the allowed mobility of the parti-
cles. This is to be compared with the ground state degeneracy
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of N gcd(N, Lx ), which is a consequence of spacelike global
symmetry.

V. CONCLUSIONS

We studied the continuum Lifshitz theory of a compact
scalar φ with action (2.1) on a spatial circle in 1 + 1D. It
has momentum and winding dipole global symmetries with
a mixed ’t Hooft anomaly between them. This leads to an
infinite degeneracy in the spectrum.

We also studied a continuum U (1) dipole gauge theory
of (Aτ , Axx ), which is the 1 + 1D version of the symmetric
tensor gauge theory of [1–7,9–11]. This theory has defects,
exp(i

∮
dτ Aτ ), which describe the world-lines of immobile

particles—fractons. Curiously, the line operator
∮

dx Axx is
gauge invariant without exponentiating.

To understand the subtleties of the continuum field theories
of the scalar and the tensor gauge field, we studied their
lattice models. We used the modified Villain model for the
scalar theory and a Villain version for the tensor gauge theory.
The lattice models are unambiguous and exhibit most of the
global symmetries of the continuum theories. Surprisingly,
for each lattice model, there are several continuum limits one
can take. These continuum limits are described by the same
action, but they differ in various global aspects including the
field identifications. Correspondingly, the global symmetries
of the continuum models and their observables (defects and
operators) are different.

We discussed three continuum limits of the scalar field
theory. Two of them, the φ- and �-theories, are dual to each
other, while the third, the φ̂-theory, is self-dual. The latter
is also scale-invariant under the Lifshitz scale transformation
x → λx and τ → λ2τ . Their global symmetries are summa-
rized in Table I.

While the modified Villain lattice model has the local op-
erators eiφ and ei�xφ , none of the three continuum theories has
both of these operators at the same time: the φ-theory has eiφ

but no ei∂xφ , the �-theory has ei∂x� but no ei�, and the φ̂-theory
has neither eiφ̂ nor ei∂x φ̂ . This observation follows from the
mass dimensions of these continuum fields.29 We summarized
the local operators on the lattice and in the continuum in
Table III.

We also discussed three continuum limits of the U (1)
dipole gauge theory. These are the pure gauge theories as-
sociated with the momentum symmetries of the φ-, �-, and
φ̂-theories. As already mentioned above, the A-theory has
quantized fracton defects, but the line operators are not quan-
tized. In the Ã-theory, there are no fracton defects and the line

29More precisely, when we say that the operator ei∂xφ is absent in
the continuum theory, we mean the following. The lattice operator
ei�xφ flows to a nontrivial operator in the continuum limit. At leading
order it flows to the identity operator. (In this sense it is trivial
in the continuum.) However, ei�xφ − 1 flows, up to wave function
renormalization, to ∂xφ, which is nontrivial. And at higher orders
we find additional operators. The fact that ei�xφ transforms under
the lattice momentum dipole symmetry leads to the fact that in the
continuum, ∂xφ also transforms (albeit inhomogeneously) under this
symmetry.

operators are exponentiated with a quantized coefficient. In
the Â-theory, there are no fracton defects and the line operators
are not quantized. The global symmetries and fluxes in these
theories are summarized in Table IV.

Finally, we discussed the BF lattice version of the ZN

dipole gauge theory in 1 + 1D. Unlike the U (1) theory, there
are no fractons in the ZN theory. The would-be fractons can
hop by N sites on the lattice. In fact, if the lattice has Lx sites
with periodic boundary conditions, the would-be fracton can
hop even by smaller steps, steps of gcd(N, Lx ). Surprisingly,
the amount by which the particle can hop locally depends
on the total number of sites of the lattice. Consequently, the
Lx → ∞ limit is not well defined. This subtlety, which is
related to phenomena observed in [50,56–59], reflects the
UV/IR mixing in these theories, as emphasized in [51].

One of the tools we used was the notion of a timelike
global symmetry. This is a global symmetry that acts trivially
on the operators and the Hilbert space without defects, but
it acts nontrivially on defects extended in the time direction.
The timelike global symmetry leads to selection rules and
constrains the shapes and locations of line defects. When
these defects represent the world-line of particles, the time-
like global symmetry explains their mobility restrictions as a
result of a global symmetry, rather than a gauge symmetry.
This discussion based on the timelike global symmetry makes
precise the intuition about conservation of “gauge charges.”
Specifically, in the U (1) dipole gauge theory, the timelike
global symmetry completely restricts the mobility of the frac-
ton defects, while in the ZN theory, it explains the relaxed
mobility of the would-be fractons.

As we said above, we can summarize the role of the global
symmetries in these exotic systems as follows. The spacelike
global symmetries lead to the peculiar ground state degener-
acy and the timelike global symmetries lead to the unusual
restricted mobility of the defects.

Throughout the paper, we focused on models in 1 + 1D,
but we expect many of these subtleties to be present in the
higher dimensional versions of these theories. For instance,
the origin of the infinite degeneracy in our 1 + 1D compact
Lifshitz theory is almost the same as the degeneracy in the 2 +
1D quantum Lifshitz theory [39,40]. Similarly, the absence of
the fracton defects in the ZN symmetric tensor gauge theory
[unlike its U (1) counterpart] was also observed in the higher-
dimensional models of [17–19].

Note added: After completion of this work, similar results
were published in related models in 2 + 1D [67,68].
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APPENDIX: TIMELIKE SYMMETRIES

Global symmetries including higher-form global symme-
tries, dipole global symmetries, and subsystem symmetries
are implemented by operators acting at a particular time. They
act on states in the Hilbert space and they act on operators by
conjugation.

In this Appendix, we will discuss symmetries that act triv-
ially on the Hilbert space in the absence of defects, but they
act nontrivially on timelike defects.30 For this reason, we will
refer to these symmetries as timelike symmetries. (Recall that,
as we said in the Introduction, we abuse the terminology here.
Our discussion is mostly in Euclidean signature, but we still
use the phrase “timelike” for operators acting on defects along
the Euclidean time direction.) In contrast, global symmetries
that act on states in the Hilbert space without defects and on
operators will be called spacelike symmetries.

Although the defects these symmetries can act on could be
of various dimensions, for simplicity of the presentation, we
will focus on symmetries acting on timelike line defects.

In relativistic systems, a one-form symmetry acts on line
operators and line defects [55]. And depending on how the
line is oriented, the symmetry can be thought of as spacelike
or timelike. Relativistic invariance relates them and there is
no reason to distinguish between spacelike and timelike sym-
metries. However, in nonrelativistic systems, the distinction
between spacelike and timelike symmetries is quite signifi-
cant. We have already encountered several examples of that in
Secs. III and IV.

