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Skyrmion superconductivity: DMRG evidence for a topological route to superconductivity
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It was recently suggested that the topology of magic-angle twisted bilayer graphene’s (MATBG) flat bands
could provide a novel mechanism for superconductivity distinct from both weakly coupled BCS theory and
the d-wave phenomenology of the high-Tc cuprates. In this work, we examine this possibility using a density
matrix renormalization group (DMRG) study of a model which captures the essential features of MATBG’s
symmetry and topology. Using large-scale cylinder-DMRG calculations to obtain the ground state and its
excitations as a function of the electron doping, we find clear evidence for superconductivity driven by the
binding of electrons into charge-2e skyrmions. Remarkably, this binding is observed even in the regime where the
unscreened Coulomb repulsion is by far the largest energy scale, demonstrating the robustness of this topological,
all-electronic pairing mechanism.
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A prerequisite for superconductivity is the binding of
charge-e fermions into bosonic charge-2e Cooper pairs [1].
This requires an attractive interaction between two fermions
which carry the same charge, and consequently must over-
come their natural tendency to stay apart due to Coulomb
repulsion. Conventional lore dictates that these charge carriers
are electrons, and that the attraction is mediated by low-energy
bosonic collective modes of lattice (phonons) or electronic
(critical fluctuations or Goldstone modes) origin [1–4]. How-
ever, quantum materials with topologically nontrivial band
structures can intertwine spin and charge degrees of free-
dom, leading to solitonic spin-textures called skyrmions [5,6]
which carry electrical charge [7,8]. This naturally begs the
question: can superconductivity arise from pairing of charge-e
skyrmions, rather than electrons? And what might provide
the “pairing glue” between skyrmions that enables them to
overcome Coulomb repulsion?

In a companion work [9], we analytically argued that magic
angle twisted bilayer graphene (MATBG) has the requisite
band topology and symmetries to exhibit superconductivity
via skyrmion pairing [10–13]. Recent experimental evidence
in favor of strong coupling superconductivity [14] and the
presence of charged skyrmions in MATBG [15] further mo-
tivates a thorough, numerically unbiased investigation of
skyrmion pairing. In this work, we distill the essential features
of MATBG into a minimal model for skyrmion supercon-
ductivity which we explore using large-scale density matrix
renormalization group (DMRG) [16] calculations. We find
concrete numerical evidence for a skyrmion pairing mecha-
nism that requires neither retardation nor screening. Our work
thus confirms the viability of a novel strong-coupling route to
superconductivity which is all-electronic in nature, providing
a new avenue in the search for superconductivity at higher
temperatures.

To seek out the basic ingredients for this physics, it is
useful to recount some essential features of MATBG. MATBG
features eight flat bands arising from spin, valley, and an ad-
ditional orbital degree of freedom “γ = ±.” Crucially, in the
basis where the orbital index transforms naturally under the
space-group symmetries, the four γ = + bands have Chern
number C = 1, while the four γ = − bands have C = −1.
Appealing to the equivalence between Chern bands and the
quantum Hall effect, MATBG can thus be viewed as a bilayer
of U(4) quantum Hall systems, but with opposite layers seeing
opposite magnetic fields (Fig. 1) [9,17–20].

By analogy to quantum Hall ferromagnetism, at integer fill-
ings the electrons may spontaneously polarize along axes of
the spin-valley-orbital space and form insulators. Small terms
in the Hamiltonian which break the approximate symmetry
down to the exact symmetries of charge, valley, and spin,
U(4) × U(4) → UC (1) × UV (1) × SUS (2) determine the pre-
cise nature of the symmetry breaking. Regardless of these
details, the enlarged approximate symmetry leaves behind a
signature: soft bosonic modes coming from fluctuations in the
U(4) × U(4) space which are described by a nonlinear sigma
model (NLσM) with topological terms [9,19–21].

When MATBG is doped away from certain integer fillings,
superconductivity is observed [22–28]. Superconductivity re-
quires two ingredients: a pairing mechanism, and a superfluid
stiffness ρSC to establish phase coherence. Several works have
recently emphasized how the topology of the MATBG flat
bands might enhance ρSC [29–32]. However, this effect does
not provide a reason for electrons to pair in the first place.
In Ref. [9], it is argued that the topology of MATBG may
play a crucial role in the pairing mechanism as well (see also
Ref. [33]).

The NLσM describing fluctuations in the U(4) × U(4)
pseudospin space admits topological textures, skyrmions,
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FIG. 1. Schematic depiction of mobile charge-2e skyrmion-pair
excitation over an easy plane antiferromagnetic ground state in a
bilayer with opposite magnetic fields. Pairing of charge-e skyrmions
in opposite layers is induced by local antiferromagnetic exchange J ,
which is sufficient to overcome the long-range Coulomb repulsion
because of the large spatial spread of the skyrmions.

which carry charge-2e. It was argued that the charge-2e
skyrmion is stable against disassociating into two charge-1e
electrons even in the presence of a long-range, unscreened
Coulomb interaction, providing an all-electronic pairing
mechanism [9]. When the system is doped away from elec-
tron filling ν = 0,±2, the charge enters in the form of these
bosonic skyrmions, which may Bose-condense and lead to
superconductivity.

The model. In this work, we numerically investigate this
proposal in a phenomenological model where the Chern
bands of MATBG are instead modelled as Landau levels. The
physical electron spin, while important for understanding the
full MATBG phase diagram, is not essential for the pairing
mechanism, so here we neglect it and work with a spinless
four-component model. There are a variety of scenarios for
how this spinless model embeds into the MATBG phase dia-
gram [9], but as one concrete example, MATBG may be spin
polarized in the vicinity of ν = −2, in which case our model
describes the half-occupied spin species. The four remaining
bands are labeled by a “layer” index γ z and a “isospin” index
ηz. The precise relation between γ , η, and the MATBG de-
grees of freedom is not so important [9], but we note that ηz is
in fact the valley index.

The two essential ingredients for skyrmion superconduc-
tivity are that (1) the bands carry Chern number C = γ z =
±1 and (2) there is an antiferromagnetic interaction between
the isospin of the two layers in addition to the long-range
Coulomb repulsion. In terms of the electron field operators
ψγη(r), we thus consider the following 2D continuum model:

H = ψ† (p + eγ zA)2

2m
ψ + 1

2

∫
: n(r)VC (r − r′)n(r′) :

− EC�2
B

∑
i=x,y,z

Ji : (ψ†γ zηiψ (r))2 : . (1)

The layers see opposite magnetic field ∇ × A = B. Here
VC (r) is the Coulomb repulsion, n(r) = ∑

γ η ψ†
γ ηψγη(r) is the

charge density, and Jx = Jy = J + λ, Jz = J − λ parametrize
an antiferromagnetic XXZ interaction between the two layers.

We account for proximate metallic gates at distance d by tak-
ing VC (q) = 2π

q tanh(qd ), expressed in units of the magnetic

length �2
B = h̄/eB and Coulomb energy EC = e2

4πε�B
. We fix

d = 3�B to match typical gate distances in MATBG devices
under the identification 2π�2

B = AM , where AM is the area of
moiré cell.

We note that in the context of MATBG, J arises when
treating the flat-band dispersion within second-order pertur-
bation theory [9,19,34]. In the present model, this dispersion
corresponds to a small tunnel coupling between the two lay-
ers, tψ†γ xψ , which can be treated perturbatively near filling
ν = 2 to obtain J ∝ t2/EC , in close analogy to superexchange
[19,35]. It is thus a generic feature of tunnel-coupled Chern
bands.

The Hamiltonian Eq. (1) is then projected into the lowest
Landau level (LLL) of each component, quenching the kinetic
energy. We note at the outset that the resulting model is
entirely repulsive. Naively, it may look like the J term puts in
attraction “by hand,” since antiferromagnetically aligned elec-
trons see a short-distance attractive interaction V+→,−←(r) =
VC (r) − 2(J + λ)EC�2

Bδ(2)(r). However, this interaction is
smeared-out over the scale �B due to Landau level pro-
jection, and we have verified (Appendix B) that for d =
3�B the projected interaction is repulsive in all channels
for J + λ < 3.25, while we work exclusively in the regime
J, λ � 1. So superconductivity in this model requires an all-
electronic pairing mechanism for overcoming the Coulomb
repulsion.

The symmetries of the model play an important role in
our analysis. When J, λ = 0, the model is symmetric under
U(2) × U(2) transformations within each layer, the spin-
less analog of MATBG’s U(4) × U(4). Setting J �= 0, λ = 0
breaks this symmetry down to U(1) × U(1) × SU(2), which
is the spinless analog of MATBG in the “chiral limit.”
[17,19] Finally, the easy-plane anisotropy λ further reduces
the symmetry to U(1)3, corresponding to electron charge,
layer polarization, and isospin ηz [in MATBG, the valley-U(1)
symmetry]. The model also has time-reversal symmetry, T =
γ xηxK , as well as a “Kramers” time-reversal T ′ = iγ xηyK ,
with (T ′)2 = −1.

Landau level quantization leads to a finite density of states
(one per component and flux quantum), making this model
amenable to numerical study much like usual fractional quan-
tum Hall systems. Here we study the model using iDMRG
to obtain the ground state of Eq. (1) on an infinitely long
cylinder of circumference Ly ∼ 8 − 12�B, where the opposite
magnetic fields can be treated using a small modification of
our existing QH-DMRG algorithms [36,37]. The accuracy of
the DMRG is controlled by the “bond-dimension” χ of the
associated matrix product state ansatz, with an exact result for
the ground state recovered in the limit χ → ∞.

