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Luttinger’s theorem in the presence of Luttinger surfaces
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Breakdown of Landau’s hypothesis of adiabatic continuation from noninteracting to fully interacting electrons
is commonly believed to bring about a violation of Luttinger’s theorem. Here, we elucidate what may go wrong
in the proof of Luttinger’s theorem. The analysis provides a simple way to correct Luttinger’s expression of the
electron number in single-band models where perturbation theory breaks down through the birth of a Luttinger
surface without symmetry breaking. In those cases, we find that the Fermi volume only accounts for the doping
away from half-filling. In the hypothetical circumstance of a non-symmetry-breaking Mott insulator with a
Luttinger surface, our analysis predicts the noteworthy existence of quasiparticles whose Fermi surface is just
the Luttinger one. Therefore, those quasiparticles can be legitimately regarded as spinons, and the Mott insulator
with a Luttinger surface as realization of a spin-liquid insulator.
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I. INTRODUCTION

Landau originally derived his celebrated theory of Fermi
liquids [1] assuming that the noninteracting many-body ex-
cited states evolve adiabatically into the fully interacting ones
upon gradually turning on interaction. The theory was later
microscopically derived [2] by means of the just-developed
diagrammatic many-body perturbation theory [3,4]. A famous
byproduct of the diagrammatic formalism is the so-called
Luttinger theorem [5], which, in conventional Landau’s Fermi
liquids, predicts that the volume fraction enclosed by the
quasiparticles’ Fermi surface is just the electron filling frac-
tion. Over the years, Landau’s adiabatic hypothesis and
Luttinger’s theorem have become almost synonyms, in the
sense that if one is violated, so is the other. Such belief has
been mostly triggered by the anomalous properties of many
strongly correlated materials, especially underdoped cooper-
oxide superconductors.

However, the traditional derivation [5–8] of Luttinger’s
theorem simply relies on the existence of a Luttinger-Ward
functional [3], which can be constructed nonperturbatively
[9]. Therefore, it is not at all evident why Luttinger’s theorem
should be violated at the breakdown of perturbation theory, as
it is likewise not true that Landau’s Fermi liquid theory applies
only in the perturbative regime [10,11].

The topological arguments by Oshikawa [12] in periodic
models clarify Luttinger’s theorem violation in nontrivial
examples that host fractionalized excitations [13,14] or topo-
logical order [15,16], but does not allow identifying at which
point the traditional proof may go wrong. Moreover, it is not
instructive in nonmagnetic Mott insulators at integer number
of electrons per site, like the model discussed by Rosh [17],
where Luttinger’s theorem does not yield the correct electron
number, nor in models that lack translation symmetry, like
quantum impurity models, where Luttinger’s theorem is still
applicable and can be violated [18].

The detailed analysis of Heath and Bedell [19] highlights
which properties the self-energy must possess for Luttinger’s
theorem to hold true, even in nonperiodic models. However, it
leaves open the question how to count the number of particles
when Luttinger’s theorem is violated.

Indeed, there are by now several examples of Luttinger’s
theorem violation, see, e.g., Refs. [13–15,17,18,20–22]. In
addition, there is numerical evidence that Luttinger’s theorem
fails in models of doped Mott insulators below a critical
doping [23–28] that seems to be associated with the birth
of a Luttinger surface [29], which, according to Ref. [19],
does violates the requirements for Luttinger’s theorem
validity.

In this paper, we try to shed further light on such a funda-
mental issue, beyond the great progress that have been already
accomplished [13,15,19,30,31]. We do that paying particular
attention to the role of Luttinger surfaces or, more generally, to
the zeros of the single-particle Green’s function at zero imag-
inary frequency, a concept that does not require translation
invariance.

II. LUTTINGER’S THEOREM

We start by deriving Luttinger’s theorem in a slightly
different way as conventionally done [5,6], somehow closer
to Refs. [7,8], which better highlights under which circum-
stances that theorem may fail. Moreover, the derivation below,
though based on old-fashioned many-body theory, naturally
brings us to the concept of quasiparticles and their Fermi or
Luttinger surfaces [11].

We consider a system of interacting electrons with anni-
hilation operators cα corresponding to a complete basis of
single-particle wave functions labeled by α = 1, . . . , K , with
K → ∞ in the thermodynamic limit. The Hamiltonian admits
a set of conserved quantities Q, represented by Hermitian
matrices Q̂ with components Qαβ defined in such a way that
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the eigenvalues are integers. Qαβ = δαβ corresponds to the
total number N of electrons, while all other independent Q’s
are represented by traceless matrices Q̂. We hereafter consider
the evolution of the operators in imaginary time and use the
Matsubara formalism, which is more convenient [29] since
on the imaginary frequency axis the single-particle Green’s
function and self-energy cannot have singularities but, even-
tually, at the origin. Moreover, to avoid any issue related
to the discontinuity at zero imaginary time of the Green’s
functions, we use instead of N the deviation N − K/2 of the
electron number with respect to half-filling, so we can write
the expectation value of any conserved quantity as

Q = 1

2

∑
αβ

Qβα (〈 c†
β cα 〉 − 〈 cα c†

β 〉)

= T
∑

n

Tr(Ĝ(iεn) Q̂), (1)

where Ĝ(iεn) = Ĝ(−iεn)† is the Green’s function matrix
in Matsubara frequencies εn = (2n + 1) πT . According to
Dyson’s equation,

Ĝ−1(iεn) = iεn Î − Ĥ0 − �̂(iεn), (2)

with Î the identity matrix, and Ĥ0 the noninteracting Hamil-
tonian, including the chemical potential term, represented in
the chosen basis. �̂(iεn) = �̂(−iεn)† is the self-energy matrix
that accounts for all interaction effects. We can equivalently
write Eq. (1) as

Q = −T
∑

n

∂

∂iεn
Tr(ln Ĝ(iεn) Q̂) + IL(Q), (3)

where

IL(Q) = T
∑

n

Tr

(
Ĝ(iεn)

∂�̂(iεn)

∂iεn
Q̂

)
. (4)

Hereafter, we denote Eq. (4) as the Luttinger integral for the
conserved quantity Q and use simply IL for the case Q̂ = Î .

We just note that at particle-hole symmetry, IL(Q) vanishes
identically for all non-particle-hole invariant Q’s, thus also
the total electron number, in which case Luttinger’s theorem
holds trivially. Seemingly, IL(Q) = 0 in absence of interac-
tion, where �̂(iεn) = 0.

