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Hybrid quantum dot structures are potential building blocks for spintronic devices and quantum logic
gates, within which the understanding of many-body correlations is a prerequisite for implementing quantum
information processing and generating controlled entanglement. Herein, we consider a hybrid tripartite quantum
dot device, one of which is embedded directly between the source and drain electrodes, while the other two
dots are side coupled to the first one. Modeling the system using the three-impurity Anderson model, we
concentrate on the Ruderman-Kittel-Kasuya-Yosida interaction, the suppression of the Kondo behavior in the
side dots, the destructive quantum interference, the gate-controlled quantum phase transitions, the Dicke effect,
the ferromagnetic Kondo effect, and the thermodynamical properties in various parameter regimes using the
numerical renormalization group method. Unified formulations are established, which are associated with the
effective width of the zero-energy peak of the central dot without side dots, the central-side exchange coupling,
as well the on-site electron-electron repulsion. We demonstrate that these formulas are well suitable for the non-,
weak-, and strong-interacting cases.
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I. INTRODUCTION

Since the early 2000s, low-dimensional quantum impu-
rity systems have gained tremendous interests, due to their
unexpected anomalies and ubiquitous applicability to plen-
tiful physical systems, such as magnetic impurities [1,2],
dissipative two-level systems [3,4], semiconductor quantum
dots (QDs) [5–7], molecular break junction [8,9], clusters
of magnetic adsorbates on surfaces of noble metals [10,11],
heavy-fermion compounds and other strongly correlated
systems [12–14]. Numerically, these systems are always de-
scribed by ab initio studies. However, for strongly correlated
systems, the ab initio description of transport measurements
remains to date a challenge [15]. One of the most important
strongly correlated phenomena arising in these systems is the
Kondo effect, which is caused by the interaction between
a localized spin and conduction electrons via the spin-flip
scattering process [12,16,17]. Even since J. Kondo did the
third-order perturbation theory and observed that it was di-
vergent at low energies [18], and K. G. Wilson explained this
interesting behavior perfectly based on the renormalization
group theory [19], the Kondo effect has then invoked some of
the most profound concepts in condensed matter physics. Re-
cently, profiting from the advances in experimental micro- and
nanotechnologies, resurgent interests have been seen in dis-
covering novel Kondo physics in low-dimensional quantum
impurity structures, such as the orbital Kondo effect [20,21],
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the underscreened Kondo effect [22–24], the overscreened
Kondo effect [25,26], the ferromagnetic Kondo effect [24,27],
the multistage Kondo effect [28–30], the topological Kondo
effect [31,32], as well the Kondo effect in unconventional
host materials. For instance, the Kondo effect on the sur-
face of three-dimensional topological insulators [33,34], the
pseudogap Kondo effect [35,36], the power-law Kondo model
[37,38], and the Kondo effect in Dirac and Weyl systems
[39,40].

Distinguishing from those phenomena observed in single-
impurity models, additional elements may emerge in multiple-
impurity models, among which the most fascinating one is
the RKKY exchange interaction [41]. Basically, the RKKY
interaction generates when a few impurities interconnected
by the conduction baths, which then leads to magnetic cou-
pling of moments between different impurities. It plays an
important role in quantum impurity systems. For instance, it
may lead to long range magnetic orders and result in various
magnetic ground states [42]. It may also bring about different
transport properties of multi-impurity systems [13,43–45] and
Aharonov-Bohm interferometers [46,47]. Additionally, com-
petitions between the RKKY interaction and different local
interactions may lead to various kinds of quantum phase tran-
sitions (QPTs) [48–50] and quantum interferences [51,52]. It
is also proved to be essential for the development of quan-
tum computing and quantum precision measurement [53,54]
and the spintronic and tunneling magnetoresistance devices
[55,56].

Generally speaking, there exist two mecha-
nisms of the interimpurity RKKY interaction: the
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FIG. 1. Schematic illustration of the hybrid tripartite QD device
connected to the source (S) and drain (D) electrodes. The device
contains three functional quantum dots (QDs), each of which has a
single transport-active orbital. The QD 1 is the central QD (CQD),
while the QDs 2 and 3 are the side QDs (SQDs). εi and Ui are
the energy levels and the on-site electron-electron repulsion of the
ith QD, respectively. � is the hybridization function between the
CQD and the conduction bands, and t is the interdot hopping integral
(tunneling coupling).

noninteracting-conduction-band mediated RKKY interaction,
and the superexchange one mediated via the interimpurity
electron hopping. The former one is found to be associated
with the band-impurity hybridization � and the on-site
Coulomb interaction U in the local impurities with a relation
∝ �2/U , which is valid in the broadband limit with a constant
density of states (DOS) [57]. And the latter one could be
understood from perturbative arguments [58]. However, little
is known about the case where the RKKY-interaction-ordered
impurities connect to a structured nonconstant DOS. A
universal scheme for such cases is highly desired.

To implement such an idea, we considered a triple impu-
rity Anderson model with one impurity (the central impurity)
sandwiched between the source (S) and drain (D) electrodes,
whereas the other impurities (side impurities) only connect to
the central one through interimpurity hopping t , see Fig. 1.
We mainly focus on the case where the central impurity is ef-
fectively noninteracting, whereas the side impurities are fully
interacting. Under such a situation, the present model maps
onto a double impurity Anderson model with a structured
nonconstant DOS. Our main findings include the following.
When the central-side hopping integral t is absent, the linear
conductance reaches its unitary limit, which stems from the
resonant tunneling due to a level broadening imposed on the
central impurity by the conduction baths. When t is present,
the interference between the direct and indirect conduction
pathways brings about a Fano antiresonance dip in the local
DOS (LDOS) of the central impurity. We reveal the width of
this dip WF could be illustrated by an exponential function of
the electrode-central hybridization function � and the central-
side exchange interaction J . For small nonzero t , three kinds
of energy peaks could be clarified in the LDOS of the side
impurities, including the Coulomb, the RKKY, and the Kondo
peaks. The intensity of the RKKY interaction JRKKY could be
well illustrated by a function of �, t , and the electron-electron
repulsion on the side impurities U2. For large t , only one kind

of spectral peak survives, corresponding to the energy needed
to add an additional electron to the system. The Kondo effect
could be found in the side impurities, which is suppressed
gradually as t increases. The height of the Kondo peak hK is
found to be associated with � and t via an exponential func-
tion but has no connection to U2. Thermodynamic properties
show that the local spins are screened in two steps occurring
at about � and T ∗

K respectively, separated by a scale of JRKKY.
We show the Kondo temperature T ∗

K could also be described
by an exponential function of � and J , distinguishing from
the typical two-stage Kondo effect. The above conclusions
are found to be also suitable for the weakly- and strongly
correlated central impurities by replacing � appropriately.
Furthermore, by tuning the charge of the central impurity,
the spin correlation between two side impurities transits from
an antiferromagnetic type to a ferromagnetic one, and then
to an antiferromagnetic one, regardless of whether the cen-
tral impurity is strongly or noncorrelated. We attribute the
enhancement of the conductance to the Dicke effect, which
is resulted from the quantum interference between the direct
and the indirect couplings. When the Coulomb repulsion in
the central impurity is adjusted, our present structure acts as an
ideal prototype revealing a crossover from an effective parallel
two-impurity model to the ferromagnetic Kondo state, and
hK is found to be associated with the effective width of the
zero-energy peak of the central impurity without side ones.