Since the timelike symmetries act on line defects, they give
rise to selection rules of correlation functions of line defects.
More specifically, invariance under the timelike symmetry
constrains the possible configurations and shapes of the line
defects. When the line defects represent the world-line of
particles in the microscopic systems, these selection rules
restrict the mobility of these particles. In particular, certain
particles might be immobile due to the timelike symmetry,
i.e., they are fractons. Thus, the timelike symmetry gives a
global-symmetry-based explanation of the restricted mobility
of the fracton defects.

Below, we will start by phrasing the known symmetry
properties of some relativistic systems in the language of
spacelike and timelike symmetries. This will allow us to test
our new language and to practice it. Then, we will discuss
some nonrelativistic systems with a subsystem global symme-
try, where this language will lead to new results. In the main
text, we have discussed the timelike symmetries in U (1) and
ZN gauge theories with dipole global symmetries.

1. 2 + 1D U (1) gauge theory

Consider the 2 + 1D Maxwell theory described by the La-
grangian

L = 1

g2
FμνFμν, μ, ν = τ, x, y, (A1)

30More precisely, the timelike symmetry operator does not act on
the defect. It acts on the Hilbert space in the presence of a defect.

where F = dA is the field strength of the U (1) one-form
gauge field A with gauge symmetry

A ∼ A + dα. (A2)

We place the theory on a Euclidean 3-torus with lengths �τ ,
�x, and �y.

There is a U (1) electric one-form symmetry [55], which
acts on the gauge fields as

A → A + λ, (A3)

where λ is a flat gauge field. Using the gauge freedom of α,
we can set

λτ = cτ

�τ

, λi = ci

�i
, i = x, y, (A4)

where cτ and ci are circle-valued constants: cτ ∼ cτ + 2π and
ci ∼ ci + 2π .

The Noether current for the U (1) electric one-form sym-
metry is

Jμ = 2i

g2
εμνρF νρ, dJ = 0. (A5)

The charge is

Q(C) =
∮

C
J, (A6)

which is independent of small deformations of the closed
curve C. The charged objects are the Wilson lines of A:

W (C) = exp

(
i
∮

C
A

)
. (A7)

The circle-valued parameter cx generates a standard U (1)
global symmetry, i.e., a spacelike symmetry. The action of this
symmetry on the Wilson line operator W (X ), where X is the
x-cycle at a fixed time, is

eicxQ(Y )W (X )ne−icxQ(Y ) = eincxW (X )n. (A8)

Here Q(Y ) is the charge operator with the curve C being the
Y -cycle. [There is a similar action of cy on W (Y )n.]

In a standard way, this symmetry action by conjugation is
represented as two operators inserted at different Euclidean
times, before and after W (X )n. Then, the curves in the two
lines in Q(Y ) can be deformed to a closed curve in Euclidean
space. See Fig. 2(a) for the Euclidean configuration of the
above spacelike symmetry action.31

On the other hand, the circle-valued parameter cτ generates
a U (1) timelike symmetry. It acts on the Wilson line defect
W (x, y) ≡ exp[i

∮
dτ Aτ (τ, x, y)] as

eicτ Q(C)W (x, y)n = eincτ W (x, y)n, (A9)

where C is a closed spacelike curve that encloses the point
(x, y). Note that the action of the timelike symmetry on the

31The action of the spacelike symmetry operator on the charged
operator is gauge equivalent to the shift (A4). The same is true for
the action of the timelike symmetry, and also the other symmetries in
the rest of this Appendix.

045112-25



GORANTLA, LAM, SEIBERG, AND SHAO PHYSICAL REVIEW B 106, 045112 (2022)

FIG. 2. The Euclidean configurations for the action of a one-form symmetry on a line defect/operator. In (a), the spacelike symmetry
operator (red curve) acts on the line operator (blue line) giving the phase eic. The two horizontal red lines are at fixed Euclidean time and
the two vertical red lines are along the Euclidean time direction. In (b), the timelike symmetry operator (red curve) acts on the line defect
(blue line) giving the phase eic. Here, the red curve is at fixed Euclidean time. These phases are U (1)-valued in the 2 + 1D U (1) gauge theory
discussed in Appendix A 1, while they are ZN -valued in the 2 + 1D ZN gauge theory discussed in Appendix A 3.

defect is like an action on a state. It does not involve conju-
gation. See Fig. 2(b) for the Euclidean configuration of this
timelike symmetry action.

In finite volume, because of the timelike symmetry, the
correlation function of line defects〈∏

a

W (xa, ya)qa

〉
, qa ∈ Z, (A10)

is trivial, unless ∑
a

qa = 0. (A11)

This constraint can also be obtained by nucleating a small
timelike symmetry operator eicτ Q(C) away from the defects,
and then enlarging C to wrap it around the entire compact
space. During this process, whenever the symmetry operator
crosses a defect, it picks up a phase. At the end of this process,
the symmetry operator can be contracted to a trivial operator
on the other side, i.e., it is as if we never inserted it, so we
should get the original correlation function back, up to an
overall phase. So, unless this phase is trivial, the correlation
function vanishes.

In infinite volume, we can send one of the defects to in-
finity, so that the sum of the charges of the rest of them is
conserved in time.

Since the U (1) gauge theory is relativistic, both the space-
like and the timelike symmetries (generated by ci and cτ ,
respectively) can be traced back to the same underlying U (1)
one-form global symmetry.

The discussion above is a complicated way to state well-
known facts. We can think of the defects as the world-lines
of probe charged particles with charges qa, and then (A11)
states that the total charge in compact space must vanish. And
the process of removing one of the charges to infinity is the
known fact of charge conservation.

However, one might not be satisfied with this low-brow
presentation because qa are gauge charges and their defini-
tion needs more care. For example, if the system includes
dynamical charged particles, then qa can be screened and then
the conclusions are slightly different. Also, a gauge symmetry
is not an intrinsic property of the system and it is preferable

to use well-defined, gauge-invariant operators to derive such
constraints.

The formulation of the discussion in terms of generalized
global symmetries [55] addresses these concerns. The discus-
sion we presented in this subsection, in terms of spacelike and
timelike symmetries, is an adaptation of the generalized global
symmetry framework to nonrelativistic systems like the ones
we study in this paper.

2. Timelike symmetry without gauge fields

Timelike symmetries can also exist in theories without
gauge fields. For example, consider the 2 + 1D compact bo-
son described by the Lagrangian

L = f

2
(∂μφ)2, μ = τ, x, y, (A12)

with identifications φ(τ, x, y) ∼ φ(τ, x, y) + 2π . Here, f is a
coefficient with mass dimension 1. We place the theory on a
Euclidean 3-torus with lengths �τ , �x, and �y.

