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Chiral anomaly and nonlinear magnetotransport in time reversal symmetric Weyl semimetals
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The recent discovery of the quantum nonlinear Hall effect has revived the field of nonlinear transport. Here,
we investigate the magnetic-field-induced nonlinear transport in time reversal symmetric Weyl semimetals. We
show that the interplay of the band-geometric quantities, such as the Berry curvature, and the magnetic part of
the Lorentz force can give rise to finite nonlinear Hall conductivity that is linear in the magnetic field. In addition,
we show that the chiral chemical potential which represents chiral anomaly gives rise to linear magnetic-field-
dependent nonlinear longitudinal conductivities along with the nonlinear Hall conductivities. Such nonlinear
conductivities can manifest through nonlinear transport measurement as well as nonlinear optical phenomena
like photocurrent and the second harmonic generation.

DOI: 10.1103/PhysRevB.106.035423

I. INTRODUCTION

Weyl semimetals (WSM) are well known for hosting low-
energy quasiparticle excitation which mimics the properties
of Weyl fermions [1–8]. Their novel bulk electronic structure
comprises of doubly degenerate linear band crossing of non-
degenerate bands, known as Weyl nodes. In addition, these
materials support nontrivial and exotic Fermi arc states on
their surface. Intense research focused on the impact of Weyl
quasiparticles on physical properties has led to the discovery
of several novel bulk phenomena [9–11] such as the quantum
anomalies [12], and some unconventional surface phenom-
ena [13,14]. Many of the bulk properties of WSM can be
understood in terms of the Berry curvature associated with
Weyl nodes, which act as source and sink of Berry curvature
depending on the chirality of the nodes. The Weyl semimetal
phase with space inversion symmetry (SIS) is realized in some
magnetic systems [1,15,16], and it can also be induced in
Dirac semimetals such as Cd3As2 [17] and Na3Bi [18] by
a magnetic field. Weyl systems with time reversal symme-
try (TRS) have been realized in the TaAs family [2–4,19],
amongst others. In addition to these, WSM where both the
symmetries are broken [20] have been recently realized in
RAlGe family (R = rare earth) [21] and in CeAlSi [22].

The realization of WSM in SIS broken materials has fur-
ther promoted the exploration of second-order nonlinear (NL)
responses [23–25] in them. It has been shown that due to its
topological aspects, the photogalvanic responses [26–33] and
the second harmonic generation [34] show novel behavior in
WSM. Furthermore, the recently discovered Berry curvature
dipole-induced NL anomalous Hall effect [35–40] has also
been realized in WSM [41–43] in the absence of any magnetic
field. Owing to these, it is expected that the NL responses
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of WSM in the presence of a magnetic field will also in-
corporate rich physics [44–46]. In the strong magnetic field
limit, the NL conductivities have been found to show quantum
oscillation behavior [28,30] owing to the presence of Landau
levels, while the Berry curvature induced corrections in the
semiclassical equations of motion [47] have been shown to
give rise to nontrivial responses in the weak magnetic field
regime [44,45,48–52].

In this paper, we explore the magnetic-field-induced NL
transport coefficients in WSM with TRS. This is quantified
through the NL conductivities σabc defined from the relation
j2,a = σabcEbEc, where j2,a is the current and Eb(Ec) are
the electric field. Using the semiclassical Boltzmann trans-
port formalism in the weak magnetic field regime, we show
that the SIS broken WSM possesses NL conductivities both
in longitudinal and Hall directions that vary linearly with
the magnetic field. We show that the physical origin of the
NL conductivities can be attributed to two different physical
mechanisms. The first mechanism arises from the interplay
between the band geometry and the magnetic field component
of the Lorentz force. The other mechanism is dependent on
the chiral chemical potential, which arises from the chiral
anomaly in WSMs semimetals.

More specifically, we show that in the chiral chemical
potential independent conductivity, the NL Hall conductivity
with the same last two indices can be expressed as σabb(a �=
b) ∝ Ba, and the Hall conductivities are finite only when a
and b are cyclic coordinates. Such NL Hall conductivity (per-
pendicular to the applied electric field) drives current along
the direction of the magnetic field. The physical mechanisms
responsible for this are the Lorentz force, the Berry curvature
dependent correction to the phase-space factor, and the Berry
curvature induced magnetic velocity correction. Furthermore,
the NL Hall conductivity with the different last two indices
can be expressed as σaab(a �= b) ∝ Bb. For such NL conduc-
tivities current flows perpendicular to the direction of the
magnetic field. The mechanisms behind this contribution are
the Lorentz force, correction to the phase-space factor, and
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the “Berry force.” In the chiral chemical potential dependent
sector, the internode scattering between the opposite chirality
nodes gives rise to NL longitudinal and NL Hall conductivities
that are linear in the magnetic field. These contributions are
related to the chiral anomaly in WSMs semimetals, which
is a well-known phenomenon. Since these contributions are
proportional to the internode scattering timescale (τv), they
are expected to play pivotal roles in the chiral limit where
τv � τ . These novel NL Hall conductivities can be measured
through NL resistivity measurements in magnetotransport ex-
periments [53–56]. In addition, they can also manifest through
nonlinear optical experiment of photocurrent and second har-
monic generation.

The rest of the paper is organized as follows: In Sec. II we
discuss the semiclassical Boltzmann transport formalism and
derive the generic forms of the NL conductivities. We present
our model-specific calculations of the NL conductivities for
the inversion symmetry broken WSM in Sec. III. This is
followed by a discussion in Sec. IV and, finally, we summarize
our results in Sec. V.

II. SEMICLASSICAL THEORY FOR NONLINEAR
CONDUCTIVITIES

In this section, we present the general expressions of
second-order NL conductivities in quantum materials in pres-
ence of a magnetic field. For an ac electric field, two different
NL conductivities are commonly defined. The second har-
monic conductivity relates the applied electric field to the
second harmonic current [ j (2ω)

2 ] via the phenomenological
relation j (2ω)

2,a = σabcEbEc. Here, sum over the repeated spatial
indices (a, b, c) is implied. The dc or rectification NL con-
ductivity (σ R

abc) relates the rectification current [ j (0)
2 ] to the

applied electric field through j (0)
2,a = σ R

abcEbE∗
c . In this work

we primarily focus on the second harmonic conductivity.
To calculate the NL current, we employ the semiclassical

Boltzmann transport formalism. In this formalism, the elec-
trical current is expressed as j = −e

∫
[dk]D−1ṙg(t ), where

“−e” is the electronic charge and [dk] = dk/(2π )3. It is
evident from the above expression that we need three key
ingredients for calculating the current. These are (i) the equa-
tions of motion of the carriers, (ii) the phase-space density
D−1, and, (iii) the nonequilibrium distribution function (NDF)
g(t ).