One notices that real triple impurity structures could be
those clusters of magnetic adsorbates on various kinds of
substrates, such as Co and Fe adsorbates on the CuN/Cu(100)
surface [59], Co atoms adsorbed on Cu/Co/Cu(100) multi-
layers [60], manganese phthalocyanine (MnPc) molecule on
Au(111) surface [61]. They could also be repeating conju-
gated monomer units connected to metal electrodes [62,63]
and systems of triple semiconductor quantum dots [64,65].
However, these structures are predominantly limited to homo-
geneous species, and thus it is difficult to meet the expectation
of unidentical Coulomb repulsion in different impurities. Ideal
candidates to verify our theoretical predictions may be those
hybrid QD devices containing triple transport-active orbitals
or triple spin-1/2 subsystems. For instance, a supramolecular
spintronic device based on a carbon nanotube quantum dot
functionalized with modified molecular magnets [66,67], a
tripartite system consisting of two molecular spin qubits rings
and a nonmagnetic ion [68], systems of organic diradical
bridged by magnetic/nonmagnetic ion [69,70], and the rare-
earth molecular trinuclear coordination compounds [71]. In
such cases, the central impurity plays a role as the electronic
QD, whereas the side impurities could be considered as the
spin QDs [67].

The remaining part of this paper is organized as follows: In
Sec. II, we give the Hamiltonian of the considered system and
present the calculate method and basic formulas. In Sec. III–
Sec. VI, we show the numerical results and their discussions.
Finally, a conclusion is given.

II. MODEL, METHOD, AND FORMULAS

Schematic illustration of the hybrid tripartite QD device
is given in Fig. 1. The related second quantized Hamiltonian
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could be written as follows [8,17]:

H = Hν + HHTQD + Hhyb; (1)

Hν =
∑

ν=S,D

∑
kσ

ενkσ c†
νkσ

cνkσ ; (2)

HHTQD =
∑

iσ

εid
†
iσ diσ +

∑
iσ

Uini↑ni↓

− t
∑

σ

(d†
1σ d2σ + d†

1σ d3σ + H.c.); (3)

Hhyb = τ
∑
νkσ

(c†
νkσ

d1σ + H.c.). (4)

Here Hν illustrates the noninteracting S and D electrodes. c†
νkσ

is the creation operator for electrons with wave vector k, spin
σ (=↑ or ↓) in lead ν, and ενkσ is the energy level with respect
to the Fermi level. HHTQD is for electrons on the hybrid tripar-
tite QD device. diσ (d†

iσ ) annihilates (creates) a local electron
from (on) the ith QD (i = 1, 3), and niσ = d†

iσ diσ is the spin-σ
number operator. εi and Ui are the single electron energy and
the on-site Coulomb repulsion, respectively. Experimentally,
εi could be tuned via external gate voltage. Hereafter, QD 1 is
denoted as the central QD (CQD), while QDs 2 and 3 are the
side QDs (SQDs). t is the hopping integral (tunneling cou-
pling) between the CQD and SQDs. Finally, Hhyb describes
the band-CQD coupling, with τ be the tunneling strength.
Here we assume τ is k and σ independent and is symmetric
with respect to the S and D electrodes.

We adopt the Wilson’s numerical renormalization group
(NRG) method [17,72,73] to handle Eq. (1). The NRG method
is a nonperturbative technique to treat quantum impurity mod-
els, which gives sufficient information on both the static and
dynamic properties in the whole temperature scales. In our
NRG calculation, we choose the renormalization parameter
� to be ∼2.0–3.0 and retain around 3000 low-lying states
at each iteration. In the NRG technique, � divides the con-
duction band into a series of intervals, whose widths decrease
exponentially. Furthermore, we denote the half bandwidth of
the conduction band as Wb and take a wide flat DOS of the
electrodes ρ = 1/(2Wb), which is the typical case relevant to
most metallic electrodes. The hybridization function between
the conduction band and the CQD then could be written as
� = πρτ 2.

The LDOS of each QD at temperature T Ai(ω, T ) is de-
fined as

Ai(ω, T ) =
∑

σ

Aiσ (ω, T ) = − 1

π

∑
σ

ImGiiσ (ω, T ). (5)

Here ω is the energy variable, Giiσ (ω) is the Fourier transfor-
mation of the diagonal retarded Green’s function Giiσ (t ), with

Gi jσ (t ) = −iθ (t )〈{diσ (t ), d†
jσ }〉. (6)

In the following, we abbreviate Ai(ω, T ) at zero temperature
as Ai(ω).

The linear conductance through the device G(T ) is com-
puted by the Landauer formula [74,75]:

G(T ) = G0

∫ [
−∂ f (ω)

∂ω

]
π�A1(ω, T )dω. (7)

Here G0 = 2e2/h is the conductance quantum, f (ω) =
1/[1 + exp(ω/T )] is the Fermi-Dirac distribution function. In
the following discussions, we chose Wb as the energy unit and
εkF = 0 as the Fermi level. Hence G(T = 0) at zero tempera-
ture in the limit of zero bias is controlled by the behavior of
A1(ω, T ) at the Fermi level,

G(T = 0) = π�G0A1(ω = 0). (8)

To enhance the precision, those dynamical quantities, such as
spectral functions, are obtained from the full density matrix
(FDM) [76], calculated iteratively in the Anders-Schiller basis
[77].

The temperature-dependent magnetic moment μ2(T ) and
entropy SHTQD(T ) are given by the contribution of the device
to the total magnetic moment and entropy of the whole sys-
tem, respectively:

μ2(T ) = χHTQD(T )kBT
/(

gμ2
B

)
= 〈

S2
z

〉 − 〈
S2

z

〉
0, (9)

SHTQD(T ) = (E − F )

T
− (E − F )0

T
, (10)

where χHTQD is the contribution of the QDs to the total mag-
netic susceptibility at temperature T . kB is the Boltzmann’s
constant, g is the electric gyromagnetic factor, and μB is the
Bohr magneton. Sz is the total z component spin operator
of the QDs, and the subscript 0 refers to the situation when
the QDs are absent. Finally, E = 〈H〉 = Tr[He−H/(kBT )] and
F = −kBT lnTr[e−H/(kBT )] are the total energy and free energy
of the whole system, respectively.