The ν = 2 “correlated insulator.” The phase diagram of
Eq. (1) depends on the density, n = ν

2π�2
B

and the magnetic in-
teractions J, λ. The filling runs from 0 < ν < 4, where ν = 2
is analogous to the neutrality point of spinless MATBG. Let us
first consider the state we expect to find at ν = 2, where half
the LLs are filled. By analogy to a quantum Hall ferromagnet,
the Coulomb interaction will prefer to polarize the system into
a spatially uniform occupation of two of the four components,
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FIG. 2. Phase diagram at density ν = 2 + 1/4 in the plane of
J, λ, calculated at Ly = 10�B. Four color plots show the strength
(in arbitrary units) of superconductivity (SC), XY magnetism (XY),
charge density wave order (CDW), and XY magnetism at finite wave
vector (qXY). There are two phases: for large-J the state is a SC,
while for small-J the δ = 1/4 doped electrons polarize onto one
“layer” and form a CDW which coexists with the XY order found
at ν = 2. The dashed-white line in the SC panel shows the critical J∗
for which electrons bind in to charge-2e skyrmions, as analyzed in
Fig. 4(b). In a small region of the SC near the phase boundary, the
SC coexists with qXY order. For a precise definition of the quantities
shown here, see Appendix A, and for the phase boundary for other
ν = 2 + δ, see Appendix C.

leading to a charge insulator which spontaneously breaks the
isospin symmetry. There are many ways to do so, but the
antiferromagnetic interaction J prefers for electrons to dis-
tribute evenly between the two layers with equal and opposite

isospin, so that

�N (r) = 2π�2
B〈ψ†(r)γ z�ηψ (r)〉 (2)

orders. For example, the electrons may completely fill the
|+,→〉 , |−,←〉 LLs. This order occurs for any strength J >

0 by consideration of the Stoner criterion: the bands are flat,
so the density of states is infinite, while polarizing the elec-
trons gains a large exchange energy of order EC . The λ > 0
anisotropy prefers order in the XY plane, N± = Nx ± iNy =
|N |e±iθXY . The XY-order spontaneously breaks ηz rotations
and time-reversal T , while preserving the Kramers T ′, mak-
ing it the analog of the “Kramers intervalley coherent state”
identified as the ground state of MATBG at even filling in
Ref. [19].

Using iDMRG simulations to find the ground state at
ν = 2, we indeed find a charge-insulator with XY-order,
with one caveat. Because we consider an infinitely long
cylinder, the Mermin-Wagner theorem implies Nx/y can
only order algebraically along the cylinder. Consequently
we find the XY correlations along the cylinder decay as
〈N+(x, 0)N−(0, 0)〉 ∝ x−ηXY with an exponent ηXY � 1, as
shown in Fig. 3(a). Comparing different circumferences, we
find that the exponent ηXY decreases as L−1

y , consistent with
the transition to true long-range order in 2D. Using the excited
state DMRG energies we will subsequently discuss, we find
that this state has a charge gap of order EC (e.g., �PH =
2.05EC at J = 0.4, λ = 0.4.)

The doped phase diagram. We then dope to density ν =
2 + δ. A priori the extra charge may prefer to either distribute
evenly between the two layers, ν± = 1 + δ/2 (“layer unpo-
larized”), or to polarize onto one layer, ν+ = 1 + δ, ν− = 1
(“layer polarized”), so we are careful to numerically check
the preferred polarization at each point in the phase diagram.

For dopings −1 � δ � 1, we find two phases in the (J, λ)
plane (Fig. 2): for large J , a layer-unpolarized superconductor
(SC), and for small J , a layer-polarized state which coexists

FIG. 3. (a) XY correlation function at ν = 2, J = 0.5, λ = 0.2. In order to focus on the dependence along the length of the
cylinder, 〈N+(x)N−(0)〉, the fields are averaged around the cylinder, �N (x) ≡ L−1

y

∫
dy �N (x, y). Data are shown for two circumferences,

Ly = 8, 12�B, with the curves shifted vertically by an arbitrary displacement for clarity. For each Ly, we show the convergence of
the correlations with the MPS bond dimension χ ; as χ → ∞, the curves converge to a power law with an exponent ηXY ∝ L−1

y

(b) Analogous plot for the SC order parameter � [Eq. (3)] at ν = 2 + 1/4, J = 0.9, and λ = 0.6. We again find an exponent
ηSC ∝ L−1

y , consistent with true long-range SC order in the 2D limit. (c) Quantitative demonstration of the relation ηSC ∝ L−1
y via

finite size and entanglement scaling. Here ξ is the correlation length of the DMRG ground state induced by the finite-χ MPS,
and �q ≡ ξ−1. S(q) is the Fourier transform of the SC-SC correlation function, from which we form the scaling function (S(0) −
S(�q))/�q ∝ ξ 2−ηSC . Including a range of ξ (χ ) and Ly for a point deep in the SC, the data is well fit by a single ansatz ηSC = 9.6/Ly.
(d) Density-density pair correlation function g(r) = (2π�B )2〈(n(r) − ν )(n(0) − ν )〉 in the CDW phase (top, ν = 2 + 1

4 , J = 0.3, λ = 0.6)
and SC phase (bottom, ν = 2 + 1

4 , J = 0.9, λ = 0.6). The CDW shows long-range order, while the SC shows a short-range attractive
correlation.
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on top of the XY-order. The precise nature of the low-J state
depends on the doping δ, so for concreteness we discuss δ =
1/4 and refer to Appendix C for other dopings. In this case,
we find a charge density wave (CDW) order in which density
δ of the electrons form a Wigner crystal in one layer, which
can be detected either by a modulation in the density 〈n(x)〉
along the cylinder or by inspection of the pair-correlation
function g(r) = 〈n(r)n(0)〉 [Fig. 3(d)]. The CDW order co-
exists on top of the same XY-order found at ν = 2. Above a
critical J > Jc(λ, δ, Ly), there is a first-order phase transition
at which the CDW disappears and layer-unpolarized algebraic
superconductivity emerges.

The SC is an isospin singlet, pairing electrons related by
the T ′ Kramers time-reversal symmetry:

�(r) = iηy
i jψ

†
+,i(r)ψ†

−, j (r). (3)

Similar to the XY-order, we find [see Fig. 3(b)] that
〈�†(x, 0)�(0, 0)〉 ∝ x−ηSC with an exponent ηSC(J, λ, δ, Ly )
that varies as a function of the parameters [38]. The pair
carries zero orbital angular momentum, so is in this sense
analogous to an s-wave SC, and in Appendix H, we further
rule out pairing in higher-angular momentum channels. How-
ever, the s-wave nomenclature is not necessarily appropriate
for the potential realization in MATBG, where the electron
spin (neglected here) may be polarized.

To verify that the algebraic SC converges to true off-
diagonal long-range order in the 2D limit, we fix a point
in the SC region and examine the scaling of ηSC with Ly,
Fig. 3(c). The scaling is consistent with ηSC ∝ L−1

y , which we
can understand as follows. In 2D, the SC phase fluctuations
come at energy cost E2D = ρSC

2

∫
dxdy(∇φ)2, where ρSC is

the superfluid stiffness. When the 2D model is placed on a
cylinder, the fluctuations around the cylinder become gapped,
so we can integrate y to obtain E1D = Ly

ρSC

2

∫
dx(∂xφ)2. The

effective 1D stiffness LyρSC then determines the exponent
ηSC = 2h̄v

LyρSC
, where v is a velocity, as observed. This implies

ρSC is finite as Ly → ∞.
While the electron pair �(r) is gapless, we find that all

single-electron excitations are gapped. As a first check, we
observe that the electron correlation function 〈ψ†

i (r)ψ j (0)〉
decays exponentially. More directly, we use iDMRG to cal-
culate the energy of a charge e and charge −e excitation on
top of the ν = 2 + δ ground state. We find they are gapped
throughout the SC regime: at J = 1, λ = 0.5, for example, we
find a particle-hole gap of �PH ≈ 0.61EC at ν = 2 + 1/4 and
�PH ≈ 0.55EC at ν = 2 + 1/2, independent of the layer and
isospin index of the added charges (see Appendix F 5). In
contrast, the charge-2e excitations must be gapless by virtue
of the algebraic correlations in �(r).

As a final confirmation of superconductivity, we use “finite
entanglement scaling” [39] to extract the central charge c of
the effective 1D model, Fig. 6. Throughout most of the SC, we
find c = 1, consistent with fluctuations of the SC phase mode
φ but no other gapless fermionic or bosonic excitations. The
only exception is in a region close to the CDW/SC transition,
where we find c = 2. As we will later discuss, in this region
the SC coexists with a finite wave-vector version of the XY-
order (qXY in Fig. 2), with fluctuations in φ, θXY contributing
c = 1 apiece.

Skyrmions. It is already remarkable that we find supercon-
ductivity in a purely repulsive model. But how do we tell
whether this SC is related to skyrmions? To explore this ques-
tion, it will prove helpful to review the NLσM description of
Eq. (1), which predicts the existence of charge-2e skyrmions
which we can then quantitatively compare against our DMRG
numerics. Consider first a single layer (say γ z = ±), with
ν± = 1 of its two LLs filled. In isolation each layer is anal-
ogous to a spinful QH system at νT = 1, with ferromagnetic
order parameter n±(r) = 2π�2

B〈ψ†
±(r)�ηψ±(r)〉 given by its

isospin polarization. According to the theory of quantum Hall
ferromagnetism [7,8,40], fluctuations in n± ∈ S2 are governed
by the Lagrangian

LQHFM
± =

∫
r

1

2
(
2π�2

B

)A± · ∂τ n± + g

2
(∇n±)2 + Aμ · jμ±

+ 1

2

∫
r,r′

ρ±(r)VC (r − r′)ρ±(r′),

jμ± = ± e

8π
εμνρn± · (∂νn± × ∂ρn±), (4)

where A±[n±] corresponds to the vector potential for the
isospin-half Berry phase [40], A is the external vector po-
tential that couples to the electric current density jμ±, and

the isospin stiffness is g = �2
B

32π2

∫ ∞
0 dq q3e−q2/2VC (q). The key

feature is that textures in n± induce an electric charge den-
sity through the relation ρ± = C± e

4π
n± · ∂xn± × ∂yn±, where

C± = ± is the Chern number. The reason for this is that as
an electron moves through the system, its isospin cants to
follow the texture n±, generating a Berry phase. The electron
responds to the Berry phase just like a magnetic field, and so
the resulting Berry curvature is converted into electric charge
via the Hall response σH = C e2

h . Integrating this relation one
finds Q = CQtopo, where Qtopo is the total skyrmion number
and Q is the total charge. The long-range part of the Coulomb
repulsion VC then prefers to make large skyrmions in order to
spread out the charge, lowering the skyrmion energy relative
to the bare electron’s. The lowest energy charged excitations
of a QHFM are thus charge-1e skyrmions, which has been
well established experimentally in a variety of QH systems
[41–43].