In presence of a homogeneous time-dependent electric
field E(t ) and a static magnetic field B, the equations of
motion of the charge carriers, in a given band, are given
by [57–60]

ṙ = D
[
ṽ + e

h̄
E × � + η

e

h̄
(ṽ · �)B

]
, (1)

h̄k̇ = D

[
−eE − αe(ṽ × B) − ζ

e2

h̄
(E · B)�

]
. (2)

Here, 1/D = [1 + γ e
h̄ B · �] is the phase-space factor and

� = ∇k × 〈u|i∇k|u〉 is the Berry curvature with |u〉 being
the periodic part of the Bloch wave function. The band ve-
locity, modified by the orbital magnetic moment (OMM) m,
is given by ṽ = v − vm where we have defined h̄v = ∂ε/∂k
and h̄vm = ∂εm/∂k with εm = m · B. Note that the magnetic

field modifies the band energy as ε̃ = ε − ξεm, through the
Zeeman-type coupling of the magnetic field and the OMM,
m = −i e

2h̄ 〈∇ku| × (Ĥ − ε)|∇ku〉. We emphasize that to keep
track of the sources of various magnetic field dependencies,
we explicitly put α for the magnetic part of the Lorentz force,
ζ for the Berry force, η for the magnetic velocity, γ for the
phase-space factor, and ξ for the OMM. At the end of the
calculation, all these “tracking” factors will be set to 1.

The NDF is calculated from the iterative solution of the
Boltzmann equation. Below we solve the Boltzmann transport
equation within the relaxation time approximation using the
two scattering time approaches and study its consequences
on the nonlinear transport coefficients. In the steady state,
we have the Boltzmann equation for each Weyl node of the
form [61]

∂g

∂t
+ k̇ · ∇kg = −g − ḡ

τ
− ḡ − f̃

τv

. (3)

Here, g, ḡ, and f̃ are the nonequilibrium local distribution,
local equilibrium distribution (for each node), and the global
equilibrium distribution function, respectively. The OMM and
the magnetic field Zeeman coupling induced global equilib-
rium distribution function are given as f̃ = f (ε − ξm · B)
with f (ε) = 1/[1 + e(ε−μ)/kBT ] being the Fermi-Dirac distri-
bution function at chemical potential μ and temperature T ,
with kB being the Boltzmann constant. In Eq. (3), the first
term on the right-hand side represents the effect of intran-
ode scattering with scattering timescale τ , and the second
term represents the internode scattering that relaxes the local
equilibrium distribution function to the global equilibrium
distribution function with effective relaxation time τv .

In the weak electric field limit, the nonequilibrium part
of the distribution function can be written as a power series
of electric-field-dependent terms:

∑∞
n=1 fn where fn ∝ En.

We restrict ourselves up to f2 for the calculation of second-
order NL response. The calculation of linear order distribution
functions including the effect of chiral anomaly in terms of
chiral chemical potential δμ is well known and presented in
Appendix A. Here, we will focus on the second-order non-
linear distribution function, especially on the effect of chiral
anomaly. For ac electric field, we consider the ansatz [35,62]

f2(t ) = f (0)
2 + f (0)∗

2 + f (2ω)
2 ei2ωt + f (2ω)∗

2 e−i2ωt , (4)

where f (0)
2 represents the dc (or rectification) part and f (2ω)

2
represents the second harmonic part of the NL distribution
function. With this, we construct the Boltzmann equation for
f (2ω)
2 which is given by

i2ω f (2ω)
2 − D

h̄

[
eE + ζ

e2

h̄
(E · B)�

]
· ∇k f (ω)

1

− D

h̄
αe(v × B) · ∇k f (2ω)

2

= − f (2ω)
2

τ
+

(
1 − τ

τv

) f̄ (2ω)
2

τ
. (5)

Here, f̄ (2ω)
2 = ḡ(2ω)

2 − f̃ and f (ω)
1 is the first order in electric

field contribution of the NDF (see Appendix A for more de-
tails). Since the deviation of the NL distribution function from
the equilibrium distribution is expected to contain both first-
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and second-order derivatives of the Fermi function, we can
express f̄2 = δμ(21) f ′ + δμ(22) f ′′, with f ′ = ∂ε f and f ′′ =
∂2
ε f . Here, f̄2 is the dc counterpart of the deviation of the

local distribution function. It has been shown that the num-
ber of carriers do not change in the second order in electric
field [51,63]. Consequently, we consider f̄2 = 0. Therefore,
the nonequilibrium distribution function second order in elec-
tric field is given by

f (2ω)
2 =

∑
ν

(
αDτ2ωL̂

)ν
[
D

eτ2ω

h̄

(
E+ ζ

e

h̄
(E · B)�

)
· ∇k f (ω)

1

]
.

(6)
In Eq. (6), we have defined L̂ = e

h̄ (v × B) · ∇k as the Lorentz
force (magnetic part) operator. The modified scattering times
are defined as τω = τ/(1 + iωτ ) and τ2ω = τ/(1 + i2ωτ ). It
is straightforward to expand the master solution (6) and obtain
the distribution function up to any order of magnetic field
dependence. In this paper we are interested in the lowest
(linear) order of magnetic field dependence and the key steps
of the calculation have been highlighted in Appendix B. Note
that from Eq. (6) we can construct the rectification part of
the distribution function f (0)

2 by substituting τ2ω → τ and
E → E∗.

From the general expression of Eq. (6) it is evident that the
nonlinear distribution function will have two parts of separate
origin. They stem from the two parts of the linear distribution
function which we denote as 〈 f ω

1 〉, the part that is independent
of the chiral chemical potential and 〈〈 f ω

1 〉〉 for the part that
is dependent on chiral chemical potential (see Appendix A
for details of the calculations). To be specific about these
different parts in the nonlinear distribution function, we use
single angular brackets 〈 f 2ω

2 〉 to denote the part that is inde-
pendent of the chiral chemical potential and double angular
brackets 〈〈 f 2ω

2 〉〉 for the part that is proportional to the chiral
chemical potential. In the following subsections, we calculate
the NL conductivities originating from these two parts of the
distribution function, separately.