In more general circumstances, we consider the Luttinger-
Ward functional 	[G], satisfying [3,9]

δ	[G] = T
∑

n

eiεnη Tr(�̂(iεn) δĜ(iεn)), (5)

with η > 0 that must be sent to zero after performing the
summation. In perturbation theory, the explicit expression of
	[G] reads [3]

	[G] = T
∑

n

eiεnη
∑
m�1

1

2m
Tr(Ĝ(iεn) �̂(m)(iεn))

≡ T
∑

n

eiεnη 	(iεn), (6)

where �̂(m)(iεn) is the sum of all m th-order skeleton dia-
grams. We assume that the nonperturbative 	[G] [9] can still

be written as a series of terms 	(iεn) as in Eq. (6). Through
Eqs. (5) and (6), it readily follows that

δ	[G]

δiε
≡ T

∑
n

Tr

(
�̂(iεn)

∂Ĝ(iεn)

∂iεn

)

= T
∑

n

∂	(iεn)

∂iεn
, (7)

where we set η = 0 before performing the sum since the
function decays faster than 1/εn for εn → ±∞. Equation (7)
allows us to rewrite IL(Q) of Eq. (4) for Q̂ = Î simply as

IL = T
∑

n

Tr

(
Ĝ(iεn)

∂�̂(iεn)

∂iεn

)
= T

∑
n

∂IL(iεn)

∂iεn
, (8)

where

IL(iεn) = Tr(�̂(iεn) Ĝ(iεn)) − 	(iεn). (9)

In other words, it is always possible to represent the Luttinger
integral as a sum over εn of a derivative. It follows that the
total number of electrons can be written as

N = K

2
− T

∑
n

∂

∂iεn
Tr( ln Ĝ(iεn)) + T

∑
n

∂IL(iεn)

∂iεn

−−→
T →0

K

2
−

∫ ∞

−∞

dε

2π

∂

∂iε
Tr( ln Ĝ(iε))

+
∫ ∞

−∞

dε

2π

∂IL(iε)

∂iε
.

Since Ĝ(−iε) = Ĝ(iε)† and, similarly, IL(−iε) = IL(iε)∗, if
we define, through the polar decomposition of Ĝ(iε), the
matrix

δ̂(ε) ≡ arg(Ĝ(iε)) = Im ln (Ĝ(iε)), (10)

then, for T → 0, and noticing that Im IL(iε) → 0 while
δ̂(ε) → −π/2 Î for ε → ∞,

N = K

2
+

∫ ∞

−∞

dε

2π
Tr(Ĝ(iε))

= K + 1

π
Tr(δ̂(0+)) − 1

π
Im IL(i0+). (11)

This expression is exact. It is still not Luttinger’s theorem but
a kind of generalization of it, and it is remarkable as it shows
that a quantity requiring integration over all frequencies can
be alternatively calculated through boundary terms.

In reality, Luttinger’s theorem statement is that
Im IL(i0+) = 0 in Eq. (11), which is not to be expected
a priori. Nonetheless, the proof goes as follows. The
Luttinger-Ward functional 	[G] is invariant if the Matsubara
frequency of each internal Green’s function is replaced,
see Eq. (2), by iεn Î + iω Q̂ for any conserved Q, where
ω = 2π T . Therefore,

0 = �Q	[G]

iω
= T

∑
n

Tr

(
�̂(iεn)

�QĜ(iε)

iω

)
, (12)

with

�QĜ(iε)

iω
≡ Ĝ(iεn + iω Q̂) − Ĝ(iεn)

iω
, (13)
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the finite difference of Ĝ(iε). For Q̂ = Î , that implies

0 = T
∑

n

Tr

(
�̂(iεn)

Ĝ(iεn + iω) − Ĝ(iεn)

iω

)

= −T
∑

n

Tr

(
Ĝ(iεn)

�̂(iεn + iω) − �̂(iεn)

iω

)

≡ −T
∑

n

IL(iεn + iω) − IL(iεn)

iω
≡ −I�

L , (14)

which just means that the convergence of the series allows
the change of variable iεn + iω → iεn that makes I�

L trivially
vanish. It is tempting to assume that I�

L , i.e., the sum over
εn of the finite difference, coincides with IL in Eq. (8), i.e.,
the sum over εn of the derivative, in the limit T → 0, thus
ω → 0. That is actually what is commonly assumed in the
proof of Luttinger’s theorem, in which case IL = 0 follows,
and thus Im IL(i0+) = 0 in Eq. (11). However, that apparently
reasonable assumption is not at all guaranteed, as we now
discuss.

In the Supplemental Notes of Ref. [11] it has been shown
that, at leading order in T ,

IL = − 1

π
Im IL(i0+) = IL − I�

L � − 1

4π i
lim

ε→0+
S(iε).

(15)
where

S(iε) ≡ Tr[(Ĝ(iε) + Ĝ(iε)†) (�̂(iε) − �̂(iε)†)]. (16)

It follows that, if S(iε) is finite for ε → 0+, then Luttinger’s
theorem is definitely violated. That happens, e.g., in the
Sachdev-Ye-Kitaev model [32,33]. On the contrary, one can
readily prove that S(iε → 0+) = 0 when perturbation theory
holds. Indeed, if we define the quasiparticle residue,√

Ẑ (iε)†−1 Ẑ (iε)−1 ≡ Î − �̂(iε) − �̂(iε)†

2iε
, (17)

where Ẑ (iε) = Ẑ (−iε), we do know that perturbatively
Ẑ (0) = Ẑ (0)† is positive definite, so

�̂(iε) − �̂(iε)† −−→
ε→0

2 (Î − Ẑ (0)−1) iε,

and thus S(iε) vanishes as ε → 0+. However, S(iε → 0+) =
0, though necessary for IL = 0, is not a sufficient condition.
The reason is that the right-hand side of Eq. (15) is just the
leading term of an expansion in T . Its vanishing means that
each term of the series expansion goes to zero as T → 0,
which does not guarantee that the whole series vanishes [11].
In other words, while we can safely state that, in the regime
where perturbation theory is valid, S(iε → 0+) = 0 does im-
ply that IL = 0, and thus that Luttinger’s theorem holds true,
we cannot exclude that the theorem is violated when pertur-
bation theory breaks down.

However, let us assume the necessary condition S(iε →
i0+) = 0 and draw its consequences. By definition, the single-
particle density of states (DOS) A at the chemical potential is

A = − lim
ε→0+

1

2π i
Tr(Ĝ(iε) − Ĝ(iε)†) ≡ lim

ε→0+
Tr(Â(iε)),

where Â(iε) = Â(iε)† = −Â(−iε). Through Â(iε), we can
write

�̂(iε) − �̂(iε)† = 2iε − 2π i Ĝ(iε)−1 Â(iε) Ĝ(iε)†−1,

and thus S(iε) in Eq. (16) becomes

S(iε) = 2iε Tr(Ĝ(iε) + Ĝ(−iε))

− 2π i Tr[(Ĝ(iε)−1 + Ĝ(iε)†−1) Â(iε)].