There is a U (1) winding one-form symmetry [55] with
current

J = 1

2π
dφ, dJ = 0. (A13)

The charge is

Q(C) =
∮

C
J, (A14)

which is independent of small deformations of the closed
curve C. When C = X or Y , this is the usual winding charge
that measures the winding number of φ in x or y directions,
respectively.

Similar to the discussion in Appendix A 1, there is a U (1)
winding timelike symmetry, which is part of the U (1) winding
one-form symmetry. The objects charged under this timelike
symmetry are vortex line defects in spacetime, which are
defined in terms of the winding of φ around them. Concretely,
consider the line defect obtained by removing a nontrivial
curve C that wraps once around the τ -direction. This cre-
ates another nontrivial spatial cycle C0 around C. Part of the
definition of the defect is that the scalar φ winds q times
along C0.
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We can interpret this to mean that this line defect carries
charge q under the U (1) winding timelike symmetry similar
to the configuration in Fig. 2(b). As in Appendix A 1, the
timelike symmetry constrains the configurations. When we
have several such timelike cycles with charges qa, and the
space is compact, they should satisfy

∑
a qa = 0. In particular,

the case with a single vortex with nonzero q cannot exist in a
compact space.

Note that the 2 + 1D compact boson is exactly dual to
the continuum 2 + 1D U (1) gauge theory of Appendix A 1.
In the gauge theory description, the vortex line defects are
the Wilson lines of the gauge field along the time direction.
In this sense, the discussion here does not add information
to the discussion in Appendix A 1. However, the analysis
here applies without any significant change in more general
systems. First, we can add to the Lagrangian various terms,
such that it is not dual to the free gauge theory. Second, we
can replace this theory with any nonlinear sigma model whose
target space M has nontrivial cycles. Finally, this discussion
underscores the fact that higher-form global symmetries (and
therefore also timelike symmetries) are not specific to gauge
theories.

3. 2 + 1D ZN gauge theory

Consider the ordinary 2 + 1D ZN gauge theory, which
can be described by the continuum Chern-Simons Lagrangian
[66,69,70]:

L = iN

2π
AdÂ, (A15)

where A and Â are one-form gauge fields with gauge symme-
try

A ∼ A + dα, Â ∼ Â + dα̂. (A16)

We place the theory on a Euclidean 3-torus with lengths �τ ,
�x, and �y.

There is a ZN × ZN one-form global symmetry. The sym-
metry operators/defects are

W (C) = exp

(
i
∮

C
A

)
, Ŵ (C) = exp

(
i
∮

C
Â

)
, (A17)

where C is a closed curve in spacetime. They satisfy

W (C)N = Ŵ (C)N = 1,

〈W (C1)Ŵ (C2)〉 = e2π i�(C1,C2 )/N 〈1〉,
(A18)

where �(C1,C2) is the linking number of the closed curves
C1,C2. The second line of (A18) implies that the symmetry
operators are charged under each other. This signals a mixed
’t Hooft anomaly between the two ZN one-form symmetries,
which results in a ground state degeneracy of N2.

a. Spacelike and timelike global symmetries

The ZN × ZN one-form global symmetry acts on the gauge
fields as

A → A + λ, Â → Â + λ̂, (A19)

where λ and λ̂ are flat one-form ZN gauge fields. (They have
to be ZN gauge fields for the exponential of the action to be

invariant.) Using the gauge freedom of α and α̂, we can set

λτ = 2πnτ

N�τ

, λi = 2πni

N�i
, i = x, y,

λ̂τ = 2π n̂τ

N�τ

, λ̂i = 2π n̂i

N�i
, (A20)

where nτ , ni, n̂τ , and n̂i are integers modulo N .
The parameters ni and n̂i are associated with spacelike

symmetries. They act on states in the Hilbert space, and on
operators W (C) and Ŵ (C) when C is purely spacelike.

On the other hand, nτ and n̂τ are associated with timelike
symmetries. Instead of acting on operators and states, they act
on the defects W (C) and Ŵ (C) when C is purely timelike.
Consequently, in finite volume, the correlation function of
defects,〈∏

a

W (xa, ya)qa

〉

≡
〈∏

a

exp

(
iqa

∮
dτAτ (τ, xa, ya)

)〉
, qa ∈ Z, (A21)

vanishes unless ∑
a

qa = 0 mod N. (A22)

This can also be derived by nucleating a timelike sym-
metry operator and wrapping it around the space, similar to
Appendix A 1.

In infinite volume, we can move one defect to infinity, and
then the rest of the defects are such that the sum of their
charges is conserved modulo N .

Since the ZN gauge theory is relativistic, both the spacelike
and the timelike symmetries (generated by ni, n̂i and nτ , n̂τ ,
respectively) can be traced back to the same underlying ZN ×
ZN one-form global symmetry.

b. Symmetry operators

We will now discuss the symmetry operators of the space-
like and timelike symmetries. The symmetry operator for the
spacelike symmetry associated with nx is Ŵ (Y )nx , where Y
is the y-cycle at a fixed time. The action of the spacelike
symmetry on a spacelike defect W (X ) wrapping the x-cycle
is given by the conjugation:

Ŵ (Y )W (X )Ŵ (Y )−1 = e−2π i/NW (X ). (A23)

The discussions for the spacelike symmetry along the other di-
rections and for n̂i are similar. See Fig. 2(a) for the Euclidean
configuration of the above spacelike symmetry action.

Next, the symmetry operator for the timelike symmetry
associated with nτ is Ŵ (C)nτ . Here C is a spacelike curve
encircling a line defect W (x0, y0), which extends in time at a
point (x0, y0) in space. In an equation, we denote this timelike
symmetry action by

Ŵ (C)W (x0, y0) = e−2π i/NW (x0, y0). (A24)

See Fig. 2(b) for the Euclidean configuration of this timelike
symmetry action.
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4. 2 + 1D ZN tensor gauge theory

We will now start considering nonrelativistic theories with
subsystem global symmetries.

Our first example is the 2 + 1D ZN Ising-plaquette model.
We can study it on the lattice, but we might as well use the
continuum formulation of [24] in terms of the 2 + 1D ZN

tensor gauge theory. The Lagrangian is32

L = iN

2π
φxy(∂τ Axy − ∂x∂yAτ ), (A25)

with gauge symmetry

φxy ∼ φxy + 2πnxy
x (x) + 2πnxy

y (y),

Aτ ∼ Aτ + ∂τα, Axy ∼ Axy + ∂x∂yα,
(A26)

where nxy
i (xi ) ∈ Z.