A. Conductivities independent of chiral chemical potential

In this section, using the NDF independent of chiral
chemical potential, we calculate the NL conductivities. We
emphasize that in addition to the second-order NL distribution
function, the NL current can also arise from the linear-E
part of the distribution function when it is combined with
the anomalous velocity E × �. The NL conductivities can be
expressed in the form of a momentum-dependent conductivity
σ̃abc, where σabc = −e3τω/h̄

∫
[dk]σ̃abc. The magnetic-field-

independent part of the NL conductivity is obtained to
be

σ̃
(0)
abc = εabd�dvc f ′ + τ2ωva∂bvc f ′. (7)

Here, εabd is the antisymmetric Levi-Civita symbol. The first
term of Eq. (7) is the NL anomalous Hall conductivity [37]
and the second term is the NL Drude conductivity. The expres-
sion of magnetic-field-dependent part of the NL conductivity
is a bit more complicated as various magnetic field contri-
butions come into play. The total NL conductivity (linear in
the magnetic field) can be expressed as σ̃

(1)
abc = σ̃

(η)
abc + σ̃

(ζ )
abc +

σ̃
(α)
abc + σ̃

(γ )
abc + σ̃

(ξ )
abc . The different contributions to the magne-

toconductivity can be calculated to be

σ̃
(η)
abc = τ2ω�vBa∂bvc f ′, (8)

σ̃
(ζ )
abc = εabd�d�vBc f ′ + τ2ωva(�db

B ∂dvc + Bc∂b�v) f ′, (9)

σ̃
(α)
abc = τωεabd�d L̂vc f ′ + va

(
τ 2

2ωL̂∂b + τωτ2ω∂bL̂
)
vc f ′, (10)

σ̃
(γ )
abc = −εabd�d�Bvc f ′ − τ2ωva(�B∂b + ∂b�B)vc f ′, (11)

σ̃
(ξ )
abc = −εabd�d (vmc f ′ + εmvc f ′′) − τ2ωvma∂bvc f ′

− τ2ωva∂b(vmc f ′ + εmvc f ′′). (12)

Here, we have defined �db
B ≡ (e/h̄)�d Bb and �v ≡ (e/h̄)� ·

v. We emphasize here that the derivative operator ∂b = ∂/∂kb

and L̂ operate on all the terms appearing to their right-hand
side. Together, Eqs. (8)–(12) describe all the NL conductivity
components, which vary linearly with the magnetic field.

In materials that preserve SIS, the energy dispersion, Berry
curvature, and the OMM are even functions of the crystal
momentum. Consequently, the orbital magnetic moment cou-
pling energy and the corresponding velocity satisfy εm(−k) =
εm(k) and vm(−k) = −vm(k), respectively, and the bare band
velocity obeys v(−k) = −v(k). Using these conditions, it
is straightforward to show that all the NL conductivities
[Eqs. (7)–(12)] vanish in presence of SIS, as expected. If the
SIS is broken, the presence or absence of TRS affects the NL
conductivity. In presence of TRS, while the energy dispersion
is an even function, the Berry curvature and the OMM are odd
functions of the crystal momentum. Consequently, we have
εm(−k) = −εm(k), vm(−k) = vm(k), and v(−k) = −v(k).
Within these constraints, we find that for the magnetic-field-
independent NL conductivities (σ (0)

abc), contributions that are
quadratic in the scattering time vanish while linear scattering
time-dependent contributions are finite. On the other hand, for
the linear magnetic-field-dependent NL conductivity (σ (1)

abc),
contributions that are quadratic in scattering time survive
while the other (linear and cubic) scattering-time-dependent
contributions vanish.

For completeness, and to complement the discussion of
the NL conductivity, we also discuss the linear conductiv-
ity of WSM (see Appendix A for detailed derivation). The
magnetic-field-independent linear conductivity is given by

σ
(0)
ab = −e2τω

∫
[dk]vavb f ′ − e2

h̄
εabc

∫
[dk]�c f . (13)

Here, the first term is the Drude conductivity and the second
term is the intrinsic anomalous Hall conductivity which van-
ishes in TRS invariant systems. The linear order in magnetic
field contribution to the linear conductivity is given by

σ
(1)
ab = −e2τω

∫
[dk]

[(
η�vBavb + ατωvaL̂vb

− γ va�Bvb + ζva�vBb
)

f ′

− ξ
{(

vmavb + h̄−1τ−1
ω εabd�dεm + vavmb

)
f ′

+ vaεmvb f ′′}]. (14)
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It can be easily checked that in a TRS invariant system,
the diagonal components (a = b) of Eq. (14) will vanish,
consistent with Onsager’s relation. So we can only have the
linear-B-dependent Hall components (a �= b). Furthermore,
we find that in presence of TRS only those contributions to
the linear-B conductivity are nonzero which are quadratic and
zeroth order in the scattering time. From Eq. (14) it is evident
that the quadratic dependence of scattering time is described
by the Lorentz force and the scattering time-independent con-
tribution has its origin in the OMM [64].

The framework presented in this section for exploring the
NL magnetoconductivity is very general, and applicable to
all SIS broken materials. In the rest of the paper, we apply
this to explore the NL magnetoconductivity in time reversal
symmetric WSM.

B. Conductivities originating from chiral chemical potential

In this section, we calculate the nonlinear conductivities
that originate from the chiral chemical potential depen-
dent terms of the distribution function, namely, 〈〈 f (ω)

1 〉〉 and
〈〈 f (2ω)

2 〉〉. First, we focus on the linear order distribution
function. Since 〈〈 f (ω)

1 〉〉 is linear in electric field, only the
anomalous velocity (electric field dependent) can induce a
nonlinear current that is linear in magnetic field. For each
Weyl node, this current is given by

j2 = e2

h̄

∫
[dk](E × �)

τω

τ

(
1 − τ

τv

)
δμ f ′. (15)

Here, δμ = sτv
e2 h̄v3

F
2μ2 E · B, with s as the chirality of the Weyl

node [65]. Now, in presence of TRS the Berry curvature
satisfies �(−k) = −�(k), and hence the NL conductivity
originating from Eq. (15) vanishes identically. Consequently,
we remark that the chiral anomaly induced NL Hall effect
mentioned in Ref. [52] vanishes in our system due to the
presence of TRS.

We now focus on the second-order NL distribution func-
tion. To obtain the NL distribution function from Eq. (6)
proportional to the chiral chemical potential δμ, which is
linear in the magnetic field, we have ignored the Lorentz force
operator and the phase-space density. This is reasonable as we
are only interested in the linear magnetic field dependence.
Additionally, we also ignore the Berry force term, and obtain
the NL distribution function as

〈〈 f (2ω)
2 〉〉 = −eτ2ω

h̄

τω

τ

(
1 − τ

τv

)
E · ∇kδμ f ′. (16)

Using this, and noting that only band velocity will contribute
to the second-order NL current, we can express the NL chiral
anomaly induced conductivity as

σ
δμ

abc = s
e4τωτ2ωτv h̄v3

F

2τμ2

(
1 − τ

τv

)
Bcvavb f ′′. (17)

In contrast to Eq. (15), Eq. (17) is expected to be finite
in a time reversal symmetric system. We emphasize that in
WSMs semimetals where both the symmetries are broken,
chiral anomaly contributes to the NL conductivity through
both Eqs. (15) and (17). However, there are a couple of subtle
differences between the two. First, we note that while the
contribution in Eq. (15) is odd (∝τv) in scattering time, the

FIG. 1. A schematic depiction of the band dispersion for (a) TRS
preserving (with SIS broken) WSM, and (b) TRS broken (with SIS
preserved) WSM. Due to the presence of TRS, minimum four Weyl
nodes are required in the SIS broken WSM. In contrast, when TRS
is absent and SIS is present, a minimum two Weyl nodes is possible.
(c) Shows three different scenarios for the location of the Fermi level,
with respect to the location of the Weyl points. In the left panel, Fermi
level is in the conduction band of both Weyl nodes (μ > Q0 > 0). In
the middle panel, Fermi energy lies in the conduction band of one
Weyl node and the valence band of the other Weyl node (Q0 > μ >

−Q0). The right panel shows the scenario when the Fermi level lies
in the valence band of both the Weyl nodes (μ < −Q0 < 0).

contribution in Eq. (17) is even in scattering time. Second,
while Eq. (15) contributes only to the NL Hall conductivities,
Eq. (17) manifests through both the NL longitudinal and NL
Hall conductivities.

