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Resistivity anisotropy from the multiorbital Boltzmann equation in nematic FeSe
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We compute the resistivity anisotropy in the nematic phase of FeSe from the static solution of the multiorbital
Boltzmann equation. By introducing disorder at the level of the microscopic multiorbital model we show that
even elastic scattering by localized impurities may lead to nontrivial anisotropic renormalization of the electronic
velocities, challenging the usual understanding of transport based only on cold- and hot-spots effects. Our model
takes into account both the xz/yz and the recently proposed xy nematic ordering. We show that the latter one has
a crucial role in order to reproduce the experimentally measured anisotropy, providing a direct fingerprint of the
different nematic scenarios on the bulk transport property of FeSe.
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I. INTRODUCTION

Among iron-based superconductors, FeSe has a rather
unique behavior, due to the presence of a marked nematic
transition that occurs without concomitant long-range antifer-
romagnetic order [1,2]. In FeSe nematicity develops below the
temperature Ts = 90 K where the lattice undergoes a transition
from tetragonal to orthorhombic structure. This metallic state
is named nematic because the observed electronic anisotropy,
as measured, e.g., by dc transport, is much larger than what
expected from the lattice anisotropy [1,2]. In most iron pnic-
tides the structural transition precedes or coincides with the
magnetic transition at TN , below which long-range antiferro-
magnetic order sets in [3]. The magnetic transition itself is
generically ascribed to a nesting mechanism, favored by the
similar size among the holelike electronic pockets at � and
the electronlike electronic pockets around QX = (π, 0) and
QY = (0, π ) in the 1-Fe Brillouin zone (BZ) notation, see
Fig. 1. As a consequence, one of the earliest proposals [4,5]
identified the nematic phase as a precursor of the magnetic
one, such that spins are still disordered but spin fluctuations
at momentum Q break the C4 lattice rotational symmetry,
becoming stronger at QX than at QY . Even though this view
does not necessarily imply the existence of long-range mag-
netic order at a TN < Ts, the lack of magnetic transition in
FeSe, along with the experimental observation of a marked
Fermi-surface reconstruction below Ts, triggered also alterna-
tive proposals, based on an orbital-ordering scenario [6–10].
The two paradigms are actually not necessarily alternative,
since also a spin-nematic scenario can lead to an effective
orbital ordering once one correctly includes the orbital con-
tent of the spin fluctuations themselves, within the so-called
orbital-selective spin-fluctuation scenario (OSSF) [11–13].

From the experimental point of view the systematic inves-
tigation of the band structure of FeSe by means of ARPES
revealed a sizable deformation of the Fermi surface, which can
be described via a momentum-dependent crystal-field split-
ting of the dxz, dyz, dxy orbitals contributing to the low-energy
Fermi pockets [12,14–21]. Above Ts the Fermi surface of FeSe

at kz = 0 consists of one circular holelike pocket at � with xz
and yz character, and two electronlike pockets at X and Y with
xy and, respectively, yz and xz character [see Fig. 1(b)], while
an additional holelike pocket at Z appears at kz = π/c. So
far, there is general consensus about the existence of a xz/yz
splitting that changes sign in going from the Brillouin-zone
center to momenta around QX or QY . This can be represented
by a nematic order parameter

�xz/yz = 〈d†
xzdxz − d†

yzdyz〉, (1)

that is positive at � and negative at X and Y .
On the other hand, the exact role of the xy orbital is

still debated. Such a debate comes along with the ongoing
discussion on the presence or not of the Y electron pocket
below Ts [12,17–22], which is also relevant for the theoretical
interpretation of the gap anisotropy observed in the supercon-
ducting state [13,23–27]. The main point is that accounting
only for the xz/yz splitting in Eq. (1) a large electron pocket
with mixed yz and xy character is expected at the Y point
[see Fig. 1(c)]. However, such a pocket has not been resolved
in the most recent ARPES measurements in detwinned sam-
ples [17,19,20]. In order to solve this puzzle [21] an alternative
scenario has been recently suggested in Ref. [28], where
the authors proposed an additional nematic order parameter
accounting for the splitting of the xy occupancy in the two
electron pockets, i.e.,

�xy = 〈d†
xy,X dxy,X − d†

xy,Y dxy,Y 〉. (2)

Such an order parameter is equivalent to an anisotropic hop-
ping between the dxy orbitals of the nearest-neighbors atoms in
the 2-Fe unit cell, which is the physical one. The main conse-
quence of the splitting (2) is to readily explain the progressive
disappearance of the Y pocket at a temperature below Ts

[see Fig. 1(d)], accompanied by a Lifshitz transition.
A second striking difference among FeSe and other fam-

ilies of iron-based superconductors is the different sign of
the resistivity anisotropy reported below Ts. Indeed, while in
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FIG. 1. 1-Fe Brillouin Zone(BZ) in different regimes.
(a) Nomenclature of the pocket centers in the unfolded
three-dimensional (3D) BZ corresponding to 1Fe atom per
unit cell; the gray planes mark the sheets at kz = 0 and kz = π/c.
(b)–(d) Fermi surface topology of FeSe in the 1-Fe BZ at kz = 0, in
the normal state (b) and in the nematic phase (c), (d). (c) corresponds
to the Fermi surface expected in the presence only of the (xz, yz)
nematic order parameter (1), while (d) corresponds to the Fermi
surface obtained by including also the xy order parameter (2). We
assume a unique lattice spacing a in the xy plane.