III. NONINTERACTING CQD WITH U1 = 0 AND U2 �= 0

A. The destructive quantum interference characteristic
antiresonance

In the following discussions, we mainly focus on the situ-
ation where εi satisfies the particle-hole (p-h) symmetry, i.e.,
εi = −Ui/2. In Fig. 2(a), we depict the LDOS of electrons in
QD 1 at nearly zero temperature A1(ω) in terms of different t
with fixed U1 = ε1 = 0. One may see when t = 0, there is a
peak of the Lorentzian type located at the Fermi level. For
later references, we denote A1(ω) without t as A0

1(ω). The
characteristic energy scale is that the width of this peak WL is
about 2�, suggesting that the electron transport is dominated
by the resonant tunneling due to a level broadening imposed
on the CQD by both external reservoirs of the itinerant elec-
trons. Here WL is defined by the full width at half maximum
of the central peak. In such a case, the linear conductance is
given by a Breit-Wigner-type expression [78]

G(εkF ) = G0
�2

(ε1 − εkF )2 + �2
. (11)

Thus at exact resonance, ε1 = εkF = 0, the conductance
reaches its maximal value G0. On the other hand, with the
aid of the Green’s function, A0

1(ω) can be expressed as

A0
1(ω) = �

π [(ω − ε1)2 + �2]
, (12)
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FIG. 2. (a) The LDOS of electrons in QD 1 at nearly zero tem-
perature A1(ω) with and without t . Here A1(ω) without t , labeled
by A0

1(ω) hereafter, is calculated by both the NRG method (solid
black line) and the Green’s function (GF, dashed-dotted red line).
[(b) and (c)] The width of the Fano antiresonance dip WF at nearly
zero temperature as functions of t (b) and U2 (c) and their fitting
functions. The other parameters are given by � = 0.01, U1 = 0.0,
U2 = 0.1, t = 0.01, and εi = −Ui/2 unless otherwise specified.

which is also shown in Fig. 2(a). It is seen the results calcu-
lated by the NRG method matches very well with that by the
Green’s function. This is a good test for our NRG results.

When t turns on, e.g., t = 0.01 in Fig. 2(a), the Lorentzian
peak splits, and a dip at ω = 0 develops, which is the so-called
Fano antiresonance dip. This behavior could be attributed to
a destructive interference of the quantum amplitudes for the
conduction pathway directly through the CQD without pass-
ing through the SQDs and the indirect conduction pathway
via the SQDs. The first pathway could be considered as a
role of the broad background process, while the second one
refers to a resonant scattering channel. With increasing t (U2),
the width of the Fano dip WF increases (decreases), see the
scattered squares in Figs. 2(b) and 2(c). Here WF is defined by
the full width at half maximum of the central valley. More
importantly, it is found that WF could be illustrated by an
exponential function of t , U2, and �:

WF = c1�e−c2�/J , (13)

with c1 = 4.38, c2 = 3.52 in Fig. 2(b), and c1 = 1.66, c2 =
2.48 in Fig. 2(c). This expression is similar to that for the
second Kondo temperature in the two-stage Kondo behav-
ior, which always exists in side-coupled multi-QDs strutures
[79–82]. Here J is the effective exchange coupling between

FIG. 3. [(a)–(c)] The LDOS of electrons in QD 2 (3) at nearly
zero temperature A2(ω) for different t . Curves in panel (b) along
the black solid line are for t = 0.011 to 0.021 in steps of 0.002,
respectively. The other parameters are given the same as in Fig. 2
unless otherwise specified.

the central and side QDs and could be written as

J = 2t2

ε1 − ε2 + U1
+ 2t2

ε2 − ε1 + U2
. (14)

Obviously, with U1 = ε1 = 0, J = 8t2/U2. One notices that
the fitting functions are consistent with our NRG results.

B. The RKKY interaction

The most fascinating behaviors occur in the SQDs. In
Fig. 3, we plot the LDOS of electrons in QD 2 (3) at nearly
zero temperature A2(ω) for various t . The species of the en-
ergy peaks seem to undergo three different regimes. When
t is small, only the Coulomb peaks are found at about ω =
±U2/2. For intermediate t , three kinds of peaks could be
clarified clearly. Except the Coulomb peaks, one observes a
sharp peak at the Fermi level, which is the Kondo resonant
peak as will be discussed detailedly in the following subsec-
tion. The additional pair between the Kondo and Coulomb
peaks are the RKKY peaks. They correspond to the RKKY
interaction between electrons in different side QDs mediated
by t and stem from the processes of creating (annihilating)
an additional electron to (from) the many-body states of the
side QDs with antiparallel spin, where two electrons on the
side QDs have parallel spins. As t increases, the locations of
the RKKY JRKKY peaks move backward with respect to each
other [cf. Fig. 3(b)]. When t is large enough, such that J 	 �,
only one pair peak exists [cf. Fig. 3(c)]. Since in this case the
SQDs are in the molecular-orbital (MO) regime. The effect
of the Coulomb repulsion becomes feeble, which is reflected
by the decreasing weight of the Coulomb peaks. The new
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FIG. 4. [(a) and (b)] The magnitude of the RKKY interaction
between side QDs JRKKY versus t (a) and U2 (b), and their fitting
functions simulated through Eqs. (16), (17), and (14), respectively.
The other parameters are given the same as in Fig. 2 unless otherwise
specified.

peaks refer to the energy needed to add (remove) an additional
electron to (from) the SQDs, which is proportional to t [83].
With decreasing U2, A2(ω) behaves in a similar way as that of
increasing t , which is not shown here.

To make a deep understanding of the RKKY interaction,
we present JRKKY captured by our NRG calculations and its
fitting functions in Fig. 4. In parallel multiple quantum dot
systems connected to noninteracting conduction bands with
constant DOS, the Rayleigh-Schrödinger perturbation theory
gives JRKKY ∝ U (ρJK )2 [57]. Here U is the on-site Coulomb
repulsion in the parallelly organized quantum dots, JK is
the effective antiferromagnetic Kondo exchange interaction
between the conduction bands and the quantum dots, and
ρJK = 8�/(πU ). In our present model, all information on
the couplings of the side dots to the leads and to the central
dot could be illustrated by the effective hybridization function
between the central and side QDs:

�c−s(ω) = πA0
1(ω)t2, (15)

and the RKKY interaction is mediated by t . Therefore, it is
feasible to simulate the RKKY interaction by the following
formula:

JRKKY = c3U2

[
A0

1(ωRKKY)
8t2

U2

]2

, (16)

with c3 = 0.25 in Fig. 4(a) and 0.125 in Fig. 4(b). Here ωRKKY

is the energy (frequency) corresponding to JRKKY. One no-
tices they are consistent with our NRG results in the regime
U2 	 t , see the solid black curves in Figs. 4(a) and 4(b).
However, Fig. 4 also indicates that if t/U2 is large enough,
then the location of the peak deviates from the above relation-
ship, due to the SQDs are in the MO regime. One observes
that there is no sharp boundary between the RKKY and MO
regimes; instead, these two regimes are smoothly connected.

FIG. 5. Effective hybridization function between the central and
side QDs π�c−s(ω) in terms of different t . The remaining parameters
are the same as Fig. 2.

The deviation also could be attributed to the following picture.
When t grows, �c−s(ω) increases. If t is large enough, e.g.,
t = 0.02, then π�c−s(ω) around ω = 0 exceeds U2, see Fig. 5.
Thus above relation becomes invalid, because the perturbation
theory requires U2 	 π�c−s(ω).

On the other hand, if U2/t 	 1, then the RKKY peaks
are very close to the Fermi level. One then acquires a more
efficient way to estimate JRKKY. Fixing ε1 = 0, and taking
the value of A0

1(ω) at the Fermi surface, A0
1(0) = 1/(π�) [cf.