III. NONLINEAR CONDUCTIVITY IN WEYL
SEMIMETALS

In this section, we calculate the linear and NL magnetocon-
ductivity for a SIS broken WSM. The simultaneous presence
of TRS and SIS forces all the bands in the given material to
be doubly degenerate, and this excludes the possibility of the
formation of a WSM, in which two nondegenerate linearly
dispersing bands cross each other [8]. Thus, for realizing a
WSM state, either SIS or TRS or both the symmetries must be
broken. In a TRS preserving (SIS broken) WSM, a minimum
of four Weyl nodes [66–68] have to be there. Among the four
nodes, the nodes with the same chirality are connected by a
time reversal invariant momentum, and corresponding charge
neutrality points reside at the same energy. However, there
is no symmetry restriction among the nodes with different
chirality. On the other hand, in a SIS preserving (TRS broken)
WSM, a minimum of a single pair of two Weyl nodes of
opposite chirality is allowed, and for each such pair of Weyl
nodes, the corresponding charge neutrality point resides at
different energies. Both of these scenarios have been sketched
in Figs. 1(a) and 1(b), respectively. In our work, we present the
NL conductivity calculation for a TRS invariant WSM with a
minimum of four Weyl nodes as shown in Fig. 1(a).
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TABLE I. Symmetrized nonlinear conductivity σ̄abc, in the units of σ̃NL which is defined in Eq. (20), for the TRS invariant WSM. Here the
conductivities are independent of the chiral chemical potential. The subscript a denotes the direction of current flow, and b and c represent the
direction of the electric field. The Greek indices in the parentheses denote the sources of the magnetic field that are inducing finite conductivity
and the total is obtained by adding all the contributions. The diagonal components of the NL conductivity are identically zero. The NL Hall
conductivities with the same last two indices (σabb) are nonzero when a and b are cyclic coordinates and the magnetic field dependence is
dictated by Ba. The Hall conductivities with different last two indices can be written as σ̄aab = σ̄aba and its magnetic field dependence is
determined by Bb.

σ̄abc σ̄axx σ̄ayy σ̄azz σ̄axy σ̄ayz σ̄azx

σ̄xbc 0 Bx (2η + α − γ ) 0 −By

(
α

2 − γ

2 + ζ
)

0 0
σ̄ybc 0 0 By(2η + α − γ ) 0 −Bz

(
α

2 − γ

2 + ζ
)

0
σ̄zbc Bz(2η + α − γ ) 0 0 0 0 −Bx

(
α

2 − γ

2 + ζ
)

The low-energy Hamiltonian of a single Weyl node can be
written as [20,69–72]

Hs(k) = sh̄vF σ · (k − sQ) − sQ0. (18)

Here, k is the crystal momentum, σ = (σx, σy, σz ) are the
Pauli matrices, vF is the Fermi velocity, and s = ±1 is the
chirality index. In Eq. (18), the Q and Q0 denote the position
of the Weyl nodes in the momentum and energy, respectively.
For simplicity of calculation, we consider the case where the
Weyl node is situated at the origin and emphasize that nonzero
Q, which breaks the TRS, does not alter any of the results.
With Q = 0, the Hamiltonian in Eq. (18) simplifies to Hs(k) =
sh̄vF σ · k − sQ0. The breaking of SIS in this model is re-
flected through the finite Q0 which positions the Weyl nodes
of opposite chirality at different energy. More specifically,
the Weyl point of the positive chirality node lies at energy
−Q0, while the Weyl point for the negative chirality node lies
at Q0, making the energy separation between the two Weyl
nodes equal to 2Q0. On the other hand, the TRS is enforced
here by considering a minimum of four Weyl nodes in such a
way that the two nodes of the same chirality out of the four
are situated at the same energy [see Fig. 1(a)]. The energy
dispersion and band velocity for the Hamiltonian are given
by εs(k) = sbh̄vF k − sQ0 and v(k) = sbvF k/k, respectively,
where k = |k| and sb = +1 (−1) for the conduction (valence)
band. We note that nonzero Q0 makes ε+(k) �= ε−(k), imply-
ing the breaking of inversion symmetry. The Berry curvature
and the OMM for this model are given by [45,52]

� = −ssb
k

2k3
; m = −sevF

k
2k2

, (19)

respectively. We note that these band-geometric quantities do
not depend on the energy separation (Q0) of the Weyl points
in the corresponding Weyl nodes. In contrast to the Berry
curvature, the OMM is independent of the band index. Both
these band-geometric quantities are highly concentrated near
the Weyl point, as expected. Using these in Eqs. (7)–(12),
we calculate the NL conductivity for single scattering time
and the symmetrized results σ̄abc = (σabc + σacb)/2 are sum-
marized in Table I. We note that the NL Drude conductivity
is identically zero due to the presence of TRS. Furthermore,
we find that the NL anomalous Hall conductivity is also
zero. Although individual Weyl node possesses finite NL
anomalous Hall conductivity, the total response vanishes after
summing over the nodes. This happens due to the absence
of Berry curvature dipole in this system. In order to realize

the NL anomalous response [37], the mirror symmetry has
to be broken. This is generally achieved in WSM with tilt or
with higher-order (band-bending) terms [37,40,73,74] in the
effective Hamiltonian.