When considering two layers with opposite C, we can
extend Eq. (4) by coupling the layers through the anti-
ferromagnetic interaction J̄ i = JiEC/(2πAM ) and Coulomb
repulsion,

L =
∫

r

∑
γ

[
1

2
(
2π�2

B

)Aγ · ∂τ nγ + g

2
(∇nγ )2 + Aμ · jμγ

]

+ 1

2

∫
r,r′

∑
γ ,γ ′

ργ (r)VC (r − r′)ργ ′ (r′)

− Ji

(2π�B)2

∫
r
(ni

+ − ni
−)2. (5)

The behavior of the skyrmions in this model is quite rich,
depending on g/J and λ/J . Skyrmions in layer-“+” carry
charge +1, while skyrmions in layer-“−” carry charge −1,
so Q = Q+

topo − Q−
topo. When an electron is added to each

layer, they thus enter as a skyrmion in layer “+” and an
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anti-skyrmion in layer “−”. What is the effective interaction
between them? VC (r), of course, would like to push the two
charge-e objects apart. However, if the skyrmions separate
then there are regions in which the n+, n− fields are no longer
antiferromagnetically aligned, costing J . If they instead sit
right on top of each other J is always satisfied because the
antiskyrmion solution is obtained by flipping the spin of a
skyrmion solution, na-skyr = −nskyr, thereby generating an at-
tractive interaction.

Remarkably, if λ = 0, a careful analysis of Eq. (5) in
Appendix E (see also Refs. [9,44]) shows that charge-1e
skyrmions will prefer to bind into a single charge-2e skyrmion
for any J > 0. This is because the skyrmion can spread
out over an arbitrarily large radius R. Since the Coulomb
repulsion falls off as VC ∼ 1

R , J eventually wins out. The
situation is more complicated when λ > 0, where the easy-
plane anisotropy deforms the skyrmion into a meron pair.
Roughly speaking, this contributes an elastic energy g ln(R)
to the object, cutting off its maximal size R. In this case, there
is a finite critical J � J∗(λ) where the attraction wins out.

To quantitatively understand the energetics of the skyrmion
binding in the (J, λ) plane, we solve for the lowest-energy
charged excitations of Eq. (1) at ν = 2 both semiclassically
and using DMRG. First treating Eq. (5) classically, we numer-
ically solve for its ground state in order to compute the pair
binding energy � pair = 2E1e − E2e, where E2e is the energy
of the charge 2e skyrmion / antiskyrmion pair, while 2E1e is
the energy of a well-separated 1e − 1e pair. In Fig. 4(a), we
see that � pair(J, λ) has a fanlike structure within which the
interaction is attractive, reminiscent of the region where we
observe superconductivity upon doping. In particular, letting
J∗(λ) denote the critical value of J required for pair formation
at a given anisotropy λ, we see that J∗(λ → 0) → 0. Pair
formation is more favorable on the easy-plane side, requiring
a smaller J∗ for the same absolute value of λ. The physical
reason is that for λ > 0 the 2e pair can deform into a topolog-
ically equivalent texture – a confined pair of charge-e merons
[8,45] with well-separated cores – thereby lowering the elec-
trostatic charging energy at the expense of an additional elastic
energy cost which is quantitatively small (note g ≈ 0.025EC).
This deformation mechanism is not allowed for easy-axis 2e
skyrmions, resulting in a steeper slope for J∗ in the (J, λ)
plane.

We next go beyond the NLσM by computing the energies
of skyrmion excitations using DMRG. To do so, we start with
the DMRG ground state of Eq. (1) at ν = 2. We then consider
an excitation with either a single charge in one layer (1e), or
two charges, one in each layer (2e). Because they are distin-
guished by their quantum numbers from each other and the
ν = 2 vacuum, DMRG can be used to target the lowest energy
state in each quantum number sector, resulting in DMRG
energies E1e(ky), E2e(ky) measured relative to the vacuum,
where ky is the momentum around the cylinder. The excitation
energies are obtained from infinite-cylinder DMRG using the
approach of Ref. [46]. For numerical details including the
convergence with Ly and χ , we refer to Appendix F. A typical
“dispersion relation” for a J, λ exhibiting superconductivity
is shown in Fig. 4(c). We see that E1e(ky) is exactly flat,
reflecting that this excitation sees a net magnetic field which
quenches its motion. E2e(ky), in contrast, is dispersive and

FIG. 4. � pair(J, λ) evaluated numerically using the classical
NLσM (a) and quantum DMRG (b) show qualitative agreement.
In (a), the 2e bound state is preferred in the blue region (� pair >

0), demarcated by dotted purple lines (Lx, Ly = 21�B). In (b), the
blue background indicates � pair extrapolated to the Ly → ∞ limit,
while the dashed lines show nonextrapolated contours of � pair = 0
for different Ly. (c) Solid-circles denote E2e(ky, Ly ) ≡ E2e(ky, Ly ) −
E2e(0, Ly ) for a typical (J, λ) in the superconducting phase, showing
that charge-2e excitations disperse at small ky with an effec-
tive mass that agrees reasonably well with the classical estimate
(dashed black line). In contrast, E1e(ky, Ly ) ≡ ∑

γ=± E1e,γ (ky, Ly ) −
E2e(0, Ly ) (purple squares) shows that the charge-1e dispersion is
flat. For large ky, Ly, both approach the Ly-extrapolated value of � pair

(dashed brown line), indicating that for ky�B/(2π ) � 0.2, the 2e pair
disassociates into two well-separated 1e excitations.

shows a minimum at ky = 0. Our ky resolution is too coarse
to extract a dispersion relation,1 but for comparison we plot
the expected dispersion of a 2e-skyrmion pair using a classical

estimate [9] for the effective mass m, ( h̄2�−2
B

2m )/EC = J/π , and
find that for our largest Ly they agree to within 20% for
small anisotropy λ � 0.1. For ky�B � 1.5 the energy saturates
at E2e(ky) → 2E1e, indicating that the pair disassociates. We
caution the reader that we only expect order of magnitude
agreement between the classical and quantum results because
the mass will be corrected by quantum fluctuations, as ana-
lyzed in Appendix F 4.

We see both the ingredients for superconductivity: first
pairing (E2e(0) < 2E1e), and second, despite the completely

1While it is tempting to extract a dispersion relation by interpo-
lating between different Ly, we see from the k � �−1

B limit that the
energies show a residual Ly dependence at fixed k, which is expected
because of the 1/r Coulomb interaction. So it is best to leave this
analysis at the level of an order-of-magnitude comparison.
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FIG. 5. Evolution of charge densities (net and layer-resolved) of a charge 2e excitation as a function of momenta ky = 2πk/Ly at (J, λ) =
(0.5, 0.1) and Ly = 12�B. Note that at ky = 0, the charges in the two layers are exactly on top of each other, but at finite ky they move away
with a separation �x = ky�

2
B, thereby losing exchange energy.

quenched band dispersion of the electrons, the pairs have a
disperse with scale J so can support a finite superfluid stiff-
ness. There is a beautiful explanation for the finite dispersion
which gives an intuitive picture for the previously discussed
lower bound on the superfluid stiffness [29,47,48]. In close
analogy to Gorkov and Dzyaloshinskii’s analysis of a Mott
exciton in a finite field [49], because the two charges in the
pair have opposite Chern number (e.g., B field), when the
pair drifts at velocity v the charges feel equal and opposite
Lorentz forces ±e|B|v × ẑ, pulling them apart. This force is
counteracted by the pairing attraction � pair(r), where r is the
distance between the pair. Equating |eBv| = ∂r� pair(r), and

defining m as � pair(r) ≈ � pair(0) + h̄2r2

2m�4
B
, we find E pair(v) =

� pair(0) + mv2/2. In a Bloch band, an equivalent result can
be obtained from the k-space Berry curvature �(k) using the
semiclassical relation v = − 1

h̄∇r� pair(r) × �(k). Either way,
m (and hence ρSC) is generated entirely by the interplay of
the interaction � pair and the Chern number, and hence the
two ingredients for superconductivity always come in tan-
dem. Since r = �2

Bẑ × k by these relations, the large k limit
rips apart the pair, explaining the limit E2e(ky) → 2E1e. Note
that this same mechanism is familiar in more conventional
quantum Hall contexts: it gives rise to the EC-scale mass of
composite fermions at ν = 1/2 [50] and excitons in quantum
Hall bilayers [51]. This intuitive picture is confirmed by our
numerical computation of layer-resolved charge densities ργ

(γ = ±) for a 2e excitation as a function of ky, as shown in
Fig. 5. On inserting charge 2e at momentum ky = 0 on top of
the insulating state, the additional charge density in each layer
lies exactly on top of each other, forming a charge 2e bound
state—the 2e skyrmion. As ky is increased, this 2e excitation
unbinds into two charge e excitations.

We next use DMRG to compute � pair at ky = 0 as a func-
tion of parameters J, λ, Ly, χ . We extrapolate the energies
with respect to Ly and χ to obtain the pair binding energy
� pair(J, λ) (see Appendix F). The result, shown in Fig. 4(b), is
in good qualitative agreement with the NLσM results. Specif-
ically, J∗(λ) vanishes as λ → 0, and pair-formation requires
smaller J in the easy-plane case. One quantitative discrepancy
is the J∗(λ) boundary found in DMRG is shifted to higher

J relative to the NLσM. In Appendix F 4, we show that
this effect can be qualitatively reproduced by adding quan-
tum zero-point fluctuations to the NLσM, which increase the
energy of the charge 2e excitations by an amount proportional
to J in the small anisotropy limit, which deters pairing.