We now formally filter out the quasiparticle Green’s function
through the quasiparticle residue Eq. (17),

Ĝqp(iε)−1 ≡
√

Ẑ (iε)† Ĝ(iε)−1
√

Ẑ (iε) = iε Î − ̂(iε),
(18)

where

̂(iε) ≡
√

Ẑ (iε)† (Ĥ0 + Re �̂(iε))
√

Ẑ (iε) (19)

is a K × K Hermitian matrix and thus has real eigenvalues
ε∗�(ε) = ε∗�(−ε), � = 1, . . . , K . Therefore, if we further de-
fine

Âqp(iε) ≡ − 1

2π i
(Ĝqp(iε) − Ĝqp(iε)†)

= ε

π
Ĝqp(iε) Ĝqp(iε)† = ε

π

1

ε2 + ̂(iε)2

=
√

Ẑ (iε)−1 Â(iε)
√

Ẑ (iε)†−1 , (20)

which is diagonal in the basis that diagonalizes ̂(iε) with
elements

Aqp �(iε) = 1

π

ε

ε2 + ε∗�(ε)2 ,

then

S(iε) = 2iε Tr(Ĝ(iε) + Ĝ(−iε)) + 4π i Tr[ ̂(iε) Âqp(iε) ]

= 2iε Tr(Ĝ(iε) + Ĝ(−iε))

+ 4π i
K∑

�=1

ε∗�(ε)

π

ε

ε2 + ε∗�(ε)2 . (21)

Since the first term on the right-hand side of Eq. (21) vanishes
for ε → 0, the necessary condition for Luttinger’s theorem to
hold becomes

lim
ε→0+

Tr[ ̂(iε) Âqp(iε) ]

= lim
ε→0+

K∑
�=1

ε∗�(ε)

π

ε

ε2 + ε∗�(ε)2 = 0. (22)

In the thermodynamic limit, K → ∞, ε∗�(ε) defines a contin-
uous spectrum where � runs in a d-dimensional space, with
d the spatial dimension of the system times the number of
internal degrees of freedom. For instance, in the periodic case,
� labels the momentum within the Brillouin zone, the band
index, and the spin. Any � such that ε∗�(ε → 0) 	= 0 yields
a contribution to the sum Eq. (22) that trivially vanishes as
ε → 0. Let us instead consider the manifold � = �∗ such that
ε∗�∗ (ε → 0) = 0. If, for a given �∗, ε∗�∗ (ε → 0) ∼ c∗ |ε|α ,
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with α > 0, its contribution to the sum Eq. (22) is

ε∗�∗ (ε)

π

ε

ε2 + ε∗�∗ (ε)2 −−−→
ε→0+

c∗ |ε|α
π

ε

ε2 + c2
∗ |ε|2α

,

and vanishes only if α > 1, which thus becomes the necessary
condition for the validity of Luttinger’s theorem. We can fur-
ther distinguish two different cases. For instance, if we assume
that

• ̂(iε)is, at leading order, analytic at ε = 0, (23)

then α = 2 since ε∗�(ε) is even in ε, which automatically satis-
fies the necessary condition for Luttinger’s theorem to hold. In
this case, ε∗�(ε → 0) � ε∗�(0) + O(ε2), where ε∗�(0) ≡ ε∗�

are the eigenvalues of

Ĥ∗ ≡
√

Ẑ (0)† (Ĥ0 + �̂(0))
√

Ẑ (0) . (24)

Accordingly, the quasiparticle Green’s function and DOS at
the chemical potential are

Ĝqp(iε) −−→
ε→0

1

iε Î − Ĥ∗
, Aqp = lim

ε→0+
Tr(Âqp(iε))

=
∑

�

δ(ε∗�), (25)

and correspond to those of free particles, thus the quasipar-
ticles, described by the quasiparticle Hamiltonian Ĥ∗ with
eigenvalues ε∗�.

On the contrary, if ̂(iε) is nonanalytic and yet satisfies
the necessary condition for Luttinger’s theorem, then 1 <

α < 2, since any nonanalyticity yielding noninteger α > 2
will be hidden by the ever-present analytical terms. That is
precisely what happens for interacting electrons in one dimen-
sion. Those systems do not sustain quasiparticles in the sense
of Eqs. (25), and yet Luttinger’s theorem is valid [34,35].
The same occurs in marginal Fermi liquids [36] or metals
with quantum critical behavior [37], which, despite a nonana-
lytic self-energy, satisfy Luttinger’s theorem [19]. Conversely,
since S(iε → i0+) = 0 is not sufficient for Luttinger’s theo-
rem to hold, we must also conclude that quasiparticles may
exist even when Luttinger’s theorem is violated [11].

We also emphasize that 1 < α < 2 entails singularities
in perturbation theory. Therefore, Eq. (23) must always be
verified when perturbation theory is well-defined, which is
equivalent to saying that quasiparticles always exist in the
perturbative regime, in agreement with Landau’s adiabatic
hypothesis.

Hereafter, we assume the analyticity condition Eq. (23),
thus Eqs. (25). We believe that this choice, though limiting,
may be pertinent to doped Mott insulators in dimensions
d > 1 [23–28]. In that case, δ̂(ε) is diagonal in the basis that
diagonalizes Ĥ∗ with elements −π + π θ ( − ε∗�). It follows
that Eq. (11) becomes

N = K + 1

π
Tr(δ̂(0+)) − 1

π
Im IL(i0+)

=
K∑

�=1

θ (−ε∗�) − 1

π
Im IL(i0+),

which represents the general statement Eq. (11) of Luttinger’s
theorem when quasiparticles exist. We note that N is an

integer at T = 0 and so is the sum over �, which implies that
the Luttinger integral IL is quantized in integer values when
Eq. (23) holds. Therefore,

N =
K∑

�=1

θ (−ε∗�) + L, L ∈ Z, (26)

where L = 0 in the perturbative regime, in which case conven-
tional Luttinger’s theorem holds, while L may be finite when
perturbation theory breaks down.

A. Generalized Luttinger’s theorem in presence
of quasiparticles and in periodic systems

In a single-band periodic system invariant under spin
SU(2) symmetry, we have the possibility to further elaborate
on the meaning of quasiparticle. In this case, Ĝ(iε) is diagonal
in momentum and spin with elements G(iε, k) independent of
spin, and thus ̂(iε) is diagonal, too, with elements ε∗(ε, k)
equal for spin σ = ↑ and ↓, now defined, see Eq. (19), as

ε∗(ε, k) = |Z (iε, k)| (ε(k) + Re �(iε, k)). (27)

Correspondingly, the quasiparticle, Aqp, and physical electron,
A, DOS at the chemical potential are, in units of the number
of sites V , see Eqs. (25),

Aqp = 1

V

∑
kσ

δ(ε∗(k)),

A = 1

V

∑
kσ

Z (iε → i0+, k) δ(ε∗(k)), (28)

where ε∗(k) = ε∗(ε → 0, k). We already know that Eqs. (22)
and (23) imply that, if a manifold k = k∗ exists such that
ε∗(0, k∗) = 0, then ε∗(ε → 0, k∗) � ε2. We observe that
ε∗(0, k∗) = 0 may occur

(1) Fermi surface if k∗ = kF , with kF such that ε(kF ) +
�(0, kF ) = 0 while 0 < Z (0, kF ) < 1, which defines a
conventional Fermi surface k = kF through the roots of
G(0, k)−1 in momentum space. The Fermi surface contribu-
tion to the physical electron DOS Eqs. (28) is finite since
Z (0, kF ) 	= 0.