Coming to the linear magnetic-field-dependent NL con-
ductivities, all the conductivities and their origin of magnetic
field dependencies are explicitly highlighted in Table I. For
compactness, the various components of the conductivity
are expressed as σ̄abc = σ̃NLBd (η, α, γ , ζ , ξ ) where Bd is the
component of the magnetic field along the d ∈ (x, y, z) axis,
and the total contribution is given by the sum of different
magnetic field sources. We have defined

σ̃NL = e4v2
F τ 2

π2h̄2|μ|
r0

3
(
1 − r2

0

) , (20)

with r0 ≡ Q0/|μ|. For simplicity, we have taken τω → τ ,
τ2ω → τ in the calculation. We find three key features in
the NL conductivities. (i) All the longitudinal NL conduc-
tivities (σaaa) vanish within the linear-B approximation. (ii)
We find that the NL Hall components with the same last two
indices, which we term as “pure” Hall components, such as
σ̄zxx, σ̄yzz, σ̄xyy are nonzero and determined by the magnetic
velocity term (η) in addition to the phase-space factor (γ )
and the magnetic part of the Lorentz force (α). These NL
conductivities can be expressed as σabb ∝ Ba which implies
that the currents corresponding to the conductivity flow along
the direction of the applied magnetic field. However, these
conductivities are only nonzero for elements where a and
b are cyclic coordinate. (iii) The NL Hall components with
different last two indices, which we term as the “mixed” Hall
components, are determined by the Berry force (ζ ) in addition
to the phase-space factor (γ ) and the Lorentz force (α). The
magnetic field dependence of the mixed components, σaab ∝
Bb, implies that the currents corresponding to the conductivity
flow perpendicular to the magnetic field direction. These are
some of the main findings of our paper in the context of
SIS broken WSM. Interestingly, we find that the OMM (ξ )
contributions to the NL conductivity are identically zero for
the TRS preserving case.

We emphasize here that for the calculation of conduc-
tivities for Weyl nodes with opposite chirality separated
in energy, three different scenarios based on the posi-
tion of the Fermi level, as highlighted in Fig. 1(c), are
possible. In scenario I, the Fermi level resides in the conduc-
tion band of both the Weyl nodes. In scenario II, the Fermi
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level resides in the conduction band of one Weyl node and
in the valence band of the other Weyl node. In scenario III,
the Fermi level resides in the valence band of both the Weyl
nodes. Interestingly, we find that the total conductivity, includ-
ing all the Weyl nodes, can be expressed by same expression
for these three scenarios. This has been shown in Appendix C
in detail.

Although we have considered the three scenarios, a con-
tinuous transition of Fermi level among them is not allowed
within our formalism. This is because the employed semiclas-
sical Boltzmann formalism is generally valid at high carrier
densities such that μ � h̄/τ [75,76]. Hence, the above results
are not applicable near the limit |r0| = 1, when the chemical
potential is located at the Weyl point of either of the two Weyl
nodes.

Now, we compare our results with some recent related
works [45,52] and highlight the differences. We note that in
Ref. [45] the authors provide result of a single Weyl node. To
our satisfaction, we can obtain those results by setting Q0 = 0
in our single-node calculations presented in Appendix C. We
emphasize that total NL responses from all nodes are zero
for Q0 = 0 as the inversion symmetry is restored. Recently
in Ref. [52], it has been shown that the inversion symmetry
broken tilted WSM possesses NL magnetoresponse. We note
that the NL conductivities discussed in Ref. [52] are linear in
scattering time τ ; however the NL conductivities we discuss
in our paper are proportional to the square of the scattering
time τ 2. We emphasize here that the TRS has to be bro-
ken in addition to SIS in order to obtain linear-τ -dependent
NL magnetoconductivity. Comparing the order of magnitude
of NL conductivities discussed in our paper with the re-
sults in Ref. [52] we find that for certain parameter values
vF = 3 × 105 m/s, τ = 10−13 s, Rs(tilt) = 0.5, μ = 20 meV,
and Q0 = 10 meV, the conductivities are of the comparable
order: σ (Rs = 0)/σ (Rs �= 0) ∼ O(101), where σ (Rs = 0) =
σ̃NL and σ (Rs �= 0) is the NL conductivity in Eq. (11) of [52].

Having discussed the NL conductivities that are indepen-
dent of the chiral chemical potential, we now turn our focus
on the chiral chemical potential induced conductivities. Fol-
lowing Eq. (17), the chiral-anomaly-induced contributions are
calculated for the TRS preserved Weyl Hamiltonian as

σ
δμ

abc = σ̃iσ̃NLBcδab. (21)

Here, we have defined

σ̃i = 2
(τv

τ
− 1

)(
1 − r2

0

)
. (22)

All the components of this chiral chemical potential induced
conductivity are summarized in Table II. We have calculated
for different locations of the Fermi level described in Fig. 1,
and found that the NL conductivity is identical in all the
three scenarios. We note that these new contributions are
finite only in presence of finite Q0, due to the factor σ̃NL.
This is expected since SIS breaking is a necessary criterion
for having any second-order nonlinear responses. There are
a few interesting facts about these NL conductivities. (i)
The chiral chemical potential induces the longitudinal NL
response linear in magnetic field, provided that the opposite
chirality nodes are situated at different energies. (ii) In the
chiral limit where τv � τ , σ̃

δμ

abc predominantly determines the

TABLE II. Additional contribution to the symmetrized nonlinear
conductivity σ̄

δμ

abc due to chiral chemical potential, for the TRS in-
variant WSM. The results are in the units of σ̃iσ̃NL, which are defined
in Eqs. (20) and (22). Only the mixed Hall conductivities and the
longitudinal components reflect the effect of internode scattering.

σ̄
δμ

abc σ̄ δμ
axx σ̄ δμ

ayy σ̄ δμ
azz σ̄ δμ

axy σ̄ δμ
ayz σ̄ δμ

azx

σ̄
δμ

xbc Bx 0 0 By 0 Bz

σ̄
δμ

ybc 0 By 0 Bx Bz 0
σ̄

δμ

zbc 0 0 Bz 0 By Bx

nonlinear conductivities. (iii) For these NL conductivities to
be nonzero the E · B must be nonzero, i.e., the external fields
are nonorthogonal.

For completeness, we now discuss the linear conductivity
of WSM, starting from Eqs. (13) and (14). As expected from
the Onsager relations, the magnetic-field-induced part of the
longitudinal components are identically zero and the Drude
conductivity is obtained to be [71]

σaa = 2e2τμ2
(
1 + r2

0

)
3π2h̄3vF

, (23)

where a = (x, y, z). The Drude contribution is linear in the
scattering time and quadratic in the node separation. The
Drude conductivity in Eq. (23) reduces to the known re-
sult [65,71] in the limit of zero-energy separation between
the Weyl points Q0 = 0. Here, the modification in the Drude
conductivity corresponds to the fact that the energy separation
between the nodes gives rise to different carrier concentrations
at the opposite chirality. The linear Hall conductivity is given
by

σab = −εabcBc
e3vF μ

6π2 h̄3

(
ξ

h̄2

μ2
(
1 − r2

0

) + 4ατ 2

)
. (24)

We highlight that the Hall conductivity has two components:
one is quadratic and the other is zeroth order in the scattering
time. While the former extrinsic contribution has its origin in
the Lorentz force (term ∝α), the latter intrinsic contribution
(term ∝ξ ) originates from the OMM [64].