The behavior of � pair(J, λ) supports the following expla-
nation for the phase diagram at ν = 2 + δ for low-δ, Fig. 2.
The layer-polarized CDW region corresponds to the case
where � pair < 0: charges enter as well-separated electrons
and form a CDW pattern for the same reason low-density QH
systems are known to form various Wigner-crystal and stripe
phases [52]. The SC region corresponds to the regime where
� pair > 0: charges instead enter as charge-2e meron-pairs and
condense.

An apparent discrepancy in this interpretation we should
first address is the critical Jc of the doped CDW/SC tran-
sition at λ = 0. For the doped phase diagram Jc(λ = 0, δ =
1/4, Ly = 10�B) ∼ 0.3, while for � pair we found that J∗(λ =
0) = 0. This is actually an expected finite size effect. Note
� pair was extrapolated to Ly → ∞, while the doped phase
diagram is shown at fixed Ly = 10�B because it was difficult
to doubly extrapolate χ, Ly → ∞ from the available data (see
Appendix G). So in Figs. 2 and 4(b), we also demarcate
the J∗(λ, Ly = 10�B) boundary without Ly extrapolation, and
indeed we find J∗(λ = 0, Ly = 10�B) ≈ 0.25, in decent agree-
ment with Jc. The origin of the finite-size effect is the behavior
of the NLσM on a cylinder. In 2D, the elastic energy of a
skyrmion is scale invariant, so at λ = 0 it can grow to arbitrary
size in order to reduce its Coulomb energy. On a cylinder,
however, an analytic solution of the NLσM shows that the
skyrmion cannot grow beyond R ∼ Ly, lower-bounding it’s
Coulomb energy by ∼VC (Ly). Thus at finite Ly, a finite J is
required to overcome Coulomb repulsion. However note that
as δ increases, we don’t expect such quantitative agreement
between J∗, Jc, because the inter-skyrmion interaction energy
becomes important in addition to � pair; this discrepancy is
seen for the large-δ phase diagram, Appendix C.

Further evidence for skyrmion pairing can be gleaned from
the region where the SC order coexists with a finite-wave-
vector XY-order, with 1D central charge c = 2 [Fig. 6(a)]. We
call this the qXY-order because the wave vector of the XY
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FIG. 6. (a) Determination of the central charge via finite-
entanglement scaling in the superconducting (J = 0.9, λ = 0.6) and
SC/qXY coexistence (J = 0.55, λ = 0.2) phases at doping δ =
1/4. By tracking the increase of the entanglement entropy SE

and MPS correlation length ξ with the DMRG bond dimension
χ , we extract the central charge from the scaling relation SE =
c
6 ln(ξ/a) [39]. Dashed lines show the expected slopes for c =
1, 2. The SC/qXY phase fits c = 2 perfectly, while the SC phase
approaches c = 1 at the largest length scales. The larger slope ob-
served for small ξ is consistent with the XY order of the SC/qXY
phase being destroyed at a continuous (Kosterlitz-Thouless) transi-
tion. (b) Fourier-transform of the XY-correlation function SXY(q) =
〈N+(q)N−(0)〉 in the SC/qXY coexistence phase. The XY order is
shifted to finite wavevector q∗ = δLy/4�2

B, where δ is the doping.
This wave vector is consistent with a fluctuating meron gas.

order is shifted to a finite q∗ along the cylinder, with leading
behavior

〈N+(x, 0)N−(0, 0)〉 ∼ x−ηXY cos(q∗x) + · · · (6)

for x � Ly, as shown in Fig. 6(b). Within the range of Ly, δ we
have explored, we find q∗ is always locked to the doping δ ac-
cording to the relation δ

2π�2
B
Ly

2π
q∗

= 4. In other words, θXY(x)
increments by �θXY = π every time x passes charge-2e worth
of doping.

This curious effect is in fact further evidence for skyrmion
superconductivity. Recall that in the easy-plane regime, the
2e skyrmion deforms into a pair of bound merons, each car-
rying charge 1e. In terms of θXY, this object is a vortex /

antivortex pair. In the easy-plane limit, the elastic energy is
E = g

2

∫
d2r(∇θXY)2, and we can solve for the field config-

uration θ which minimizes E subject to the constraint of
unit vorticity at z0 = x + iy and antivorticity at z1. Using a
conformal transformation to map the solution of the Laplace
equation from the plane to the cylinder, we find that

θ (z) = arg [sinh(2π (z − z0)/2Ly) sinh(2π (z̄ − z̄0)/2Ly)]

�θ = θ (x = ∞, y) − θ (−∞, y) = 2π (y1 − y0)/Ly. (7)

We see that the phase jumps by an amount �θ in proportion
to vertical displacement �y = y1 − y0 between the merons.
Because of the Coulomb repulsion, for small λ the meron-pair
will prefer to spread across the circumference of the cylinder,
�y = Ly/2, corresponding to �θ = π . So if the doping δ

enters as large meron-pairs, θXY(x) should jump by π per 2e
passed along the cylinder. This is exactly the wave vector q∗
we observe in the SC region. In contrast, in the CDW phase,
the XY wave vector remains at q = 0, consistent with the
charge δ entering as electrons.

One might object that if the SC is a condensate of meron
pairs, then the resulting π fluctuations in θXY would imme-
diately destroy the XY-order. But this is not the case on a
cylinder geometry because the SC order is algebraic, as we
demonstrate using bosonization in Appendix D. However, as
the SC stiffness increases the density fluctuations become
larger and the XY order is eventually destroyed at a BKT
transition. This is consistent with the absence of qXY-order
for large-J (Fig. 2), where the central charge flows from c =
2 → 1 [Fig. 6(a)]. This also explains how q∗ can depend on
Ly, which would otherwise appear to be unphysical in the 2D
limit: the SC stiffness increases linearly with circumference,
so as Ly → ∞ the width of the qXY order shrinks to zero. So
the qXY does not exist as a 2D phase, but rather as a unique
fingerprint of the skyrmion SC when placed on the cylinder
geometry.

A control experiment. Finally, we confirm the role of topol-
ogy using a “control” experiment: we consider a Hamiltonian
identical to Eq. (1), but with all four components ψγη in
the same magnetic field. The ground state at ν = 2 is still
found to have XY-order, so the system still admits skyrmions
in each layer independently. However the skyrmion pairing
mechanism we have identified is inoperative because a charge-
2e excitation now requires the same skyrmion handedness in
each layer, so J does not generate attraction. Running iDMRG
for the same J = 0.9 and λ = 0.6 where the opposite-B model
is a strong superconductor, we find the SC correlations now
decay exponentially (by three orders of magnitude per �B).2

Note that in the control scenario ferromagnetic exchange (J <

0) could favor the formation of charge-2e skyrmion-pairs,
which has in fact been argued to occur in certain conventional
quantum Hall systems [53–55]. However, such a pair experi-
ences a net magnetic field, leading to a flat dispersion which
makes superconductivity via condensation unlikely.

In conclusion, we have shown that a model capturing the
symmetry and topology of twisted bilayer graphene features
a novel all-electronic route to superconductivity. The “mother
state” of the superconductor is an XY order whose lowest-
energy charged excitations are charge-2e skyrmions, despite
the long-range Coulomb interaction. When doped, the finite
density of skyrmions Bose condense and form a superconduc-
tor.

It is worth commenting on the relation of our findings to
the proposal of Grover and Senthil [11], which was recently
explored numerically, for example, in Ref. [12], where it was
found that doping an interaction-driven quantum spin Hall
(QSH) state lead to a SC. From a topological point of view,
this mechanism is analogous to the one discussed here under
the identification of our XY order with the QSH state (and

2In the same-B case, superconductivity requires an Abrikosov
vortex lattice, which enlarges the unit cell. We account for this pos-
sibility by running iDMRG with the requisite unit cell both around
and along the cylinder so that we do not spuriously forbid a SC.
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setting our λ = 0). However, energetically, the model which
was studied keeps the analog of our “J” term (which generates
the QSH state), but does not contain the Coulomb repulsion
VC , which, unfortunately, would lead to a sign problem for
determinantal quantum Monte Carlo. On its own, J can be
decoupled into an attractive interaction which then has no
competition with VC , so superconductivity is stabilized at the
mean-field level. This is not to say our work disagrees with
their conclusions, but, by explicitly showing that the skyrmion
energetics at integer filling is predictive of superconductivity
upon doping, we demonstrate that skyrmion pairing is neces-
sary and sufficient for superconductivity and is robust to both
VC and λ > 0.

Where does MATBG lie in the phase diagram? We can
very roughly estimate the values of J, λ realized in MATBG
using the relation AM = 2π�2

B. From the MATBG Hartree-
Fock results of Ref. [19], which computed the energy of the
layer ferromagnet(“VP”) phase relative to the layer antiferro-
magnet (“KIVC” and “VH”) phases, we then find λ ∼ 0.1 and
J ∼ 0.05–0.3 for a dielectric constant of ε = 10ε0, depending
on details like the twist angle and gate distance. It is thus quite
feasible that MATBG is in the regime where the lowest energy
excitations are charge-2e skyrmions. However, there are some
important quantitative differences between MATBG and the
model studied here. These include the narrow band dispersion
(though its most significant effect is already included via the
generation of the superexchange J between layers [19]), and
the inhomogeneity of the Berry curvature, so this comparison
should be made with caution. Future DMRG studies of the
MATBG Hamiltonian could help decide the issue [56,57].