122 compounds [29–34] the resistivity is smaller along the
longer a axis (corresponding to the �-X direction in the 1-Fe
BZ), i.e., �ρ = ρx − ρy < 0, in FeSe the opposite behavior
is observed [35,36]. Accounting for such a difference is far
from being straightforward, since the dc conductivity of a
multiband metal as iron pnictides is controlled by a delicate
balance among Fermi velocities, density of states and scatter-
ing rates in the various pockets. In such a situation different
theoretical proposals pointed out alternatively a prominent
role either of the scattering-rate anisotropy [37–42] or of
the Fermi-surface deformation [43–45]. The former approach
relies mainly on the calculation of the inelastic scattering rate
due to the exchange of spin fluctuations, whose anisotropy is
ascribed either to the spin-nematic nature of the spin fluctu-
ations [37,41,46] or to a secondary effect of orbital ordering
[42]. The predominant role of the Fermi-surface deformation
was instead motivated mainly by the analysis of the nematic
anisotropy at finite frequency [44,45,47], which involves in
principle both the scattering-rate and the plasma-frequency
anisotropy. Such an analysis is, however, rather delicate, since
from one side the two quantities are unavoidably entangled by
causality relations [41], and from the other side one should
definitively take into account how interactions having a pre-
dominant interband character, as it would be the case for spin
fluctuations in iron pnictides, modify the sum-rule behavior
as compared to the standard case where interactions have
predominant intraband character [48,49].

In general, in a system such as FeSe where orbital
reconstruction is much more severe than in 122 com-
pounds, a reasonable starting point to model transport should

definitively account for the Fermi-surface nematicity. A re-
cent calculation within the OSSF scenario pointed out that in
general the Fermi-surface reconstruction and the scattering-
rate anisotropy give opposite contributions to the resistivity
anisotropy [50]. In such a situation, the overall sign of the
dc anisotropy is a matter of quantitative balance that requires
a thoughtful calculation where all effects are properly ac-
counted for on the same footing.

The present paper aims at achieving this goal within a
simplified but yet relevant case, i.e., solving the Boltzmann
transport equation in the presence only of elastic scattering
processes due to impurities, but within a full orbital model,
which describes the Fermi-surface reconstruction as measured
experimentally by ARPES. As compared with previous theo-
retical work [37,46], which analyzed the problem within the
band language, we will show that, by correctly accounting
for the orbital character of the Fermi pockets, the dc con-
ductivity computed at the level of Boltzmnann equation has a
nontrivial behavior. Indeed, as recently discussed for a generic
multiorbital case in Ref. [51], while in a single-band system
the transport scattering time for isotropic impurities coincides
with the quasiparticle one, in a multiorbital system this is not
the case. Here the multiorbital composition of the electronic
bands plays a role analogous to the momentum dependence of
the scattering potential for the single-band system, with two
main implications. First, even elastic scattering by isotropic
impurities may induce anisotropy in the observables, an effect
that has not been included in previous works focused mainly
on inelastic processes [37,46]. Second, the renormalization of
the current with respect to the bare band velocity, which is
equivalent to include the so-called vertex corrections within
the standard Kubo approach [52], is finite. In this paper
by taking advantage of the semianalytical solution of the
multiorbital problem recently provided in Ref. [51] we will
compute the dc anisotropy in FeSe testing the two nematic
scenarios discussed above, where either the xy nematic order
parameter (2) is included or not. We will show that in both
cases the velocities renormalization due to disorder signifi-
cantly contributes to the resistivity anisotropy, and becomes
crucial to account for the experimental observations. More
specifically, we will show that the recent proposal [28] of
a dxy nematicity emerging along with the well-established
xz/yz one seems to provide a key ingredient to explain the
observed resistivity anisotropy in FeSe. Our results show a
direct fingerprint on a bulk material property of the xy ne-
maticity, that should be considered along with its impact on
the surface ARPES probe, recently reviewed by Rhodes et al.
[21].

The plan of the paper is as follows. In Sec. II we in-
troduce the low-energy orbital Hamiltonian. In Sec. III we
discuss the Boltzmann equation for the multiorbital model in
the presence of disorder and we summarize the main results
of the recent theoretical derivation [51] of a semianalytical
solution of the integral equation for the renormalized veloc-
ities. In Sec. IV we show numerical results for FeSe in the
case where both �xz/yz and �xy nematic order parameters are
present, and we further discuss our results in Sec. V along
with the concluding remarks. The Appendixes contain details
of the theory and explore different parameter and disorder
regimes.
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II. THREE-ORBITAL MODEL

To describe FeSe we use a three-orbital low-energy ef-
fective model [53], as properly tailored in Ref. [28] to fit
ARPES data [22]. Only three spinfull d orbitals are re-
tained, whose creation operators we collect in the vector �s =
(dxz

s , dyz
s , dxy

s )T . Thus the Hamiltonian, expanded at momenta
close to the pockets centers, reads as:

HT =
∑
kσ

�†
kσ

(
H0

k,σ + H�
T − μT

)
�kσ , (3)

where μ is the chemical potential; H0 contains the
temperature-independent uncorrelated Hamiltonian; H� ac-
counts for the nematic deformation of the band structure and
it is assumed to be independent of the local quasimomen-
tum and spin, but dependent on the temperature T through
the order parameters �T = �0

√
1 − T/Ts. Within the OSFF

scenario [11–13] such a temperature scaling arises naturally,
since H� encodes the real part of the nematic self-energy cor-
rections due to exchange of spin fluctuations among holelike
and electronlike pockets. However, at the level of the present
computation these can be seen as phenomenological parame-
ters used to reproduce the ARPES data, in the same spirit of
Ref. [28].

