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Pair-density-wave superconductor from doping Haldane chain and rung-singlet ladder

Ya-Hui Zhang 1,2 and Ashvin Vishwanath1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 13 March 2022; revised 22 June 2022; accepted 24 June 2022; published 5 July 2022)

We report the numerical discovery of a Luther-Emery liquid with pair-density-wave (PDW) correlations from
doping either (i) a spin-one Haldane chain or (ii) a two-leg ladder in the rung-singlet phase in which the doped
charges occupy a single leg. We model these systems using a generalized Kondo model. The itinerant electrons
are correlated and described by the t-J model, and are further coupled to a spin-1/2 Heisenberg model through
the Kondo coupling JK . When the density of electrons x is one, the Mott insulator is in a Haldane phase or in
a rung-singlet phase depending on whether JK is negative or positive. Upon doping, a pair-density-wave with
Q = π can emerge for both signs of JK . In the JK → −∞ limit, the model reduces to the recently proposed type
II t-J model. We also identify a composite order parameter for the superconductor, which can be understood as
a Cooper pair formed by two nearby fermionic spin-polarons. Our model and the predicted PDW phase can be
experimentally realized by doping S = 1 chains formed by Ni2+ in a solid-state system or a two-leg ladder of
fermionic cold atoms with a potential bias between legs, which preferentially dopes carriers into a single leg.
Long-range order of the PDW can be achieved in quasi-one-dimensional system with finite interwire coupling.
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I. INTRODUCTION

The possibility of a high-Tc superconductor emerging on
doping a spin-one-half Mott insulator has been intensively
studied in the last several decades [1]. However, the fate of
doping a spin-one Mott insulator is not well explored so far.
Here we take the first steps to doping a spin-one magnet by
focusing on one dimension. The one-dimensional spin-one
antiferromagnet is well known to be in the Haldane phase
[2–4], which is a classical example of symmetry protected
topological ordered phase with edge modes [5,6]. Here how-
ever we will be interested in closing the charge gap by doping.

Various models have already been studied for doping a
S = 1 chain. (I) In the first class of model, the S = 1 moment
in the undoped insulator is formed by one single electron with
S = 1 [7] or three flavors [8]. These are not realistic models
of S = 1 in a solid-state system where the S = 1 is built from
single electrons which carry only S = 1

2 . (II) In Refs. [9,10],
the authors assume that the S = 1 moment is formed by two
spin-1/2 electrons with ferromagnetic interorbital (interleg)
coupling JH . However, interorbital repulsion is ignored and a
strongly bound onsite Cooper pair is formed because of this
artifact. (III) References [11,12] considered two orbital model
with both Hund’s coupling and repulsive interaction. But there
is no crystal field splitting and thus it may only be relevant
to systems with additional symmetry protecting the orbital
degeneracy. Such an extra symmetry is absent in a generic
solid-state material where crystal field splitting is expected to
be large in quasi-1D material.

In our model, the S = 1 moment in the undoped insulator
is formed by two electrons on two orbitals coupled together
by a ferromagnetic Hund’s coupling JH [13]. Then, we dope

only one orbital with holes, while the other orbital is orbitally
selective Mott localized [14,15] and just provides spin-1/2
local moments. Thus, we obtain a Kondo-like model, with
itinerant electron in a C layer, which couples to S = 1/2
local moments in an S layer with a Kondo coupling JK =
−JH < 0. We also discuss the case with a positive JK , which
can naturally be realized in bilayer optical lattices [16,17]
with a potential difference. In the JK → −∞ limit, the model
reduces to a new kind of t-J model dubbed as type II t-J
model by us in a previous paper [14]. This type II t-J model
interpolates between a spin-1/2 Mott insulator and a spin
one Mott insulator by tuning the density x from 0 to 1. We
will report numerical discoveries of a spin gapped Luther-
Emery liquid phase with pair-density-wave superconducting
correlations for both signs of JK . A PDW superconductor has
Cooper pair condensed at a nonzero momentum [18] so that
the effect of translation symmetry combined with a phase
rotation, leaves the order parameter invariant. Similar orbital-
selective Mott picture has been considered in Refs. [19,20]
though the exact physics appears different from our model
and a PDW phase is absent. In strictly one dimension, long-
range order is forbidden. However, in real experiments one
often deals with quasi-one-dimensional system with small but
finite interwire correlations. In that case, full long-range order
may be achieved because of interwire tunneling, given that
the superconductor susceptibility diverges in our calculation
without including interwire coupling.

The model with JK > 0 can be realized by doping a two-leg
ladder with a potential bias. Unlike previous studies which
dope both legs [21], in our case only one leg is doped. We
note that a PDW phase with Q = π was previously reported
in a Kondo-Heisenberg model with the Heisenberg coupling
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FIG. 1. Illustration of the generalized Kondo model defined in
Eq. (1). The C leg hosts the correlated itinerant electrons, while
the S leg corresponds to local spin-1/2 moment coming from Mott
localization of another, lower energy, orbital. Jc, Js, Jcs are antiferro-
magnetic super-exchange terms. JK is the onsite Kondo coupling.

J = 2t [22–24] and was further generalized to the case with
two-dimensional array [25]. Such a model resembles our gen-
eralized Kondo model with JK > 0. However, there are also
some essential differences. In our model, the C layer itself is
also strongly correlated and is described by a t-J model. This
stabilizes the PDW phase which is now realized at a realistic
parameter value of J = 0.5t , which could be potentially re-
alized in two-leg ladder Fermi gas optical lattices. Recently,
a cold atoms setup consisting of a bilayer optical lattice in
the rung-singlet state, with an interlayer potential difference,
was modeled in Refs. [26,27]. In those works, a metastable
configuration is studied, in which both layers (or both legs
in 1D) are doped with an equal density of charge carriers
while the interlayer tunneling is assumed to be zero due to
a large potential difference. In contrast, our setup considers
the ground state configuration where all the holes preferen-
tially occupy one layer. This leads to significant differences
including the emergence of PDWs in our model.

II. GENERALIZED KONDO MODEL

In this paper we study a generalized Kondo model (illus-
trated in Fig. 1):

H = − t
∑
〈i j〉;σ

(Pc†
i;σ c j;σ P + H.c.) + Jc

∑
〈i j〉

�Si;c · �S j;c

+ Js

∑
〈i j〉

�Si;s · �S j;s + JK

∑
i

�Si;c · �Si;s

+ Jcs

∑
〈i j〉

(�Si;c · �S j;s + �Si;s · �S j;c), (1)

where JK is a Kondo coupling. The first line is a conventional
spin-1/2 t-J model with P as the projection operator to forbid
double occupancy of the itinerant electron. �Si;s represents the
local spin-1/2 moment. �Si;c = 1

2 c†
i;σ �σσσ ′ci;σ ′ is the spin of the

electron in the C layer. We define the density of electron to be
x per site. When x = 1, we have an insulator which is in either
a Haldane phase or in a rung-singlet phase depending on the
sign of JK − 2Jcs. We emphasize that finite super-exchange
couplings Js, Jc are important. Without them, the ground state
is likely to be in a ferromagnetic phase due to the double
exchange mechanism for x < 1 [28]. Jcs is not necessary but
its existence will enhance the PDW phase. We will always
use t = 1, Jc = Js = 0.5 while varying JK , Jcs, and x in our
calculation.

This generalized Kondo model can be realized in either
solid-state system with two orbitals (JK < 0) or in bilayer

optical lattice system (JK > 0). We will see that a PDW su-
perconductor phase can be found for both signs of JK and
therefore is relevant for both the solid-state realization and the
bilayer optical lattice. In the following we briefly discuss how
we derive the Kondo model.

A. Realization in solid-state system

We want to model a transition metal oxide with 3D elec-
trons in atomic configuration d9−x. We consider a model with
two orbitals (for example, the two eg orbitals). We use the hole
picture for simplicity. A general lattice Hamiltonian is

H = HK + U1

2

∑
i

n1;i(n1;i − 1) + U2

2

∑
i

n2;i(n2;i − 1)

+ U ′ ∑
i

n1;in2;i − 2JH

∑
i

(
S1;i · S2;i + 1

4
ni;1ni;2

)
,

(2)

where na;i is the density of the orbital a at the site i. a = 1, 2
denotes the d3zz−r2 orbital and the dx2−y2 orbital, respectively.
In certain material, the energy of another orbital such as dxy

is lower than that of the d3z2−r2 orbital in the hole picture.
In this case we just use d1 to represent the dxy orbital. U1,
U2 are intraorbital Hubbard interaction. U ′ is the interorbital
interaction. JH is the interorbital Hund’s coupling. We assume
that U1 = U2 = U and U − U ′ = 2JH .

The kinetic energy is

HK = − t1
∑
〈i j〉

(d†
1;id1; j + H.c.) − t2

∑
〈i j〉

(d†
2;id2; j + H.c.)