More broadly, while our model is inspired by the physics of
MATBG, the basic ingredients of skyrmion superconductivity
are simple: two spinful (or isospinful) bands with opposite
Chern number. Might these ingredients already be out there
in other solid state systems? Alternating angle twisted trilayer
graphene, which has identical low-energy topological bands
as MATBG [58] and has recently been shown to display robust
superconductivity [59,60], offers another possible material
candidate for such a skyrmionic mechanism. Furthermore, a
system where EC was at the atomic, rather than moiré scale,
would provide a new route to high-temperature superconduc-
tivity.
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APPENDIX A: METHODS

Here we detail the application of infinite DMRG to the
Hamiltonian Eq. (1) and the observables used to determine
the phase diagram. In order to apply our existing DMRG
algorithms, it is technically convenient to first apply a unitary
PH-symmetry transformation to the two C = −1 bands of
Eq. (1), mapping ψ−,i → iηy

i jψ
†
−, j . Because C is odd under

a unitary PH transformation, this maps the problem onto a
conventional quantum Hall bilayer (i.e., one where both layers
have Chern number C = +1). This transformation yields an
exact rewriting of Eq. (1) as

H = ψ† (p + eA)2

2m
ψ + 1

2

∫
: ψ†(r)γ zψ (r)VC (r − r′)

×ψ†(r′)γ zψ (r′) : (A1)

− EC�2
B

∑
i=x,y,z

Ji : (ψ†(r)γ zηiψ (r))2 :

+αN̂ + βP̂ + γ Nφ. (A2)

Here N̂ is the total charge, P̂ is the total layer polarization,
and Nφ is the number of flux quanta. The single-particle
shifts α, β, γ arise from the commutators required to bring
H back to normal-ordered form after the PH transformation,
and they can be computed analytically from VC, Ji. Notice that
the kinetic term is now γ z independent, but Coulomb energy
depends on ψ†γ zψ , i.e., the difference between densities in
the two layers, rather than the conventional density ψ†ψ .

Equation (A2) then represents a traditional multicompo-
nent quantum Hall problem, albeit with a peculiar form of
Coulomb repulsion. The problem can thus be projected to
the zeroth Landau level (ZLL) assuming sufficiently large
energy gaps to the higher Landau levels. After ZLL projection,
the kinetic term is quenched, the contact interactions Ji are
implemented as Haldane V0 pseudopotentials with appropriate
component indices, and the Coulomb interaction VC is mod-
ified by the ZLL form factor. In this form, the problem can
be tackled with iDMRG [36] by placing the system on an
infinitely long cylinder of circumference Ly.

The iDMRG method has two built-in cutoffs: the finite
cylinder circumference Ly, and the size “χ” of the matrix
product state used to approximate the ground state. The bipar-
tite entanglement of the MPS ansatz is bounded by SE � ln χ ,
while gapped ground states have area-law entanglement en-
tropy (SE ∝ Ly in our case), χ should increase exponentially
in Ly to maintain a desired level of accuracy. This is the main
numerical limitation on this approach, and is the reason why
we consider Ly � 12�B in this work.

Another limitation is associated to the choice of bulk
doping δ. DMRG exactly preserves the three U(1) quantum
numbers associated to charge (C), spin (S), and layer (L). Con-
sequently the state has three well-defined “filling fractions”
νC/S/L describing their quantum numbers per unit length. For
rational fillings ν = p/q, the length of the unit cell of an
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infinite MPS is lower-bounded by the least-common-multiple
of the denominators qC/S/L. So, for instance, a state with equal
layer doping of δ+/− = 1

8 will require an MPS unit cell of at
least 8. Since the time and memory requirements scale linearly
with the length of the unit cell, this restricts the granularity of
the δ we can feasibly explore.

We now detail the observables shown in Fig. 2. For both
the “SC” and “XY” color plots, we compute SXY/SC (q = 0) =∫

d2r O†(r)O(0), where O = N+/� respectively, at MPS
bond dimension χ = 6000. These quantities are not true or-
der parameters (they are always nonzero), but quantitatively
they are many orders of magnitude larger in the SC and XY
phases, so are convenient heuristics for demarcating the phase
boundary. The rigorous criterion for SC or XY order is the
finite-size scaling analysis of the algebraic correlations shown
in Fig. 3, which, at the resolution of our J, λ grid, we find
perfectly correlates with the obvious jump in SXY/SC (0).

For the CDW order, we compute the Fourier compo-
nents of the charge density along the cylinder, n(qx ) =∫

dxdy e−iqxx〈n(x, y)〉, and plot the magnitude of the largest
qx �= 0 component.

For the qXY order, we show the finite-q structure factor
SXY(qx = q∗, qy = 0) where q∗ = δLy/4. Again, this is not a
true order parameter, but the quantitative jump in this quantity
correlates with a scaling analysis of the singularity in SXY(q)
at q∗ which can be seen in Fig. 6(b).

Finally, a fifth quantity (not shown) is the layer polarization
ν+ − ν− = 0 or δ. The polarized case perfectly correlates with
XY / CDW phase, while the SC is unpolarized.

APPENDIX B: REPULSIVE NATURE OF THE BARE
INTERACTION

Due to the antiferromagnetic interaction, electrons in com-
ponents ψ+,↑, ψ−,↓ experience an attractive δ(r) interaction
from the XXZ interaction:

V↑↓(r) = VC (r) − 2JEC�2
Bδ(2)(r). (B1)

So if J is sufficiently large, the bare interaction is attractive
in the s-wave channel and the superconductivity would be
rather trivial. Here, we show that the range of J considered
in this work is far below this critical value (Jc ∼ 3.25 for gate
distance d = 3�B).

To do so, we consider the problem of two electrons with
opposite magnetic field A = ±B(0, x) interacting through a
central potential V (q). Note that if we apply a particle-hole
transformation to one of the particles, the problem maps onto
an exciton in a uniform B-field field (with the sign of V
reversed). This problem was solved long ago [49] with the
LL-projected result given in for example Ref. [51], which is
equivalent to our Eq. (B8). We repeat the equivalent derivation
here without applying the PH transformation.

Projecting into their lowest LLs, where states are labeled
by their Landau-gauge momentum py = h̄k, the Hamiltonian
on a torus of volume V takes the form

Ĥ = 1

V
∑

k1,k2,q

|F (q)|2ei�2
Bqx (k1+k2 )V (q)c†

k1+qy/2ck1−qy/2d†
k2−qy/2

× dk2+qy/2. (B2)

Here c is the field operator for electrons in the +B field, d
the field operator for electrons in the −B field, and F (q) =
e− 1

4 q2�2
B is the “form factor” of the N = 0 LL. In order to diag-

onalize the Hamiltonian, we consider the two-particle ansatz

|kx, ky〉 = 1√
Nφ

∑
k

ei�2
Bkkx c†

ky/2+kd†
ky/2−k |0〉 , (B3)

which carries momentum kx, ky. Note that while c, d sepa-
rately transform under a magnetic algebra, so only their ky

momentum is a good quantum number (in Landau-gauge), the
composite object cd sees no net field, so can be ascribed def-
inite momentum kx, ky. By simple state counting, the |kx, ky〉
are in one-to-one correspondence with N2

φ 2-particle states of
a torus. Hence they are eigenstates, with energy

H |kx, ky〉 = 1

2V
√

Nφ

∑
k,q

|F (q)|2ei�2
Bkkx ei�2

Bqxky

× V (q)c†
ky/2+k+qy

d†
ky/2−k−qy

|0〉 (B4)

= 1

V
√

Nφ

∑
k,q

|F (q)|2ei�2
B (k−qy )kx ei�2

BqxkyV (q)c†
ky/2+kd†

ky/2−k |0〉

(B5)

=
(

1

V
∑

q

|F (q)|2V (q)ei�2
B (qxky−qykx )

)
|kx, ky〉 , (B6)

E (k) = F−1[V |F |2]
(
�2

Bẑ × k
)
. (B7)

Here, we note that the exchange kx ↔ −ky is the rotation
ẑ × k, so we see that the dispersion is rotation of the in-
verse 2D-Fourier transformation F−1 of the effective potential
V (q)|F (q)|2.

If the potential is rotationally symmetric,

E (k) = 1

2π

∫ ∞

0
dqq|F (q)|2V (q)J0(kq�2

B). (B8)

Note that if we were to drop the |F |2, we would get back
the real-space potential: E (k) = V (�2

Bẑ × k). The |F |2 factor
just convolves this with the real-space shape of the LL wave
function, smoothing it out over scale �B. The reason for this
form can be understood from the guiding-center dynamics in
the presence of the opposing magnetic fields. If both electrons
are moving in parallel with velocity v and displacement r,
then the force F(r) due to V must cancel the Lorentz force,
F(r) = −eBẑ × v. Since v = ∇kE (k) while F = −∇rV (r),
we have

∇rV (r) = �2
Bẑ × ∇kE (k). (B9)

In a LL the kinetic energy is quenched and V = E . This is
solved by fixing r = �2

Bẑ × k with E (k) = V (�2
Bẑ × k).

For a δ-function interaction �2
Bδ(2)(r), with Fourier trans-

form V (q) = 1, and 1
r interaction, with V (q) = 2π

q , the
integral can be done analytically to obtain

Eδ (k) = e−k2/2

2π
(B10)

E 1
r
(k) =

√
π

2
e−k2/4I0(k2/4) (B11)
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FIG. 7. (a) Phase diagram for doping δ = 1/2 calculated at Ly = 10�B. (b) Phase diagram for doping δ = 1 calculated at Ly = 10�B.
(c) Guiding center density-density structure factor in the layer-polarized phase (J = 0.5 and λ = 0.1) at doping δ = 1/2 and Ly = 10�B.
The structure factor shows two singularities at wave-vectors �Bkx = 1.5, 2. These values are exactly consistent with the 2kF back scattering
processes of the ν = 1/2 composite Fermi liquid, as discussed in Ref. [61].

In this case, we find that E 1
r
(k) − 2JEδ (k) > 0 for all k so

long as
√

π
2 − J

π
> 0, giving Jc =

√
π3/2 ∼ 3.9. For a gate

screened interaction, V (q) = 2π
q tanh(qd ) we perform the in-

tegral numerically, and find that for d = 3�B, Jc ∼ 3.24. This
is much larger than the region explored in our work (J < 1),
indicating the attractive pairing is a collective effect.

APPENDIX C: PHASE DIAGRAM FOR OTHER DOPINGS

Here we discuss the phase diagram for two other repre-
sentative dopings: ν = 2 + 1/2, and ν = 2 + 1, see Fig. 7.
As before, there are two phases: for large J , the state is a
layer-unpolarized SC, and for small J , the doping δ layer
polarizes on top of an XY order. The large-J SC region has
the same properties as demonstrated for δ = 1/4, e.g., the
same pairing symmetry and an exponent ηSC ∼ L−1

y , so we
will not discuss it further. We note that for the same J, λ, Ly,
we find that ηSC decreases with the doping δ. Presumably this
is because the superfluid density ρSC, and the hence phase
stiffness, increases with δ.