IV. DISCUSSION

In our paper, we have highlighted the interplay of
geometric quantities with the Lorentz force to induce lin-
ear magnetic-field-dependent conductivity in time reversal
symmetric systems. It is important to mention here that
the search for magnetic-field-dependent current, especially
the photocurrent, started quite early through the work of
Ivchenko et al. [77]. It was shown that in gyrotropic sys-
tems, unpolarized light can induce a magnetic-field-dependent
photocurrent, if one considers Zeeman coupling in the car-
rier dispersion. Since then, several works have proposed
magnetic-field-dependent second-order photocurrent based on
different mechanisms. For instances, light-induced electric
current caused by asymmetric spin-dependent scattering be-
tween Zeeman-splitted bands in gyrotropic symmetry classes
has been proposed in Refs. [77–80]. On the other hand, a
linear magnetic field dependence in the electrical conductiv-
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ity [81,82] or the dc photocurrent [83] was shown to arise in
chiral systems, where the distribution of the carriers is odd in
the wave vector. A similar kind of magnetic field dependence
has also been predicted in mesoscopic systems, taking the
electron-electron interaction into account [84].

We would like to add here that the results obtained in
this paper using the semiclassical Boltzmann theory are quite
general, and can also be derived using the recently developed
quantum kinetic formalism [85–88]. We found that the latter
formalism reconciles with the semiclassical approach in the
single-band limit with some subtle differences. For instance,
in the semiclassical formalism, the Berry curvature modifies
the phase-space density in presence of magnetic field. On
the other hand, this modification in the phase space mani-
fests through the equilibrium density matrix (population) in
the quantum kinetic theory, instead of the density of states.
However, these subtle differences do not alter the overall
expressions of the magnetoconductivities.

V. SUMMARY AND CONCLUSION

To wrap up, in this paper we have investigated the second-
order NL conductivity in time reversal symmetric WSM in
presence of a weak magnetic field. Starting from the semiclas-
sical Boltzmann transport formalism, we obtain the general
expressions of all the NL conductivities, and identify the dif-
ferent physical mechanisms contributing to the magnetic field
dependencies. Using the developed framework for NL mag-
netoconductivity in conjugation with appropriate symmetry
analysis, we calculate the NL conductivity in WSM with bro-
ken SIS. The calculated linear magnetic-field-dependent NL
Hall conductivities represent the overall NL Hall responses
since the Berry curvature dipole induced NL anomalous Hall
effect vanishes in our system. We highlight that the physical
mechanisms of NL conductivities in WSM can be categorized
into two classes. In one class, which is chiral chemical po-
tential independent, the interplay of the quantum-geometric
Berry curvature and the magnetic part of the Lorentz force
plays pivotal role. In this class, we predict two types of new
NL Hall effects. In one case, which we term as pure NL Hall
effect, the current flows along the direction of the magnetic
field, but perpendicular to the applied electric field. In the
other case, which we term as the mixed NL Hall effect, the
NL current flows perpendicular to the magnetic field direction.
In the other class, which is chiral chemical potential depen-
dent, the NL conductivities originate from the effect of chiral
anomaly. This physical mechanism gives rise to longitudinal
conductivities in addition to the Hall conductivities. These
newly predicted NL conductivities in WSM can be probed
through NL magnetotransport or through NL magneto-optical
experiments.
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APPENDIX A: SEMICLASSICAL THEORY FOR
LINEAR CONDUCTIVITIES

In this Appendix, we will calculate current that is linear
in E field and linear in B field. We assume that in the steady
state, the first-order distribution function oscillates with fun-
damental frequency with the form [35,45] f1(t ) = f (ω)

1 eiωt +
f (ω)∗
1 e−iωt . We can construct the Boltzmann equation of the

form

iω f (ω)
1 − D

h̄

[
eE + ζ

e2

h̄
(E · B)�

]
· ∇k f̃

− D

h̄
αe(ṽ × B) · ∇k f (ω)

1

= − f (ω)
1

τ
+

(
1 − τ

τv

) ḡ(ω)
1 − f̃

τ
. (A1)

Now, we assume the following form of the local equilibrium
in terms of the chiral chemical potential f̄ (ω)

1 ≡ ḡ(ω)
1 − f̃ =

−δμ f ′ within the Taylor series expansion. From the above
equation, we can calculate the nonequilibrium distribution
function as

f (ω)
1 =

∑
ν

(
αDτωL̂

)ν
[
D

eτω

h̄

(
E + ζ

e

h̄
(E · B)�

)
· ∇k f̃

−τω

τ

(
1 − τ

τv

)
δμ f ′

]
. (A2)

We can separate the distribution function into two parts:
f (ω)
1 = 〈 f (ω)

1 〉 + 〈〈 f (ω)
1 〉〉 where we associate the first term to

the intranode contributions and the second part to δμ, the
chiral chemical potential. Here, we mention a few points about
the chiral chemical potential dependent part. The chiral chem-

ical potential is given by δμ = sτv
e2 h̄v3

F
2μ2 E · B which is linear

in magnetic field. The δμ is proportional to the internode
scattering time and when the Lorentz operator operates on the
chiral chemical potential part it vanishes identically. So we
can denote

〈〈 f (ω)
1 〉〉 = −τω

τ

(
1 − τ

τv

)
δμ f ′. (A3)

The rest of the distribution function is 〈 f (ω)
1 〉 and in the rest

of the section we denote it without the angular brackets for
simplicity of notation. We expand the series in Eq. (A2) in or-
ders of B field in the limit of small magnetic field [44,47,89].
Using this expansion, the nonequilibrium part can be written
as f (ω)

1 = f (ω)
10 + f (ω)

11 , where the first subscript denotes the
order of electric field and the second subscript denotes the
order of magnetic field. We obtain

f (ω)
10 = eτωE · v f ′, (A4)

f (ω)
11 = eτω(ζ�vB − γ�Bv) · E f ′

− ξeτωE · (vm f ′ + εmv f ′′)

+αeτ 2
ωL̂v · E f ′. (A5)

We note that these results are consistent with the previous
studies [44,45,47,90].