(2) Luttinger surface if k∗ = kL, with kL such that
ε(kL ) + �(0, kL ) 	= 0 but

lim
ε→0+

|Z (iε, kL )| = lim
ε→0+

ε

ε − Im �(iε, kL )

∼ lim
ε→0

ε2 = 0, (29)

which implies �(iε, kL ) ∼ 1/iε and, correspondingly,
G(iε, kL ) → 0 as ε → 0. Therefore, Eq. (29) defines
the so-called Luttinger surface [29], i.e., the manifold
of roots k = kL of G(0, k) in momentum space, whose
existence is due to a singular self-energy and thus signals the
breakdown of perturbation theory. Remarkably, even though
the Luttinger surface contribution to the quasiparticle DOS,
Aqp in Eqs. (28), is finite, its contribution to the physical
electron DOS vanishes [11].
Therefore, under the analyticity assumption Eq. (23), Fermi
and Luttinger surfaces are both defined by the one and
only equation ε∗(0, kF/L ) = 0 [11]. Moreover, as we earlier
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mentioned, if perturbation theory is valid there are always
quasiparticles, only a Fermi surface may exist within the Bril-
louin zone and, see Eq. (26) at L = 0,

N =
∑
kσ

θ ( − ε∗(k)), (30)

which is the standard perturbative Luttinger’s theorem state-
ment that the fraction of the quasiparticle Fermi volume, i.e.,
the manifold of k : ε∗(k) < 0, with respect to the whole Bril-
louin zone is equal to the electron filling fraction ν = N/2V .

When perturbation theory breaks down without breaking
translational and spin SU(2) symmetries and Luttinger sur-
faces appear inside the Brillouin zone, we must use the more
general formula

N =
∑
kσ

θ ( − ε∗(k)) + L,L ∈ Z, (31)

and thus the quasiparticle Fermi volume fraction no more
accounts for the electron filling fraction.

To proceed in this case, we use Oshikawa’s topological
approach to Luttinger’s theorem in periodic systems [12]. We
first note that the above quasiparticle derivation holds even
when the system is a non-symmetry-breaking Mott insulator
provided it has a Luttinger surface within the Brillouin zone.
In the single-band model we are discussing, that may occur
only at half filling. Following Oshikawa [12], we imagine
adiabatically threading in the above Mott insulator a fictitious
flux quantum 	0 that only couples to one spin species, whose
particle number is conserved by charge U (1) and spin SU(2),
assuming, e.g., a gauge in which the vector potential has only
a finite x component. The final state differs from the initial
one by a lattice momentum of π in the x direction [12] and
that must be supplied by the quasiparticles at the Luttinger
surface [11]. The same result holds true if we couple the flux
to the other spin species. On the contrary, if the flux couples
to both spin species, the system acquires a momentum 2π ≡
0, and that suggests that each spin species contributes with
momentum π . The conclusion is that the Luttinger surface,
whatever its shape and volume are, contributes to the particle
count by one electron per site. If that remains true even when,
upon doping the Mott insulator, Fermi pockets appear in the
Brillouin zone, then Oshikawa’s argument implies that the
electron filling fraction ν is given by

ν = 1
2 + vEP − vHP, (32)

where vEP and vHP are the fraction of electronlike and holelike
Fermi pockets with respect to the whole Brillouin zone. This
result is consistent with the proposal of Yang and coworkers
[38,39] in the pseudogap phase of underdoped cuprates, but
also of fractionalized Fermi liquids [13]. Equation (32) is
graphically shown in Fig. 1.

To better understand how the situation depicted in Fig. 1
may occur, let us start from the perturbative regime and, upon
varying the Hamiltonian parameters λ, like the interaction
strength or the doping, reach the point λc at which pertur-
bation theory breaks down, i.e., its convergence radius. For
convenience, we assume that λ < λc identifies the perturba-
tive regime and λ > λc the nonperturbative one. Therefore,
λ = λc corresponds to the birth of a Luttinger surface and

FIG. 1. Graphical representation of electron count when pertur-
bation theory is valid (a), or (b) when it breaks down and a Luttinger
surface appears, green line in the figure. Electronlike, i.e., ε∗(k) < 0,
and holelike, i.e., ε∗(k) > 0, Fermi pockets are shown, respectively,
in red and blue and have volume fraction vEP and vHP with respect
to the whole Brillouin zone. When perturbation theory is valid, the
electron filling fraction ν = N/2V , where N is the total number of
electrons and V the number of sites, is simply given by ν = vEP,
(a). When a Luttinger surface exists, the filling fraction is obtained
through ν = 1/2 + vEP − vHP, (b).

a concomitant dramatic change within the Brillouin zone: a
large Fermi surface either disappears or abruptly turns into
small hole and/or electron Fermi pockets, consistently with
Eq. (32). Let us try to imagine how that may occur. In
general, Re G(iε, k) = Re G(−iε, k) has an even number of
roots 2�k on the imaginary frequency axis, symmetrically
located around ε = 0. If we borrow the results obtained in
the Hubbard model by single-site dynamical mean field theory
(DMFT) [40], see Fig. 2, and translate them in finite dimen-
sions, we expect that at fixed ε = εr > 0, which is function
of λ and vanishes as λ → λc from below, there is a sur-
face of roots of Re G(iεr, kL (εr )) = Re G( − iεr, kL (εr )) or,
equivalently, of ε∗(εr, kL(εr )), which smoothly evolves into
the Luttinger surface as λ → λc. Similarly, we can always
define at any small ε, thus also at εr when λ � λc, a surface of
zeros of ε∗(ε, kF (ε)) that are instead smoothly connected to
the Fermi surface at ε = 0, i.e., the roots of ε∗(0, kF ). Since
ε∗(εr, k) are the eigenvalues of a Hermitian operator, if the
two surfaces, kL(εr ) and kF (εr ), cross within the Brillouin
zone, those are actually avoided crossings. That simply ratio-
nalizes the Fermi surface reshaping predicted by Eq. (32), see
Fig. 1, as λ → λc, thus εr → 0.