The small-J layer polarized phases (ν+ = 1 + δ, ν− = 1)
are more complex, but as we’ll see they map onto a very
familiar scenario: fractional filling of a Landau level. In these
phases, the ν− = 1 component is essentially inert, and (in 2D)
polarizes along an isospin axis in the XY plane; for concrete-
ness, let’s say |−,→〉. Due to the antiferromagnetic interlayer
interaction, the electrons in layer + then effectively see an
isospin Zeeman field of the form (J + λ)ηx. So, from the point
of view of layer +, the problem is qualitatively identical to a
spinful Landau level at density ν+ = 1 + δ in the presence of a
comparatively large Zeeman field EZ ∼ J + λ. The resulting
phase diagram is well known [40]. At ν+ = 1, the electrons
spin-polarize into |+,←〉: this is just the ν = 2 XY order. For
small dopings ν+ = 1 + δ, charge enters as either electrons or
small charge-1e skyrmions, forming CDWs such as Wigner
crystals and or various bubble phases. This is the behavior
found at δ = 1/4. As δ increases, it becomes favorable for
the CDW to melt and give rise to various fractional quantum
Hall states. At δ = 1/2, for example, we find that and the
ν+ = 1 + 1/2 electrons form a composite Fermi liquid state!
(Fig. 7) Finally, at δ = 1, the + layer is filled and becomes
inert.

As can be seen, the phase boundary Jc(λ, δ) is doping
dependent. This is expected. For small δ, the energetics are
dominated by � pair, which determines whether charge enters

as electrons or layer-unpolarized charge-2e skyrmions. In this
limit, Jc ∼ J∗, as we found at δ = 1/4. As the doping δ in-
creases, however, the energy of the SC and layer-polarized
phases become sensitive to the interactions between the doped
charges. We see that for a small λ, this causes Jc to increase
with δ, disfavoring the SC. This is presumably because for
small λ the charge-2e skyrmions are very large, while the
charge-1e electrons are small, so the interaction energy in-
creases with doping more rapidly in the SC phase. In contrast,
for large λ we see that Jc actually decreases with δ (albeit
modestly), favoring the SC!

For small λ, our finding that ∂Jc
∂δ

< 0 has an appealing
consequence: it naturally leads to a superconducting “dome”
as a function of the doping δ. For small δ, the SC has a low
Tc because of the low superfluid weight, so as δ increases we
expect that Tc will at first increase (this is the usual density
dependence of the BEC transition, though here the transition
is BKT). For large δ, however, the system will eventually cross
the Jc boundary and the SC will be destroyed in favor of the
symmetry-breaking layer polarized state. Depending on the
system’s precise location in the (J, λ) plane, this leads to a
situation where a SC dome emerges from ν = 2, but then at
some critical δ∗ the SC is destroyed, evolving into the cor-
related insulator at, e.g., ν = 3. This scenario is reminiscent
MATBG samples which show an insulator at neutrality [26].

APPENDIX D: BOSONIZED DESCRIPTION
OF THE qXY/SC COEXISTENCE PHASE

In the main text, we claimed that the finite wave-vector
q∗ of the qXY phase is consistent with the charges in the
SC entering as meron-pairs, each of which binds a π kink in
the XY order parameter θXY. However, the reader may object
that if the SC is a condensate of meron pairs, then this effect
should actually destroy the XY order. However, because of
the finite cylinder circumference, the system is an algebraic
SC and the variance in the number of pairs in a region grows
only logarithmically, 〈(∫ x

0 ρ(x′)dx′)2〉con ∝ ln(x). This can be
used to infer the behavior of θXY using bosonization. So in
this section we present a bosonized description of the qXY
phase in which superconductivity coexists with finite-q XY
order and confirm the form of Eq. (6).

Let ρ(x) denote the linear number density of meron pairs
along the length of the cylinder at x, with 1D charge density
2eρ. We define slowly varying bosonic fields φ and θ̃ which
are related to the SC / XY order parameters via �(x) =
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√
ρeiφ(x) and θXY(x) = θ̃ (x) + π

∫ x
ρ(x′)dx′. The latter ex-

pression realizes the constraint that the XY order parameter
jumps by π across each meron pair. In the coexistence phase,
both φ and θ̃ are governed by quadratic fluctuations which
we assume (at long distances) decouple, with Luttinger pa-
rameters KSC, KXY. We will show that the resulting leading
singularities in the SC and XY correlations take the form

〈�†(x)�(0)〉 ∼ x− 1
2KSC + · · · (D1)〈

eiθXY(x)e−iθXY(0)
〉 ∼ x− 1

2KXY
〈
eiπ

∫ x
0 ρ(x′ )dx′ 〉

(D2)

∼ x− 1
2KXY

− π2KSC
2 cos(πρ0x) + · · · , (D3)

where ρ0 is the average charge density and we have neglected
subleading power laws. As observed, the leading singularity
shifts to finite q∗ = πρ0. As J increases, the SC become
stronger (KSC increases), and presumably the XY order is
destroyed at a BKT transition. This is consistent with the
absence of XY order for large-J , where the central charge
flows from c = 2 → 1. In addition, because KSC increases
linearly with the circumference Ly, this causes the width of
the qXY to shrink with circumference, so the qXY order does
not survive in the 2D limit.

Because θ̃ and φ are assumed to decouple in the IR, it will
be sufficient to compute 〈eiπ

∫ x
0 ρ(x′ )dx′ 〉 in the SC phase. To do

so, we follow the bosonization conventions of Ref. [62] by
introducing a phase field ϕl ,∫ x

−∞
ρ(x′)dx′ = �ϕl (x)/2π� (D4)

eiπ
∫ x
−∞ ρ(x′ )dx′ = eiπ�ϕl (x)/2π� =

∑
p∈odd

2

iπ p
eipϕl (x)/2, (D5)

where �x� is the floor function. Expanding ϕl (x) = 2πρ0x −
2ϕ(x), we have

〈eiπ
∫ x
−∞ ρ(x′ )dx′ 〉 =

∑
p,q∈odds

4

π2 pq
eiπ pρ0x

〈
eipϕ(x)e−iqϕ(0)

〉
(D6)

=
∑

p∈odds

4

π2 p2
eiπ pρ0x

〈
eipϕ(x)e−ipϕ(0)

〉
(D7)

=
∑

p�0∈odds

8 cos(π pρ0x)

π2 p2

1

xKSC p2π2/2

≈ 8

π2

cos(πρ0x)

xKSCπ2/2
+ · · · . (D8)

Note that in these conventions 〈�†(x)�(0)〉 ∝ x− 1
2KSC . The

desired form then follows.

APPENDIX E: NONLINEAR SIGMA MODEL

In this section, we review and elaborate on aspects of
the classical nonlinear sigma model (NLσM), including the
critical J∗(λ) required for pairing near half-filling, and its
asymmetry between easy-plane (λ > 0) and easy-axis sce-
nario (λ < 0).

We start by recalling the NLσM partition function Z = e−S

for coupled (iso)spin-ful lowest Landau levels in opposite
magnetic fields, where the action given in imaginary time by

S = ∫ β

0 dτ
∫

d2rL[n+, n−] [Eq. (5) in the main text with the
identification AM = 2π�2

B]:

L[n+, n−] =
∑
γ=±

[
i

2AM

∫ 1

0
du nγ · (∂τ nγ × ∂unγ ) + g

2
(∇nγ )2

]
+ JiEC

2πAM
(ni

+ − ni
−)2 + 1

2

∫
dr′ρ(r)Vc(r − r′)ρ(r′),

where ρ(r) =
∑
γ=±

ργ (r) =
∑
γ=±

γ e

4π
nγ · (∂xnγ × ∂ynγ ), EC = e2

4πε�B
, and AM = 2π�2

B. (E1)

The first term in Eq. (E1) is the standard Berry’s phase term
for an isospin-half field [40,63]. The isospin-stiffness g can
be calculated in terms of the Coulomb energy scale EC =
e2/(4πε�B), for dual-gate-screened Coulomb potential of the
form VC (q) = VC (q) = e2

2εq tanh(qd ), as follows:

g = �2
B

32π2

∫ ∞

0
dq q3 VC (q)e−(q�B )2/2

= EC

16π

∫ ∞

0
dy tanh

(
yd

�B

)
y2e−y2/2. (E2)

For d = 3�B, we find that g ≈ 0.99g0, where g0 =
EC/(16

√
2π ) is the value of isospin stiffness for unscreened

Coulomb [7]. For the numerics, we use this value of stiffness
at different J and λ to extract the energy of charge e and
charge 2e excitations by minimizing the classical Hamiltonian
on a 21�B × 21�B square grid, with �B = 19 units of grid

spacing. The results for energetics are plotted in Fig. 9(a)
and the relevant pairing energy �pair = 2E1e − E2e is shown
in Fig. 4(a) in the main text. We indeed find that pairing if
favored at low anisotropy λ and large J , which we can under-
stand by using simple analytical calculations for the skyrmion
energetics provided we neglect screening.

Since the easy-plane case has been discussed in detail in
Ref. [9], here we focus on the easy-axis case, and show how
the phase-boundary J∗(λ) can be well-captured by a varia-
tional texture with a single tunable parameter, the radius R
of the skyrmion. We first consider the following ansatz for a
charge e skyrmion in a single layer (and neglect possible weak
back-reaction from the opposite layer).

n+(r) = (sin � cos �, sin � sin �, cos �), with

�(r) = θ (r) = 2 arcsin(e−r/2R) and �(r) = φ,

n−(r) = (0, 0,−1). (E3)
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FIG. 8. Distribution of spin and charge density in the two layers (γ = ±) for 2e charged excitations obtained by numerics on the classical
NLσM. While the spin-density is always locally antiferromagnetic, the charge density is radially symmetric for easy-axis skyrmions, but splits
into two merons for easy-plane skyrmions at large λ/ρs.