In FeSe the Fermi pockets are almost cylindrical in the
direction perpendicular to the FeSe planes. This allows us to
approximate the Fermi pockets as a stack of two cylinders
with different basis whose geometrical centers are located,
respectively, at the points � and X,Y and at the points Z and
U, T of the 1-Fe Brillouin zone (BZ), see Fig. 1(a). Being the
dispersion weakly kz dependent, we further simplify the three-
dimensional (3D) BZ as the sum of two 2D BZs at kz = 0, π

c
and take only the cylinders bases as the relevant 2D pockets
(c is the lattice spacing along z axis and we can assume a
unique lattice spacing a along the xy plane also in the nematic
phase). Thus, the sum

∑
k;σ over BZ states in Eq. (3) due to

these simplifications is equivalent to Lz/(2c)
∑

kx,ky;kz=0, π
c ;σ ,

with Lz the thickness of the sample. Another simplification
occurs. At each pocket only two out of three spinfull orbitals
contributes to the physics at the Fermi energy. Thus, at mo-
menta close to the points �, X,Y we are allowed to remove
from the spinor � the orbitals dxy, dxz, dyz, respectively, and
the effective Hamiltonian is described as a 4×4 matrix. The
self-energy corrections at different points of the BZ at kz = 0
are explicitly given by (at kz = π

c expressions are formally the
same but the parameter values are different):

H� �
T = �h

T τ3 ⊗ σ0,

H� X/Y
T =

(
�ε

xy
T

2
± �e

T − �
xy
T

2

)
τ0 ⊗ s0

−
(

�ε
xy
T

2
∓ �e

T + �
xy
T

2

)
τ3 ⊗ s0, (4)

where the Pauli matrices τ acts on the relevant orbital space
and s on the spin one. The �h(e) parameter here corresponds
to the values of �xz/yz near �(X or Y ), see Eq. (1). The
most relevant new parameters introduced in Ref. [28] are the
nematic order parameter (2), �xy, and a phenomenological
energy shift �εxy of the dxy orbital, which also sets in at the
nematic transition. The latter parameter can be regarded, from

a microscopical point of view, as a Hartree shift of the dxy

orbital possibly arising from the same interactions responsible
for the �xy nematic order parameter. Both �xy and �εxy

are responsible in general for the lowering (raising) of the
band near the X (Y ) pocket, since their effects sum up at the
Y pocket and partly compensate at the X pocket. The full
effective Hamiltonian, the symmetries analysis [53] and all
parameter values are presented in Appendix A.

Lowering the temperature from Ts, three Lifshitz transi-
tions take place. Right below Ts there are one pocket at �,
two pockets at Z (we distinguish the inner from the outer
one naming them Zin and Zout), two pockets at X and Y , and
two pockets at U and T . Lowering further the temperature
the pockets at Y and T disappear simultaneously, at T � 70,
followed by Zin, at T � 45, and only four pockets are present
when superconductivity sets in at Tc = 7 K. In Fig. 2 below we
report the pocket details right at Ts and at Tc, which represents
the lower temperature bound for our calculations, which do
not include superconducting effects. In the absence of the xy
nematic order parameter (2) the pockets at Tc are shown in
Fig. 7, for the set of parameters detailed in the Appendix D.
In this case the Y pocket survives below Ts and increases in
size, as a consequence of the xz/yz nematicity. As we will
see below, the resulting resistivity anisotropy has a completely
different behavior as compared to the case when also the xy
nematic order parameter is present.

III. BOLTZMANN EQUATION

We employ the static homogeneous multiorbital Boltz-
mann equation to describe the dc electric transport. In its
general form the equation reads as [52,54–58]:

e E · ∇k ρk,b =
∑
k′,b′

Qk′,b′
k,b (ρk,b − ρk′,b′ ), 1 � b � Nb, (5)

where ρk,b is the electronic density at quasimomentum k and
band b; the number of bands Nb includes the spin degree of
freedom. We set h̄ = 1 in formulas. We will assume that the
collision kernel Qbb′

kk′ includes only elastic scattering coming
from unit-cell-localized impurities, located randomly in the
sample. Such impurities affect only the local chemical po-
tential (see Appendix B for details). To test the robustness
of our results, other disorder types are considered in the
Appendix C. The rates �k,b and the lifetimes τk,b of each state
are defined as

�k,b = 1/τk,b =
∑
k′,b′

Qbb′
kk′ . (6)

To compute the dc conductivity one needs to find the change
ρE

k,b in the distribution at linear order in the field, that can
be expressed in full generality in terms of the renormalized
velocities wk,b as ρE

k,b = eE · wk,b τk,b ∂εb
k

fεk,b , with fε the
Fermi function. The renormalized velocities differ in general
from the bare band velocity defined as vb

k = ∇kε
b
k. The for-

mer can be computed easily if the so-called relaxation-time
approximation [46,51,52,59,60] is implemented. This is jus-
tified whenever w and v are (at least approximately) parallel,
e.g., due to some symmetry of the system, with a coefficient
of proportionality set by the so-called transport scattering
rate. In most cases such as the one at hand, however, the
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FIG. 2. Fermi pockets, velocities and rates in the 1-Fe BZ. BZ cut at kz = 0 (top row) and at kz = π/c (bottom row); at the nematic
phase transition T = Ts (left column) and at the superconducting phase transition T = Tc (right column), that represents a lower bound for our
calculations. The pockets are RGB colored according to their orbital weight. The arrows refer to the bare Fermi velocities v (orange line) and
to the dressed ones w (black lines), multiplied by an overall common constant for all pockets for visualization purposes. In the insets, we show
the quasiparticle rates as a function of the polar-angle coordinate along the Fermi pockets.

approximation cannot be made and the computation of w
has to be tackled without simplifications. In Ref. [51] we
recently found an explicit solution (see Appendix B), which is
semianalytical in the sense that it requires much less numer-
ical computation than what would be required from a naïve
solution strategy. As a result, the renormalized velocities can
be presented as the sum of two contributions:

wk,b = vk,b + κ

Nb∑
mnm′n′

em∗
k,ben

k,b

[(
1 − Kεk

)−1]mm′

nn′ Fm′n′
εk

, (7)

where κ sets the intensity of the impurity on the scattering,
K is a Nb × Nb × Nb × Nb tensor describing the scattering
among the eigenstates at the orbital level, F is a vector of
Nb × Nb matrices where velocity and orbital content of the
eigenstates are mixed (see Appendix B for their definitions).
The second term of the equation represents the equivalent

of what are usually named vertex corrections within the
diagrammatic Kubo approach [52]. Finally, the conductivity
is obtained as the linear response of the current density to the
external field and inherits the two-contributions structure of
the renormalized velocities. The first contribution is the bare
one while the second is the correction due to the impurity
scattering. They are explicitly given by:

σi j = σ bare
i j + σ corr

i j

σ bare
i j = e2

V

∫
ε

(−∂ε fε )
∑

b,k(ε)

(
vi τ

|v| v j

)
k,b

σ corr
i j = e2 κ

V

∫
ε

(−∂ε fε )

×
∑

mn,m′n′

(
F i∗

ε

)mn
(1 − Kε )−1

mn,m′n′
(
F j

ε

)m′n′
(8)
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with e the electronic charge and V the sample volume. With
these formulas at hand we can account for the effects of the
temperature-dependent parameters �h

T ,�e
T , �xy

T , and �ε
xy
T on

all the relevant quantities, i.e., the band structure, which enters
via the bare velocities vk,b, the impurity scattering, which
affects both the quasiparticle scattering rates �k,b and the
renormalized velocities wk,b of each pocket, and the conduc-
tivity.

IV. DC-CONDUCTIVITY ANISOTROPY IN NEMATIC FeSe

A. Scattering rates and renormalized velocities

To better understand the different contributions to the dc
conductivity of nematic FeSe we show in Fig. 2 the velocities
v, the dressed velocities w and the quasiparticle rates � for
each pocket at energy ε = μT for T = Ts, Tc. To ease the
reading, in the following discussion we will refer only to the
pockets at kz = 0, but the reader has to keep in mind that
exactly the same physics takes place for the corresponding
pockets at kz = π/c. At the nematic transition the pockets
at X and Y coincide up to a C4 rotation and their dressed
velocities are quite different from the bare ones. It is no-
ticeable from the figure, however, that there are no velocity
corrections along one direction, namely wx(y) ≡ vx(y)) for the
pocket X (Y ). At the � pocket, corrections are absent at all
momenta, i.e., w ≡ v for all states. These findings can be un-
derstood by explicit analysis of the Hamiltonian symmetries,
as we detail in Appendix A. As far as the scattering rates
are concerned, they are rather isotropic even in the electronic
pockets, despite the pronounced ellipticity. We stress that the
rates � are small (∼1 meV ) in comparison with the bands
energies (∼100 meV), which confirms the validity of the Born
approximation (to know how we determined the parameter κ ,
see Sec. IV B).

By lowering the temperature, the Y pocket sinks below
the Fermi energy and the other pockets get sensibly warped.
Despite these deformations, we find that a simplified approach
using relaxation time approximation [51,52] would work even
better at low temperatures, since w and v are almost parallel
in all pockets. As is clear from the figure, the dressing of
velocities of the X (Y ) pocket tends to enhance y(x) conductiv-
ity. At the same time, once the Y pocket has disappeared the
scattering rate on the remaining X pocket becomes strongly
anisotropic, with cold spots appearing in the x direction. This
effect can be ascribed to the lack of xy orbitals in the other
pockets at the Fermi surface, that results in a suppression of
scattering events in the X pocket at momenta where the xy
orbital component is the largest. As we will see below, the
presence of cold spots leads to an increase of bare conductivity
along x, in disagreement with the experiments. However, the
effect of the velocities renormalization is quantitatively larger
than that of the scattering-rate suppression, and overall the X
pocket has enhanced conduction along y. Such physics may be
different when a different kind of disorder is considered. For
instance, with the GUE disorder considered in Appendix C,
the scattering rates turn out to be homogeneous across the
BZ (there are no cold or hot spots) and there is no velocities
renormalization. Still, the observed resistivity anisotropy has
the right sign because in this case the bare-band velocities

FIG. 3. Diagonal dc conductivities as a function of temperature.
(a) dc conductivity along x and y, with (solid lines) and without
(dashed lines) corrections, computed from Eq. (8). (b) contributions
to the dc conductivity anisotropy �σ = σxx − σyy from all pockets
grouped by their locations �, X and Y in the BZ (the contributions
from the Z,U, T pockets are summed to those ones, respectively).

alone (which stay the same as those in Fig. 2) suffice to give a
higher y conductivity in the nematic phase.

B. dc conductivity and resistivity anisotropy

In Fig. 3(a) we show the dc conductivities along x and y. As
expected from the previous considerations and the theory [51],
sxx < syy and vertex corrections provide only positive contri-
butions as one can see by comparing s with sbare. Moreover,
by lowering the temperature the corrections vanish at about
65K for the x direction as F x � 0 due to the sinking of the Y
pocket and a major kink appears. The different contributions
of the various pockets grouped with respect to their location
in the BZ are shown in Fig. 3(b). We must mention that the
contributions from pockets lying above or below the Fermi
energy and within the temperature broadening are conspicu-
ous but qualitatively irrelevant. So, to ease the discussion, here
we do not comment over their scattering rates, their velocities
profiles, and their contribution to the conductivities and focus
only on the pockets at the Fermi level. At high temperatures
the largest contributions to �σ ≡ σxx − σyy come from the
X and Y pockets, the � one being almost irrelevant (due
to high scattering rates and small velocities). Decreasing the
temperature the Y contribution vanishes, leaving the ground to
the negative X contribution. Finally, at small temperatures the
� contribution to �σ increases, eventually beating the X one.
The vertex corrections of the X pocket are at least two orders
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FIG. 4. Resistivity anisotropy as a function of temperature.
(a) Resistivity anisotropy obtained by including (�ρ, blue solid line)
or not (�ρbare, blue dashed line) the velocities renormalization. We
also show for comparison the experimental data (�ρexp, black line)
of the dc resistivity anisotropy taken from Ref. [36]. (b) Same as
(a) but without inclusion of the xy nematic parameters �xy and �εxy.

of magnitude bigger than the bare conductivity and make
them crucial for the match with experiment. Indeed, while
�σ bare

X rapidly approaches zero, due mainly to the cold-spot
effect mentioned earlier, the full �σX remains negative and
compensates the positive �σ� from the hole pocket.