Eq. (12)]. One then obtains

JRKKY = c4
t4

U2�2
. (17)

It is found this equation agrees very well with the numerical
results in the RKKY regime with c4 = 1.2 in Fig. 4(a) and
0.8 in Fig. 4(b). Therefore, this formula is very helpful for
evaluating the scale of JRKKY. Furthermore, we stress that
when t is particularly small, i.e., t in Fig. 3(a), the RKKY
peaks as well the Kondo peak do exist in A2(ω) theoretically;
however, the orders are too small to be captured by numerical
techniques.

In addition, since Eq. (1) does not contain the item of the
RKKY interaction, and creating (annihilating) an additional
electron to (from) the many-body states of the SQDs also
relates to the exchange interaction J , one may think that the
additional peaks are produced by J , viz. Eq. (14). To clarify
this viewpoint, we also depict J versus t and U2 in Figs. 4(a)
and 4(b), respectively. It is seen the line shape of J deviates
significantly from those of our NRG results, indicating the
additional peaks are definitely not produced by J .

C. The suppression of the side Kondo behavior

From Fig. 2(a), one knows that the peak located at ω = 0
in A1(ω) disappears once t turns on. However, as mentioned in
Sec. III B, the zero-energy peak in turn raises in A2(ω), corre-
sponding to the Kondo resonance in the side dots. Henceforth,
we denote it as the side Kondo behavior, differing from the
regular Kondo effect which always occurs in those quantum
impurities sandwiched between different conduction baths
[12,17]. In this case, our present model maps onto a parallelly
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FIG. 6. (a) The height of the Kondo peak hK at nearly zero
temperature versus t and its fitting function. (b) Enlarged scale of
A2(ω) for various U2. The curves from the top to the bottom are
for U2 = 0.04 to 0.18 in steps of 0.02, respectively. The remaining
parameters are the same as Fig. 2.

organized double QDs coupled to a Fermi system with an
effective hybridization function �c−s(ω), which “filters” the
band states seen by the side QDs and modifies their couplings
to the leads [84]. As a result, the side Kondo effect generates
due to the exchange coupling J .

Furthermore, one finds that the side Kondo effect may only
persist for small t . As t increases, the height of the Kondo peak
hK decreases continuously. When t grows to the MO regime,
the Kondo effect is totally suppressed [cf. Figs. 3(b)–3(c)].
In Fig. 6(a), we show hK as a function of t . One finds the
evolution of hK could be matched by a function of t and �:

hK = c5
�

πt2
, (18)

with c5 = 0.25. In the standard single impurity Anderson
model with constant �, the height of the Kondo peak could be
illustrated by hK = 1/(π�) [12]. In our present model, the hy-
bridization function �c−s(ω) becomes nonconstant, and thus
we replace � with �c−s(0), giving a perfect fitting function of
hK , viz., Eq. (18). Meanwhile, one also finds that hK is smaller
by a factor of c5 than the standard result for a flat band with
the same hybridization strength.

Equation (18) also indicates that hK has no connection with
U2. To verify this picture, we show A2(ω) in terms of different
U2 in an enlarged scale in Fig. 6(b). It is clear that hK , i.e., the
ordinate of A2(ω = 0), does not change as U2 sweeps. How-
ever, if U2 is small, e.g., U2 = 0.04, then the spectral weight
turns to be flat in the vicinity of ω = 0, and hence the Kondo
effect is also suppressed. In fact, Eq. (18) could be obtained
through the Friedel sum rule, which bridges the local spectral
weight with the charge occupation in the QDs [85,86]. Since
in our present studies each QD is at half-filling (εi = −Ui/2)
with the charge number holding at 1.0 by symmetry, thus hK

does not depend on U2.
To make a deep understanding of this side Kondo behavior,

we show A1(ω) and A2(ω) at nearly zero temperature for t =

FIG. 7. (a) LDOS Ai(ω) of the CQD and SQDs at nearly zero
temperature for t = 0.01. (b) LDOS of each dot Adot and DOS of the
first site in the conduction lead AL0(ω) at nearly zero temperature for
a PDQD system with identical Coulomb repulsion 0.1 and dot-lead
hybridization 0.01. (c) The width of the side Kondo peak WK in A2(ω)
and its fitting expression as functions of t . (d) A2(ω) for temperatures
T > J (e.g., T = 10−2) and T < J (e.g., T = 10−8) with t = 0.01,
respectively. The remaining parameters are the same as Fig. 2 unless
otherwise specified.

0.01 in Fig. 7(a). One notices that the line shape of A2(ω) and
A1(ω) near ω = 0 are quite similar to the DOS of the quantum
dots Adot (ω) and the first site of the conduction lead AL0(ω)
in the general parallel double quantum dot (PDQD) system,
respectively, which are given in Fig. 7(b). These phenomena
indicate that the peak located at the Fermi level of A2(ω) is
assuredly resulted from the Kondo behavior. In fact, in our
present model, the CQD could be considered as a new bath,
with spectral function A0

1(ω). Since this effective bath is still
metallic with U1 = 0, one may expect essentially identical
behaviors in the SQDs, similar to the case of general PDQD
structure.

In Fig. 7(c), we show the t dependence of the width of the
side Kondo peak WK . We notice that WK could be fitted by an
exponential function of J and A0

1(ω = 0) = 1/(π�):

WK = c6U2

√
A0

1(ω = 0)Je−1/[A0
1(ω=0)J], (19)

with c6 = 0.164. This relation is similar to the Haldane’s
expression [87]. For a reference, please see Eq. (21). Inter-
estingly, c6 is very close to that in the modified Haldane’s
expression in Ref. [57]. Additionally, we also plot A2(ω) for
different temperature scales T in Fig. 7(d), typically for T > J
(e.g., T = 10−2) and T < J (e.g., T = 10−8), respectively.
One finds the peak at A2(ω = 0) reveals a typical Kondo-type
temperature variation, where for T > J , there is no Kondo
peak at the Fermi surface, whereas a it emerges if T < J
[88]. These behaviors confirm again that the narrow peak at
A2(ω = 0) is definitely resulted from the Kondo effect.

D. The thermodynamics properties

The above results are for zero temperature, more inter-
esting phenomena could be found at finite temperatures. In
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FIG. 8. Temperature-dependent (a) G(T ), (b) local magnetic mo-
ment μ2(T ), (c) entropy SHTQD(T ), and (d) spin-spin correlation
〈SiS j〉(T ) between QDs i and j for the QD device. Curves in panels
(a)–(c) along the black arrow are for t = 0.001–0.017 in steps of
0.004, 0.03, 0.04, and 0.1, respectively. Curves in panel (d) are for
t = 0.001, 0.008, and 0.03 respectively. Those labeled by 1–3 in
this panel are results for 〈S1S2〉, whereas 1′–3′ are for 〈S2S3〉. The
remaining parameters are the same as in Fig. 2.

Fig. 8, we show the linear conductance G(T ), the local mag-
netic moment μ2(T ), the entropy SHTQD(T ), and the spin-spin
correlation 〈SiS j〉(T ) between QDs i and j for the device
versus log10T . The uppermost curve in Fig. 8(a) is for small
t � �, e.g., t = 0.001. At high temperature with T 	 �

and T > U2, G(T ) ≈ 0 for all t . Because in this temperature
scale, local electrons in the device are independent, and the
many-body states |0〉, | ↑〉, | ↓〉, and |2〉 in each QD are
equally probable. Each QD then contributes 1/8 to μ2(T )
and ln4 to SHTQD(T ), resulting in total quantities μ2(T ) =
3/8 and SHTQD(T ) = 3ln4, accompanied by 〈SiS j〉 ≈ 0, see
Figs. 8(b)–8(d).