−
∑
〈i j〉

t12;i j (d
†
1;id2; j + H.c.) +

∑
i

�n1;i, (3)

where � is the crystal field splitting between the two orbitals.
We consider the limit that � � t but � < JH ,U ′,U . We

label the total density per site as n = 1 + x. At x = 0, we
have one particle per site. Because of a finite �, there are only
two possible states: d†

2;↑ |0〉 and d†
2;↓ |0〉, forming a S = 1/2

local moment. When x > 0, there are xNs number of sites with
n = 2, where Ns is the total number of sites. If U − U ′ + JH =
3JH > �, then the doped particle is favored to enter the d1

orbital to reduce repulsion and gain from Hund’s coupling.
In the end, d2 orbital is always frozen and remains as spin-1/2
local moment. We then reach a Kondo-like model. If, however,
� > 3JH , then the doped electron is favored to enter the d2

orbital and forms a spin-singlet doublon, leading to the well-
studied t-J model. In this paper we will restrict to the regime
that � < 3JH . As shown in Appendix A, from t/U expansion
we can derive the generalized Kondo model in Eq. (1) with pa-

rameters Jc = 4 t2
1

U , Js = 4 t2
2

U , and Jcs = 2 t2
12

U−U ′−�
+ 2 t2

12
U+U ′+�

.
The Kondo coupling now is JK = −JH < 0.

x = 1 limit is a spin one Mott insulator with two electrons
in the two orbitals forming a spin-triplet. One typical S = 1
Mott insulator is formed by Ni2+ [29] with Ni in the d8 con-
figuration. Therefore, we propose to realize this generalized
Kondo model from doping spin-one magnet formed by Ni2+.
Exact parameters for each material is hard to know without
a detailed study. However, we note that our model is quite
generic. As long as there is a crystal field splitting between
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the two orbitals, doped holes will enter only one orbital and
couple to the other orbital only through the Hund’s coupling.

B. Realization in bilayer optical lattice

The generalized Kondo model with JK > 0 can also be
naturally realized in a bilayer optical lattice system, which
was recently explored in cold atom experiments [16,17]. We
consider a bilayer optical lattice described by a bilayer Hub-
bard model:

H = �
∑

i

ni;1 − t
∑

a=1,2

∑
σ=↑,↓

∑
〈i j〉

(c†
i;aσ c j;aσ + H.c.)

− t12

∑
a=1,2

∑
σ=↑,↓

∑
〈i j〉

(c†
i;1σ c j;2σ + c†

i;2σ c j;1σ + H.c.)

− t⊥
∑
a,σ

∑
i

(c†
i;1σ ci;2σ + H.c.) − μ

∑
a=1,2

∑
i

ni;a

+ U

2

∑
a

∑
i

ni;a(ni;a − 1) + U ′ ∑
i

ni;1ni;2, (4)

where ni;a = ∑
σ c†

i;aσ ci;aσ is the density at site i for layer a =
1, 2. ni = ni;1 + ni;2 is the total density at site i. We also define
the average density n = 1

Ns

∑
i ni, where Ns is the total number

of sites in the system.
The model resembles the two-orbital Hubbard model in

Eq. (3), but now we have JH = 0 because c1 and c2 are now
from physically distinct layers. Here a = 1, 2 labels the two
layers and t⊥ is the interlayer vertical tunneling. A nonzero
� > 0 is caused by a displacement field, or a potential dif-
ference between the two layers. We will stay in the limit
U � t and U � U ′. We assume t⊥, t < � < U − U ′. At
density n = 1, we have a Mott insulator with one particle
at layer 2. Then at density n = 1 + x with x ∈ (0, 1), the
doped additional particle enters layer 1 to reduce the onsite
Hubbard U . In this case layer 2 is always Mott localized
and provides a spin-1/2 moment. The itinerant electron in
layer 1 is described by a t-J model which then couples to the
local moment of layer 2 through a Kondo coupling. This is
exactly the generalized Kondo model defined in Eq. (1) with

the parameter: Jc = Js = 4t2

U , Jcs = 2 t2
12

U−U ′−�
+ 2 t2

12
U+U ′+�

, and

JK = 2 t2
⊥

U−U ′−�
+ 2 t2

⊥
U−U ′+�

.
Note that we always have JK > 0 because we need � <

U − U ′ to make the doped particles stay in layer 1. If we
increase either � or t⊥, then we should reach a Fermi liquid
phase with large Fermi surface. We will mainly focus on the
regime where � is not large enough to destroy the layer-
selective Mott localization. In this regime we can focus on
the generalized Kondo model in Eq. (1) with JK tuned by t⊥
or �. Note in the above analysis U ′ is not necessary and we
can set U ′ = 0. t12 is needed to generate a finite Jcs, which is
not necessary, but can enhance the PDW phase.

The x = 1 limit is a bilayer Mott insulator with a spin-1/2
moment at each layer for each site i. When x < 1, we dope
finite density of holes into layer 1 because of the potential
difference �, while layer 2 remains Mott localized. If there
is no interlayer coupling, then layer 1 is clearly described
by the conventional t-J model. In our case, this t-J model

further couples to another spin-1/2 model through a Kondo
coupling JK .

III. PDW SUPERCONDUCTOR

We study the generalized Kondo model in Eq. (1)
using density matrix renormalization group (DMRG)
method [30,31]. We use both the finite size DMRG and
the infinite DMRG (iDMRG) [32]. They give consistent
results but have their own advantages on different tasks.
Finite DMRG is more convenient to tune the doping x with a
small step. Typical system size Lx is 100 in our calculation,
but we also have results with Lx = 80, 100, 120 to do 1

Lx

scaling. The infinite DMRG is more useful to extract central
charge and fit the power-law exponent without worrying
about boundary effects. In our problem, we want a doping
x larger than 0.9. Then we need a large unit cell size. We
typically use a unit cell size L = 30 and put 28 electrons
within each unit cell to get x = 28

30 ≈ 0.93. This unit cell
is repeated for infinitely long in the iDMRG algorithm.
Translation invariance within the unit cell is not enforced by
the algorithm but will be reached in the end by minimizing
the energy. Both the finite DMRG and iDMRG simulations
are performed using the TeNPy Library (version 0.4.0) [33].
For infinite DMRG, we use unit cell size L = 30 and bond
dimension up to m = 2000, which gives a typical truncation
error at order 10−5. The convergence with the bond dimension
is demonstrated below. In iDMRG it is also convenient to
extract correlation lengths for various different operators
using the transfer matrix method [33]. Such data with
different bond dimensions m = 500, 1000, 2000 can be found
in Appendix C. For finite DMRG with system size Lx ∼ 100,
we use bond dimension up to m = 2000, which can achieve
truncation error at order 10−6. The convergence with the bond
dimension and the 1/Lx scaling is shown in Appendix C.

In Fig. 2 we show evidences for a Luther-Emery liquid with
quasi-long-range PDW order parameter. In Fig. 2(a) we show
a finite spin gap �S when JK ∈ (−∞, Jc

K ). In our DMRG
simulation the spin Sz is conserved. The ground state is found
in the Sz = 0 sector and the spin gap is defined as �S =
E (Sz = 1) − E (Sz = 0) (see more details in Appendix B).
We note that a nonzero Jcs can enhance the spin gap [see
Fig. 2(b)]. When JK > Jc

K (Jc
K ≈ 0.95 for Jcs = 0.25), the

ground state is in a Luttinger liquid phase with zero spin gap.
Inside the spin gap phase, there is power-law decay for the
correlation function of the spin-singlet pairing order parame-
ter defined as P(x) = εσσ ′cσ (x)cσ ′ (x + 1), where εσσ ′ is the
Levi-Civita symbol. We find that 〈P†(x)P(0)〉 ∼ (−1)x 1

xKsc ,
shown in Fig. 2(c). The oscillations (−1)x implies that the
order parameter has a momentum Q = π , hence the phase is a
PDW superconductor. The power-law decay is demonstrated
in Fig. 3(a). We extract Ksc from a linear fit. We also obtain
the Luttinger parameter Kc using the method discussed in
Appendix B. As shown in Fig. 3(b), we find Kc ≈ K−1

sc as
expected for a Luther-Emery liquid. Kc can be larger than
1, indicating slower decay of the superconductor (SC) or-
der than the charge-density-wave (CDW) order. However,
when varying JK at fixed Jcs = 0.25, Kc has a dip at J0

K ≈
0.45, which separates the PDW phase into two domes. It is
known that the susceptibility of the superconducting order
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FIG. 2. Evidence for PDW phase in the generalized Kondo
model defined in Eq. (1). (a) Spin gap �S (Lx = ∞) as a function
of JK for Jcs = 0, 0.25 at the doping x = 0.9 in units of t = 1. The
value is obtained from extrapolation of finite size results with Lx =
80, 100, 120. There is still a finite spin gap in the negative JK regime
if one zooms in (see Fig. 9 in Appendix C). The spin gap closes at
Jc

K ≈ 1.05, 0.95 for Jcs = 0, 0.25. (b) Spin gap as function of Jcs at
x = 0.96 using system size Lx = 100 for fixed JK = −0.6, 0, +0.6.
(c) Pairing-pairing correlation function in real space from infinite
DMRG. We use Jcs = 0.25 and x = 28

30 ≈ 0.933 with unit cell size
L = 30. Here P(x) = εσσ ′ cσ (x)cσ ′ (x + 1) is the spin-singlet Cooper
pair on a nearest-neighbor bond, where εσσ ′ is the Levi-Civita sym-
bol. (d) The Fourier transformation of the pairing-pairing correlation,
peaked at q = π . Here q is in unit of 2π and the dashed line labels
2kF = x

2 × 2π .