In the case of Fig. 2, where the breakdown corresponds
to the metal spinodal point, the two zeros at ε = ±εr sim-
ply annihilate each other when εr → 0 as λ → λc. Beyond
single-site DMFT, we cannot exclude that the Luttinger sur-
face survives after the breakdown, thus Eq. (32), changes
shape and eventually disappears, as in the case discussed in
Ref. [17]. Once that has happened, namely, once the two
zeros that had merged at ε = 0 finally annihilate each other, it
is difficult to ascertain from the behavior at ε = 0 whether
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FIG. 2. Real part of the local Green’s function as obtained by
dynamical mean field theory in the Hubbard model with a very weak
chemical potential breaking particle-hole symmetry. Upon increasing
the Hubbard U , the model has a transition between a metal and
a Mott insulator, which, away from particle-hole symmetry, is first
order. In the figure, we show the evolution of ReG(iε) starting from
the weak coupling metal and raising U . Note that a double zero first
appears in the metal at U � 2 at finite ε, which signals the birth of
the Hubbard bands. Upon further increasing U , that zero splits into
two, one moving toward ε = 0. The value of U � 2.9 at which the
root reaches ε = 0 corresponds to the metal spinodal point, above
which the only stable phase is insulating.

the system is in the perturbative regime, and thus we can
use conventional Luttinger’s theorem or, instead, perturbation
theory has broken down and, in that case, how to count the
electron number. There is, however, a circumstance where we
can make a firm statement, namely, when the self-energy is
local, as in single-site DMFT [40], see Fig. 2, or in impurity
models. In that case, the sign of the real part of the impurity
Green’s function G(iε), which is the local Green’s function in
DMFT, is fixed as ε → ∞, i.e., in the Hartree-Fock regime,
and it is negative if the impurity is less than half filled, the
case of Fig. 2, and positive otherwise. It follows that, when
perturbation theory is valid and Luttinger’s theorem holds,
then the sign of ReG(iε) at ε = 0 must be the same as at
ε → ∞. When it breaks down, the sign must be opposite, cor-
responding to the two zeros of ReG(iε) that have annihilated
each other at ε = 0. Therefore, the expectation value of the
impurity occupation number close to half filling is

n =
∑

σ

(
1

2
−

∫ ∞

0

dε

π

∂δ(ε)

∂ε

)

−
∑

σ

1 − (−1)�

4
sign(ReG(0)), (33)

where now δ(ε) = arg(G(iε)) and � is simply the number of
roots of ReG(iε) in the semiaxis 0 < ε < ∞.

In what follows, we discuss a few solvable cases where
perturbation theory breaks down and Luttinger’s theorem is
violated, and test the validity of Eqs. (32) and (33).

III. SDW FLUCTUATION STATE

The first example that we analyze is the model studied
in Ref. [20] as representative of a nearly antiferromagnetic
Fermi liquids. The model consists of electrons on a V -site
cubic or square lattice, with noninteracting dispersion ε(k).
The electrons exchange critical longitudinal spin fluctuations,
with dynamical susceptibility

χ (i ω, q) = �2

g

δω,0

T
V δq,Q, (34)

where Q = (π, . . . , π ) and g is the exchange constant. The
exact self-energy in the paramagnetic phase reads [20,41]

�(iε, k) = �2

iε − ε(k + Q)
= �2 G0(iε, k + Q), (35)

where G0(iε, k) is the no-interacting Green’s function, hence

G−1(iε, k) = G−1
0 (iε, k) − �2 G0(iε, k + Q). (36)

In this case, a Luttinger surface always exists and Lut-
tinger’s theorem is violated at any � 	= 0 [20]. Through the
exact Green’s function Eq. (36) one readily finds [20] that, for
a single spin species,

n(k) + n(k + Q) = θ (ε+(k)) + θ (ε−(k)), (37)

M Γ X Y

−1

0

1

2

3
+(k)

−(k)

M Γ X Y

−1

0

1

2

+(k)

−(k)

M Γ X Y

−1

0

1

2
+(k)

−(k)

(0,−π)

(−
π
,0

)

(0,−π)

(−
π
,0

)

(0,−π)

(−
π
,0

)

FIG. 3. Top panels: Band structure Eq. (38) on a square lattice
with nearest t and next-nearest, t ′ = −0.2t , neighbor hopping, at
� = −0.3 and different chemical potentials corresponding to hole,
left panel, and electron (right panel) doping with respect to half fill-
ing (middle panel). Bottom panels: Corresponding Luttinger surface,
green line, and Fermi pockets, holelike in orange and electronlike in
blue. The noninteracting Fermi surface is also shown, black dotted
line. In the present case, our conjecture Eq. (32) predicts that all k
points in the Brillouin zone contribute with one to the total electron
number, with the exception of those inside the Fermi pockets, which
contribute with zero or with two if the pockets are, respectively, hole-
or electronlike.
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where

ε±(k) = ε(k) + ε(k + Q)

2

±
√(

ε(k) − ε(k + Q)

2

)2

+ �2 , (38)

see Fig. 3, so
(1) n(k) + n(k + Q) = 2θ ( − ε(k)) if ε(k)ε(k + Q) >

�2 > 0,
(2) n(k) + n(k + Q) = 1 if �2 > ε(k)ε(k + Q).

The quasiparticle residue at ε = 0 is now

Z (k) = ε(k + Q)2

�2 + ε(k + Q)2 , (39)

so the Luttinger surface is defined by kL : Z (kL ) = 0, i.e., kL :
ε(kL + Q) = 0, while the quasiparticle energy by

ε∗(k) = Z (k)
1

ε(k + Q)
(ε(k) ε(k + Q) − �2), (40)

which allows defining the Fermi surface by kF :
ε(kF ) ε(kF + Q) = �2. The noninteracting Fermi surface,
the interacting Luttinger one, and the interacting Fermi
pockets are shown in Fig. 3 for a few exemplary cases. Let us
now apply Eq. (32) to calculate the momentum distribution.
Through ε∗(k) in Eq. (40), we realize that the Fermi pockets,
when they exist, include all k such that ε(k) ε(k + Q) � �2,
and are electronlike if ε(k) < 0 and holelike otherwise. This
observation together with Eq. (32) directly yields Eq. (37).