We place the theory on a Euclidean 3-torus with lengths
�τ , �x, and �y. Later, we will generalize the discussion to other
spatial manifolds.

We will start with the spacelike global symmetries of this
model [24]. There is ZN electric subsystem symmetry gener-
ated by eiφxy

. Due to Gauss law ∂x∂yφ
xy = 0, it factorizes into

eiφxy (x,y) = eiφx (x)eiφy (y), (A27)

where only the sum of zero modes of φi(xi ) is physical. There
is also a ZN magnetic subsystem symmetry generated by

Wx(x1, x2) = exp

(
i
∫ x2

x1

dx
∮

dyAxy

)
,

Wy(y1, y2) = exp

(
i
∮

dx
∫ y2

y1

dyAxy

)
,

(A28)

which satisfy

Wx(0, �x ) = Wy(0, �y). (A29)

These operators are ZN operators:

eiNφxy = Wx(x1, x2)N = Wy(y1, y2)N = 1. (A30)

They satisfy the commutation relations

eiφxy (x,y)Wx(x1, x2)

= e−2π i/NWx(x1, x2)eiφxy (x,y) if x1 < x < x2,

eiφxy (x,y)Wy(y1, y2)

= e−2π i/NWy(y1, y2)eiφxy (x,y) if y1 < y < y2. (A31)

This implies that the symmetry operators are charged under
each other, and it signals a mixed ’t Hooft anomaly between
the two ZN symmetries. This results in an infinite ground state
degeneracy, which is regularized to NLx+Ly−1 on a lattice with
Li sites in the i-direction.

In addition to these global symmetries, there is also a
ZN tensor timelike symmetry generated by the quadrupole

32The x and the y directions in space are distinguished. They define
a foliation in space.

FIG. 3. The Euclidean configuration for the action of the
quadrupole operator U (τ0; x1, x2; y1, y2) (red dots) on the fracton
defect Wτ (x, y) (blue line).

operator:

U (τ ; x1, x2; y1, y2)

= eiφxy (τ,x2,y2 )e−iφxy (τ,x2,y1 )e−iφxy (τ,x1,y2 )eiφxy (τ,x1,y1 ). (A32)

This timelike symmetry operator U is supported at a collec-
tion of four points (which are the vertices of a rectangle) on
the xy-plane at a fixed time. This operator satisfies

∂τU = 0, ∂x1,2U = 0, ∂y1,2U = 0. (A33)

The last two equations imply that we can deform the rect-
angle of U along the x or the y directions without affecting
any correlation functions, as long as the deformation does not
cross any defects. It is important that here we mean that the
edges of the rectangle and not only its corners do not cross
any defects. This is reminiscent of the topological nature of
the timelike symmetry arising from a one-form symmetry in
relativistic systems, but here U can be deformed only along
the foliated directions in space.

The defects charged under this timelike symmetry are the
fracton defects,

Wτ (x, y) = exp

(
i
∮

dτAτ (τ, x, y)

)
. (A34)

Their N th powers are trivial, and they satisfy

U (τ0; x1, x2; y1, y2)Wτ (x, y)

= e−2π i/NWτ (x, y) if xi
1 < xi < xi

2. (A35)

See Fig. 3.
The ZN tensor timelike symmetry acts as

Aτ (τ, x, y) → Aτ (τ, x, y) + 2π

N�τ

[nx(x) + ny(y)], (A36)

where ni(xi) ∈ Z. In finite volume, this implies that the corre-
lation function of defects,〈∏

a

Wτ (xa, ya)qa

〉

≡
〈∏

a

exp

(
iqa

∮
dτAτ (τ, xa, ya)

)〉
, qa ∈ Z, (A37)

vanishes unless∑
a

qa[nx(xa) + ny(ya)] = 0 mod N. (A38)
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This should be satisfied for all integer-valued functions nx(x)
and ny(y).

This constraint can also be obtained by nucleating a small
quadrupole operator U (τ ; x1, x2; y1, y2) (A32) away from the
defects, and then enlarging it in, say, the x direction to wrap
it around the strip bounded by y1 and y2 (a similar argument
works in the y direction). During this process, whenever the
symmetry operator crosses a defect, it picks up a phase. At the
end of this process, the four corners of the quadrupole operator
annihilate each other on the other side, i.e., it is as if we never
inserted the quadrupole operator, so we should get the original
correlation function back, up to an overall phase. So, unless
this phase is trivial,

2π

N

∑
a:y1<ya<y2

qa ∈ 2πZ, (A39)

the correlation function vanishes. The condition (A39), sup-
plemented with a similar condition in the other direction, is
equivalent to (A38).

Note the difference between this enlargement and annihi-
lation operation and the analogous one in ordinary 2 + 1D
gauge theories in Appendixes A 1 and A 3. Here, the timelike
charge operator is a quadrupole operator, supported at four
points, which are annihilated at the end of this process. In
ordinary 2 + 1D gauge theories, the timelike charge operator
is supported on a line. And therefore, in order to annihilate
it at the end of an analogous process, we need to move the
line around the whole space, rather than to cover a strip in
the x or y direction. Therefore, the timelike symmetry in the
tensor gauge theory case leads to stronger constraints than in
the ordinary gauge theories.

In infinite volume, we can send some of the defects to
infinity, so that, for the remaining defects,

(∑
a

qa[nx(xa) + ny(ya)]

)
mod N (A40)

is conserved for all integer-valued functions nx(x) and ny(y).
In particular, a single fracton cannot move at all, whereas a
dipole of fractons separated in the x-direction can move in the
y-direction, and vice versa. Thus, this provides an explanation
of the restricted mobility of the fractons in the 2 + 1D ZN

tensor gauge theory based on global symmetries.

a. Twisted torus

Above we have discussed the timelike symmetry on a
rectangular spatial torus. Next, we will place the 2 + 1D ZN

tensor gauge theory on a spatial torus with a more general
complex structure. Our discussion here follows [50] closely.

As shown in [50], the spacelike symmetry depends on the
foliation. Similarly, we will see that the timelike symmetry
also depends on the foliation and the complex structure of the
torus. Consequently, the restricted mobility of the fractons is
relaxed on a twisted torus.

Consider a twisted spatial torus with identifications

(x, y) ∼ (
x + m�eff

x , y
) ∼ (

x + k�eff
x , y + �eff

y

)
,

gcd(m, k) = 1. (A41)

We can combine these identifications to generate another
identification

(x, y) ∼ (
x + �eff

x , y + k̃�eff
y

)
, gcd(m, k̃) = 1. (A42)

The coordinate system (x, y) is associated with a choice of
foliation of the torus. Using the identifications (A41), we see
that going along the constant x or along the constant y leaves,
we return to the starting point after a shift y → y + m�eff

y or
x → x + m�eff

x , respectively. Each pair of constant x and con-
stant y curves cross each other m times within the fundamental
domain of the torus [50].