In Fig. 4(a) we show the resistivity anisotropy �ρ =
1/sxx − 1/syy and compare it with the experimental data of
Ref. [36]. The only fitting parameter is the overall scale of the
resistivity controlled by the factor nIv

2
I inside κ [see Eq. (B1)].

Since the volume of the sample of Ref. [36] can be estimated
to be roughly 1 mm2 × 80 μm, assuming vI = 50 meV we
find the impurity concentration equals 10%. The value is quite
high considered that the experimental sample is supposed to
be clean, according to the authors. However, we note that
on the one hand the value has a big margin of error and on
the other it is already small enough to allow for the Born
approximation to be reasonably good. The match between
theory and experiments is very good, despite a change of sign
of the theoretical curve �ρ at low temperature, that must be,
however, taken with care considering that we are not including
precursor effects expected before than the superconducting
transition at Tc. The figure shows also the mentioned impor-
tance of the vertex-correction term. Clearly �ρbare does not
match the experiments, to the extent that it even changes sign
at quite high temperatures T ∼ 40 K; notice that a different
κ fitting parameter may improve the match only at high tem-
perature, making the situation worse at lower ones. We may
conclude that vertex corrections (finite along y and quenched
along x) coming from the multiorbital nature of the system
are crucial in opposing the bare-bands conductivity tendency
to favor negative values of �ρ.

It is also interesting to check how different nematic scenar-
ios can affect the final results for the resistivity anisotropy. In
particular, it is worth computing �ρ when only the xz/yz ne-
matic order parameter (1) is introduced. Numerical details and
band parameters for this case are discussed in Appendix D.
In Fig. 4(b) we show the final results, and one clearly sees
that the resistivity anisotropy has the wrong sign and cannot
describe the experimental observations. The main reason is
that when �xy = 0 the Y pocket survives below Ts and it even
increases in size by lowering the temperature. This has the
twofold effect of suppressing the cold spots at the X pocket
and, more importantly, to leave active the large conduction
along x due to the Y pocket, where both the bare and renormal-
ized velocities are quantitatively larger than in the X pocket
due to the larger size. As a consequence, vertex corrections
in this case reinforce the negative trend of the bare resistiv-
ity anisotropy, in stark contrast with the experiments. In the
Appendix C we show a check that our theoretical model fits
the experimental data also when different kinds of impurity
disorder are considered.

V. DISCUSSION AND CONCLUSIONS

When comparing the results in Figs. 4(a) and 4(b) one
sees that within the present approach the physical mechanism
behind the anisotropy of the transport in FeSe originates from
a strong reduction of both the xy and xz orbital components at
the Fermi surface, due to the fact that the Y pocket sinks down
the Fermi level. Indeed, even though the disappearing of the
Y pocket induces a cold-spot effect, with a strong increase
of the relaxation time at the electron X pocket for transport
along x, such an effect is completely overcompensated by the
velocities renormalization. As a consequence, in analogy with
previous findings in the context of inelastic scattering [46],
the usual interpretation in terms of hot and cold spot should
be taken with care, since vertex corrections actually change
the final result, and their inclusion becomes crucial to account
for the experimental observations. In contrast, when the �xy

nematic order parameter is absent, as in Fig. 4(b), vertex
corrections reinforce the tendency of the bare conductivity
anisotropy to favor transport along y, leading to an overall
negative �ρ below Ts. Notice that in this view both the inclu-
sion of the xy nematic order parameter and the inclusion of the
velocities renormalization into the dc conductivity are crucial
ingredients to reproduce the resistivity anisotropy observed in
FeSe.

On a wider perspective, our results suggest that for FeSe
the emergence of a xy order parameter (2) not only explains
the disappearance of the Y pocket in ARPES measurements
[21], a surface probe, but it is also crucial to account for the
resistivity anisotropy, a bulk probe. It is worth stressing that
our calculations cannot reproduce the typical linear increase
of the resistivity as a function of temperature [36], which is
due to inelastic scattering processes that are dominant in the
whole temperature range considered. However, at very low
temperature (and in the absence of the superconducting tran-
sition at Tc) inelastic scattering would be suppressed, and the
elastic one due to impurities would become dominant. In this
respect we notice that the corresponding extrapolated value
simp

0 of the experimental conductivity approximately coincides
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FIG. 5. Resistivity anisotropy at T = 50K for different values
of the nematic order parameters. For the definition of the scaling
constants αxz/yz, αxy see the text. The chemical potential at each
value of the parameters is determined self-consistently such that the
electron density is the same across all values. The top and bottom
black dots mark the parameter values considered in Figs. 4(a) and
4(b), respectively.

with the average of the conductivities along x and y computed
within our model. Since this is also the parameter setting the
overall scale of the resistivity anisotropy, the present result
reinforces the possibility that resistivity anisotropy can be
ascribed mainly to elastic processes. Such a conclusion is fur-
ther supported by various experiments carried out in annealed
samples of certain electron-doped 122 compounds, where the
anisotropy is suppressed with annealing [38,39]. Despite the
fact that electron correlations in FeSe seem to be the strongest
among all Fe-based superconductors [3], the fact that the
parameters used reproduce both the measured Fermi surface
and the extrapolated low-temperature resistivity suggests that
the anisotropy could be probably linked to elastic impurity
scattering also in this case.