FIG. 3. (a) Log-Log plot of the pairing correlation function and
distance x at Jcs = 0.25 for JK = −0.1 and JK = 0.9. We use infinite
DMRG with unit cell size L = 30 and the density is at x = 28

30 .
The top three lines are for JK = 0.9 and the bottom three lines
are for JK = −0.1. Within each group, we plot the results for m =
500, 1000, 2000 with color yellow, blue and green. For JK = 0.9,
there is almost no difference for different bond dimensions. For JK =
−0.1, the pairing correlation function is an exponential decay, but the
correlation length increases with bond dimension m and the log-log
plot moves towards a straight line when increasing m. The green
and red dashed lines are the linear fit for JK = −0.1 and JK = 0.9,

respectively. (b) The inverse of the power-law decay exponent for the
pairing correlation function K−1

sc and the Luttinger parameter Kc as a
function of JK . We used Jcs = 0.25. Ksc is fit from infinite DMRG
results shown in (a). Kc is fit from finite DMRG results at several
fillings at size Lx = 100. We find K−1

sc ≈ Kc evaluated at x = 0.93.
Luttinger parameter Kc has a dip at JK = J0

K ≈ 0.45, separating the
PDW phase into two domes.

FIG. 4. Evolution with JK at fixed Jcs = 0.25. (a) Rung spin-
correlator V = 〈�Si;c · �Si;s〉 + 1

4 from infinite DMRG at x = 28
30 ≈

0.933 with a unit cell size of L = 30. The two dashed lines are at
J0

K = 0.44 and Jc
K = 0.95. Here m is the bond dimension. (b) Ampli-

tudes for Green functions of electron or polaron. The vertical dashed
line is at J0

K = 0.44. (c) Amplitudes for pairing-pairing correlation of
composite Cooper pairs. The vertical dashed line is at J0

K = 0.44, on
either side of which the composite operator amplitudes grow. The
same parameters are used as in panels (a, b). (d) Inverse charge
compressibility κ−1

c , Luttinger parameter Kc, Fermi velocity of the
charge mode υc at x = 0.94 from finite DMRG with system size
Lx = 100. We have used κc = π

2
Kc
υc

to extrapolate υc. The vertical
dashed line is at J0

K = 0.45, which separates the two PDW domes.

parameter χ diverges at low temperature with a relation
χ (T ) ∼ T −(2−KSC ) [21]. Therefore, when the temperature ap-
proaches zero, superconductivity susceptibility has a strong
divergence in our model given that KSC < 2. Thus, long-range
order may be achieved if one considers a quasi-1D system and
includes a fintie interwire coupling.

It turns out the interleg spin-spin correlation changes from
ferromagnetic to antiferromagnetic precisely at J0

K , which is
defined as the dip of Kc as shown in Fig. 3(b). We define
a rung spin-correlator Vi = 〈�Si;c · �Si〉 + 1

4 to characterize the
interleg spin-spin correlation. V changes sign around J0

K , as
shown in Fig. 4(a). As shown in Appendix C, there is a rapid
crossover but no phase transition, at J0

K . At Jc
K ≈ 0.95, there is

a small jump of V , suggesting a first order transition between
the PDW phase and the Luttinger liquid phase with zero spin
gap.

We also point out the existence of spin-polarons at low
energy when moving away from J0

K toward both sides. The
spin-polaron is a bound state of electron in the C layer and
spin operator in the S layer:

c̃i;σ = 1
2 (�Si;s · �σσσ ′ )ci;σ ′ , (5)

where �σ is the Pauli matrix and �S is the spin operator of the
S layer. This composite operator c̃σ has the same quantum
number as the microscopic electron operator cσ .

It can be easily shown that c†
i;σ c̃i;σ = �Si;c · �Si;s. Thus,

for either sign of 〈�Si;c · �Si;s〉, there is a hybridization be-
tween the electron and the spin polaron. To characterize
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this hybridization, we define several different equal-
time Green functions: the single electron Green function
Gσ ;ee(x, y) = 〈c†

σ (x)cσ (y)〉; electron-polaron Green function
Gσ ;ep(x, y) = 〈c†

σ (x)c̃σ (y)〉c and polaron-polaron Green func-
tion Gσ ;pp(x, y) = 〈c̃†

σ (x)c̃σ (y)〉c. Here we have subtracted the
average values so that Gσ ;ep(x, y) = Gσ ;pp(x, y) = 0 in the
decoupled limit JK = Jcs = 0. For each type α = ee, ep, pp,
we find that Gσ ;α (x, 0) = Aαe− x

ξ in the PDW phase with the
same exponent ξ . In Fig. 4(b), we show that Aep

Aee
,

App

Aee
vanish

at J0
K . Across J0

K , the interlayer spin-spin correlation changes
sign and the mixture between the polaron and the electron
vanishes. This coincides with the dip of Kc, strongly sug-
gesting that the existence of polaron is crucial for a large Kc,
presumably from effective attractive interaction. Especially in
the J0

K < JK < Jc
K regime, the ratio of amplitudes App

Aee
� 1,

indicating dominance of the polaron at low energy. This is
also the regime where the PDW superconductor is strongest
and the decay of the pairing correlation is the slowest.

With the spin-polaron, we can also define the composite
Cooper pair of an electron and a polaron, or a Cooper pair
of two polarons. We can define the usual spin-singlet Cooper
pair �(x) = εσσ ′cσ (x)cσ ′ (x + 1) and two composite Cooper
pairs: �1(x) = 1

3 { ��T (x) · [�Ss(x) − �Ss(x + 1)]} and �2(x) =
�(x)�Ss(x) · �Ss(x + 1). In the above ��T (x) is the spin-triplet
Cooper pair on the nearest-neighbor bond and �Ss(x) is the
spin operator in the S layer. In Appendix D 2 we show that
�1 is the Cooper pair between electron and polaron while
�2 is from the Cooper pair of two polarons. We expect the
existence of all these three Cooper pairs at low energy. Indeed
we find that 〈�†

α (x)�α (0) = Aα
(−1)x

xKSC
for α = �,�1,�2 with

the same exponent Ksc. Again
A�1
A�

and
A�2
A�

vanish at J0
K as

shown in Fig. 4(c), confirming the absence of the polaron here.
In the regime J0

K < JK < Jc
K , the amplitude for the polaron-

polaron Cooper pair is the strongest. This again highlights the
importance of the polaron for the PDW superconductor.

In summary, at J0
K , the mixture of the polaron and the elec-

tron is the weakest because the interlayer spin-spin correlation
vanishes. Moving away from J0

K to either the ferromagnetic
and antiferromagnetic side, there is a hybridization between
electron and polaron. In the same time, the Fermi velocity de-
creases and the Luttinger parameter increases [see Fig. 4(d)],
indicating effective attractive interactions. One simple expla-
nation is that now the spin-spin exchange between the spin
polarons has contributions from Jc, Js, Jcs, which add up to
induce a strong attraction between two nearby polarons.

IV. BOSONIZATION ANALYSIS

The existence of the PDW phase can be understood from
a bosonization analysis starting from the decoupled limit with
Jcs = JK = 0 following Refs. [22,34]. At the decoupled limit
we have one charge and one spin mode from the C layer
and an additional spin mode from the S layer. We can label
the bosonization variables of the charge mode as θc, φc, of
the spin mode of the C layer as θs, φs and of the spin mode
in the S layer as θ̃s, φ̃s. With the inclusion of JK , Jcs, the
two spin modes mix with each other and we can define new
variable θs;± = 1√

2
(θs ± θ̃s) and φs;± = 1√

2
(φs ± φ̃s). It can be

shown that the most relevant interlayer coupling term gives

−gcos 2θs;− cos 2φs;+. In Appendix G we show that this term
is relevant when JK + 2Jcs > 0 in the weak coupling limit.
Therefore, when JK + 2Jcs > 0, this term pins θs;− = 0 (π )
and φs;+ = 0 (π ) and the two spin modes are gapped. We
are left with only the charge mode, leading to a spin gapped
Luther-Emery liquid phase with algebraic superconductor
(SC) and CDW order.

However, correlation functions for simple Q = 0 SC or-
der defined in the C layer are exponentially decaying. We
have spin-singlet SC order �S ∼ ei

√
2θc cos

√
2φs and spin-

triplet SC order �T ∼ ei
√

2θc (sin
√

2θs, cos
√

2θs, sin
√

2φs).
We note that φs = 1√

2
(φs;+ + φs;−) is always fluctuating be-

cause θs;− is pinned. Similarly θs is fluctuating because φs;+
is ordered and all of these order parameters are gapped.
To get algebraic decay, we need a composite order pa-
rameter by attaching an operator in the S layer. First, in
S layer we can define Neel order parameter (nx, ny, nz ) ∼
(sin

√
2θ̃s, cos

√
2θ̃s, sin

√
2φ̃s). Meanwhile, there is a VBS

order parameter Ṽ ∼ cos
√

2φ̃s. The Neel and VBS order
parameters carry momentum Q = π . Now we can define a
composite order parameter OPDW ∼ �SṼ ∼ ��T · �n ∼ e−i

√
2θc

which carries momentum Q = π and is a spin-singlet. We
have OPDW(x)OPDW(0) ∼ 1

x
1

Kc
. Note that these composite or-

der parameters �SṼ and ��T · �n, combined with a factor
(−1)x, are precisely �1 and �2 defined previously from
electron-polaron Cooper pair and polaron-polaron Cooper
pair.