Let us start with the spacelike symmetry. In addition to the
electric ZN and the magnetic ZN global symmetries as before,
there is also a Zgcd(N,m) × Zgcd(N,m) global symmetry [50].

Next, we will consider the timelike symmetry. In addition
to the ZN timelike symmetry as before, there is also a Zgcd(N,m)

timelike symmetry generated by the symmetry operator

U(τ ) = exp

(
iN

gcd(N, m)

∮
F

dxdy
[
�P
(
x, 0; �eff

x

)− k�P
(
y, 0; �eff

y

)]
∂x∂yφ

xy(τ, x, y)

)
, (A43)

where F is any fundamental domain on the spatial twisted torus, and �P(x, x0; �eff
x ) is a suitable step function that satisfies

�P
(
0, x0; �eff

x

) = 0, ∂x�
P
(
x, x0; �eff

x

) =
∑
I∈Z

δ
(
x − x0 − I�eff

x

)
. (A44)

It satisfies

∂τ U(τ ) = 0, U(τ )gcd(N,m) = 1. (A45)

The timelike symmetries act on the gauge fields as

Aτ (τ, x, y) → Aτ (τ, x, y) + 2π

N�τ

[nx(x) + ny(y)] + 2πr

gcd(N, m)�τ

[
�P
(
x, 0; �eff

x

)− k�P(y, 0; �eff
y

)]
, (A46)

where ni(xi ) is an integer-valued function with ni(xi + �eff
i ) = ni(xi ), and r = 0, . . . , gcd(N, m) − 1.

On a twisted torus, the immobility of fractons is relaxed. Consider two charged defects Wτ (x, y), and Wτ (x′, y′). If (x, y) and
(x′, y′) are related by the identifications (A41), these are two different labels of the same point in space and therefore these two
defects are trivially the same. More interestingly, consider the case where there is an integer I such that

(x′, y′) = (
x + IN�eff

x , y
)
, I ∈ Z. (A47)
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Now, the two points (x, y) and (x′, y′) can label two different points in space and therefore the two defects can be different.
When (A47) is satisfied, these two different defects carry the same ZN and Zgcd(N,m) timelike charges. Since they carry the same
charges, we could ask whether this means that a fracton at (x, y) can move to (x′, y′) of (A47).

Let us examine it in the special case I = 1. Here we can see that indeed a fracton at (x, y) can move to (x + N�eff
x , y). The

defect33

exp

(
i
∫ τ0

−∞
dτAτ (τ, x, y)

)
×

N∏
J=1

exp

(
i
∫ x+J�eff

x

x+(J−1)�eff
x

dx̃
∫ y+Jk̃�eff

y

y
dỹAxy(τ0, x̃, ỹ)

)

×
N∏

J=1

exp

(
i
∫ ∞

τ0

dτ
[
Aτ

(
τ, x + (J − 1)�eff

x , y + Jk̃�eff
y

)− Aτ

(
τ, x + J�eff

x , y + Jk̃�eff
y

)])

× exp

(
i
∫ ∞

τ0

dτAτ

(
τ, x + N�eff

x , y
))

(A48)

describes the motion of the fracton between these two different points at the time τ0, where k̃ is defined in (A42). [In reaching
this conclusion, we used the fact that the defects in the second line are trivial because of the identification (A42).]

This discussion of I = 1 can be repeated for larger values of I . But only I = 1, . . . , m
gcd(N,m) lead to distinct points on the

torus. Using the identifications (A41), the points corresponding to other values of I are the same as for I = 1, . . . , m
gcd(N,m) . In

conclusion, a fracton at (x, y) can move between m
gcd(N,m) different points [with the last one being the same as (x, y)]. They can

be labeled as

(x′, y′) = (
x + J gcd(N, m)�eff

x , y
)
, J = 1, . . . ,

m

gcd(N, m)
. (A49)

This result has the following interpretation. As we said, the system depends on a choice of foliation with leaves at constant x
and constant y. These leaves cross each other at m points [50] within the fundamental domain. The points in the set (A49) are
on the same leaves. But not all the m intersection points between these leaves are included in (A49). As can be seen from (A47),
we include only points that differ by a multiple of N intersections in the covering space. They differ by an integer multiple of
gcd(N, m) in the fundamental domain. The facts that these points are on the same leaves of the foliation and that the difference
between them is a multiple of N intersections in the covering space guarantee that a fracton at (x, y) and a fracton at (x′, y′) carry
the same timelike symmetry charges.

This continuum discussion has a counterpart in its modified Villain and its BF lattice versions [38]. Here, the identifications
are

(x̂, ŷ) ∼ (
x̂ + MLeff

x , ŷ
) ∼ (

x̂ + KLeff
x , ŷ + Leff

y

)
, gcd(M, K ) = 1 (A50)

and the allowed mobility (A49) becomes an allowed mobility on the lattice from (x̂, ŷ) to

(x̂′, ŷ′) = (
x̂ + J gcd(N, M )Leff

x , ŷ
)
, J = 1, . . . ,

M

gcd(N, M )
. (A51)

As discussed in Sec. IV B 1, in the special case M = Lx, K =
−1, and Leff

x = Leff
y = 1, this 2 + 1D problem is equivalent

to the 1 + 1D ZN dipole gauge theory of Sec. IV. Indeed,
the allowed mobility (A51) translates to the allowed mobility
derived in Sec. IV B 4.

5. 3 + 1D ZN anisotropic gauge theory

Next, we will discuss an anisotropic model in 3 + 1D with
lineons [49,71]. The continuum Lagrangian is

L = iN

2π
[Aτ (∂zÃxy − ∂x∂yÃz ) − Az(∂τ Ãxy − ∂x∂yÃτ )

− Axy(∂τ Ãz − ∂zÃτ )], (A52)

33Here we omit the terms involving transition functions.

with gauge symmetry

Aτ ∼ Aτ + ∂τα, Ãτ ∼ Ãτ + ∂τ α̃,

Az ∼ Az + ∂zα, Ãz ∼ Ãz + ∂zα̃,

Axy ∼ Axy + ∂x∂yα, Ãxy ∼ Ãxy + ∂x∂yα̃. (A53)

The spacelike global symmetries were discussed in [49].
There is a ZN electric global symmetry generated by

W̃z(x, y) = exp

(
i
∮

dzÃz

)
,

W̃x(x1, x2; z) = exp

(
i
∫ x2

x1

dx
∮

dyÃxy

)
, (A54)