The total energy of such a texture (for unscreened Coulomb
interaction) is given by the sum of its elastic, exchange (Zee-
man) and Coulomb charging energy:

E1e(R) = 4.4πg + 4EC (J + |λ|)R2

AM
+ e2

16εR
. (E4)

The optimal size (and consequently energy) is controlled by
the competition between the Coulomb charging energy and
effective Zeeman energy penalty due to loss of antiferromag-
netic exchange with the opposite layer.

Ropt =
(

π2

16(J + |λ|)
)1/3

�B and E1e(Ropt )

= 4.4πg + 3

(
π (J + |λ|)

4

)1/3

. (E5)

.
For the charge 2e skyrmion, we consider a locally antifer-

romagnetic ansatz of the form:

n±(r) = (sin �± cos �±, sin �± sin �±, cos �±),

with �+(r) = θ+(r) = 2 arcsin(e−r/2R),�+(r) = φ,

�−(r) = π − �+(r),�−(r) = φ + π,

⇐⇒ n−(r) = −n+(r). (E6)

The total excitation energy of this texture is independent of J
as local antiferromagnetism is perfectly respected and is given

by

E2e(R) = 8.8πg + 12EC |λ|R2

AM
+ e2

4εR
. (E7)

The optimal size is therefore determined by the competition
between Coulomb energy and anisotropy, leading to

Ropt =
(

π2

12|λ|
)1/3

�B, and

E2e(Ropt ) = 8.8πg + 3EC (12π |λ|)1/3. (E8)

From this, we determine the minimum exchange J for a
given anisotropy λ, beyond which charge 2e excitations be-
come lower in energy: 2E1e � E2e ⇒ J � 5|λ|. Thus we see
that J∗(λ) = 5|λ| for our ansatz. In particular, our calcula-
tion implies that J∗(λ → 0) → 0; in this limit Ropt for the
2e skyrmion diverges and it completely evades any Coulomb
energy cost. For screened Coulomb interaction, we expect the
critical J∗(λ) to be lower. This is confirmed by our numerics
with screened Coulomb interaction having d = 3�B, where we
find that the dotted purple line on the easy axis side of Fig. 4(a)
is approximately linear with J∗(|λ|) ≈ 3.5|λ|.

An analogous computation in the easy-axis case [9] leads
to a smaller slope for critical J∗(λ) = 2λ, indicating that
pair-formation is favorable in the easy-axis case. Roughly
speaking, within this variational ansatz this is because canting
of isospin in the direction normal to the ordering vector in

FIG. 9. Energy of charge e and charge 2e excitations, evaluated numerically. Note that E2e is consistently higher in DMRG than NLσM;
we attribute this to quantum fluctuations.
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the easy-plane scenario does not cost additional anisotropy
energy, in contrast to the easy-axis case where any canting
away from the easy-axis incurs an additional anistropy energy
cost. However, there is a more significant reason which is not
captured by such an ansatz; for small stiffness g/EC , it is more
favorable for the charge 2e object to deform into a topolog-
ically equivalent texture consisting of two charge e merons
confined by an elastic binding force, while still maintaining
perfect local antiferromagnetism. This is evidenced by the plot
of charge density in Fig. 8, clearly showing the separation of
the charge density into merons for the easy-plane case and a
radially symmetric distribution for charge density in the easy
axis case, for the same value of (J, |λ|). Indeed, an analytical
calculation [9] shows that J∗(λ) → 0 in the limit of small
isospin stiffness relative to the anisotropy (g/λ → 0).

APPENDIX F: DETAILS OF SEGMENT DMRG AND
COMPARISON WITH NLσM

In this section, we first elaborate on the details of extract-
ing the energy of charge-2e and charge-e excitations above
the antiferromagnetic insulating ground state at ν = 2. Later,
we discuss quantitative differences between the quantum and
classical energetics and discuss quantum fluctuations as a
possible origin.

As discussed in the main text, we consider two classes of
excitations: either a single electron in one layer (1e), or two
electrons with one in each layer (2e). The minimal excitation
energy of each such excitation relative to the ground state at
ν = 2 is extracted as follows. For matrix product state (MPS)
fixed bond dimension χ and cylinder circumference Ly, we
allow the MPS representation of the quantum wave function
to differ from the ground state on an axial segment that spans
Nspan Landau level orbitals per spin per layer (in the Landau
gauge). Within this variational space, DMRG is used to find
the minimum energy excitation with fixed quantum numbers
for charge (e or 2e), spin and layer polarization of the excited
state wave-function relative to the ground state. For a given
charge and layer polarization, the spin quantum number cor-
responding to minimum excitation energy is chosen. Finally,
appropriate extrapolations as functions of χ , Nspan and Ly are
performed to obtain Ee or E2e in the thermodynamic limit.

1. Charge-e excitations

We find that the charge e excitation energy E1e (for either
layer) does not depend much on Nspan or bond dimension
χ , and depends very weakly on the cylinder circumference
Ly. Further, in the easy-plane antiferromagnet (λ > 0) where
the ground state spontaneously breaks ηz, there is negligible
dependence on the spin quantum number ηz for E1e in either
layer. Therefore we work with fixed ηz = 1 in a regime of
Nspan and χ where E1e has already converged as a func-
tion of segment length and bond dimension, and extract E1e

in the thermodynamic limit Ly → ∞ by extrapolation. Ex-
cellent fits are obtained for E1e(Ly) = E1e + a1/Ly + b1/L2

y
(representative fits are shown in Fig. 11, indicating that the
spin-half charge e excitations are well-localized within the
screening length d = 3�B; consistent with our picture that
the excitations are simply localized electrons. The extrap-

olated 2E1e = ∑
γ=± E1e,γ in (J, λ) plane are shown in

Fig. 9(b).
Qualitatively similar behavior is observed for E1e in the

easy-axis antiferromagnet (λ < 0). However, in this case, the
ground state conserves total ηz, and consequently E1e for each
layer has a marked dependence on the spin ηz, which needs to
be aligned antiparallel to the spin of the opposite layer to gain
energy. Further, we find that for small values of the effective
Zeeman field from the opposite layer, i.e., J + |λ| � 0.06,
the minimum energy charge e excitations have |ηz| = 3, pro-
viding strong evidence that these excitations are topological
skyrmions [see Fig. 10(c)]. This is also consistent with the
predictions of the classical NLσM, where the size of the
skyrmion (and therefore its spin) is determined by the com-
petition between Zeeman and Coulomb energy, and therefore
decreases with increasing effective Zeeman field.

2. Charge-2e excitations

Next, we turn to the energetics of charge 2e excitations
above the ground state. Typically, the dependence on bond-
dimension is negligible beyond a certain minimum χ that
depends on J and λ, as shown in Fig. 12(a). However, the
charge now prefers spread out over much larger length-scales,
indicating the need for larger Nspan and Ly to accurately extract
E2e in the thermodynamic limit. Once again, we find that
E2e converges rapidly beyond Nspan = 20 [see Fig. 12(b)];
therefore we fix Nspan = 20 and extrapolate as a function of Ly.
Excellent fits are obtained for E2e(Ly) = E2e + a�e−Ly/�s (for
representative fits see Fig. 11), indicating that the spin-zero
charge 2e excitations are extended well-beyond within the
screening length d = 3�B, and therefore the Coulomb energy
goes down exponentially for Ly � d; this is further evidenced
by noting that �s ≈ 3�B = d in our fits. This is consistent
with our classical picture that the charge 2e excitations above
the ground state are nontrivial topological textures which can
completely avoid Coulomb repulsion by spreading out to a
large size for small anisotropy. The extrapolated E2e in the
(J, λ) plane are shown in Fig. 9(b).

3. Effective mass

Having discussed the details of energetics at ky = 0, we
now elaborate on the extraction of dispersion relations at
nonzero ky. This is achieved by varying the cylinder circum-
ference Ly for the segment DMRG, allowing us to access
momenta ky,n = 2nπ/Ly with n ∈ Z [64]. As discussed in
the main text and shown in Fig. 5, finite ky results in the 2e
skyrmion splitting into two charge e excitations in opposite
layers, which move towards opposite edges of the cylinder.
This can be seen by noting that the lowest Landau level wave
function at momentum ky in the Landau gauge is peaked at
〈x〉 = ±ky�

2
B, corresponding to Chern number ±1, respec-

tively; a net momenta ky therefore results in a separation
�x = ky�

2
B. This makes the 2e pair lose local antiferromag-

netic exchange energy, which serves as binding glue, at large
ky, and the energetics is now dominated by Coulomb repul-
sion between the two charge e excitations. Consequently, the
dispersion becomes nonmonotonic. In practice, we find that
this physics takes over for ky�B � 1.5. This, behavior, along
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FIG. 10. DMRG energy of charge e excitations above the insulator at charge neutrality as functions of χ , Ly, Nspan, and ηz.

with significant finite size effects, make it difficult to extract
an effective mass.

Nevertheless, we can still try to compare the energy at
small ky and small anisotropy λ, to the semiclassical dis-
persion expected from analytic calculations corresponding

to Mpair = π h̄2/(JpA2
M ) [9] in the isotropic limit (Jp being

the antiferromagnetic coupling between opposite Chern sec-
tors, the equivalent of layers in Ref. [9]). In our convention,
AM = 2π�2

B and JpAM = ECJ/π , therefore after appropri-
ate conversion Mpair = π h̄2/(2EC�2

BJ ) = π/(2J ) in the units
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FIG. 11. Energy of charged excitations as a function of Ly, with best fits and extrapolated values in the thermodynamic limit. When the
dotted yellow line [E2e(Ly → ∞)] lies below the dotted purple line [2E1e(Ly → ∞)], pair formation is favored.

used in Figs. 4 and 13. To eliminate finite size effects,
we plot E2e(ky, Ly) ≡ E2e(ky, Ly) − E2e(ky = 0, Ly), and see
that at small ky�B the expected isotropic dispersion given
by k2

y /(2Mpair ) matches quite well. We further note from
Fig. 13 that while the effective mass roughly scales as J−1

as predicted by the semiclassical calculations, the dependence
on anisotropy λ is quite weak. Finally, we comment that at
large ky�B � 1.5 and large Ly, the energy of the 2e excitation
E2e(ky) → 2E1e, as evidenced by E2e(ky) → �pair in Fig. 13.