When T decreases to the regime � < T � U2, U2, which
favors singly occupied states in the SQDs, starts to play
an important role. States |0〉 and |2〉 in the SQDs are
then suppressed, and each SQD contributes 1/4 to μ2(T )
and ln2 to SHTQD(T ). Hence μ2(T ) = 1/2 + 1/8 = 5/8 and
SHTQD(T ) ≈ 2ln2 + ln4 = 4ln2. Here our numerical results
for μ2(T ) only reach about 0.6, and the platform of 4ln2
in SHTQD(T ) is not obvious, for a finite U2 is employed. By
tuning U2 upwards, one may expect that μ2(T ) in this regime
grows gradually, accompanied by a notable platform of 4ln2
in SHTQD(T ) if U2 is large enough.

As T decreases to the scale of �, the hybridization develops
between electrons on the CQD and those on the conduction
baths, due to �. Hence G(T ) increases gradually to its unitary
limit G0 due to the level broadening of the local orbital in the
CQD. In this case, the electron spin on the CQD is screened
and has no contribution to μ2(T ) and SHTQD(T ), resulting in
μ2(T ) ≈ 1/2 and SHTQD(T ) ≈ 2ln2.

Below �, the resonant tunneling holds, and one may find
a large plain in μ2(T ) and SHTQD(T ). However, when T de-
creases to the scale of JRKKY, μ2(T ) increases continuously to
about 0.7. Because in this temperature scale, the RKKY inter-
action between two SQDs turns to be pronounced. The local

spins on the SQDs are then arranged ferromagnetically, which
is confirmed by 〈S2S3〉 growing to about 0.25 in Fig. 8(d). The
device then locks into a high spin state with a total residual
spin Stot = 1, bringing μ2(T ) = Stot (Stot + 1)/3 = 2/3 and
SHTQD(T ) = ln(2Stot + 1) = ln3.

For larger t , the resonant tunneling is suppressed gradu-
ally at low temperature, and hence G(T ) deviates from its
maximum value [cf. t = 0.005 in Fig. 8(a)]. Furthermore, one
also notices that the temperature T ∗

K where G(T ) weakens to
zero increases with growing t , suggesting that the temperature
window where the resonant tunneling taking place becomes
more and more narrow, see along the black arrow in Fig. 8(a).
Under such a situation, a Kondo singlet generates between
electrons in the CQD and those in the SQDs, which suppresses
the antiferromagnetic coupling between electrons in the CQD
and those in the conduction bands, and the Lorentzian peak
splits and decreases gradually [cf. t = 0.01 in Fig. 2(a)].
Meanwhile, spins on the SQDs are partially screened by that
on the CQD through t at a certain temperature T ∗

K , leading
to a residual spin Stot = 1/2. As a result, μ2(T ) = 1/4 and
SHTQD(T ) = ln2 in the regime T < T ∗

K .
When t is in the MO regime, e.g., t = 0.03, 0.04, and

0.1, the coupling between the central and side QDs becomes
extremely strong [cf. Fig. 8(d)]. Spin singlet between the
central and side QDs develops at a higher temperature than
that between the CQD and the conduction bands due to t > �.
Therefore, the G(T ) = G0 state is totally suppressed in nearly
all temperature scales, μ2(T ) = 1/4 and SHTQD(T ) = ln2
then hold in a large regime of T . Furthermore, the local spin
now reveals an interesting window of diamagnetic behavior
with μ2(T ) < 1/4, which becomes more and more significant
as t increases, and is accompanied by the suppression of the
side Kondo behavior in A2(ω). This phenomenon is simi-
lar to those findings of a negative magnetic susceptibility in
narrow-band systems [89]. For decreasing U2, the evolutions
of G(T ), μ2(T ), SHTQD(T ), and 〈SiS j〉(T ) are similar to the
above behaviors, hence we neglect them here.

To make a deep understanding of T ∗
K against t and U2,

we depict T ∗
K and its fitting functions versus t and U2 in

Figs. 9(a) and 9(b), respectively. Here T ∗
K is defined by the

temperature corresponding to the half maximum of μ2(T )
where the device decreases from the high spin state to 1/4
at low temperature. One finds T ∗

K could be described by a
function of � and J:

T ∗
K = c7�e−c8�/J , (20)

with the fitting parameters are given by c7 = 0.12, c8 = 2.58
in Fig. 9(a) and c7 = 0.07, c8 = 2.17 in Fig. 9(b), respectively.
It is seen that the fitting functions are consistent with our
NRG results. This behavior is similar to the two-stage Kondo
effect in the side-coupled double quantum dot system [79,80].
However, singular phenomena could be identified. In the typ-
ical two-stage Kondo effect, local spins are screened by two
processes at different Kondo temperatures TK and T ∗

K , accom-
panied by the appearance and the disappearance of the Kondo
resonant peak in the central impurity, respectively, whereas in
our present model, the first screening process does not refer
to the Kondo effect, and hence Eq. (20) does not contain
the element of TK . Here TK is the regular Kondo temperature
without t . Second, in the typical two-stage Kondo effect, both
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FIG. 9. T ∗
K as functions of (a) t and (b) U2, respectively. Scatter

plots are captured from our NRG data, while the solid curves are the
fitting functions. The other parameters are the same as in Fig. 2.

the fitting parameters c7 and c8 are some constants of order
1, which are also distinguished from ours. Because in our
present model, the two screening processes are separated by a
RKKY temperature scale JRKKY. Thus T ∗

K becomes extremely
low comparing with the first screening temperature 2�, and c7

is much lower than that in the side-coupled double quantum
dot system [79,80]. Additionally, it is worth to be noted that
there should be theoretically a second drop occurring in G(T ),
μ2(T ), and SHTQD(T ) at T ∗

K for t1 = 0.001 [cf. Figs. 8(a)–
8(c)]. However, in such a case, Eq. (20) gives a T ∗

K ∼ 10−143,
and hence it is extremely difficult to be captured in both
related experiments and theoretical simulations.

As a summary of this section, when U1 = 0, the CQD could
be considered as a new bath, with spectral function A0

1(ω),
and hence our present model maps to a PDQD model with
a Lorentzian-type DOS, whose width is nearly 2�. We have
established formulas for the Fano antiresonance, the RKKY
interaction, and the side Kondo behaviors. More importantly,
it is found that for this kind of structured nonconstant DOS,
the Kondo physics seems only associate with the DOS at the
Fermi level.