V. TYPE II t-J MODEL

Although a PDW phase at JK > 0 side can be explained
by bosonization, at least in the small JK limit, its existence
at JK < 0 side is a surprise. In this subsection we show the
existence of a PDW phase even at the JK → −∞ limit. In the
JK → −∞ limit, we can obtain a type II t-J model which was
recently proposed by us [14]. The model has two spin-1/2 sin-
glon states (defined as states with

∑
σ c†

i;σ ci;σ = 0) and three

S = 1 doublon states(defined as states with
∑

σ c†
i;σ ci;σ = 1)

at each site. Here singlon is defined as singly occupied site
and the doublon is defined as the doubly occupied site. The
model can be written as

H = − t
∑
〈i j〉;σ

(Pc†
i;σ c j;σ P + H.c.) + Js

∑
〈i j〉

�si · �s j

+ Jd

∑
〈i j〉

�Si · �S j + Jsd

∑
〈i j〉

(�si · �S j + �Si · �s j ), (6)

where �s is the spin operator of the singlon with S = 1
2 and �S

is the spin operator of the doublon with S = 1. The c operator
is the electron operator in Eq. (1) projected to the restricted
Hilbert space forbidding the S = 0 doublon. Now the projec-
tion operator P restricts to a five-dimensional Hilbert space
at each site i: two singlon states and three doublon states.
Note that the original Kondo model in Eq. (1) has six states at
each site. Here we remove the S = 0 doublon state, meaning
the electron in C layer and the spin in the S layer forms a
spin singlet. We have Js = Js, Jd = 1

2
√

2
(Jc + Js + 2Jcs), and

Jsd = 1
2 (Js + Jcs). This model should be the effective t-J
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FIG. 5. Evolution with doping x in the type II t-J model with
doping x, setting t = 1, Js = Jd = 0.5, Jsd = 0.25. The momentum
in the plot is in units of 2π . (a) Spin gap �S with x. �S at L = ∞ is
extrapolated from that of the finite L. The dashed line is at xc = 0.85,
which denotes the onset of a finite spin gap. (b) Luttinger parameter
Kc with x. (c) Momentum distribution function n(k) = 〈c†

σ (k)cσ (k)〉.
Curves for different x are displaced so the absolute value is not
meaningful. One can see a small pocket with kF = x

4 2π when x < xc.
(d) Spin-spin structure factor. Characteristic of LL*, there are two
modes at momentum 2kF and π when x < xc, denoted by red arrows
and blue arrows, respectively.

model from doping a S = 1 Mott insulator with large Hund’s
coupling and crystal field splitting. On average, the Ns atoms
in the chain are each in the d9−x state, or equivalently, there
are (1 − x)Ns number of S = 1

2 sites in the d9 configuration
and xNs number of S=1 sites in the d8 configuration.

While the rest of this paper has focused on doping close
to unity, here a wider range of doping is displayed and the
emergence of an unusual Luttinger liquid with small Luttinger
volume is pointed out. In Fig. 5 we show results for the type
II t-J model. We find a phase transition between a fractional
Luttinger liquid (LL*) phase [15,35] (x < xc) and the PDW
superconductor (x > xc) at around xc = 0.85. At x = 0.5 a
charge-density-wave (CDW) insulator is obtained. The LL*
phase has one spinful small Fermi surface with volume 2kF =
x
2 2π and an additional spin mode at momentum π (for details,
see Ref. [15]). It can be labeled as C1S2, meaning one charge
mode and two spin modes. The onset of the spin gap at xc

is shown in Fig. 5(a). When x > xc, the ground state is in
a Luther-Emery liquid with only one charge mode and can
belabeled as C1S0. Meanwhile the Luttinger parameter Kc

becomes large when x > xc shown in Fig. 5(b), giving slow
decay of pair-pair correlation function. The pair correlation
function again reveals the oscillatory behavior of a PDW (see
Appendix F). Thus, again we see that a lightly doped Haldane
chain in this large Hund’s coupling limit, also reveals PDW
superconductivity.

A key observation is that the LL* phase is qualitatively
similar to the phase in the decoupled limit of the generalized
Kondo model, although now we actually have JK = −∞.
In the JK = −∞ limit, we can remove JK by dealing with

FIG. 6. Central charge at different doping x in the type II t-J
model, using the same parameter as in Fig. 5. The central charge
is fit from the relation S = c

6 log ξ in infinite DMRG, where S is the
entanglement entropy and ξ is the correlation length. Both S and ξ

grow with the bond dimension D, therefore c = 6 δS
δξ

also changes
with bond dimension m. We plot c with the bond dimension m by
varying m from 2000 to 8000. For x < 0.85, we find c ≈ 3 in the
whole range of m, consistent with a LL* phase with one charge mode
and two spin modes. For x > 0.85, the central charge is smaller and
decreases as m increases. We believe c will flow to 1 in the 1

m → 0
limit.

the type II t-J model with a restricted Hilbert space. It can
be shown [15] that there are emergent orbitals which form
effective C̃ layer and S̃ layer. In terms of the C̃ and S̃ layer,
there is no Hund’s coupling −JK anymore, as such a term
does not exist in the type II t-J model. There can be effec-
tive antiferromagnetic spin-spin coupling between the C̃ and
the S̃ layers coming from Js, Jd , Jsd > 0 terms in the type II
t-J model. Such a coupling resembles an antiferromagnetic
Jcs coupling in terms of the new emergent orbitals and can
drive the LL* phase into a PDW phase following the same
bosonization analysis as in the weak coupling limit of the gen-
eralized Kondo model. In Fig. 6 we also show that the central
charge jumps from c = 3 to c = 1 across this transition, which
is expected for a transition between C1S2 phase and C1S0
phase.

VI. CONCLUSION

In summary, using a combination of numerical calculations
and analytical arguments, we predict PDW superconductor on
doping a spin-one Haldane chain or the rung-singlet phase in a
two leg ladder. Experimentally, the former may be realized by
doping a spin-one chain formed by Ni2+ [29], while the latter
can be realized by a two-leg ladder of fermionic atoms in an
optical lattice, by preferentially doping one of the legs. We
show that the formation of a fermionic spin polaron is crucial
for a robust PDW phase with slow decay of pairing correla-
tion. Note, although we are here doping the Haldane chain, a
paradigmatic example of an symmetry protected topological
(SPT) phase, the edge modes have not played any role. It is
left to future work if SPT physics has any role to play, given
the presence of low energy charge excitations [36,37]. The
models studied here can be defined in any dimension, so the
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extension to two dimensions for instance should throw light
on the intrinsic mechanism leading to PDWs and the role
of spin-polarons in mediating pairing in strongly correlated
systems. Recently Haldane chain was also realized in organic
material [38,39]. It is interesting to generalize our model to
such case.
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APPENDIX A: GENERALIZED KONDO MODEL
AND TYPE II t-J MODEL IN SOLID-STATE SYSTEM

1. Generalized Kondo model

We start from the two-orbital Hubbard model in Eqs. (2)
and (3). We restrict to the regime that � < U − U ′ + JH =
3JH (we assume U − U ′ = 2JH ), then at total density n = 1 +
x, we have itinerant particles from the d2 orbital, while the d1

orbital is Mott localized.
If � < 3JH , then the doped hole starting from the d9 state

will only enter the d1 orbital while the d2 orbital is always
singly occupied. In another word, the d2 orbital is orbitally
selective Mott localized. Then we are left with a Kondo-like
model where a conventional t-J model coupled to spin-1/2
local moment. We assume U,U ′ � t , so the itinerant electron
in the d1 orbital itself is strongly correlated and is described by
a t-J model, which then couples to the local spin-1/2 moment
from the d2 orbital. We then define ci;σ = Pdi;1σ P, where P is

the projection operator to remove the double occupancy. Then
we reach a Kondo-like model:

H = − t
∑
〈i j〉

(c†
i c j + H.c.) + Jc

∑
〈i j〉

�Si;c · �S j;c

+ Js

∑
〈i j〉

�Si;s · �S j;s + JK

∑
i

�Si;c · �Si;s

+ Jcs

∑
〈i j〉

(�Si;c · �S j;s + �Si;s · �S j;c), (A1)

where JK = −JH is the ferromagnetic onsite Hund’s cou-
pling. The first two terms are the conventional spin-1/2 t-J
model. The third term is the Heisenberg model of the spin-
1/2 localized spin. The last line is the spin-spin coupling
between the itinerant electron and the localized spin. Jc is the
super-exchange term between the itinerant electron. Js is the
super-exchange between the localized spins. Jcs is the super-
exchange between the itinerant electron and the localized spin.