To make a closer connection to the case of most 122
compounds, we report in Fig. 5 the resistivity anisotropy
for a fixed disorder level as a function of the strength
of the nematic order parameters (1) and (2). To show
this effect in a compact way, we group them in two

independent sets (�h,�e)T = αxz/yz

√
1 − T −Tc

Ts
(�h,�e)Tc

and (�xy,�εxy)T = αxy

√
1 − T −Tc

Ts
(�xy,�εxy)Tc , governed

by the parameters αxz/yz, αxy. At αxz/yz = αxy = 1 the resistiv-
ity anisotropy is the one shown before in Fig. 4. In Fig. 5 we
plot �ρ as an intensity plot at generic values of αxz/yz, αxy

but fixed T = 50 K. All the red region corresponds to the
case �ρ < 0, as measured in 122 systems [29–34], and it
still persists for a moderate value of the xy order parameter,
showing that in principle one cannot exclude a moderate xy
nematicity also in 122 compounds. We remind the reader,
however, that the comparison with the 122 case is still done
within a four-pocket model, that does not necessarily apply
to the whole 122 class. For instance in BaFe2Se2 a large hole
pocket at � of dxy character is present. Even though this hole
pocket is regarded to be an incoherent one and thus not very
influential in the transport [61], in principle one should check
whether the inclusion of such an incoherent xy pocket change
the present results. An other interesting feature happens in

K-doped 122 compounds, where the resistivity anisotropy
changes sign at moderate doping [35] from negative to pos-
itive. Such change cannot be captured by our model simply
by changing the intensity of the disorder, which only changes
the intensity of the resistivity. As a consequence, within our
picture we can understand this result as a change of nematic
ordering in the various orbitals. In particular, the experimental
findings are compatible with a progressive weakening of the
xz/yz nematicity as compared to the xy one, possibly due
to a weakening of spin-nematic xz/yz fluctuations within a
OSSF model due to progressive suppression of quasinest-
ing conditions among holelike and electronlike pockets with
doping. An increasing of αxy/αxz/yz in Fig. 5 would imply
that the systems starts at one point in the red region for
the undoped compound and then as hole doping increases it
moves in the green one. We finally mention that the different
sign of the anisotropy between 122 compounds and FeSe
has been explained before [50] by means of a simplified but
fully quantum approach that was including spin fluctuations
instead of impurity scattering. However, the purpose of that
paper was not to compare quantitatively with the experimen-
tal data, and since the orbital model Hamiltonian was not
fitting the ARPES measurements the results had a certain
degree of parameter dependency. By contrast, our model is
robust against parameters change (see Fig. 5), against the
disorder model (see Appendix C), and fits the experiment at
a reasonable quantitative level. Clearly a combination of the
two approaches may provide a more complete view on the
problem.

In summary, we computed the resistivity anisotropy in
the nematic phase of FeSe due to elastic impurity scattering.
We showed that when disorder is introduced at the level of
the microscopic orbital model the multiorbital structure in-
duces nontrivial effects on the transport properties, with the
emergence of velocity-renormalization effects at the level of
the Boltzmann transport equation. By taking advantage of
our recently derived semianalytical solution of the problem
[51], we computed the resistivity anisotropy in the nematic
phase, comparing the results for different nematic scenar-
ios. We find that to reproduce the experimentally observed
resistivity anisotropy of FeSe it is crucial not only to ac-
count for the full solution of Boltzmann equation, but also
to add, along with the xz/yz nematic order parameter, the
xy nematic order recently proposed in Ref. [28]. The latter
plays indeed a crucial role in order to reverse sign of the
full conductivity with respect to the bare one, due only to
the Fermi-surface deformation below Ts. As the xy nematic
order parameter is suppressed the full resistivity anisotropy
has instead the same sign of the bare one, and one recov-
ers the experimental observations in 122 compounds. Our
results highlight how the additional xy nematic order has a
strong impact on bulk transport properties of FeSe, besides
the direct effect on the Fermi-surface topology, with the
disappearing [21,28] of the Y pocket below Ts. To further
test the interplay among impurity scattering and nematic-
ity it would be interesting to explore, e.g., how transport
evolves under uniaxial strain [62], and/or in the presence of
a magnetic field. Indeed, the marked anomaly of the Hall
coefficient of FeSe upon entering the nematic phase rapidly
disappears as nematicity softens upon, e.g., S doping [63],

045102-7



MARCO MARCIANI AND LARA BENFATTO PHYSICAL REVIEW B 106, 045102 (2022)

clearly suggesting a deep connection with nematic order.
The relevance of velocity renormalization for the Hall ef-
fect in compensated semimetals such as pnictides has been
already emphasized in previous work accounting for inter-
band interactions due to inelastic effects [64]. It would be
then very interesting to investigate if also impurity scatter-
ing within a multiorbital model has a similar effect, and the
role played by different nematic scenarios. Finally, the mi-
croscopic justification for the xy nematicity itself remains an
open challenge, with crucial implications for all families of
pnictides.
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APPENDIX A: HAMILTONIAN PARAMETERS
AND SYMMETRIES

All terms of the full effective Hamiltonian, Eq. (3) in the
main text, are defined for kz = 0 as:

H0 � (k) =
[
εh − k2

2mh

]
τ0 ⊗ σ0 −

[ r

2

(
k2

x − k2
y

)]
τ3 ⊗ σ0 + rkxkyτ1 ⊗ σ0 + λh

SOC

2
τ2 ⊗ σ3,

H� �
T (k) = �h

T τ3 ⊗ σ0,

H0 X/Y (k) =
[

k2

2

(
1

2m1
+ 1

2m3

)
− 1

2
(εe1 + εe2) ∓ 1

4
(a1 + a3)

(
k2

x − k2
y

)]
τ0 ⊗ s0,

+
[

k2

2

(
1

2m1
− 1

2m3

)
− 1

2
(εe1 − εe2) ∓ 1

4
(a1 − a3)

(
k2

x − k2
y

)]
τ3 ⊗ s0,

+ vX/Y (k)τ2 ⊗ s0,

H� X/Y
T =

(
�ε

xy
T

2
± �e

T − �
xy
T

2

)
τ0 ⊗ s0 −

(
�ε

xy
T

2
∓ �e

T + �
xy
T

2

)
τ3 ⊗ s0, (A1)

where the Pauli matrices τ, s act on the orbital and spin spaces,
respectively, and the slash in the label X/Y is linked with ±
symbols; we denote1

νX (k) =
√

2vky + p1√
2

(
k3

y + 3kyk2
x

) − p2√
2

ky
(
k2

x − k2
y

)

νY (k) =
√

2vkx + p1√
2

(
k3

x + 3kxk2
y

) − p2√
2

kx
(
k2

y − k2
x

)
.