W̃y(y1, y2; z) = exp

(
i
∮

dx
∫ y2

y1

dyÃxy

)
,

and a ZN magnetic global symmetry generated by similar
Wilson operators of A. Due to the Gauss law, the operator in
the first line of (A54) factorizes as

W̃z(x, y) = W̃ x
z (x)W̃ y

z (y), (A55)
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and the operators in the last two lines of (A54) satisfy

W̃x(0, �x; z) = W̃y(0, �y; z). (A56)

Similar relations hold for the Ã operators. They are all ZN

operators, and satisfy the commutation relations

W̃x(x1, x2; z)Wz(x, y) = e−2π i/NWz(x, y)W̃x(x1, x2; z) if x1 < x < x2,

W̃y(y1, y2; z)Wz(x, y) = e−2π i/NWz(x, y)W̃y(y1, y2; z) if y1 < y < y2, (A57)

and vice versa. This implies that the symmetry operators are charged under each other, and it signals a mixed ’t Hooft anomaly
between the two ZN global symmetries. As a result, there is an infinite ground state degeneracy, which is regularized on a lattice
with Li sites in the i-direction to NLx+Ly−1.

Next, we will turn to the timelike symmetries. There are two ZN timelike symmetries. The ZN electric timelike symmetry is
generated by the pillar operator, which is reminiscent of similar terms in the lattice Hamiltonian of the anisotropic model (see
Fig. 4):

U (τ ;B) = exp

(
i
∫ x2

x1

dx
∫ y2

y1

dy[Ãxy(τ, x, y, z2) − Ãxy(τ, x, y, z1)]

)

× exp

(
−i
∫ z2

z1

dz[Ãz(τ, x2, y2, z) − Ãz(τ, x1, y2, z) − Ãz(τ, x2, y1, z) + Ãz(τ, x1, y1, z)]

)
, (A58)

where B = [x1, x2] × [y1, y2] × [z1, z2] is a spatial box. This
operator satisfies

∂τU (τ ;B) = 0, ∂xi
1,2

U (τ ;B) = 0. (A59)

The above equation implies that while U is not completely
topological, we can deform it along the x, y, or z direction
without changing any correlation functions, as long as the
deformation does not cross any defects.

The defects charged under this timelike symmetry are the
z-lineon defects,

Wτ (x, y, z) = exp

(
i
∮

dτAτ (τ, x, y, z)

)
. (A60)

Their N th powers are trivial. The action of the timelike sym-
metry on the z-lineon defect is

U (τ0;B)Wτ (x, y, z) = e2π i/NWτ (x, y, z) if (x, y, z) ∈ B.

(A61)

FIG. 4. The pillar operator U (τ ;B) made of Ã gauge fields. Here,
B = [x1, x2] × [y1, y2] × [z1, z2] is a spatial box. The pillar operator
generates the ZN electric timelike symmetry of the ZN anisotropic
gauge theory. A similar pillar operator made of A gauge fields
generates the ZN magnetic timelike symmetry. These operators are
reminiscent of terms in the lattice Hamiltonian of the anisotropic
model.

The ZN electric timelike symmetry acts as

Aτ → Aτ + 2π

N�τ

[nx(x) + ny(y)], (A62)

where ni(xi) ∈ Z for i = x, y. In finite volume, this implies
that the correlation function of defects,〈∏

a

exp

(
iqa

∮
dτAτ (τ, xa, ya, za)

)〉
, qa ∈ Z, (A63)

vanishes unless∑
a

qa[nx(xa) + ny(ya)] = 0 mod N. (A64)

This should be satisfied for all integer-valued functions nx(x)
and ny(y). In infinite volume, we can send some of the defects
to infinity, so that, for the remaining defects,(∑

a

qa[nx(xa) + ny(ya)]

)
mod N (A65)

is conserved for all integer-valued functions nx(x) and ny(y).
In particular, a single z-lineon can move only in the z-
direction, whereas a dipole of z-lineons separated in the
x-direction can move in the yz-plane, and vice versa.

As above, we can derive these selection rules by nucleating
the pillar operator, deforming it around the torus and annihi-
lating it.

The ZN magnetic timelike symmetry is obtained by ex-
changing A and Ã.

To conclude, the restricted mobility of the lineons in this
anisotropic model is explained by the two ZN timelike global
symmetries.

6. X-cube model

Here we will study the X-cube model [72] using the con-
tinuum formulation of [16,26]. We place the theory on a
Euclidean 4-torus with a choice of foliation characterized by
the spatial directions x, y, z and the Euclidean time direction
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FIG. 5. The cage operator U (τ ;B), and the three belt operators Û[yz]x (τ ;B), Û[zx]y(τ ;B), and Û[xy]z(τ ;B), respectively, in clockwise order.
Here, B = [x1, x2] × [y1, y2] × [z1, z2] is a spatial box. The cage operator generates the ZN electric timelike symmetry of the X-cube field
theory, whereas the belt operators generate the ZN magnetic timelike symmetry. These operators are reminiscent of the “X-cube” and “vertex”
terms in the lattice Hamiltonian of the X-cube model.

τ . We start by considering the case with simple periodicity in
these directions given by the lengths �x, �y, �z, and �τ . The
Lagrangian is

L = iN

2π

⎡
⎢⎣∑

i, j,k
cyclic

Ai j
(
∂τ Âi j − ∂kÂk(i j)

τ

)+ Aτ

∑
i< j

∂i∂ j Â
i j

⎤
⎥⎦,

(A66)

with gauge symmetry

Aτ ∼ Aτ + ∂τα, Âk(i j)
τ ∼ Âk(i j)

τ + ∂τ α̂
k(i j),

Ai j ∼ Ai j + ∂i∂ jα, Âi j ∼ Âi j + ∂kα̂
k(i j). (A67)

We refer the readers to [26] for details of our notations.
There is a ZN electric global symmetry generated by [26]

Ŵ z(x, y) = exp

(
i
∮

dzÂxy

)
, (A68)

and similar operators in the other directions. Due to the equa-
tion of motion of Aτ (i.e., Gauss law), we have

Ŵ z(x, y) = Ŵ z
x (x)Ŵ z

y (y). (A69)

There is also a ZN magnetic global symmetry generated by
[26]

Wxy(z1, z2; Cxy) = exp

(
i
∫ z2

z1

dz
∮
Cxy

(dxAxz + dyAyz )

)
,

(A70)

where Cxy is a closed curve in the xy-plane,34 and similar
operators in the other directions. They satisfy

Wxy
(
0, �z; Cxy

x

) = Wyz
(
0, �x; Cyz

z

)
, (A71)

and similarly in other directions. Here, C i j
i is a closed curve in

the i j-plane that wraps once in the i-direction but not in the
j-direction. These operators are ZN operators, i.e., their N th
powers are trivial, and they are the low energy limits of the
logical operators of the X-cube model [72]. They satisfy the
commutation relations

Ŵ x(y0, z0)Wxy(z1, z2; C) = e2π iI (C,y0 )/NWxy(z1, z2; C)Ŵ x(y0, z0)

if z1 < z0 < z2, (A72)

where I (C, y0) is the intersection number of the curve C and
the line y = y0 in the xy-plane. There are similar commutation
relations in the other directions. These commutation relations
imply that the symmetry operators are charged under each
other. This means that there is a mixed ’t Hooft anomaly
between the two ZN symmetries, and it leads to an infinite
ground state degeneracy, which is regularized on a lattice with
Li sites in the i-direction to N2Lx+2Ly+2Lz−3.