The spin-spin coupling parameters can be derived from
second order perturbation theory as

Jc = 4
t2
1

U
, Js = 4

t2
2

U
,

Jcs = 2
t2
12

U − U ′ − �
+ 2

t2
12

U + U ′ + �
,

JK = −JH , (A2)

which is derived by assuming JH is small compared to U ′,U .
In principle we should also include some three-site cor-

related hopping processes from t2/U . We will ignore them
following the same procedure in the usual t-J model. They
are listed below as

H ′ = − Jc

4

∑
i

(c†
i+1;σ ci−1;σ ni;σ̄ − c†

i+1;↑ci;↓S−
i;c − c†

i+1;↓ci;↑S+
i;c) + H.c.

−
∑

i j

[(
2t2

12

U − U ′ − �
− 2t2

12

U − �

)
−

(
2

t2
12

U + �
− 2t2

12

U + � + U ′

)]
n j �Si;c · �S j;s

+
∑
〈i j〉

[
− t2

1

U
+

(
t2
12

U − U ′ − �
− t2

12

U − �

)
−

(
t2
12

U + �
− t2

12

U + � + U ′

)]
nin j

+ 1

2

∑
i

(c†
i+1;σ ci−1;σ )

[(
t2
12

U ′ + �
− t2

12

U − U ′ − �

)
+

(
t2
12

�
− t2

12

U ′ + �
+ t2

12

U − U ′ − �
− t2

12

U − �

)
ni

]

+
∑

i

(c†
i+1;σ �σσσ ′ci−1;σ ′ ) · �Si

[(
t2
12

U ′ + �
+ t2

12

U − U ′ − �

)
+

(
t2
12

�
− t2

12

U ′ + �
− t2

12

U − U ′ − �
+ t2

12

U − �

)
ni

]
. (A3)

In the above we have hidden the projection operator to
impose the constraint that there is no double occupancy in the
C layer.

2. Type II t-J model

The type I and type II t-J model can be reached by taking
JK → +∞ limit and JK → −∞ limit, respectively, from the
generalized Kondo model. Let us take the JK → −∞ limit,
then we need to remove the interorbital spin singlet from the
Hilbert space and get the type II t-J model [14,15] with two

spin-1/2 singlon and three S = 1 doublon at each site. Here
singlon is defined as singly occupied site and the doublon is
defined as the doubly occupied site. The model can be written
as

H = −t
∑
〈i j〉

(c†
i c j + H.c.) + Js

∑
〈i j〉

�si · �s j + Jd

∑
〈i j〉

�Si · �S j

+ Jsd

∑
〈i j〉

(�si · �S j + �Si · �s j ),
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where �s is the spin operator of the singlon with S = 1
2 and �S is

the spin operator of the doublon with S = 1. c is the electron
operator in the Kondo model projected to the restricted Hilbert
space with spin-1/2 singlon and S = 1 doublon. We have

Js = Js, Jd = 1

2
√

2
(Jc + Js + 2Jcs),

Jsd = 1

2
(Js + Jcs). (A4)

APPENDIX B: EXTRACTION OF LUTTINGER
PARAMETER AND COMPRESSIBILITY IN DMRG

We use the following formula to extract the Luttinger pa-
rameter Kc for the charge mode:

N (q) = 〈n(q)n(−q)〉 = N (q = 0) + Kρ

π
q (B1)

when q → 0.
Here, we do the Fourier transformation of

〈n(x)n(0)〉 = −Kρ

π2

1

x2
(B2)

to get

N (q) =
L∑

x=0

〈n(x)n(0)〉. (B3)

We also try to extract the charge compressibility κc. It is
known that

1

κc
= ∂μ

∂n
= ∂2E

∂n2
= 1

L

E (n + δn) + E (n − δn) − 2E (n)

δn2
.

(B4)

Similarly, there is a spin compressibility κs extracted from

1

κs
= ∂2E

∂S2
z

= 1

L

E (Sz = 1) + E (Sz = −1) − 2E (Sz = 0)(
1
2/L

)2

= 8�SL, (B5)

where �S = E (Sz = 1) − E (Sz = 0).
In Luttinger liquid theory, it is known that

κc = 2Kc

πυc
. (B6)

APPENDIX C: MORE RESULTS ON THE GENERALIZED
KONDO MODEL

1. Pairing correlation in real space and momentum space

In Fig. 7 we show the comparison of pair-pair correlation
function obtained from finite and infinite DMRG. In finite
DMRG, we see that the pair-pair correlation function has a
sharp drop at the boundary of the system. This turns out to
enhance a peak in the fourier transform at momentum q =
2kF = x

2 × 2π = 48
100 × 2π . We note that the 2kF part in the

pair-pair correlation function should have a large decay expo-
nent Kc + 1

Kc
> 2 and should be much smaller than the peak

at q = π . Indeed, in infinite DMRG, we find the feature at
q = 2kF is significantly weaker because there is no boundary
effect.

FIG. 7. We show pair-pair correlation function for Jcs = 0.25
from finite DMRG and infinite DMRG. (a, b) Pair-pair correlation
function in real and momentum space from finite DMRG. x = 0.96
with system size Lx = 100. (c, d) Pair-pair correlation function in real
and momentum space from infinite DMRG with unit cell size L = 30
and x = 28

30 . The vertical dashed lines are at q = 2kF = x
2 × 2π .

In the Fourier transformation of P†(x)P(0), we ignored the short
distance contribution with |x| = 0, 1.

2. Spin gap and spin correlation length

We report more results on spin gap from finite DMRG
calculation of the generalized Kondo model. We always use
t = 1, Jc = Js = 0.5. We will vary JK , Jcs, and the doping x.
First, we show that the spin gap and our calculation converges
when increasing the bond dimension from m = 500 to m =
2000, shown in Fig. 8. With bond dimension m = 2000, we
find that the truncation error is smaller than 10−7 inside the
PDW phase and the energy convergence (difference between
m = 1000 and m = 2000) is smaller than 10−6. We will use
m = 2000 in the remaining plots.

In Fig. 9 we show how we extract the spin gap at L =
∞ from the results at finite L = 80, 100, 120. One can see
a finite spin gap when JK < Jc

K , where Jc
K = 1.05, 0.95 for

FIG. 8. Spin gap from finite DMRG with bond dimension m =
500, 1000, 2000. We use x = 0.94 with system size Lx = 100. We
use t = 1, Jc = Js = 0.5, Jcs = 0.25.
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FIG. 9. Spin gap in the generalized Kondo model from finite DMRG at x = 0.9 for (a) Jcs = 0 and (b) Jcs = 0.2. We use parameter
t = 1, Jc = Js = 0.5. The value at L = ∞ is extracted from polynomial fitting �S ( 1

Lx
) = a 1

L2
x

+ b 1
Lx

+ �S (Lx = ∞). In the inset we show a
zoom in scale to demonstrate a finite spin gap at negative JK regime.

Jcs = 0, 0.25, respectively. When JK > Jc
K , we have a Lut-

tinger liquid phase with zero spin gap. We note that the spin
gap is finite even at negative JK regime, though it is very small.
The spin gap at JK = −∞ can get enhanced if we increase x
or Jcs, as demonstrated in Fig. 10.

In addition to results from finite DMRG, we can also ob-
tain correlation lengths using the transfer matrix techniques
in infinite DMRG, as shown in Fig. 11. We mainly care
about the spin correlation length ξS , obtained in the sector
with (δQ, δSz ) = (0, 1)and the pairing correlation length ξP,
obtained in the sector with (δQ, δSz ) = (2, 0). We show the
data for Jcs = 0, 0.25, 0.5. One can see that there is a finite
ξ−1

S when JK < Jc
K , consistent with a spin gap. The pairing

correlation length ξP increases with the bond dimension m. At
a fixed m, ξP has a dip at J0

K , where the Luttinger parameter Kc

also has a dip and the pairing correlation function power-law
decay exponent Ksc = K−1

c is peaked. This is another evidence
that there are two superconducting domes separated by J0

K .

FIG. 10. (a) Spin gap with JK at Jsc = 0.25, obtained with system
size Lx = 100. (b) Spin gap with JK at Jcs = 0.5 and x = 0.9. It is
extrapolated to Lx = ∞ from data at Lx = 80, 100, 120. (c) Spin gap
with Jcs at JK = −0.6. (d) Spin gap with Jcs at JK = 0.6.

3. Luttinger parameter Kc

In Fig. 12 we show the Luttinger parameter Kc with JK . The
Luttinger parameter Kc is fit using the method described in
Appendix B. Kc clearly has a dip at JK = J0

K , The PDW phase
is separated into two domes. For the special case with Jcs = 0,
the J0

K = 0 point has zero spin gap and is a LL* phase with one
charge mode and two spin modes. However, with a finite Jcs,
the phase at J0

K is generically also in the same Luther-Emery
liquid phase with spin gap, although Kc is smaller than one.