(A2)

At kz = π/c the Hamiltonian terms have the same formal
expressions but different parameter values. The chemical po-
tential μT is computed so to ensure the same average number
of electrons at all temperatures taking as a reference value the
one at 10 K given in Ref. [28]. All values of the parameters
appearing in the Hamiltonian are taken from the same refer-
ence and are listed in Table I. We use the 1-Fe lattice constant
a = 2.61 Å and c = 5.52 Å (the b lattice constant differs from
a in the nematic phase only by a tiny fraction that we neglect)
[65]. Notice that the �εxy and �xy have the same effects on
the xy orbital at the Y point. However, at the X one they act
distructively thus being almost ineffective on this pocket. In
principle the X,Y,U, T pockets experience a tiny spin-orbit
coupling λe

SOC = 4 meV that we neglect to simplify the nu-
merics. The approximation involves a change in the actual
Fermi surface removing the anticrossing between spin bands.
Even though this change is relevant for Hall measurements,

1We note that the sign in front of the parameter p2 in the definition
of νy differs from that in Ref. [25]. However, with our choice νy

respects all spatial symmetries of the system in agreement with the
analysis of Ref. [53].

it is not for diagonal conductances due to the small energy
magnitude of the spin-orbit coupling as compared to that of
other parameters.

The Hamiltonian has the following symmetries [53] (the
symmetries at Z,U, T have the same form of those at �, X,Y
shown here):

TABLE I. Hamiltonian parameters list. Effective Hamiltonian
parameters for each sector of the 1-Fe BZ, obtained by fitting ARPES
data at T = Tc. (Adapted from Ref. [28]).

� Z

εh −8 12 meV
1

2mh
4730 1998.4 meV Å2

r 4664 1970.54 meV Å2

�h
T 15 15 meV

λh
SOC 23 23 meV

X,Y U, T

εe1 30.6 30.6 meV
εe2 48.6 48.6 meV

1
2m1

10.2060 4.54 meV Å2

1
2m3

1355.9 602.64 meV Å2

α1 991.44 440.64 meVÅ2

α3 −2937.9 −1305.7 meV Å2

v −329.4 −219.6 meV Å
pz1 −2700.9 −800.27 meV Å3

pz2 −229.7 −68.06 meV Å3

�e
T −26 −26 meV

�
xy
T 45 45 meV

�ε
xy
T 40 40 meV
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(i) x/y-axis reflection symmetry at X/Y and inversion sym-
metry at �, i.e., H (X )(kx, ky) = H (X )(−kx, ky), H (Y )(kx, ky) =
H (Y )(kx,−ky ) and H (�)(kx, ky) = H (�)(−kx,−ky) (here, the
origins of the momenta are the X,Y , and � points, respec-
tively);

(ii) H (X )(kx, ky) = τ3H (X )(kx,−ky )τ3 and H (Y )(kx, ky) =
τ3H (Y )(−kx, ky)τ3 where the Pauli matrix act on the orbital
degree of freedom;

(iii) Time-reversal symmetry Hk = s2(H−k )∗s2, where the
Pauli matrix acts on the spin degree of freedom.

(iv) Spin-rotation invariance at X and Y , due to the neglect
of spin-orbit coupling (see Appendix A), while only conser-
vation of the z component of the spin at �.

Notice that these symmetries imply that the up and down
spin sectors are totally decoupled and degenerate.

The peculiar properties of w discussed in Sec. IV of the
main paper stem directly from the symmetry of the Hamil-
tonian, in the following way. By symmetries (i) F x(y) gets
contributions only from the pocket Y (X ). The pocket � do not
contribute to F at all. Moreover F x(y) is strictly an off-diagonal
matrix due to symmetries (ii) and the simultaneous invariance
of τY (X ) and sign reversal of v

x(y)
Y (X ) under (kx, ky) → (kx,−ky )

[(kx, ky) → (−kx, ky)]. Following a similar reasoning the K
tensor, viewed as a matrix indexed with two-pockets labels
both per raw and per columns, is actually a block matrix.
In particular the 2 × 2 block concerning the xy-xz and xz-xy
elements and the one concerning the xy-yz and yz-xy ones
constitute two independent blocks that are uncoupled to the
other elements. This block structure carries over to the tensor
(1 − K )−1. Thus, the property wx

X = vx
X follows from the

absence of match of (1 − K )−1F x, having only xy-xz and
xz-xy elements, and the projector onto the eigenstates of X ,
having no components involving the orbital xz. The properties
of w for the other pockets follow from similar arguments. It
is quite remarkable how the general properties of the vertex
corrections can be drawn from the analysis of K and F despite
the complexity of the system.