Despite its simplicity, this model is very instructive and
yields insights that we believe are rather general. Since the
interaction is a δ function in frequency, it is rather easy to
express the self-energy as functional of the interacting Green’s
functions Eq. (36) and of the interaction strength �. We find
that

�(iε, k) =
√

1 + X (iε, k, k + Q) − 1

2G(iε, k)
, (41)

where

X (iε, k, k + Q) ≡ 4�2 G(iε, k) G(iε, k + Q), (42)

through which the Luttinger integral can be written as

IL(k, k + Q) =
∫ ∞

−∞

dε

2π

{
G(iε, k)

∂�(iε, k)

∂iε
+ G(iε, k + Q)

∂�(iε, k + Q)

∂iε

}

=
∫ ∞

−∞

dε

2π

∂

∂iε
ln

√
1 + X (iε, k, k + Q) + 1

2
= − 1

π
Im ln

√
1 + X (i0+, k, k + Q) + 1

2

= −θ (�2 − ε(k) ε(k + Q)) θ (ε(k) ε(k + Q)) sign(ε(k) + ε(k + Q)), (43)

consistently with Eq. (8). It is worth noticing that IL yields
an entanglement between the phases δ(0, k) and δ(0, k + Q)
of the two Green’s functions, which appear as independent
quantities in conventional Luttinger’s theorem. We believe
that is the key role of the Luttinger integral whenever it is
finite.

We can take a step further and explicitly build the
Luttinger-Ward functional

	[G] =
∑

k

T
∑

n

eiεnη 	[G(iεn, k), G(iεn, k + Q)], (44)

where the sum over k is within the reduced Brillouin zone by
solving

δ	[G(iε, k), G(iε, k + Q)]

δG(iε, k)
= �(iε, k). (45)

We find that 	[G(iεn, k), G(iεn, k + Q)] is actually a func-
tional 	[X ] of X in Eq. (42), specifically

	[X ] = √
1 + X − 1 − ln

√
1 + X + 1

2
. (46)

We end noticing that the square root in the expression Eq. (41)
of �(iε, k) implies that the inverse of Dyson’s equation,

G0(iε, k)−1 = G(iε, k)−1 + δ	[G]

δG(iε, k)
, (47)

generally admits two solutions G0(iε, k), only one of which
is physical. This result agrees with evidence [42–45] that
the Luttinger-Ward functional may become multivalued upon
increasing the interaction strength.

IV. PSEUDOGAP IMPURITY MODEL

Let us now discuss the failure of Luttinger’s theorem in the
impurity model studied in Ref. [18] by numerical renormali-
sation group (NRG). For convenience, we consider a slightly
different model with the same physical properties, which was
thoroughly investigated in Ref. [46], thus saving us from re-
calculating the whole phase diagram. The model represents
a two-orbital Anderson impurity with inverted Hund’s rules.
The Hamiltonian is

H = H0 + Himp, (48)

where

H0 =
2∑

i=1

∑
kσ

[εk c†
ikσ cikσ

+ Vk (c†
ikσ diσ + H.c.)] (49)

is the sum of two equivalent resonant level models and

Himp = εd (n − 2) + U
2 (n − 2)2 − 2J (T · T − T 2

3 ), (50)
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each impurity is scr eened  
by its own bath
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a Kondo-inert spin-singlet
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ϵd

0 U

critical line

FIG. 4. Phase diagram of the impurity model Eq. (48) at fixed
hybridization width � and J � �, as function of U and εd > 0. The
case εd < 0 is symmetric.

where n = ∑
iσ niσ , with niσ = d†

iσ diσ the occupation num-
ber of the impurity orbital i = 1, 2 with spin σ , while T =
(T1, T2, T3) is a pseudospin operator with

Ta = 1
2

∑
σ

∑
i j

d†
iσ (τ̂a)i j d jσ ,a = 1, 2, 3, (51)

and τ̂a the Pauli matrices in the two-orbital space. We assume
that H0 in Eq. (49) is particle-hole (p-h) symmetric, so a finite
εd in Eq. (50) is the only source of p-h symmetry breaking. In
the following calculations, we take a hybridization width

�(ε) ≡ π
∑

k

V 2
k δ(ε − εk ) = � θ (1 − |ε|), (52)

with � = 0.1, which also defines our unit of energy, and J =
0.004 � �.

When U is large, the impurity is occupied by two electrons
that can form a spin-triplet orbital-singlet (S = 1, T = 0) or
a spin-singlet orbital-triplet (S = 0, T = 1). If J > 0, as we
assume, the lowest energy state,

1√
2

(d†
1↑ d2↓ + d†

2↑ d1↓) |0〉 , (53)

has S = 0, T = 1, and T3 = 0. If we regard the two orbitals
as the single orbitals of two impurities, state Eq. (53) sim-
ply represents the two impurities coupled into a spin-singlet
configuration. In other words, for large U the Hamiltonian
Eq. (48) is actually equivalent to two spin-1/2 impurities, each
Kondo coupled to its own bath and coupled to each other by
an antiferromagnetic exchange, which is the model studied
in Ref. [18]. The phase diagram of this model depends on
the magnitude of J relative to the Kondo temperature TK at
J = 0. If J � TK , each impurity is Kondo screened by its
bath, leading to a conventional Kondo effect. On the contrary,
if J � TK , the two impurities lock into a Kondo-inert spin-
singlet state. These two regimes, which we denote as screened
and unscreened phases, are separated by a quantum critical
point [47], actually a whole critical line at εd 	= 0 [46]. Since
we work at constant � and J � �, and TK decreases with
increasing U , the critical point is reached upon increasing U .
Specifically, with the chosen � and J , its location is at Uc �
1.85 when εd = 0. In Fig. 4, we sketch the phase diagram as
a function of U and εd > 0.

The screened, U < Uc, and unscreened, U > Uc, phases
are both local Fermi liquids in Nozières sense [48], despite

R
e
G(

i
)

unscreened

screened

FIG. 5. ReG(iε) versus the Matsubara frequency ε at εd = 0.1 in
the screened phase, U = 1.75 red curve, and in the unscreened one,
U = 2 blue curve.

the unscreened phase not being adiabatically connected to the
noninteracting limit U = J = 0. For instance, at p-h symme-
try, εd = 0, the impurity self-energy in the unscreened phase
diverges at the Fermi level [46], the local counterpart of a
Luttinger surface, which leads to a pseudogap in the DOS
that is gradually filled in when εd 	= 0 [46]; a totally different
behavior from a noninteracting resonant-level model.

A. Fate of Luttinger’s theorem in the impurity model

The Hamiltonian Eq. (48) at εd 	= 0 is invariant under
global spin SU(2), separate charge U (1) rotations in each
channel i = 1, 2, that includes the conduction bath and the
corresponding impurity level as well as under the Z2 symme-
try 1 ↔ 2. If the conduction bandwidth is large enough, as we
assume hereafter, the conserved quantities become effectively
those at the impurity site, since the fluctuations in the bath are
negligible. The impurity Green’s function is

G(iε) = 1

iε − εd + i � − Re �(iε) − i Im �(iε)
(54)

and, by symmetry, is independent of i = 1, 2 and σ = ↑,↓,
and therefore Eq. (33) reads

niσ =
(

1

2
− arg(G(i∞)) − arg(G(0))

π

)

− 1 − (−1)�

4
sign(ReG(0)), (55)

where the term in parentheses is just the conventional state-
ment of Luttinger’s theorem that was shown in Ref. [18] not
to yield the correct result in the unscreened phase at εd 	= 0.
The last term in Eq. (55), which corrects that result when
Luttinger’s theorem fails, is finite only when the number �

of zeros of ReG(iε) for 0 < ε < ∞ is odd. Figure 5 shows
ReG(iε) in the screened and unscreened phases at εd = 0.1.
Not surprisingly, � is even in the screened phase and odd in the
unscreened one, in which case the last term in Eq. (55) is finite
and equal to −1/2. For εd < 0, the correction is actually +1/2
since the real part of G(iε) changes signs after a particle-hole
transformation that brings εd → −εd .
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FIG. 6. The behavior of �n = nL − n and �m = mL − m as
function of U at εd = 0.1 and B = 0.0001. Here, nL and mL are, re-
spectively, the electron number and magnetization calculated through
Luttinger’s theorem, while n and m their actual value.