Using the distribution functions we can calculate current.
The zeroth order in B-field current can be written as j10(t ) =
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j (ω)
10 eiωt + j (ω)∗

10 e−iωt . Separating the different order of scatter-
ing time dependence, we obtain

j (ω)
10 (τ 0

ω ) = −e2

h̄

∫
[dk](E × �) f , (A6)

j (ω)
10 (τω ) = −e2τω

∫
[dk]v(E · v) f ′. (A7)

The first one is the intrinsic anomalous Hall effect where
current flows perpendicular to the electric field. Symmetry
analysis shows that in presence of TRS, the anomalous Hall
effect vanishes. The second one is the ordinary Drude current.
The linear order in B-field current can be written as j11(t ) =
j (ω)
11 eiωt + j (ω)∗

11 e−iωt . We emphasize that “equilibrium” distri-
bution function in presence of a magnetic field f̃ = f − ξεm f ′
also contributes to the current in addition to the nonequi-
librium parts (A4) and (A5). Now, using these we calculate
current in various order in scattering time. The even power of
scattering time-dependent current is given by

j (ω)
11 (τ 0

ω ) = e2

h̄
ξ

∫
[dk](E × �)εm f ′, (A8)

j (ω)
11 (τ 2

ω ) = −e2τ 2
ωα

∫
[dk]vL̂v · E f ′. (A9)

Current that is linear order in scattering time is given by

j (ω)
11 (τω ) = e2τω

∫
[dk][ξvmE · v f ′ − ηB�vv · E f ′

− v(ζ�vB − γ�Bv) · E f ′

+ ξvE · (vm f ′ + εmv f ′′)]. (A10)

The linear-B-dependent currents calculated in Eqs. (A8)–
(A10) have been earlier discussed in Refs. [44,45,47,90].
In presence of TRS (broken SIS) various quantities
satisfy (εm,�)(−k) = −(εm,�)(k), v(−k) = −v(k), and
vm(−k) = vm(k), hence, all the contributions ∝τω vanish.
However, currents proportional to the even power of scattering
time survive, out of which the Lorentz force contribution ∝τ 2

ω

gives rise to the classical Hall effect [89,91], and the anoma-
lous velocity contribution ∝τ 0

ω gives rise to OMM-induced
intrinsic Hall effect [64]. On the other hand, in presence of SIS
(broken TRS) the various quantities satisfy (εm,�)(−k) =
(εm,�)(k), v(−k) = −v(k), vm(−k) = −vm(k), and in that
case all the linear-B-dependent terms are expected to be
nonzero.

APPENDIX B: SEMICLASSICAL THEORY FOR THE
NONLINEAR CONDUCTIVITIES

In this Appendix, we calculate current that is NL in the E
field. The ansatz for the nonequilibrium part of the distribution
function quadratic in E field [35,45] can be written as

f2(t ) = f (0)
2 + f (0)∗

2 + f (2ω)
2 ei2ωt + f (2ω)∗

2 e−i2ωt , (B1)

where f (0)
2 represents the rectification part and f (2ω)

2 represents
the second harmonic part. With this, from Eq. (6) we obtain

f (2ω)
2 =

∑
ν

(
αDτ2ωL̂

)ν
D

eτ2ω

h̄

[
E + ζ

e

h̄
(E · B)�

]
· ∇k f (ω)

1

(B2)

and

f (0)
2 =

∑
ν

(
αDτ L̂

)ν
D

eτ

h̄

[
E∗ + ζ

e

h̄
(E∗ · B)�

]
· ∇k f (ω)

1 .

(B3)
We emphasize that from Eq. (B2) we can generate Eq. (B3) by
τ2ω → τ and E → E∗. Now it is straightforward to separate
out the chiral chemical potential dependent and independent
terms. The chiral chemical potential dependent part has been
discussed in the main text. Here, we discuss the independent
part which is denoted as 〈 f (2ω)

2 〉. For brevity, we denote it as
f (2ω)
2 in the rest of this section. From this master solution it is

now straightforward to separate out the distribution function
in various order in magnetic field as f (2ω)

2 = f (2ω)
20 + f (2ω)

21 .
These can be calculated as

f (2ω)
20 (τ2ω, τω ) = e2τ2ωτω

h̄
(E · ∇k)E · v f ′, (B4)

f (2ω)
21 (τ2ω, τω ) = e2τ2ωτω

h̄

[
ζ

e

h̄
(E · B)(� · ∇k)v · E f ′

− γ�B(E · ∇k)v · E f ′

+ (E · ∇k){(ζ�vB − γ�Bv) · E f ′

− ξE · (vm f ′ + εmv f ′′)}
]
, (B5)

f (2ω)
21 (τ 2

2ω, τω ) = α
e2τ 2

2ωτω

h̄
L̂(E · ∇k)E · v f ′,

f (2ω)
21 (τ2ω, τ 2

ω ) = α
e2τ2ωτ 2

ω

h̄
(E · ∇k)L̂v · E f ′. (B6)

We note that the first two expressions are ∝τ 2 and the last two
expressions are ∝τ 3. We can obtain the rectification part f (0)

2
from these expressions just by replacing τ2ω by τ and E, first
one from the left, by E∗. These results are consistent with the
previous studies [44,45].

The magnetic-field-independent contributions to the cur-
rent come from the semiclassical band velocity and Berry
curvature induced anomalous velocity. The second harmonic
current that is zeroth order in magnetic field can be written as
j20(t ) = j (2ω)

20 ei2ωt + j (2ω)∗
20 e−i2ωt , where

j (2ω)
20 (τω ) = −e3τω

h̄

∫
[dk](E × �)v · E f ′, (B7)

j (2ω)
20 (τω, τ2ω ) = −e3τωτ2ω

h̄

∫
[dk]v(E · ∇k)E · v f ′. (B8)

The rectification part can be written as j20 = j20 + j∗20 replac-
ing τ2ω by τ and E (first one from the left) by E∗ in the above
expressions. The j (2ω)

20 (τω ) represents the NL anomalous cur-
rent [37,55] while the second term is the ordinary NL Drude
current originating from the band velocity. In presence of TRS
but broken SIS, only the NL anomalous Hall contribution is
expected to be nonzero. The breaking of SIS plays the key
role in the quadratic NL response, as in the presence of SIS
both the contributions vanish identically.
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For the linear-B contributions, the second harmonic current
can be similarly written as j21(t ) = j (2ω)

21 ei2ωt + j (2ω)∗
21 e−i2ωt .

In various orders of scattering time we obtain

j (2ω)
21 (τω ) = −e3τω

h̄

∫
[dk](E × �)[(ζ�vB − γ�Bv) · E f ′

− ξE · (vm f ′ + εmv f ′′)], (B9)

j (2ω)
21 (τ 2

ω ) = −α
e3τ 2

ω

h̄

∫
[dk](E × �)L̂v · E f ′, (B10)

j (2ω)
21 (τω, τ2ω )

= −e3τωτ2ω

h̄

∫
[dk](η�vB − ξvm )(E · ∇k)v · E f ′

− e3τωτ2ω

h̄

∫
[dk]v

[
ζ

e

h̄
(E · B)(� · ∇k)v · E f ′

− γ�B(E · ∇k)v · E f ′

+ (E · ∇k)[(ζ�vB − γ�Bv) · E f ′

−ξE · (vm f ′ + εmv f ′′)]
]
, (B11)

j (2ω)
21 (τω, τ 2

2ω )

= −α
e3τωτ 2

2ω

h̄

∫
[dk]vL̂(E · ∇k)v · E f ′, j (2ω)

21 (τ 2
ω, τ2ω )

= −α
e3τ2ωτ 2

ω

h̄

∫
[dk]v(E · ∇k)L̂v · E f ′. (B12)

The NL conductivities extracted from these expressions are
presented in the main text. We note that this general formal-
ism for linear B-field dependent NL conductivity has been
earlier discussed in Refs. [44,45]. It is straightforward to see
that in presence of SIS (TRS broken), all these terms vanish
identically. In presence of TRS (broken SIS), however, the
current ∝τ 2 survives while the contributions ∝(τ, τ 3) vanish
identically.