There are also ZN timelike global symmetries. The ZN

electric timelike symmetry is generated by the cage opera-
tor, which is reminiscent of the “X-cube” term in the lattice

34Note that Wxy(z1, z2; Cxy ) depends only on the topology of Cxy,
i.e., it is invariant under small deformations of Cxy [26].
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Hamiltonian of the X-cube model (see Fig. 5):

U (τ ;B) = exp

(
i
∫ z2

z1

dz[Âxy(τ, x2, y2, z) − Âxy(τ, x1, y2, z) − Âxy(τ, x2, y1, z) + Âxy(τ, x1, y1, z)]

)

× exp

(
i
∫ x2

x1

dx[Âyz(τ, x, y2, z2) − Âyz(τ, x, y2, z1) − Âyz(τ, x, y1, z2) + Âyz(τ, x, y1, z1)]

)

× exp

(
i
∫ y2

y1

dy[Âzx (τ, x2, y, z2) − Âzx(τ, x1, y, z2) − Âzx(τ, x2, y, z1) + Âzx(τ, x1, y, z1)]

)
. (A73)

where B = [x1, x2] × [y1, y2] × [z1, z2] is a spatial box. This operator satisfies

∂τU (τ ;B) = 0, ∂xi
1,2

U (τ ;B) = 0. (A74)

The above equation implies that while U is not completely topological, we can deform it along the x-, y-, or z-direction without
changing any correlation functions, as long as the deformation does not cross any defects. By that we mean that the faces of the
cube, rather than the edges of the cube, do not cross any defect.

The defects charged under this timelike symmetry are the fracton defects,

Wτ (x, y, z) = exp

(
i
∮

dτAτ (τ, x, y, z)

)
. (A75)

Their N th powers are trivial, and they satisfy

U (τ0;B)Wτ (x, y, z) = e2π i/NWτ (x, y, z) if (x, y, z) ∈ B. (A76)

The ZN electric timelike symmetry acts as

Aτ → Aτ + 2π

N�τ

[nx(x) + ny(y) + nz(z)], (A77)

where ni(xi ) ∈ Z. In finite volume, this implies that the correlation function of defects,〈∏
a

Wτ (xa, ya, za)qa

〉
≡
〈∏

a

exp

(
iqa

∮
dτAτ (τ, xa, ya, za)

)〉
, qa ∈ Z, (A78)

vanishes unless ∑
a

qa[nx(xa) + ny(ya) + nz(za)] = 0 mod N. (A79)

This should be satisfied for all integer-valued functions nx(x), ny(y), and nz(z).
In infinite volume, we can send some of the defects to infinity, so that, for the remaining defects,(∑

a

qa[nx(xa) + ny(ya) + nz(za)]

)
mod N (A80)

is conserved for all integer-valued functions nx(x), ny(y), and nz(z).
In particular, a single fracton cannot move at all, whereas a dipole of fractons separated in the x-direction can move in the

yz-plane, and similarly in the other directions. We have thus provided an explanation of the restricted mobility of fractons using
global symmetries.

The authors of [16,73] derived this restricted mobility using the conservation of the “subsystem symmetry gauge charge.” As
we discussed at the end of Appendix A 1, it is preferable to avoid the use of conservation of gauge charges. Our presentation
here recasts the discussion of [16,73] using gauge invariant timelike symmetries rather than gauge charges, thus making it more
precise.

There is also a ZN magnetic timelike symmetry generated by the belt operators, which are reminiscent of the “vertex” terms
in the lattice Hamiltonian of the X-cube model (see Fig. 5):

Û[xy]z(τ ;B)=exp

(
i
∫ y2

y1

dy
∫ z2

z1

dz[Ayz(τ, x2, y, z) − Ayz(τ, x1, y, z)]

)
exp

(
i
∫ x2

x1

dx
∫ z2

z1

dz[Azx(τ, x, y1, z)− Azx(τ, x, y2, z)]

)
,

(A81)

and similar operators in the other directions. The three operators are related by the constraint

Û[xy]z(τ ;B)Û[yz]x(τ ;B)Û[zx]y(τ ;B) = 1. (A82)

045112-33



GORANTLA, LAM, SEIBERG, AND SHAO PHYSICAL REVIEW B 106, 045112 (2022)

They also satisfy

∂τÛ[xy]z(τ ;B) = 0, ∂xi
1,2

Û[xy]z(τ ;B) = 0, (A83)

and similarly in the other directions. Similar to the cage operator, the belt operator Û can be deformed along the x, y, z directions
without changing any correlation functions, as long as the deformation does not cross any defects.

The defects charged under this timelike symmetry are the lineon defects, e.g., the z-lineon defect

Ŵ z
τ (x, y, z) = exp

(
i
∮

dτ Âz(xy)
τ (τ, x, y, z)

)
, (A84)

and similar defects in the other directions. Their N th powers are trivial, and they satisfy

Û[zx]y(τ0;B)Ŵ z
τ (x, y, z) = e2π i/NŴ z

τ (x, y, z) if (x, y, z) ∈ B,

Û[yz]x (τ0;B)Ŵ z
τ (x, y, z) = e−2π i/NŴ z

τ (x, y, z) if (x, y, z) ∈ B, (A85)

Û[xy]z(τ0;B)Ŵ z
τ (x, y, z) = Ŵ z

τ (x, y, z),

and similarly for the other defects.
The ZN magnetic timelike symmetry acts as

Âx(yz)
τ → Âx(yz)

τ + 2π

N�τ

[n̂z(z) − n̂y(y)], Ây(zx)
τ → Ây(zx)

τ + 2π

N�τ

[n̂x(x) − n̂z(z)], Âz(xy)
τ → Âz(xy)

τ + 2π

N�τ

[n̂y(y) − n̂x(x)],

(A86)

where n̂i(xi ) ∈ Z. In finite volume, this implies that the correlation function of defects,〈∏
a