4. DMRG versus NLσM

Although there is good semi-quantitative agreement be-
tween the classical NLσM and the quantum energetics found
via segment DMRG, there are some minor discrepancies. In
particular, we find that the DMRG energy of the charge 2e
excitation increases with J at a fixed λ, although there is no
dependence of E2e on J in the classical picture due to perfect
local antiferromagnetism between the layers. To resolve this,

we first note that E2e is always found to be minimum at
ηz = 0, corresponding to perfect antiferromagnetic alignment
between the opposite layers (see Fig. 9). Therefore the ad-
ditional contribution must come from quantum fluctuations,
which we aim to quantify as a function of J . To this end,
we proceed by integrating out the ferromagnetic modes in
the quantum NLσM action. The procedure closely resembles
integrating out ferromagnetic modes for a two-dimensional
collinear Heisenberg antiferromagnet [63,65]; we decompose
nγ as follows:

nγ (r) = γ n(r)
√

1 − m2(r) + m(r), |m(r)| � 1,

n · n = 1 and n · m = 0. (F1)

Plugging this into the action in Eq. (E1) and assuming slow
variation in space so that we can neglect terms with two or
more derivatives and two or more powers of m (i.e, O(k2m2)
terms with k being momenta), we arrive at the following

FIG. 12. DMRG energy of charge 2e excitations above the insulator at charge neutrality as functions of χ , Ly, and Nspan.
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FIG. 13. Dispersing 2e charged excitations (filled circles), and nondispersing 1e charged excitations (empty squares) for different values
of (J, λ). The predicted classical isotropic dispersion compares reasonably well with the numerically computed dispersion at small ky�B,
indicating that the effective mass is approximately independent of λ (compare first two panels) and scales inversely with J (compare last two
panels) at small anisotropy.

coupled action for n and m:

L[n, m] = i

AM
m · (n × ∂τ n) + g(∇n)2 + 2EC

πAM

[
λ(nz )2 + (

J + λn2
xy

)
m2

xy + [
J + λ

(
1 + n2

xy

)]
m2

z

] − μρ(r)

+ 1

2

∫
dr′ρ(r)VC (r − r′)ρ(r′), where ρ(r) = 2e

4π
n · (∂xn × ∂yn). (F2)

At this point, the action is quadratic in m, and we can integrate out m to find an effective action within the antiferromagnetic
manifold n:

Leff[n] = 1

2A2
M

(n × ∂τ n)i[A−1]i j (n × ∂τ n) j + g(∇n)2 + 2λEC

πAM
(nz )2 − μρ(r) + 1

2

∫
dr′ρ(r)VC (r − r′)ρ(r′),

where A = 4EC

πAM

⎛
⎝

(
J + λn2

xy

)
0 0

0
(
J + λn2

xy

)
0

0 0 J + λ
(
1 + n2

xy

)
⎞
⎠. (F3)

While the Hamiltonian corresponding to this effective action
can be found via analytic continuation to real time followed by
a Legendre transform, it is nonilluminating and cumbersome
to write down. Since pairing is seen only for small anisotropy,
it is instructive to consider the isotropic limit, in which case
the effective Lagrangian reduces to (after analytic continua-
tion to real time):

Leff[n] = π

8JAMEC
(∂t n)2 − g(∇n)2 − 2λEC

πAM
(nz )2

+ μρ(r) − 1

2

∫
dr′ρ(r)VC (r − r′)ρ(r′). (F4)

In this limit, the conjugate momenta L = ( π
4JAM EC

)∂t n, and the
effective quantum Hamiltonian density is given by

Heff[L, n] =
(

2JAMEC

π

)
L2 + g(∇n)2 + 2λ(nz )2

− μρ(r) + 1

2

∫
dr′ρ(r)VC (r − r′)ρ(r′). (F5)

We note that the kinetic term corresponding to quantum fluc-
tuations is proportional to J , which accounts for the increase
of E2e as a function of J at fixed λ that cannot be captured
by numerics on the classical model. This is in excellent agree-
ment with several nontrivial features of our DMRG results.
First we note that the energy increase of a 2e skyrmion for
fixed (small) λ is linear in J . For a given λ, the size of the

skyrmion remains fixed and the isospins from the two layers
maintain local antiferromagnetism, implying that the classical
energy is independent of J . Therefore the correction to the
NLσM energy comes entirely from quantum fluctuations on
the same classical texture, and therefore grows linearly with J .
Next, we note that E2e for DMRG and NLσM are very close
when λ is small, corresponding to large skyrmionic textures
and small quantum corrections. As λ grows larger, the 2e
skyrmion wave-packet grows smaller in real space, and the
kinetic energy contribution increases in accordance with the
Heisenberg uncertainty principle �L�n � 1. Accordingly,
we show in Fig. 14 that E2e increases with J at a faster rate
for larger λ. Similar considerations also apply to E1e, which is
generally higher in DMRG than in NLσM—however gener-
ally we do not expect the NLσM estimates to be too accurate
for charge e excitations on top of the insulating state, as they
are well-localized in real space.

5. Particle-hole gap in superconductor

In order to show that the superconductor obtained in our
DMRG study has a spectral gap to single-particle excitations,
we perform segment DMRG in the doped phase. Specifically,
we consider a representative point deep in the superconduct-
ing phase at (J, λ) = (1.0, 0.5) at two different fillings ν =
2 + 1/4 and ν = 2 + 1/2; and compute the energy required
to add or remove an electron in a single layer (with given
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FIG. 14. E2e increases linearly in J for a given λ in DMRG,
while it remains constant in NLσM due to perfect local antifer-
romagnetism. For small J , both approaches yield very similar E2e,
indicating that quadratic quantum fluctuations are almost entirely re-
sponsible for correction. Larger slope of the E2e(J ) line for increasing
anisotropy can be interpreted as increased quantum fluctuations due
to decrease is size of 2e skyrmions with increasing anisotropy.

isospin). For Ly = 10 and χ = 2700, we find that the sum
of these energies, which corresponds to the particle-hole gap
and is independent of where the chemical potential lies in the
gap, is equal to 0.61EC (0.55EC) for ν − 2 = 1/4 (1/2), as
shown in Fig. 15 for the smaller doping. Further, this gap is
independent of the layer and spin quantum numbers of the
particle; this is consistent with the superconductor being an
isospin singlet.

APPENDIX G: Ly DEPENDENCE OF Jc

Here we explain why it is difficult to extrapolate the
CDW/SC boundary Jc(Ly) of the doped phase diagram to
Ly → ∞. Recall that calculations are actually done at finite
MPS bond dimension χ , which (for small χ ) introduces a
variational bias against strongly entangled states. We find that
the SC has much more entanglement than the CDW. This bias
in favor of the CDW at finite χ results in the critical Jc moving
upward. This effect is confirmed in Fig. 16, where we show
the behavior of Jc(Ly, χ ) for various Ly. Unfortunately, since
the entanglement scales in proportion to the circumference Ly,

FIG. 16. Dependence of the CDW/SC phase boundary Jc on
system size Ly and DMRG bond dimension χ , at λ = 0.1 and doping
δ = 1/4.

this finite-χ bias is more severe at larger Ly (e.g., the curve
for Ly = 10�B is steeper than the one for Ly = 8�B). Thus,
without careful extrapolation in χ → ∞, one may spuriously
conclude that Jc increases with Ly, possibly indicating an
instability of the SC phase in the planar limit Ly � �B. As
can be seen in Fig. 16, however, the critical coupling Jc is
still strongly drifting at our highest accessible bond dimen-
sion χ � 8000, so that a reliable extrapolation does not seem
possible with our current data set.

APPENDIX H: PAIR WAVE FUNCTION AND THE
ABSENCE OF HIGHER-ANGULAR MOMENTUM

PAIR CORRELATIONS

In the main text, we show results for the pair order parame-
ter �(r) = iηy

i jψ+,i(r)ψ−, j (r), which has zero orbital angular
momentum. The charges in the pair can thus sit directly on
top of each other, and in this sense, the superconductor is “s
wave.” However, to investigate the possibility of higher-order
pairing on the same footing, we can consider a generalized

FIG. 15. Segment DMRG data for energy particle and hole-like excitations in the top layer (γ = +) at (J, λ) = (1.0, 0.5) and ν = 2 + 1/4,
with best exponential fit and extrapolated value at Ly = 10�B and χ = 2700. We find that a much larger Nspan is required for convergence
indicating spatially extended electronic states, in contrast to the insulator at ν = 2. Slightly smaller values may be obtained by Ly extrapolation,
which we did not perform for this dataset.
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FIG. 17. Pairing wave function in the superconductor of Fig. 3(c).

pairing function

�(r, R) = iηy
i je

i
∫ r+R/2

r−R/2 A.dR
ψ+,i(r + R/2)ψ−, j (r − R/2).

(H1)

The phase factor A.dR is included to make the expression
gauge invariant. In the symmetric gauge A = B(−y, x)/2 cen-
tered on r = 0, it vanishes, and the angular momentum of the
pair is diagnosed by expanding in powers of (Rx + iRy)m as
usual. In the 2D limit, 〈�(0, R)〉 would measure the pair-
ing wave function. Note that because of the inclusion of
the layer index ±, the pairing can in principle of have ei-
ther even orbital angular momentum (�(0, R) = �(0,−R)),
or odd angular momentum (�(0, R) = −�(0,−R)); in
the odd case, the pair is both an isospin and layer
singlet.

On the cylinder, where the order is algebraic, we can in-
stead measure P(R) = ∫

d2r〈�†(r, R)�(0, R)〉, which is like
the pairing function squared. P(R), shown in Fig. 17, has a
maxima at R = 0 consistent with s-wave pairing. Interpreting
the width of P(R) as the coherence length, we find ξ ∼ �B (in

fact P(R) = e
− R2

2�2
B ). This corresponds to an LM-scale coher-

ence length, as observed in MATBG experiments.
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