4. Charge compressibility and Fermi velocity

We also report the inverse charge compressibility κ−1
c and

the Luttinger parameter Kc in Fig. 13. By using κc = 2Kc
πυc

, we
can also obtain the Fermi velocity υc and the charge stiffness
D = Kcυc. We can see that there is a dip of Kc and peak of
the Fermi velocity υc at J0

K , where the spin-spin correlation
〈�Si;c · �Si;s〉 changes sign. Away from the J0

K , Kc gets enhanced
and the Fermi velocity gets reduced, which is a signature
of attractive interaction [21]. If we stay in the FM or AF
regimes with fixed sign of 〈�Si;c · �Si〉, then Jcs term enhances
Kc and suppresses υc, indicating stronger attraction. However,
in Fig. 13(d), we find a dip of Kc at Jcs ≈ 0.4. This is again
associated with the sign change of 〈�Si;c · �Si;s〉 and vanishing of
the polaron hybridization because we expect J0

K ≈ 0.6 when
Jcs = 0.4 based on the data in Fig. 11.

APPENDIX D: SPIN POLARON AND ITS
CORRELATION FUNCTIONS

In this section we show evidences for fermionic spin po-
laron at low energy and composite Cooper pair formed as
bipolarons in the generalized Kondo model.

In the generalized Kondo model [Eq. (1)], the fermionic
spin polaron is defined as

c̃i;σ = 1
2 (�Si;s · �σσσ ′ )ci;σ ′ , (D1)

where �S is the spin operator in the S layer and ci;σ is electron in
the C layer. �σ is the Pauli matrix which acts on the spin index
of the electron operator. It is easy to show that the spin polaron
operator c̃σ has the same quantum number as the microscopic
electron operator cσ .

With the interlayer spin-spin correlation, the polaron c̃i;σ

will have finite overlap with the microscopic electron ci;σ .
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FIG. 11. Correlation lengths in infinite DMRG calculation at x = 28
30 with unit cell size L = 30. We use t = 1, Jc = Js = 0.5. Correlation

length is obtained from the transfer matrix method in one specific sector. The spin correlation length ξS is from the sector (δQ, δSz ) = (0, 1).
The typical operator in this sector is the S† operator. The pairing correlation length ξP is from the sector (δQ, δSz ) = (2, 0), with the typical
operator as the Cooper pair operator. m is the bond dimension. ξ−1

S (m = ∞) is extrapolated from the relation ξ−1
S ( 1

m ) = a 1
m2 + b 1

m + ξ−1
S (m =

∞). (a, d) Jcs = 0. (b, e) Jcs = 0.25. (c, f) Jcs = 0.5. The two dashed lines are at J0
K and Jc

K .

Actually, one can find the hybridization to be

∑
σ=↑,↓

c†
i;σ c̃i;σ = �Si;s · �Si;c, (D2)

which is nothing but the onsite interlayer spin-spin corre-
lation. Here �Si;c = 1

2 c†
i;σ �σσσ ′ci;σ ′ is the spin operator for the

itinerant electron in the C layer.

1. Green functions of electron and polaron

We define electron-electron Green functions

Gσ ;ee(x, y) = 〈c†
σ (x)cσ (y)〉. (D3)

Electron-polaron function:

G↑;ep(x, y) = 〈c†
↑(x)c↑(y)Sz(y)〉c + 〈c†

↑(x)c↓(y)S−(y)〉c

(D4)

FIG. 12. Extracted Luttinger parameter Kc from finite DMRG at
Lx = 100 and x = 0.96. (a) Jcs = 0, (b) Jcs = 0.5. The dashed line is
at J0

K = 0.7 for Jcs = 0.5.

and

G↓;ep(x, y) = −〈c†
↓(x)c↓(y)Sz(y)〉c + 〈c†

↓(x)c↑(y)S+(y)〉.
(D5)

Finally, polaron-polaron function:

G↑;pp = 〈c†
↑(x)c↑(y)Sz(x)Sz(y)〉c + 〈c†

↓(x)c↓(y)S†(x)S−(y)〉c

+〈c†
↑(x)c↓(y)Sz(x)S−(y)〉c+〈c†

↓(x)c↑(y)S†(x)Sz(y)〉c,

FIG. 13. Charge compressibility κc, luttinger parameter Kc,
charge Fermi velocity υc, and charge stiffness D = Kcυc. (a) Finite
DMRG at x = 0.94 with system size Lx = 100 and Jcs = 0.25. (b, c,
d) Change with Jcs at fixed JK = −0.6, 0, 0.6 for density x = 0.94
with Lx = 100.
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G↓;pp = 〈c†
↓(x)c↓(y)Sz(x)Sz(y)〉 + 〈c†

↑(x)c↑(y)S−(x)S+(y)〉
− 〈c†

↓(x)c↑(y)Sz(x)S+(y)〉 − 〈c†
i;↑c j;↓S−(x)S j;z〉c.

(D6)

In the above �Si is the operator of the S layer only and ci;σ is
the operator in the C layer. 〈OCOS〉c = 〈OCOS〉 − 〈OC〉〈OS〉,
where OC and OS are the operators in the C and S layer,
respectively.

Inside the PDW phase, we find that

Gα (x) = Aαe− x
ξα , (D7)

where α = ee, ep, pp.
We always find that ξα is the same for all these three Green

functions, therefore we believe that the polaron and the elec-
tron both have overlaps with the same low energy mode. The
amplitude Aα/Aee for α = ep, pp thus are characterizations of
the mixture between the polaron and the electron.

2. Pairing-pairing correlation function
for composite Cooper pair

With the spin polaron, it is easy to find that the spin-singlet
pairing between electron and polaron:

εσσ ′ (ci;σ c̃ j;σ ′ + c̃i;σ c j;σ ) = �T ;i j · (Si;s − S j;s), (D8)

where the spin-triplet order parameters are

�T = (ci;↓c j;↓ − ci;↑c j;↑,−i(ci;↑c j;↑ + ci;↓c j;↓),

ci;↑c j;↓ + ci;↓c j;↑). (D9)

We can also define spin-singlet pairing between polarons:

εσσ ′ c̃i;σ c̃ j;σ ′ = −�S;i j (Si;s · S j;s) + i�T;ij · (Si;s × S j;s).

(D10)

If we define the Neel order parameter �n(x) = (−1)x[�S(x) −
�S(x + 1)] and the VBS order parameter Ṽ (x) = (−1)x �S(x) ·
�S(x + 1) in the S layer, then we can see that the composite
Cooper pairing order parameter ��T · �n can be understood as
the Cooper pairing of one electron and one spin polaron and
the composite pairing order �SṼ is formed as a Cooper pair
of spin polarons.

Motivated by this observation, in addition to the usual spin-
singlet Cooper pair �(x) = εσσ ′cσ (x)cσ ′ (x + 1), we can de-
fine another two composite pairing order parameter: �1(x) =
1
3
��T (x) · [�S(x) − �S(x + 1)] and �2(x) = �(x)�S(x) · �S(x +

1). Here �S(x) is the spin operator for the S layer only. If we
use spin rotation symmetry, then we can further use �1(x) =
�T ;z(x)[Sz(x) − Sz(x + 1)].

Given that spin polaron is mixed with the single electron,
we expect that �1,�2 are also mixed with the usual Cooper
pair �. To characterize the mixture, we define the correspond-
ing pairing-pairing correlation functions:

〈�†
α (x)�α (0)〉c = Aα

(−1)x

xKsc;α
. (D11)

Again 〈O(x)O(0)〉c is defined by subtracting the connected
part so that it is zero at the decoupled limit Jcs = JK = 0
for α = �1,�2. Within the PDW phase, we find that Ksc

is the same for all these three correlation functions labeled

FIG. 14. Amplitudes and exponents for Green functions and pair-pair correlation functions obtained from infinite-DMRG with unit cell
size L = 30 and x = 28

30 ≈ 0.933. (a, b) Jcs = 0. The dashed line is at J0
K = 0. (c, d) Jcs = 0.25. The dashed line is at J0

K = 0.44. Panels (a, c)
are for Green functions defined in Appendix D 1. (b, d) are for pairing correlation functions defined in Appendix D 2.
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FIG. 15. (a) 〈Vi〉 for Jcs = 0.5 from infinite DMRG. We use x = 14
15 with unit cell size L = 30. (b) Central charge c fit from entanglement

entropy S = c
6 log ξ , where ξ is the correlation length. The two dashed lines are at J0

K = 0.7 and Jc
K = 0.85.

by α = �,�1,�2, consistent with the expectation that they
correspond to the same low energy mode. The amplitudes
A�1
A�

and
A�2
A�

are then characterizations of the presence of the
electron-polaron pair �1 and polaron-polaron pair �2.

3. Numerical results

In Fig. 14 we show the amplitudes of the Green function
and the pairing correlation functions defined in the previous
two subsections. We can see that the amplitude of the polaron
Green function and the polaron-polaron pairing correlation
has a dip at J0

K , where the Luttinger parameter Kc also has
a dip. This is an indication that the existences of the fermionic
spin polaron and bipolarons are important to make Kc < 1,
which is required to get slow decay of the pairing correlation.