APPENDIX B: SEMIANALYTICAL SOLUTION
OF THE BOLTZMANN EQUATION

The collision integral kernel used in the Boltzmann equa-
tion (5) is elastic and comes from a disorder term in the
Hamiltonian, which is diagonal in the band index. Such kind
of disorder is arguably the simplest one may consider and
is the one that is usually used in calculations. Interestingly
enough, the collision integral kernel in not diagonal in the
band index:

Qbb′
kk′ = κ |ek,b · ek′,b′ |2 δ(εk,b − εk′,b′ ), (B1)

where ek,b represents an eigenvector of the multiorbital
Hamiltonian, κ = 2πnimpv

2
impa2c/V (nimp is the impurity con-

centration and vimp their potential energy) and εk,b is the
electron energy. The Boltzmann equation at zeroth order in E
is trivially solved by the Fermi function f (εb

k ). At first order
the equation can be written as an integral equation for wk,b:

∑
k′,b′

(
δkk′δbb′ − Qbb′

kk′τ
b′
k′

)
wb

k′ = vb
k. (B2)

The numerical solution of Eq. (B2) is rather demanding,
since it requires us to invert the large matrix 1 − Qτ in
the grouped indexes (kb) and (k′b′) in the left-hand side
of the equation (B2). In Ref. [51] we recently proposed a
semianalytical solution to this problem. More specifically, we
showed that thanks to the energy conservation implicit in
the collision-integral kernel (B1) the matrix 1 − Qτ becomes
block diagonal when the k vectors are ordered in groups
belonging to the same energy shell. These blocks are finite
rank, allowing one to reduce the problem to the inversion of
a small matrix whose size N2

b is set by number of orbitals.
The solution is given in Eq. (7). As one can see, we reduced
the complex problem of inverting the integral equation (B2)
to that of inverting the tensor 1 − K , which, together with the
matrix F , can be readily computed once the original multior-
bital model (3) has been diagonalized.

The tensors K and F are defined as

(Kε )mn,m′n′ = κ
∑

b,k(ε)

(emen∗em′∗en′
τ )k,b (B3)

and

Fmn
ε =

∑
b,k(ε)

(emen∗ τ v)k,b, (B4)

where in both expressions we use the shorthand
notation (valid in the thermodynamic limit)

∑
b,k(ε) =

V
∫

d3k
(2π )3 δ(εk,b − ε). The full current density is defined

as usual: J = − e
V

∑
k,b(v ρ)k,b = e2

V
∑

k,b vk,b τk,b (wk,b ·
E)(−∂εb

k
fεb

k
) and is linear in E. By inserting the result (7) into

this expression, the conductivity matrix of Eq. (8) is obtained
from the relation J = σE.

APPENDIX C: NEMATIC FeSe WITH GOE
AND GUE DISORDER

Does the correct characterization of the experimentally
measured resistivity anisotropy with the model described in
Sec. III rely on the specific type of disorder chosen? In this
Appendix we show numerical results obtained by using dif-
ferent models of disorder and verify the robustness of our
findings. In particular, we explore the possibility that the local
impurities do not only shift the local chemical potential but
may couple differently the various electronic orbitals and in
a random way, so that a statistical approach would be fea-
sible. Namely we take each impurity Hamiltonian matrix to
be drawn from a Gaussian unitary or orthogonal ensemble
(GUE or GOE), instead of being simple diagonal matrices
of magnitude vimp as in the main text. The theory for such
kind of disorder ensembles is slightly more complicated than
the one presented in Sec. III. The band structure and the
bare velocities stay the same as before, but Eqs. (9)–(11) are
different resulting in different rates and dressed velocities; we
refer to Ref. [51] for the general formulas. In the case of
FeSe, the GUE may be employed to describe disorder from
impurities that produce nonvanishing microscopic magnetic
fields (that vanish macroscopically) that couple the spins and
break the time-reversal symmetry of He f f . Conversely, the
GOE may be employed to describe nonmagnetic disorder,
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FIG. 6. Diagonal dc conductivities with different disorder types.
Conductivities along x and y using the same labels as in Figs. 3 and
4, assuming GUE (top) or GOE (bottom) disorder.

which is diagonal in the spin space and commutes with the
spinless time-reversal operator K̂ (complex conjugation). The
results for the conductivity and the resistivity are shown in
Fig. 6. The fits are qualitatively similar to that of Figs. 3(a)
and 4(a), the GUE-disordered system performing worse, the
GOE one performing better. Notice how the GUE disorder
induces no velocities renormalizations (dashed curves coin-
cide exactly with the darker ones), but in this case �ρbare has
the same sign of the experiments in most of the temperature
range. This happens because there is no notion of hot and
cold spots for this ensemble as there is a unique (isotropic)
scattering rate for all states, such as in single-band models.
Thus, only the bare velocities of the pockets matter, which
clearly favor the right sign due to the sinking of the Y pocket.
The GOE disorder produces instead positive corrections, as
expected from the theoretical discussion of Ref. [51], and also
in this case such corrections are relevant in order to achieve
a better agreement with experiments. These examples under-
line the fact that vertex corrections need not be an essential
feature of the system that will describe the experiment but
they must be included whenever they are finite. Finally, we
remark that the absolute magnitude of the conductivities (not
shown) in these cases is much smaller than in the other one,
even though one tunes κ in order to have the correct magni-
tude of the resistivity anisotropy. It is surprising because one
could expect that the fitting parameter, that tunes separately

FIG. 7. Fermi pockets, velocities, and rates in the 1-Fe BZ with-
out xy nematic parameters. Same as Fig. 2, right column, but setting
�xy = �εxy = 0.

for each disorder ensembles the matching of the resistivity
anisotropy, would also create match among (the magnitudes
of) the conductivities. This, however, is unlikely to happen,
since the fitting parameter should compensate at the same time
for both higher rates (roughly twice with these ensembles due
to the higher number of disorder degrees of freedom) and an
overall smaller relative difference between the conductivities
along the x and y directions. We may conclude that the match
between theory and experiment is quite robust against changes
of the disorder type.

APPENDIX D: DC ANISOTROPY IN THE ABSENCE
OF xy NEMATICITY

To have an idea of the physics in the red region of Fig. 5, in
Fig. 7 we show the Fermi surfaces at Tc in the absence of the xy
nematic order, i.e., αxy = 0 or equivalently �

xy
T ≡ �ε

xy
T ≡ 0

in the Hamiltonian (A1). In this case the Fermi pockets at
Y and T do not vanish, instead they increase in size as the
temperature lowered. As a result, the density of states and
the velocity profile favor the conductivity along the direction
x, determining the negative resistivity anisotropy reported in
Fig. 4(b).
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