The ±1/2 correction is exactly the missing quantized term
noticed in Ref. [18], and thus Eq. (55) does reproduce the
correct electron number. We note that Fig. 5 explicitly demon-
strates that, crossing the point at which perturbation theory
breaks down, � changes by one, from � = 2 in the screened
phase to � = 1 in the unscreened one, as earlier discussed.

Besides the electron number, n = ∑
iσ niσ , the Hamilto-

nian Eq. (48) admits other conserved quantities, e.g., the
magnetization m = ∑

i (ni↑ − ni↓) and the relative orbital oc-
cupancy n f = ∑

σ (n1σ − n2σ ). A field that couples to any of
those conserved quantities does not spoil the quantum crit-
ical point [46]. We may then wonder whether conventional
Luttinger’s theorem also fails in providing the values of those
quantities as it does for the electron number when crossing the
critical point. Let us consider, for instance, the magnetization
m. According to Luttinger’s theorem, we could calculate m
through

mL =
2∑

i=1

arg(Gi↑(0)) − arg(Gi↓(0))
π

. (56)

Evidently, both m and mL vanish when SU(2) symmetry
holds. Therefore, we add to the Hamiltonian Eq. (48) with
εd = 0.1 a Zeeman splitting term −B m, with very small
B = 0.0001 that nonetheless makes G1↑(iε) = G2↑(iε) 	=
G1↓(iε) = G2↓(iε). In Fig. 6, we show the deviation �m of
mL in Eq. (56) from the actual value m as function of U . For
comparison, we also plot the deviation �n of the Luttinger’s
theorem prediction for the number of particles,

nL = 4 +
∑

iσ

arg(Giσ (0))
π

, (57)

from the correct result n. We observe that while �n jumps
from 0 to 2 crossing the critical point, consistent with the
missing contribution from the Luttinger integral, see Eq. (55),
�m remains always zero, showing that the corresponding Lut-
tinger integral vanishes also in the unscreened phase, despite
the breakdown of perturbation theory. In reality, if we instead
take B � εd , the situation is reversed: �m jumps from 0 to
−2, while �n remains zero.

More generally, if we add different fields εd , B, and B f

that couple to n, m, and n f , respectively, the strongest one
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FIG. 7. Real and imaginary parts of the retarded self-energy at
U = 2, εd = 0.1, and temperatures T = 10−8, left panels, and T =
2 × 10−5, right panels, together with the ansatz Eq. (58) with fitted
parameters (dotted lines).

identifies the channel where Luttinger’s theorem breaks down,
whereas the theorem still applies for the other two channels.

B. The unscreened phase as paradigm of a pseudogapped metal

A lot of effort over the past decades has been put into mod-
eling the self-energy of the pseudogap phase in underdoped
cuprates [38,39,49,50], also revealed by cluster extensions of
DMFT in the Hubbard model doped away from the half-filled
Mott insulator [23,26,27,51]. Since the unscreened phase of
the impurity model Eq. (48) is also pseudogapped [46], it is
worth modeling its self-energy, which is easily accessible by
NRG at and away from p-h symmetry, as well as at zero and
finite temperature.

We find that the retarded impurity self-energy �+(ε) ≡
�(ε + i0+) in the unscreened phase is well fitted at low en-
ergy ε and temperature T by Refs. [10,11], see Fig. 7,

�+(ε) = �2

ε − μ + i γ (ε2 + π2 T 2)
, (58)

where all real parameters �, μ, and γ depend on U , T , and
on the strength εd of the p-h symmetry-breaking term. In
particular, �2 and 1/γ vanish quadratically approaching the
critical line U = Uc [46], while, consistently with Fig. 5, μ

has the same sign of εd and vanishes at εd = 0. In Fig. 8, we
show the parameters � and γ extracted by the fit as function
of T and different U > Uc at εd = 0.1.

At T = εd = 0,

�+(ε) = �2

ε + i γ ε2 �
ε→0

�2

ε
− i γ �2, (59)

corresponds to the highly singular expression found in
Ref. [46], which, as earlier mentioned, is the local counterpart
of a Luttinger surface. On the contrary, at εd 	= 0 and for
ε, T � μ,

�+(ε) � − �2

μ
− �2

μ2 ε − i
�2 γ

μ2 (ε2 + π2 T 2) (60)
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FIG. 8. Temperature dependence of the parameters � and γ in
Eq. (58) fitted through NRG results at εd = 0.1 and different U >

Uc. We note that both �2 and 1/γ vanish approaching Uc, although
1/γ � �2.

has a conventional Fermi-liquid behavior, despite the spectral
function pseudogap, and the Luttinger surface has disap-
peared.

The quantum critical point entails the existence at fi-
nite temperature of a quantum critical region delimited by a
crossover temperature T∗ that, in the unscreened phase, can be
identified with the temperature below which the pseudogap
opens, see Fig. 9 where we plot the impurity DOS ρ(ε), at
εd = 0.1, U = 2 and different T . The phase diagram Fig. 4
shows that the critical line can be also crossed starting from
the unscreened phase at particle-hole symmetry and rising εd ,
namely, by doping. In Fig. 10, we show how the parameter
μ behaves as function of εd from 0 up to the critical point
εd � 0.26 at U = 2 and almost zero temperature.