IV. FULLY INTERACTING CQD WITH U1 = 0.1
AND U2 �= 0

A. The Fano antiresonance

The above results are restricted for the noninteracting case
of the CQD, it is quite interesting to check its applicability
for the strong-interacting case. In Fig. 10(a), we depict A1(ω)
for various t with U1 = U2 = 0.1. When t is zero, a Kondo
peak emerges at ω = 0, with a characteristic width equals to
TK . Here TK is the Kondo temperature of the single impurity
Anderson model, which could be estimated through the Hal-
dane’s expression [87]:

TK = U1

√
ρJCe−1/(ρJC ), (21)

with ρJC = 8�/(πU1) is the effective coupling between the
conduction bands and the CQD. When t becomes nonzero,

FIG. 10. (a) A1(ω) at nearly zero temperature with and without
t . [(b) and (c)] The width of the Fano antiresonance dip WF at nearly
zero temperature as functions of t (b) and U2 (c) and their fitting
functions. The other parameters are given by � = 0.01, U1 = U2 =
0.1, t = 0.01, and εi = −Ui/2 unless otherwise specified.

the Fano antiresonance also appears, and hence the Kondo
peak splits gradually as t increases. In Figs. 10(b) and 10(c),
we describe the width of the Fano dip WF and its fitting
expressions as functions of t and U2, respectively. We find that
WF could be described by an exponential function of t and TK :

WF = c9TK e−c10TK /J , (22)

with c9 = 1.08 and c10 = 0.30 in Fig. 10(b) and c9 = 11.62
and c10 = 3.34 in Fig. 10(c). We remind that J is given by
Eq. (14).

B. The RKKY interaction

In Figs. 11(a) and 11(c), we depict A2(ω) at nearly zero
temperature in terms of different t and U2, respectively. One
may see the side Kondo behavior hardly develops in the
SQDs. However, the evolution of JRKKY is similar to the case
of U1 = 0 [cf. Fig. 3, Fig. 11(a), and Fig. 11(c)]. JRKKY versus
t4/(U2T 2

K ) and its fitting function are presented in Fig. 11(b)
(sweeping t) and Fig. 11(d) (sweeping U2), respectively. Scat-
tered squares are captured in A2(ω) of our NRG results.
Equation (16) now turns to be

JRKKY = c11U2
[
A0

1(ωRKKY)J
]2

. (23)

with J is given by Eq. (14). On the other hand, for finite U1,
the ground state of the CQD is expected to be a Fermi liquid
having an effective bandwidth TK and a LDOS at the Fermi
surface A0

1(0) ∼ 1/(πTK ) [79,81]. We then replace Eq. (17)
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FIG. 11. A2(ω) at nearly zero temperature in terms of different
(a) t and (c) U2. JRKKY and its fitting functions versus t4/(U2T 2

K ) by
sweeping (b) t and (d) U2, respectively. The remaining parameters
are the same as Fig. 10 unless otherwise specified.

with the following equation:

JRKKY = c12
t4

U2T 2
K

. (24)

In Figs. 11(b) and 11(d), we show the results fitted by Eq. (24).
One may see in both panels that Eq. (24) has a good agreement
with the numerical results with c12 = 0.03 in both panels.
However, on the other hand, Eq. (23) only matches with our
NRG results in a small regime of t or U2, which are not shown
here [for a reference, please see Fig. 14(b) for U1 = 0.01]. For
strong repulsion U1, the fitting functions by Eq. (23) deviate
from the NRG results very quickly with increasing t or U2.
Therefore, JRKKY at its root only associates with the LDOS of
A0

1(ω) at the Fermi surface.

C. The thermodynamics properties

Figures 12(a)–12(c) show the temperature-dependent
G(T ), μ2(T ), and SHTQD(T ), respectively. When � < T < Ui

and t is small, e.g., t = 0.0005, each dot is singly occupied,
with the many-body states | ↑> and | ↓> equally proba-
ble. Thus μ2(T ) ≈ 3/4 and SHTQD(T ) ≈ 3ln2. For T < TK ≈
1.01 × 10−3, the local spin on the CQD is screened by the
conduction leads due to the typical spin −1/2 Kondo effect,
thus G(T ) increases to its unitary limit. In such a case, the
spins on the SQDs remain isolated, and hence μ2(T ) ≈ 1/2,
and SHTQD(T ) ≈ 2ln2. When T decreases to the scale of
JRKKY, spins on the SQDs are then organized parallelly [cf.
t = 0.0005 in Fig. 12(d)]. As a result, μ2(T ) ≈ 2/3, and
SHTQD(T ) ≈ ln3.

For larger t , e.g., t = 0.001, the second screening process
occurs at a low-temperature T ∗

K due to a spin singlet generates
between electrons on the CQD and one of the SQDs. As a
result, G(T ) decreases to 0 gradually, associated with μ2(T )
and SHTQD(T ) change to 1/4 and ln2, respectively. These be-
haviors indicate a two-stage Kondo effect. As one may expect,
with increasing t , T ∗

K grows in an exponential-type function of

FIG. 12. Temperature-dependent (a) G(T ), (b) μ2(T ),
(c) SHTQD(T ), and (d) 〈SiS j〉(T ). Curves in panels (a)–(c) along the
black arrow are for t = 0.0005–0.002 insteps of 0.0005, 0.0035,
0.008, 0.02, 0.05, and 0.08, respectively. Curves in (d) are for
t = 0.0005, 0.008, and 0.08 respectively. Those labeled by 1–3 in
this panel are results for 〈S1S2〉, whereas 1′–3′ are for 〈S2S3〉. The
remaining parameters are the same as in Fig. 10.

TK and J:

T ∗
K = c13TK e−c14TK /J , (25)

which is plotted in Fig. 13, which c13 = 2.61 and c14 = 0.82.
Here c14 is a little smaller than that in the side-coupled double
dot structures, which is always of the order 1, because in our
present model, the two screening temperatures are separated
by JRKKY.

If t becomes larger such that t ∼ �, e.g., t = 0.008, then
μ2(T ) and SHTQD(T ) drop to 1/4 and ln2 directly at a
high temperature, and μ2(T ) reveals an one-peak shape. The
quantum dots are then in the local moment regime with ferro-
magnetic Kondo coupling between the conduction band and
the CQD, hence at low temperature the quantum dot spin
behaves essentially as a free local moment [24,27,83,90].

When t turns to be extremely large t � Ui, e.g., t = 0.08,
the system then moves to the MO orbital regime, with |〈SiS j〉|
is reduced comparing with those in the local moment regime
[cf. t = 0.008 and 0.08 in Fig. 12(d)].

FIG. 13. T ∗
K as functions of t . The remaining parameters are the

same as in Fig. 10.
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FIG. 14. (a) A2(ω) at nearly zero temperature in terms of differ-
ent t with fixed U1 = 0.01. (b) The height of the Kondo peak hK

at nearly zero temperature versus of t , and its fitting function for
U1 = 0.01. (c) A2(ω) at nearly zero temperature in terms of differ-
ent t for the strong-interacting case with U1 = 0.1. The remaining
parameters are the same as Fig. 2 unless otherwise specified.

D. The RKKY interaction and side Kondo behavior
for the weak-interacting CQD

We finish this section by briefly focusing on the RKKY
interaction and the side Kondo behavior when the CQD is
weakly interacted. In Fig. 14(a), we show A2(ω) in terms
of different t with fixed U1 = 0.01. As we have expected,
the RKKY peaks move away from the Fermi level when
t increases. A detailed picture is given in Fig. 14(b) with
squares. Furthermore, its fitting functions by Eqs. (23) and
(24) are also shown in Fig. 14(b) with the fitting parameters
are given by c11 = 0.25 and c12 = 1.35. Again, one finds both
equations are consistent with our NRG results when t is small;
however, Eq. (23) deviates very quickly from our numerical
results when t is larger. Additionally, the Kondo peak is also
suppressed gradually as t increases, and its hight hK could
also be illustrated by Eq. (18), with c5 = 0.14 [cf. Fig. 14(c)].
Because for weakly interacted CQD, the width of the peak at
the Fermi level is very close to �.