APPENDIX E: RAPID CROSSOVER AT J0
K

As shown in the previous sections, there is a dip of the
Luttinger parameter Kc at J0

K , which separates the PDW phase
into two regimes. These two regimes have 〈�Si;c · �Si〉 > 0 and
〈�Si;c · �Si〉 < 0 separately. Here we address the question on
whether there is a phase transition between the ferromagnetic
and antiferromagnetic regimes of the PDW phase. Our con-
clusion is that there is only a rapid crossover and there is
no phase transition happening at J0

K . We have already shown
the change of 〈Vi〉 = 〈�Si;c · �Si;s〉 + 1

4 for Jcs = 0.25 in the main
text. In Fig. 15 we show that for Jcs = 0.5. We can see that V
has a rapid change at J0

K = 0.7. V is the first derivative of the
energy with JK , so the continuity of V around J0

K rules out first
order transition. ∂V

∂JK
has a peak but does not diverge with the

bond dimension m, ruling out a second order phase transition.
In Fig. 15(b), we can see that the central charge is c = 1 across
J0

K , strongly suggesting that there is no true phase transition.
However, we find that there is a change in the entanglement

spectrum at J0
K , as shown in Fig. 16. Here for each JK , we

label the entanglement spectrum λi with two colors for the two
fermion parity. When JK < Jc

K , we can see that one fermion
parity has even fold degeneracy, while the other one has odd
fold degeneracy. Across J0

K , the degeneracy of the lowest level
changes from twofold to onefold. Despite this entanglement
transition, we believe the system does not have a true phase
transition. Also, we do not find any boundary states at zero

energy with open boundary for JK < Jc
K , consistent with the

earlier discovery that the PDW is not topological [24]. En-
tanglement transition without boundary mode and true phase
transition has also been reported in a different model [37].

APPENDIX F: MORE RESULTS ON THE
TYPE II t-J MODEL

In this section we provide more data on the type II t-J
model in one dimension. In Fig. 17 we show the doping
dependence for the spin gap, the Luttinger parameter Kc and
the charge compressibility for the parameter t = 1, Js = Jd =
0.5, Jsd = 0.25. We can see that there is an onset of the spin
gap at xc = 0.85. When x > 0.85, there is a quick increase
of the Luttinger parameter Kc. We also find that the charge
compressibility diverges when x > 0.93. This may suggest a
phase separation phase, although the density profile in our
finite DMRG calculation does not show phase separation and
various correlation functions still look like a PDW phase.
The charge compressibility is κc = 2Kc

πυc
and a divergent κc

is associated with either a divergent of Kc or vanishing of
the velocity υc. We fit υc from κc and Kc and find it indeed
vanishes after x > 0.93. A rapid increase of Kc and divergence
of κc has been also found in the conventional t-J model in 1D
when increasing J/t to very large value [40]. But there it needs
J/t > 1 which is unrealistic. In our model, we find a rapid
increase of Kc even with realistic value of J/t = 0.5. It may
suggest that there is a much larger attractive interaction in the
type II t-J model compared to the conventional t-J model.

One may question the existence of a stable PDW phase
because the divergence of the charge compressibility would
lead to a phase separated phase. Here we point out that a
Luther-Emery liquid phase with a finite spin gap and finite
charge compressibility exist in the range 0.85 < x < 0.93 in
Fig. 17. For this particular example it seems that Kc < 1 in the
region with finite κc. However, this may be just a coincidence.
For example, if we use t = 1, Js = Jd = 0.3, Jsd = 0.15, then
we find that κc is finite and υc > 0 for x < 0.975 beyond
which we do not have data. So there is no instability to phase
separation for x < 0.975, but we can still find Kc > 1, as
shown in Fig. 18. It is not clear whether a divergence of κc will
happen at larger x. In other words, whether we always have
a phase separated regime between the PDW phase and the
Haldane chain insulator at x = 1 remains as an open question.
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FIG. 16. Entanglement spectrum with JK . (a) Jcs = 0.25. The two dashed lines are at J0
K = 0.44 and Jc

K = 0.95. (b) Jcs = 0.5. The two
dashed lines are at J0

K = 0.7 and Jc
K = 0.95.

A rapid increase of Kc suggest a decrease of the exponent
Ksc corresponding to the algebraic decay of the pairing-pairing
correlation function. We indeed find this behavior by explic-
itly fitting Ksc, shown in Fig. 19 for Js = Jd = 2Jsd = 0.5. In
the regime x < xc (with xc ≈ 0.85), Ksc is slightly larger than
2, consistent with the result Ksc = 1 + 1

Kc
with Kc < 1 for a

Luttinger liquid phase with repulsive interaction. However,
when x > xc, Ksc quickly drops and approaches zero in the
x → 1 limit. This is consistent with the expectation Ksc = 1

Kc

and the behavior of Kc shown in Fig. 17.

The PDW superconductor has a momentum q = π , as
shown in the peak at q = π of P†(q)P(−q) in Fig. 20(d).
Here P†(q)P(−q) is the Fourier transformation of P†(r)P(0),
which is the correlation function of spin-singlet Cooper pair
between nearest-neighbor sites. Inside the PDW phase, the
density-density correlation function 〈δN (q)δN (−q)〉 shows
peak at q = 1+x

2 × 2π . In contrast, the peak is at either 2kF or
4kF with 2kF = x

2 × 2π inside the LL* phase. This behavior
can be captured in the bosonization theory provided in Ap-
pendix G.

FIG. 17. Doping dependence in the type II t-J model with t = 1, Js = Jd = 0.5, Jsd = 0.25 from finite DMRG calculation. (a) Spin gap
�S; (b) the Luttinger parameter Kc for the charge mode; (c) the charge compressibility κc; (d) the Fermi velocity of the charge mode υc fit from
κc = 2Kc

πυc
. x = 0.5 is in a CDW phase and therefore there is discontinuity at this filling.
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FIG. 18. Doping dependence in the type II t-J model with t = 1, Js = Jd = 0.3, Jsd = 0.15 from finite DMRG calculation. In this case we
do not find the divergence of the charge compressibility in the density range we can reach.

APPENDIX G: BOSONIZATION THEORY OF PDW
AND ITS TRANSITION TO LL* PHASE

We provide a bosonization theory of the 1D PDW super-
conductor and its transition to the LL* phase. A very similar
analysis has been performed for a two-leg Hubbard model in
Ref. [34]. For simplicity, we consider the generalized Kondo
model in Eq. (A1). In the limit JH = Jcs = 0, the phase is ap-
parently in a LL* phase with a conventional spinful Luttinger
liquid decoupled plus a spin-1/2 chain.

For the itinerant electron in the C layer, we have bosoniza-
tion mapping:

ψrσ = 1√
2πα

Ur,σ eirkF xe− i√
2

[rφc−θc+σ (rφs−θs )]
, (G1)

where r = R, L labels the right-moving and the left-moving
modes. σ =↑,↓ labels the spin. Ur,σ is the Klein factor.

FIG. 19. (a) log |P(r)| vs log r, where P(r) = 〈�S (r)�S (0)〉 is the pairing-pairing correlation function. The dashed lines correspond to
linear fit line whose exponent gives Ksc. (b) Doping dependence of the superconductor decaying exponent Ksc for the type II t-J model.
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FIG. 20. Doping dependence of various correlation functions. (a) Momentum distribution function n(k) = ∑
σ c†

σ (k)cσ (k)〉. There is a
small Fermi surface with kF = x

4 × 2π which expands with x. When x is large, there is also feature at kF + π from the scattering of the spin
mode with q = π . The two dashed lines are at k = kF and k = kF + π at x = 0.85. (b) Structure factor of the spin-spin correlation function. In
the LL* phase when x < 0.85, there are two modes at q = 2kF = x

2 × 2π and at q = π . (c) Density-density structure factor. The two dashed
lines correspond to q = 1+x

2 × 2π for x = 0.87 and x = 0.92. (d) 〈P†(q)P(−q)〉, where P(q) is Fourier transformation of the spin-singlet
Cooper pair. Momentum is in units of 2π .

Similarly, for the localized spin-1/2 chain in the S layer, we have a spin mode θ̃s, φ̃s, while the corresponding charge mode
θ̃c, φ̃c is gapped (φ̃c = 0) because it is in a Mott insulator.

At Jcs = 0, the Hamiltonian is

H = υc

2π

∫
dxKc(∂xθc)2 + 1

Kc
(∂xφc)2 + υs

2π

∫
dx(∂xθs)2 + (∂xφs)2 + υ̃s

2π

∫
dx(∂x θ̃s)2 + (∂xφ̃s)2, (G2)

where we have assumed that the Luttinger parameter for the spin modes are Ks = K̃s = 1 from the SU (2) spin rotation symmetry.
Kc is a function of J/t and x. In the following we just treat it as a phenomenological parameter. Note that for spin-1/2 chain in
the S layer, we still use the convention that Ks = 1 instead of K = 1/2 as derived from fermionization of spin chain.

Next, we need to add the Jcs and JK = −JH terms. To do that, we need to represent the electron spin Si;c and the local spin Si

with the bosonization language. First, the spin of the C layer is

Sz
c = − 1√

2π
∂xφs + 1

2πα

(
e−2ikF xei

√
2φc

1

2
(η1η3ei

√
2φs − η2η4e−i

√
2φs ) + H.c.