We remark that a key feature of the self-energy Eq. (58)
is the imaginary part in the denominator, i.e., γ (ε2 + π2 T 2),
vanishing quadratically for ε, T → 0, see Fig. 11. This

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
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FIG. 9. Impurity density of states at U = 2, εd = 0.1 and differ-
ent temperatures below and above the pseudogap temperature T∗.
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µ

FIG. 10. Parameter μ in Eq. (58) at T = 10−8 and U = 2 as
function of εd from 0 to above the critical point, see Fig. 4.

guarantees the existence of a well-defined quasiparticle ex-
citation, namely, whose decay rate at T = 0,

γ (ε) ≡ −Z (ε) Im �+(ε) ∝ ε2, (61)

with

Z (ε) =
(

1 − ∂Re �+(ε)

∂ε

)
, (62)

vanishes at zero energy, even in the singular case at p-h sym-
metry [10,11]. Such a property distinguishes Eq. (58) from
all model self-energies introduced to describe the pseudogap
phase of underdoped cuprates, where either the imaginary part
is missing or assumed to be constant. We believe that Eq. (58),
though referring to a specific impurity model, is actually rep-
resentative of generic pseudogap metal phases and thus can be
regarded as paradigmatic of such physical systems.
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FIG. 11. Imaginary part of the self-energy in Eq. (60) divided
by �2 γ (ε2 + π 2 T 2) as function of (ε2 + π 2 T 2) for different T at
εd = 0.1 and U = 2. Note the collapse of all curves at low Matsubara
frequencies.
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V. LUTTINGER’S THEOREM IN A NONMAGNETIC
MOTT INSULATOR

We now discuss the failure of Luttinger’s theorem in the
nonmagnetic two-orbital Mott insulator analyzed in Ref. [17].
The model is essentially the bulk generalization of the two-
orbital Anderson impurity model Eq. (48), with U and J
much larger than width W of the conduction band, whose
dispersion is assumed to be εi j (k) = δi j εk, with i, j = 1, 2
the orbital indices. In that limit and for small enough deviation
μ from particle-hole symmetry, the ground state of the model
represents a nonmagnetic Mott insulator with two electrons
per site, each in a different orbital, locked into a spin singlet.
The spin and orbital-independent Green’s function is

G(iε, k) = 1

iε − εk + μ − �(iε, k)
, (63)

where, absorbing the Hartree-Fock self-energy in μ, and to
leading order in the hopping [17],

�(iε, k) � �2

iε + μ
, (64)

with 2� = U + 6J for the Hamiltonian Eq. (48). Rigorously
speaking, the expression Eq. (64) is valid if also |μ| � W ,
otherwise additional k-dependent terms appear in the denom-
inator [17]. Therefore, we hereafter assume consistently that

U, J, |μ| � W, (65)

which also implies that a Luttinger surface is absent. The
Green’s function Eq. (63) describes an insulator lacking a
Fermi surface if

Re G(0, k)−1 = G(0, k)−1 = −εk + μ − �2

μ
(66)

never vanishes within the Brillouin zone. That implies either
0 < μ < μ+, in which case G(0, k)−1 < 0, or μ− < μ < 0,
in which case G(0, k)−1 > 0, where [17]

μ+ + μ− = εk, μ+ − μ− =
√

ε2
k + 4�2 � 2�. (67)

If we use conventional Luttinger’s theorem, according to
which the number of electrons per site is simply n = 2 +
2 sign(G(0, k)−1), we obtain the wrong result that n = 4 if
μ− < μ < 0 and n = 0 if 0 < μ < μ+. However, in this case,
we can use Eq. (33) to calculate the correct electron number.
Indeed, since

lim
ε→∞ Re G(iε, k)−1 = μ − εk � μ, (68)

the Re G(iε, k) crosses zero an odd number of times from
ε = 0 to ε = ∞. According to Eq. (33), valid for a local
self-energy close to halffilling, that implies n1kσ + n2kσ = 1,
which is indeed correct.

If the condition |μ| � W is not fulfilled, the no more
negligible momentum dependent terms in the denominator of
the self-energy Eq. (64) yield a true Luttinger surface for a
small interval of μ around zero [17], in which case Eq. (32)
provides the correct electron number.

A. Atomic limit of the SU(N) Hubbard model

At J = 0, the previous model becomes the N = 4SU(N )
Hubbard model at half filling, which admits, for strong
enough U , a Mott insulating state at any integer density
n = 1, . . . , N − 1. In the atomic limit, W = 0, this model
also strongly violates Luttinger’s theorem [22]. However, the
ground state in the atomic limit has an extensive degener-
acy,

(N
n

)
per site, and thus divergent susceptibilities. In this

situation, one does not expect Luttinger’s theorem to apply
[9,29].

Nonetheless, to make a connection with the previous dis-
cussion, we note that the sum of the N local Green’s functions
in the atomic limit at T = 0 [22],

N G(iε) = n

iε + ε−
+ N − n

iε − ε+

= ∂

∂iε
ln(iε + ε−)n (iε − ε+)N−n

≡ − ∂ ln GN (iε)

∂iε
, (69)

where ε+ = Un − μ > 0 and ε− = μ − U (n − 1) > 0 are,
respectively, the energies for adding and removing an electron
from the atomic n-particle ground state. Therefore,

N G(iε)
∂�(iε)

∂iε
= N G(iε) + ∂ ln G(iε)N

∂iε

= ∂

∂iε
ln

G(iε)N

GN (iε)

is consistent with Eq. (8) and quantized. In this case, it trivially
follows that the role of the Luttinger integral is to freeze the
occupation per orbital at n/N rather than the value predicted
by Luttinger’s theorem, which is either 0 or 1 [22] depend-
ing on μ, in that similar to what we have found close to a
half-filled Mott insulator. This suggests a natural extension of
our results to multiband models close to a Mott insulator at
fractional filling n/N .

We end observing that GN (iε) is equivalent to the determi-
nant of the N × N Green’s function matrix corresponding to
the same Hamiltonian but in the presence of an infinitesimally
small symmetry-breaking field that lowers n orbitals with re-
spect to the other N − n ones. In this case, Luttinger’s theorem
does hold, as Logan et al. have explicitly demonstrated in the
simpler SU(2) case [52].

VI. DISCUSSION

We have shown that the Luttinger integral, which
provides the missing contribution to the electron count
when Luttinger’s theorem is violated, is a boundary zero-
energy term and is quantized in integer values when
the self-energy is analytic at any nonzero imaginary
frequency. Specifically, in a periodic single-band model
of interacting electrons, Luttinger’s theorem is violated
when perturbation theory breaks down and a Luttinger
surface appears in the Brillouin zone. Taking properly
into account the quantized contribution from the Lut-
tinger surface, we have found that the volume fraction
of the Fermi pockets only measures the doping frac-
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tion away from half-filling rather than the full-filling
fraction.

In addition, a byproduct of our derivation of Luttinger’s
theorem is the prediction that quasiparticles do exist even in
half-filled non-symmetry-breaking Mott insulators, provided
they possess a Luttinger surface, thus extending the results of
Ref. [11] to the case of a hard gap. We emphasize that our
formal construction in Sec. II just relies on the assumption
Eq. (23), with no reference to a model Hamiltonian. How-
ever, the analogy with so-called U (1) spin-liquid insulators
[53–57] is self-evident, and suggests that the quasiparticles

are actually spinons, and the Luttinger surface their Fermi
surface.
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