V. QUANTUM PHASE TRANSITION AND DICKE
EFFECT: EFFECT OF ε1

In a similar linear structure of three quantum dots, G.
Chiappe et al. found that the measurement of the linear con-
ductance varying with the charge of the central dot could be
an efficient readout procedure, when the system operates as

FIG. 15. [(a) and (c)] 〈SiS j〉 and [(b) and (d)] G(T ≈ 0) and
charge occupation on the CQD 〈n1〉 versus ε1 at nearly zero tempera-
ture. The results are for U1 = 0.0 [(a) and (b)] and U1 = 0.1 [(c) and
(d)], respectively. The remaining parameters are given by U2 = 0.1,
� = 0.01, t = 0.01, and ε2 = −U2/2.

a quantum gate with the aid of the logarithmic discretiza-
tion embedded cluster approximation [91]. Here we show
that similar behaviors may also emerge in our system when
ε1 is tuned via a gate potential. The left panels in Fig. 15
show 〈SiS j〉 at nearly zero temperature as a function of ε1

for U1 = 0 [Fig. 15(a)] and 0.1 [Fig. 15(c)], respectively, with
each SQD is singly occupied. It is seen that charging the CQD
triggers QPTs from an antiferromagnetic correlation between
the SQDs to a ferromagnetic one, then to an antiferromagnetic
one, regardless of whether the CQD is strongly or noncor-
related. These QPTs are associated with the maximum of
G(T ≈ 0) and the processes where the charge number of the
CQD 〈n1〉 increases from 0 (1) to 1 (2) [cf. Fig. 15(b) and
Fig. 15(d)].

Above behaviors could be attributed to the following pic-
tures. When ε1 is low enough, e.g., ε1 = −0.03 for U1 = 0,
the CQD is nearly fully occupied, thus the spins on the SQDs
decouple from that on the CQD with 〈S1S2〉 ≈ 0. Under such
a situation, the ground state of the isolated quantum dots
with t = 0 is a many-body state where spins on the SQDs
are antiferromagnetically correlated. This state persists even
when the CQD hybridizes with the conduction leads [91]. The
spectral weight of A1(ω = 0) is nearly zero, see Fig. 16(a),
hence G(T ≈ 0) ≈ 0. However, there exists a broaden peak
located at about ε1, which refers to the energy of removing
an electron from the CQD. On the other hand, the spectral
weight of A2(ω) is nearly symmetric with respect to ω = 0,
with two Coulomb peaks located at ±U/2, respectively. If ε1

is in the high conductance regime, then one notices two sharp
peaks develop at the Fermi levels of both A1(ω) and A2(ω),
respectively [cf. Fig. 16(b)], which then reveal line shapes of
the Dicke effect [92,93]. In this case, A1(ω) could be written
as a superposition of a broad and a sharp peak, associated
with long- and short-lived states, respectively. The former
state, coupled to the conduction baths through �, is called
superradiant, whereas the latter state, coupled to the SQDs
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FIG. 16. [(a)–(d)] The LDOS of the quantum dots Ai(ω) (i =
1, 2) at nearly zero temperature in terms of different ε1, with fixed
U1 = 0.0 [(a) and (b)] and U1 = 0.1 [(c) and (d)]. The remaining
parameters are the same as in Fig. 15 unless stated otherwise.

through t , is called subradiant. When ε1 moves to this regime,
quantum interference in A1(ω) through these two different
couplings occurs, and a δ-like shape exhibits at the Fermi
level. One expects a significant enhancement of the linear
conductance. This phenomenon resembles the Dicke effect in
quantum optics [94] and has been predicted in some QD struc-
tures [92,93,95–97]. As for A2(ω), the Dicke effect is resulted
from the quantum interference between the direct coupling
with the CQD and the indirect coupling with the conduction
bands. For strong U1 = 0.1, the above discussions also apply,
indicating the effect of local repulsion in the CQD can be
neglected. We note that above argument is distinguished from
that in Ref. [91], where the enhancement of the conductance
was attributed to the Kondo effect.

VI. CROSSOVER FROM THE SIDE KONDO EFFECT TO
THE FERROMAGNETIC KONDO EFFECT: EFFECT OF U1

We finish our discussion by analyzing the effect produced
by changing U1. From above discussions, we know that for
a fixed t , when U1 is zero, our model behaves as a PDQD
model connected to conduction bath with nonconstant DOS,
whereas if U1 is large enough, then it goes into the local-
moment phase. In this section, we show that by tuning U1, it
allows to study the crossover between the side Kondo state
and the local moment phase. In Figs. 17(a) and 17(b), we
show A2(ω) at nearly zero temperature for U1 = 0 and 0.01,
respectively, with fixed t = 0.005. It is seen that the Kondo
peak is suppressed gradually as U1 increases. In Fig. 17(c),
we illustrate the height of the side Kondo peak hK at nearly
zero temperature versus U1, and its fitting function. One may
see that in the large-U1 regime satisfying U1 � 4�, hK could
be well illustrated by the following function:

hK = c15
TK

πt2
, (26)

with c15 = 0.04 and TK is given by Eq. (21) and thus is U1

dependent. However, if U1 ∼ � or U1 < �, then this func-

FIG. 17. [(a) and (b)] A2(ω) at nearly zero temperature for U1 =
0 and 0.01, respectively. [(c) and (d)] The height of the side Kondo
peak hK at nearly zero temperature versus U1 for fixed t = 0.005
(c) and 0.01 (d) and their fitting functions. (e) G(T ) and (f) μ2(T ) as
functions of temperature T in terms of different U1. Curves in panels
(e) and (f) along the black arrow are for U1 = 0, 0.01, 0.03, 0.04,
0.06, 0.09, 0.12, and 0.19, respectively. The remaining parameters
are given by U2 = 0.1, � = 0.01, t = 0.005, and εi = −Ui/2 unless
stated otherwise.

tion deviates from our NRG results. Because under such a
circumstance, the Kondo effect in the CQD cannot generate,
and hence the full width at half maximum of A0

1(ω) is not TK .
In this case, we extract the width of A0

1(ω), which is denoted
as W̃p, directly from our NRG results. One finds

hK = c16
W̃p

πt2
. (27)

However, it is worthwhile to note that one can hardly use an
identical proportionality factor in this regime. More specif-
ically, the fitting parameter c16 decreases slightly as U1

increases, e.g., with c16 = 0.13 for U1 = 0 and c16 = 0.03 for
U1 = 0.035. These behaviors also apply to any fixed t , as is
shown for example for t = 0.01 in Fig. 17(d) with c15 = 0.09.
Furthermore, such a crossover could also be identified in
G(T ) and μ2(T ). For small U1/t , a plateau exists in G(T ) for
intermediate T , accompanied by μ2(T ), revealing a two-peak
shape, whereas if U1/t is large enough, then the plateau is
suppressed, and only one peak could be found in μ2(T ), due
to the ferromagnetic Kondo effect.