)
,

S+
c = 1

2πα
(η1η4e−i2kF xe−i

√
2θs ei

√
2φc + η3η2ei2kF xe−i

√
2θs e−i

√
2φc + η1η2e−i

√
2θs ei

√
2φs + η3η4e−i

√
2θs e−i

√
2φs ), (G3)

where 2kF = x
2 2π . η1, η2, η3, η4 are the Klein factors introduced to fix the fermion statistics. We fix the gauge η1η2η3η4 = 1. For

spin operators, the Klein factors can be suppressed by setting η1η3 = η2η4 = −i, η1η2 = −η3η4 = −i and η1η4 = η3η2 = i [41].
Then we get

Sz
c = − 1√

2π
∂xφs + 1

2πα
sin

√
2φs(e

−2ikF xei
√

2φc + e2ikF xe−i
√

2φc ),

S+
c = 1

2πα
i(e−i2kF xe−i

√
2θs ei

√
2φc + ei2kF xe−i

√
2θs e−i

√
2φc ) + e−i

√
2θs sin

√
2φs. (G4)
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For the local spin �Si, we can use the same expression with spin mode θ̃s, φ̃s. This gives

S̃z = − 1√
2π

∂xφ̃s + (−1)x 1

2πα
sin

√
2φ̃s, S̃+ = 1

2πα
((−1)xie−i

√
2θ̃s + e−i

√
2θ̃s sin

√
2φ̃s). (G5)

Finally, we can write the interlayer spin-spin coupling as

H ′ = g

2π2

∫
dx∂xφs∂xφ̃s − g

8π2α2

∫
dx cos 2θs;− cos 2φs;+ + g

8π2α2

∫
dx cos 2θs;− cos 2φs;−, (G6)

where g = 2Jcs − JH and g′ = 2Jcs − JH . We defined θs;± = 1√
2
(θs ± θ̃s) and φs;± = 1√

2
(φs ± φ̃s).

The first line will renormalize the Luttinger parameter K± for the θs;± mode. For simplicity we assume υs = υ̃s = υ at the
initial point. We will have

H = υc

2π

∫
dxKc(∂xθc)2 + 1

Kc
(∂xφc)2 + υ+

2π

∫
dxK+(∂xθs;+)2 + 1

K+
(∂xφs;+)2 + υ−

2π

∫
dxK−(∂xθs;−)2 + 1

K−
(∂xφs;−)2

− g

8π2α2

∫
dx cos 2θs;− cos 2φs;+ + g′

8π2α2

∫
dx cos 2θs;− cos 2φs;−, (G7)

where

υ± = υ

√
1 ± g

2πυ
, K± = 1√

1 ± g
2πυ

. (G8)

Note that in the above we have ignored the intralayer
spin-spin coupling. We assume that at the decoupled limit the
intralayer super-exchange terms Jc, Js are not strong enough
to destroy the LL* phase. Here we are mainly interested in the
possible instability of the LL* phase caused by the interlayer
spin-spin coupling terms JH and Jcs. The scaling dimension of
g′ is [g′] = 2 − (K− + 1

K−
) < 0 and the g′ term is generically

irrelevant. In the following we only keep the g term. The RG
equation is

dK+
dl

= −1

4
K2

+g2,
dK−
dl

= 1

4
g2,

dg

dl
=

(
2 − K+ − 1

K−

)
g. (G9)

We note that if g > 0 initially, then K+ + 1
K−

< 2 and g
flows to +∞. The g term will pin θs;− and φs;+, so both spin
modes are gapped out and we are left with only the charge
mode θc, φc. This turns out to be a PDW superconducting
phase which we will describe later. However, if g < 0, then
K+ + 1

K−
> 2 initially and g flows to zero, while K+, K− flow

to 1, resulting in the LL* phase. Therefore, changing g tunes a
phase transition between the LL* phase and the PDW phase.

We note that the oscillating part of the spin operator in
the C layer does not enter the final Hamiltonian because
2kF = (1 − x)π is incommensurate and can not cancel the
q = π part of the S̃. In contrast, for the x = 1 point, the
oscillatory part also enters the Hamiltonian and there is term
like −g1 cos 2φs;+ − g2 cos 2φs;−, which is more relevant than
the g and g′ term. Therefore, the above analysis only works
for x < 1 and will break down for the filling x = 1, where we
will get Mott insulator with spin in either Haldane phase or a
rung-singlet phase.

The above analysis suggests that there is a Kosterlitz-
Thouless (KT) transition between a LL* phase (g < 0) and
a PDW phase (g > 0). The central charge changes from c = 3

to c = 1. The same transition has been found at xc = 0.85 of
the type II t-J model shown in Figs. 17 and 6. In the following
we study the property of the PDW phase in details based on
bosonization language.

1. Property and order parameter of the PDW phase

We discuss the property of the PDW superconductor phase
in the g > 0 region. The −gcos 2θs;− cos 2φs;+ will pin θs;−
and φs;+ into either θs;− = φs;+ = 0 or θs;− = φs;+ = π

2 . Next
we will study various correlation functions and show that this
is a PDW phase with a composite pairing operator.

Because only the charge mode survives, the phase must be
a Luther-Emery liquid with a gap for spin and single electron
excitation. The only order parameter we need to consider is
the pairing order and the charge-density-wave (CDW) orders.
Here we will show that the pairing and CDW order within
the C layer is actually also gapped in the sense that its cor-
relation function is exponentially decayed. The only gapless
order parameter is a composite object by combining the order
parameter in the C layer with the Neel or valence-bond-solid
(VBS) order parameter in the S layer.

The zero-momentum spin-singlet superconductor order pa-
rameter within C layer is

�S = ψR↑ψL↓ − ψR↓ψL↑ = i

πα
ei

√
2θc cos

√
2φs, (G10)

also zero-momentum spin-triplet pairing within C layer is

�T = (ψR↓ψL↓ − ψR↑ψL↑,−i(ψR↑ψL↑ + ψR↓ψL↓),

× ψR↑ψL↓ + ψR↓ψL↑)

= 1

πα
ei

√
2θc (sin

√
2θs, cos

√
2θs, sin

√
2φs). (G11)

We can write down density operator as

ρ(x) = −
√

2

π
∂xφc + ei2kF xρ2kF (x) + e−i2kF xρ−2kF , (G12)

where the CDW order at momentum Q = 2kF = 2π x
2 is

ρ2kF (x) = i

πα
e−i

√
2φc cos(

√
2φs). (G13)
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All of these order parameters contain terms like cos
√

2φs,
cos

√
2θs, sin

√
2φs, and sin

√
2θs. Because φs = 1√

2
(φs;+ +

φs;−) and θs = 1√
2
(θs;+ + θs;−), the correlation functions

of these terms are exponentially decayed. This is because
we can not pin φs;+, φs;− at the same time. For example,
let us consider cos

√
2φs = cos(φs;+ + φs;−). In the PDW

phase, φs;+ and θs;− is pinned, so φs;− is gapped. cos(φs;+ +
φs;−) ∼ cos φs;− has exponentially decayed correlation
function.

In the following we show that certain composite order pa-
rameter still has power-law correlation function. The key idea
is to cancel the factor like cos(φs;+ + φs;−) by combining an
order parameter from the S layer. First, in S layer we can de-
fine Neel order parameter through �S = �S0 + (−1)x�n. Here �n is
the Neel order parameter with a momentum Q = π . It is easy
to find that (nx, ny, nz ) = 1

2πα
(sin

√
2θ̃s, cos

√
2θ̃s, sin

√
2φ̃s).

Meanwhile, there is a VBS order parameter defined
through �Si · �S j ∼ (−1)iṼ . The VBS order parameter V
carries momentum Q = π and can be expressed as
Ṽ = 1

2πα
cos

√
2φ̃s.

Now we can define a composite order parameter �PDW ∼
�SṼ ∼ ei

√
2θc (cos 2φs;+ + cos 2φs;−). We note that φs;+ is

pinned while φs;− is fluctuating, so we only needs to keep
cos 2φs;+ term which is basically a constant. In the end we
find �SṼ ∼ e−i

√
2θc . Actually, we can also find that ��T · �n ∼

e−i
√

2θc . Therefore, we have the composite PDW order param-
eter:

OPDW ∼ �SṼ ∼ ��T · �n ∼ e−i
√

2θc , (G14)

which carries momentum QPDW = π and is spin singlet.
Similarly, one can define a composite CDW order parame-

ter

OCDW ∼ ρ2kF (x)Ṽ ∼ e−i
√

2φc , (G15)

which carries momentum QCDW = 2kF + π = 1+x
2 2π .

It is easy to find correlation function of the PDW and CDW
order parameters:

OPDW(x)OPDW(0) ∼ 1

x
1

Kc

(G16)

and

OCDW(x)OCDW(0) ∼ 1

xKc
. (G17)

One can see that both the PDW and CDW order parameter
have power-law decay correlation functions, though their ex-
ponents are inverse to each other. This is a typical behavior of
Luther-Emery liquid. When x is close to 1, we find Kc > 1 in
our DMRG calculation, thus PDW order dominates over the
CDW order. This is the reason why we call the phase as PDW
superconductor.
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