∏
i, j,k
cyclic

exp

(
iqa

k(i j)

∮
dτ Âk(i j)

τ (τ, xa, ya, za)

)〉
, qa

k(i j) ∈ Z, (A87)

vanishes unless ∑
a

∑
i, j,k
cyclic

qa
k(i j)

[
n̂ j
(
x j

a

)− n̂i
(
xi

a

)] = 0 mod N. (A88)

Note that the sum constraint on Âk(i j)
τ implies that the charges have a gauge symmetry

qa
k(i j) ∼ qa

k(i j) + qa, qa ∈ Z. (A89)

Indeed, the above condition for a nonvanishing correlation function can be written as∑
a

[
qa

[yz]xn̂x(xa) + qa
[zx]yn̂y(ya) + qa

[xy]zn̂z(za)
] = 0 mod N, (A90)

where qa
[i j]k = qa

i( jk) − qa
j(ki). This should be satisfied for all integer-valued functions n̂x(x), n̂y(y), and n̂z(z). In infinite volume,

we can send some of the defects to infinity, so that, for the remaining defects,(∑
a

[
qa

[yz]xn̂x(xa) + qa
[zx]yn̂y(ya) + qa

[xy]zn̂z(za)
])

mod N (A91)

is conserved for all integer-valued functions n̂x(x), n̂y(y), and
n̂z(z).

In particular, a single z-lineon can move only in the z-
direction, whereas a dipole of z-lineons separated in the
x-direction can move in the yz-plane. Similar restrictions ap-
ply to other lineons. We have thus explained the restricted
mobility of the lineons using the timelike global symmetries.

a. Twisted torus

Similar to Appendix A 4 a, we will now place the 3 + 1D
ZN tensor gauge theory on a spatial torus with a twist in the

xy-plane given by the identifications (A41). Our discussion
will follow [50].

As shown in [50], the spacelike symmetry depends on the
foliation. Now, as in Appendix A 4 a, we will see that the time-
like symmetry also depends on the foliation and the complex
structure of the torus. Consequently, the restricted mobilities
of the fractons and lineons are relaxed on a twisted torus.

Let us start with the spacelike symmetries. In addition to
the electric ZN and the magnetic ZN global symmetries as
before, there is also a Zgcd(N,m) × Zgcd(N,m) global symmetry
[50].

Next, we will move on to the timelike global symmetries.
In addition to the ZN electric timelike symmetry as in the
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untwisted case, there is also a Zgcd(N,m) electric timelike sym-
metry generated by the symmetry operator

U(τ ) = exp

(
iN

gcd(N, m)

∮
F

dxdydz
[
�P
(
x, 0; �eff

x

)

− k�P
(
y, 0; �eff

y

)]∑
i< j

∂i∂ j Â
i j

)
, (A92)

where F is any fundamental domain of the spatial twisted
torus. It satisfies

∂τ U(τ ) = 0, U(τ )gcd(N,m) = 1. (A93)

The electric timelike symmetries act on the gauge fields as

Aτ (τ, x, y, z)

→ Aτ (τ, x, y, z) + 2π

N�τ

[nx(x) + ny(y) + nz(z)]

+ 2πr

gcd(N, m)�τ

[
�P
(
x, 0; �eff

x

)− k�P
(
y, 0; �eff

y

)]
,

(A94)

where ni(xi ), r are integers, ni(xi + �eff
i ) = ni(xi ). Here,

�eff
z = �z.

As in the 2 + 1D ZN tensor gauge theory in Ap-
pendix A 4 a, a fracton at (x, y, z) can move between m

gcd(N,m)
different points [with the last one being the same as (x, y, z)].
They can be labeled as

(x′, y′, z′) = (x + J gcd(N, m)�eff
x , y, z),

J = 1, . . . ,
m

gcd(N, m)
. (A95)

These two points are on the same leaves of the foliation, and
their difference is a multiple of N intersections in the covering
space. This guarantees that a fracton at (x, y, z) and a fracton
at (x′, y′, z′) carry the same timelike symmetry charges. We

see that the restricted mobility of the fractons on a regular
torus is relaxed due to the twisted boundary conditions. This is
consistent with the change in the electric timelike symmetries
due to the twist.

As in the untwisted case, there is a ZN magnetic timelike
symmetry. Since it is a subsystem symmetry, the twist reduces
it significantly. However, unlike the electric timelike symme-
try, there is no additional magnetic timelike symmetry. This
means the following:

(i) The z-lineon defects Ŵ z
τ (x, y, z) and Ŵ z

τ (x′, y′, z′) have
the same magnetic timelike charges if and only if

(x′, y′, z′) = (
x + I�eff

x , y, z + cz
)

(A96)

for some I = 1, . . . , m and cz ∼ cz + �z. In other words, a
z-lineon at (x, y, z) can move to (x′, y′, z′) if and only if
(x′, y′, z′) is a point on the intersection of the leaves at constant
x and constant y.35

(ii) The x-lineon defects Ŵ x
τ (x, y, z) and Ŵ x

τ (x′, y′, z′) have
the same magnetic timelike charges if and only if

(x′, y′, z′) = (
x + cx, y + I�eff

y , z
)

(A97)

for some I = 1, . . . , m and cx ∼ cx + m�eff
x . In other words,

an x-lineon at (x, y, z) can move to (x′, y′, z′) if and only if
(x′, y′, z′) is a point on the intersection of the leaves at constant
y and constant z.36

(iii) Similarly, the y-lineon defects Ŵ y
τ (x, y, z) and

Ŵ y
τ (x′, y′, z′) have the same magnetic timelike charges if and

only if

(x′, y′, z′) = (
x + I�eff

x , y + cy, z
)

(A98)

for some I = 1, . . . , m and cy ∼ cy + m�eff
y . In other words,

a y-lineon at (x, y, z) can move to (x′, y′, z′) if and only if
(x′, y′, z′) is a point on the intersection of the leaves at constant
x and constant z.

Therefore, the restricted mobility in the untwisted case is
relaxed due to the twist. This new restricted mobility reflects
the magnetic timelike symmetries.

35For example, let us set I = 1 and cz = 0. A z-lineon at (x, y, z)
can be thought of as product of an x-lineon and a y-lineon. Move the
x-lineon to (x + �eff

x , y, z), and the y-lineon to (x, y − k̃�eff
y , z). Due

to the identification (A42), this is equivalent to a z-lineon at (x +
�eff

x , y, z).
36For example, let us set J = 1 and cx = 0. Move the x-lineon to

(x − k�eff
x , y, z). Due to the identification (A41), this is equivalent to

an x-lineon at (x, y + �eff
y , z).
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