VII. CONCLUSION

To conclude, we have studied the dynamic and thermody-
namic properties of a hybrid tripartite quantum dot device,
with one QD embedded in two electrodes, and the other two
QDs side coupled to the central one. By modeling this sys-
tem using a triple-impurity Anderson model, we first focused
our attentions on the case where the CQD is noninteracting.
The destructive quantum interference, the RKKY interaction,
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the side Kondo effect and its suppression, and their tem-
perature dependence are studied in detail, highlighting their
relations with the band-CQD hybridization �, the CQD-SQD
tunnelling t , the on-site electron-electron Coulomb repulsion
Ui, as well the temperature T . For the purpose of compar-
ison, results for the weak- and strong-interacting CQD are
also mentioned. Furthermore, by tuning the charge of the
CQD, the spin correlation between two SQDs transits from
an antiferromagnetic type to a ferromagnetic one, and then
to an antiferromagnetic one, regardless of whether the CQD
is strongly or noncorrelated. The enhancement of the con-
ductance is found to be associated with the Dicke effect,
distinguishing from previous works. When the Coulomb re-
pulsion in the CQD sweeps, our present structure acts as an
ideal prototype revealing a crossover from an effective PDQD
model to the ferromagnetic Kondo phase, and the relation of
the height of the side Kondo peak is well established.

Noticing the width of the peak at the Fermi level of the
central dot without t , viz., A0

1(ω), is nearly 2� for the non- and
weak-interacting case, while is TK for a finite strong U1. By
defining W̃p as the effective bandwidth for all scales of U1, as
has been given in Sec. VI, and combining Eqs. (17) and (24),
one then obtains a unified formula of the RKKY interaction:

JRKKY ∝ t4

U2W̃ 2
p

. (28)

We stress that JRKKY only associates with the quantity of
A0

1(ω) at the Fermi surface. It is noted that W̃p is also asso-
ciated with the effective scattering rate. In the perturbative
formula it is �, whereas in the Kondo renormalized case it
is TK .

When U1/t is small, Eqs. (18) and (27) are well suitable
for describing the height of the side Kondo peak regardless
of whether the CQD is non- or weakly interacted, whereas if
U1/t is strong, then Eq. (26) matches well with the numerical
results. One then obtains a unified formula for the height of
the side Kondo effect hK :

hK ∝ W̃p

πt2
. (29)

In addition, for a noninteracting CQD, the local spin in the
SQDs is partially screened at T ∗

K , which satisfies an exponen-
tial function of �, whereas for a finite strong U1, a two-stage
Kondo effect occurs for J � �. Combining Eqs. (20) and
(25), one also gets a universal relation for T ∗

K suitable for the
non-, weak-, and strong-interacting cases:

T ∗
K = aW̃pe−bW̃p/J , (30)

which is also applicable for illustrating the relation between
W̃p and the width of the Fano antiresonance dip WF by replac-
ing T ∗

K with WF [cf. Eqs. (13) and (22)].
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cients of the Anderson model via the numerical renormalization
group, J. Phys.: Condens. Matter 6, 2519 (1994).

[89] W. Hofstetter and S. Kehrein, Symmetric Anderson impurity
model with a narrow band, Phys. Rev. B 59, R12732 (1999).

[90] A. K. Mitchell, T. F. Jarrold, and D. E. Logan, Quantum phase
transition in quantum dot trimers, Phys. Rev. B 79, 085124
(2009).

[91] G. Chiappe, E. V. Anda, L. C. Ribeiro, and E. Louis, Kondo
regimes in a three-dots quantum gate, Phys. Rev. B 81,
041310(R) (2010).

035428-14

https://doi.org/10.1103/PhysRevLett.64.2304
https://doi.org/10.1103/PhysRevB.44.7131
https://doi.org/10.1103/PhysRevB.74.045312
https://doi.org/10.1103/PhysRevLett.108.086405
https://doi.org/10.1126/science.1146110
https://doi.org/10.1103/PhysRevB.78.033402
https://doi.org/10.1021/jp203462f
https://doi.org/10.1126/science.1156538
https://doi.org/10.1063/1.4981022
https://doi.org/10.1103/PhysRevB.94.035442
https://doi.org/10.1103/PhysRevApplied.9.024015
https://doi.org/10.1038/nmat3050
https://doi.org/10.1038/nnano.2008.404
https://doi.org/10.1039/D1SC01932E
https://doi.org/10.1039/D1TC01541A
https://doi.org/10.1039/D0SC03107K
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1103/PhysRevB.79.085106
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.99.076402
https://doi.org/10.1103/PhysRevLett.95.196801
https://doi.org/10.1103/PhysRevB.49.17123
https://doi.org/10.1103/PhysRevB.71.075305
https://doi.org/10.1103/PhysRevB.81.115316
https://doi.org/10.1103/PhysRevB.89.115110
https://doi.org/10.1103/PhysRevB.105.075430
https://doi.org/10.1021/jp401936s
https://doi.org/10.1103/PhysRevLett.97.096603
https://doi.org/10.1103/PhysRev.150.516
https://doi.org/10.1103/PhysRevLett.61.1768
https://doi.org/10.1088/0022-3719/11/24/030
https://doi.org/10.1088/0953-8984/6/13/013
https://doi.org/10.1103/PhysRevB.59.R12732
https://doi.org/10.1103/PhysRevB.79.085124
https://doi.org/10.1103/PhysRevB.81.041310


UNIFIED FORMULATIONS FOR RKKY INTERACTION, … PHYSICAL REVIEW B 106, 035428 (2022)

[92] P. A. Orellana, M. L. L. de Guevara, and F. Claro, Con-
trolling Fano and Dicke effects via a magnetic flux in
a two-site Anderson model, Phys. Rev. B 70, 233315
(2004).

[93] P. A. Orellana, G. A. Lara, and E. V. Anda, Kondo and Dicke
effect in quantum dots side coupled to a quantum wire, Phys.
Rev. B 74, 193315 (2006).

[94] T. Brandes, Coherent and collective quantum optical effects in
mesoscopic systems, Phys. Rep. 408, 315 (2005).

[95] E. Vernek, P. A. Orellana, and S. E. Ulloa, Suppression of
Kondo screening by the Dicke effect in multiple quantum dots,
Phys. Rev. B 82, 165304 (2010).

[96] Q. Wang, H. Xie, Y.-H. Nie, and W. Ren, Enhancement of
thermoelectric efficiency in triple quantum dots by the Dicke
effect, Phys. Rev. B 87, 075102 (2013).

[97] S. Głodzik, K. P. Wójcik, I. Weymann, and T. Domanski,
Interplay between electron pairing and Dicke effect in triple
quantum dot structures, Phys. Rev. B 95, 125419 (2017).

035428-15

https://doi.org/10.1103/PhysRevB.70.233315
https://doi.org/10.1103/PhysRevB.74.193315
https://doi.org/10.1016/j.physrep.2004.12.002
https://doi.org/10.1103/PhysRevB.82.165304
https://doi.org/10.1103/PhysRevB.87.075102
https://doi.org/10.1103/PhysRevB.95.125419