APPENDIX C: DETAILS OF CALCULATION FOR
NONLINEAR CONDUCTIVITY IN WSM

In this Appendix, we present the details of our calculation
of NL conductivity for a pair of Weyl nodes, of which one
is situated at energy Q0 and the other is situated at energy
−Q0. For that, we first calculate the NL conductivities of a
single Weyl node with band crossing at zero energy given by
Hs(k) = sh̄vF σ · k. Then we modify the Fermi energy depen-
dencies for individual nodes to include the positional shift in
the energy. The velocity for this model Hamiltonian is given
by v = sbvF k/k, while the Berry curvature and OMM are
given by [45,52] � = −ssbk/(2k3) and m = −sevF k/(2k2).
The linear Drude conductivities which are diagonal compo-
nents of the linear conductivity matrix in absence of magnetic
field are calculated to be [65]

σaa = e2τμ2

6π2h̄3vF
; a ∈ (x, y, z). (C1)

Equation (C1) does not depend on the chirality of the nodes
and whether the Fermi levels reside in the conduction band
or valence band. In presence of magnetic field the Onsager’s

reciprocal relations restrict the longitudinal conductivities to
be minimum quadratic order in magnetic field which is out of
the scope of this paper. However, the off-diagonal components
can have minimum linear-B dependence and are obtained to
be [64]

σab = −εabcBc
sbe3vF

24π2 h̄3|μ| (ξ h̄2 + 4ατ 2μ2). (C2)

Note that the OMM and Lorentz force cause the ordinary Hall
effect.

The magnetic-field-independent and linear-B-dependent
NL conductivities have been summarized in Table III. We
obtain the NL anomalous Hall conductivities to be

σ NAH
abc = −εabc

se3τ

12π2h̄2 . (C3)

We note that it is independent of chemical potential and de-
pends on the chirality. So, even for Weyl nodes separated in
energy its total contribution will vanish. The magnetic-field-
dependent NL conductivities originate from various sources
and are written in units of

σ S
NL = ssb

χ0

12
with χ0 = e4τ 2v2

F

π2h̄2|μ| . (C4)

The various contributions of magnetic field are also high-
lighted in the table inside the parentheses. We note that our
results for the NL conductivities are consistent with Ref. [45],
where the effect of Lorentz force effect was ignored. If we
ignore the effect of Lorentz force, then for magnetic field
along the ẑ the expression of σzxx matches with the expression
given in Ref. [45].

Given the expressions of NL conductivity for a Weyl node
at zero energy, now we will show how to modify these ex-
pressions to obtain results for Weyl nodes separated in energy.
We will show this for Eq. (C4) and the modification in linear
conductivities can be obtained following similar steps. For
scenario I shown in Fig. 1(c) we obtain

σ S
NL(+1) = e4τ 2v2

F

12π2h̄2(|μ| + Q0)
, σ S

NL(−1)

= − e4τ 2v2
F

12π2h̄2(|μ| − Q0)
; (C5)

for scenario III we obtain

σ S
NL(+1) = − e4τ 2v2

F

12π2h̄2(|μ| − Q0)
, σ S

NL(−1)

= e4τ 2v2
F

12π2h̄2(|μ| + Q0)
; (C6)

and for scenario II we obtain

σ S
NL(+1) = e4τ 2v2

F

12π2h̄2(±|μ| + Q0)
,

σ S
NL(−1) = − e4τ 2v2

F

12π2h̄2(±|μ| − Q0)
. (C7)

In Eq. (C7) the + (−) sign in the denominator in front of |μ|
corresponds to μ > 0 (μ < 0) in scenario II. The total NL
conductivities are obtained by adding the contribution from
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TABLE III. Nonlinear conductivity (not symmetrized) (in units of ssbχ0/12) for a single node of a WSM with band crossing (charge
neutrality point) situated at zero energy. Here, we have defined χ0 = e4τ 2v2

F /(π 2 h̄2|μ|) and σ0 = e3τ/(π 2 h̄2). Note that we have also included
the NL anomalous Hall effect here which is independent of magnetic field.

σabc σaxx σaxy σaxz σayx σayy σayz σazx σazy σazz

σxbc (−2η + 2ζ )Bx (−γ + 2ζ )By (−γ + 2ζ )Bz αBy (−2η − α + γ )Bx −sb
σ0

χ0
−αBz −sb

σ0

χ0
(−2η + α + γ )Bx

σybc (−2η + α + γ )By −αBx −sb
σ0

χ0
(−γ + 2ζ )Bx (−2η + 2ζ )By (−γ + 2ζ )Bz −sb

σ0

χ0
αBz (−2η − α + γ )By

σzbc (−2η − α + γ )Bz −sb
σ0

χ0
αBx −sb

σ0

χ0
(−2η + α + γ )Bz −αBy (−γ + 2ζ )Bx (−γ + 2ζ )By (−2η + 2ζ )Bz

the two nodes. Comparing scenario I with III, one can easily
identify that

σ S,I
NL (+1) = σ S,III

NL (−1), σ S,I
NL (−1) = σ S,III

NL (+1). (C8)

So, the NL conductivities will be identical in both these cases
after summing over the nodes. Similarly, when we compare
scenario I to II, it can be checked that

σ S,I
NL (+1) = σ S,II

NL (+1), σ S,I
NL (−1) = σ S,II

NL (−1) for μ > 0,

σ S,I
NL (+1) = σ S,II

NL (−1), σ S,I
NL (−1) = σ S,II

NL (+1) for μ < 0.

(C9)

So, in the above two scenarios also, the NL conductivities
turned out to be identical after considering the contributions
of all the nodes. In conclusion, the NL conductivities do not
depend on the position of the Fermi level.

Now, we will present the chiral chemical potential induced
NL conductivity. For the TRS preserved Hamiltonian where
nodes are separated in energy, Eq. (17) yields

jδμ2,a = 2e2τ

3π2h̄3vF

(
1 − τ

τv

)
Ea

× [μ(δμ+ + δμ−) + Q0(δμ+ − δμ−)]. (C10)

We emphasize here that the chiral chemical potential is op-
posite in the nodes with opposite chirality. Thus, the first term
which has the addition of chiral chemical potential will vanish.
The second term proportional to the energy separation of the
nodes will be finite and we obtain

σ
δμ

abc = 2
(τv

τ
− 1

)(
1 − r2

0

)
σ̃NLBcδab. (C11)
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