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Probing Majorana modes via local spin dynamics
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We investigate Majorana modes in a quantum spin chain with bond-dependent exchange interactions by
studying its dynamics. Specifically, we consider two-time correlations for the anisotropic Kitaev-Heisenberg
(KH) Hamiltonian close to the so-called Kitaev critical point. Here the model coincides with a phase boundary
of two uncoupled instances of Kitaev’s model for p-wave superconductors, together supporting a degenerate
ground state characterized by multiple Majorana modes. In this regime, the real-time dynamics of local spins
reveal a set of strong zero modes, corresponding to a set of protruding frequencies in the two-time correlation
function. We derive perturbative interactions that map the KH spin chain onto the topological regime of Kitaev’s
fermionic model, thus opening up a bulk gap while retaining almost degenerate modes in the mesoscopic regime,
i.e., for finite system sizes. This showcases the emergence of Majorana modes in a chain of effective dimers.
Here, the binding energy within each unit cell competes with the interdimer coupling to generate a finite-size
energy gap, in analogy with local energy terms in the transverse-field Ising model. These modes give rise to long
coherence times of local spins located at the system edges. By breaking the local symmetry in each dimer, one
can also observe a second class of Majorana modes in terms of a beating frequency in the two-time correlations
function of the edge spin. Furthermore, we develop a scenario for realizing these model predictions in ion-trap
quantum simulators with collective addressing of the ions.

DOI: 10.1103/PhysRevB.106.035414

I. INTRODUCTION

Topological modes are ubiquitous in many-body (MB)
models, but their experimental detection and control in nat-
urally occurring quantum systems can be challenging [1]. A
prominent example is the Majorana fermion (MF), a non-
Abelian anyon with nontrivial exchange statistics [2], which
has been studied for a wide range of MB systems [3]. The
perhaps simplest manifestation of an MF was proposed by
Kitaev, who introduced a toy model for a fermionic quantum
wire in the form of a one-dimensional (1D) p-wave paired
superconductor [4]. The microscopic origin of this model
was worked out for d5 transition metals [5], and it is up until
this day an important tool in the active pursuit of controllable
MFs [6]. Kitaev’s fermionic model is intimately connected to
the Ising [7] and Kitaev-Heisenberg (KH) spin models. While
the Ising model is ubiquitous and studied extensively in many
contexts the KH model, with a potential realization in 4d5

ruthenium trichloride α-RuCl3 [8,9], is less commonplace.
The KH model attains frustration due to bond-dependent
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exchange couplings, and it may support long-range mag-
netic order [10,11] and quantum spin-liquid states (SQLs)
[9,12–14]. The scope of this paper is to analyze the emergence
of MFs from the perspective of few-to-many body physics.
In this field, recent advances in computational and experi-
mental techniques (particularly within ultracold atomic gases
[15,16]), has sparked experimental studies of, e.g., few-body
magnetism without a lattice in one dimension [17], the forma-
tion of a Fermi sea [18] and, more recently, a few-body analog
of a quantum phase transition in two dimensions [19,20].
The advancements mentioned above highlight the growing
interest in the controlled simulation of mesoscopic systems
and number-conserving models with exotic features, which
can shed light on the origins of quantum MB phases. Already,
several studies have been conducted on MFs and topologi-
cal phases in number conserving lattice models, motivated
by the quest for a topological quantum computer [21]. This
includes numerical studies of the topological features them-
selves, using density matrix renormalization group techniques
[6,22,23], as well as studies focusing on the microscopic
origins and possible realizations of the models in which they
arise [22,24–27]. This also extends to studies of dynamical
observables [26,28,29], and in a recent preprint some of the
few-body aspects of Majorana quasiparticles were laid out
[30], underlining the promise of quantum simulation of few-
body physics as a way to study complex MB phenomena using
a bottom-up approach.

We here aim to study the emergence of an MF from dy-
namical observables in a quantum simulation of a 1D KH
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few-body spin model. For large-scale calculations of topo-
logical modes (and SQLs), the use of quantum simulation
with engineered lattice Hamiltonians in cold atom systems
has been a viable pathway [31,32]. However, these systems
typically require extremely low temperatures. A favorable al-
ternative is given by simulators based on trapped ions [33–35].
Such setups are versatile and can function at comparatively
high temperatures [36]. Recent successful examples of ion-
trap simulations include a dynamical phase transition for a
53-qubits system [25], as well as quasiparticle dynamics in
an Ising spin chain [37]. While quantum simulation promises
remarkable speed up in the characterization of complex sys-
tems [38], so far most implementations have focused on
well-studied static properties for which other highly effective
numerical and analytical tools are available. While there have
been some advancements in classical computation of time-
dependent observables [39] they are typically costly [40,41].
There is to this date no general method to efficiently simu-
late the dynamics of large and strongly correlated systems.
Quantum simulation of dynamical features is hence especially
compelling [28,42]. Recent examples of dynamical quantum
simulation include studies of two-time correlations (TTCs)
[43–45] and out-of-time correlations (OTOCs) [46,47] in in-
teracting models, which have provided a new understanding
of phase transitions and MB modes. The Ising model has
been probed using the real-time dynamics of a single spin
[48]. This type of dynamical observable is especially relevant
for our setup and has already been utilized for a range of
open boundary models where it is clear that spins may exhibit
long coherence times owing to the presence of strong zero
modes [29,49,50]. Similarly, in fermionic models topological
Majoranas have been studied via survival rates of edge modes
[51] and via Leggett-Garg inequalities [44]. These techniques
are powerful since they can be used at high temperatures
[42,50,52].

Here we focus on few-body phases of an interacting
1D quantum spin model (SM) that emulates Majorana edge
modes (MEMs), investigating its dynamical features in the
few-to-many body limit. The term “emulate” refers to
the fact that the MEMs are topologically nontrivial only in
the fermionic representation of the model [7]. Interestingly,
the dynamical features of the SM still manifest a large dis-
crepancy between bulk and edge. We begin by presenting
an appropriate form of the (anisotropic) Kitaev-Heisenberg
Hamiltonian [6], using two parameters to tune the system
between different phases around one of its critical points. We
briefly discuss the various relevant phases in the static regime
before investigating their individual dynamical signatures in
local spin observables, focusing on MEMs. We use two-time
correlation (TTC) functions to probe the Majorana bulk gap
as well as the interaction-induced energy splitting between
edge modes. This detection protocol elucidates the few-to-
many-body development of MEMs without the requirement of
deterministic preparation of any particular quantum state. Fi-
nally, we discuss a possible experimental realization of these
findings in an ion-trap setup.

The static properties of the Hamiltonian are studied by
means of exact diagonalization, using the full basis set of
Ŝz

i eigenstates. We utilize a sparse representation of the

Hamiltonian and obtain the low-lying eigenvectors using the
open-source library Eigen [53] developed for c + +. For
determining dynamical features, we numerically solve the
time-dependent Schrödinger equation, using the fourth-order
Runga-Kutta method for temporal discretization. Here the
sparse matrix-vector multiplication can be easily parallelized
and distributed over multiple cores. Using this setup, we can
currently treat systems of up to chain lengths L ∼ 20 on a
single standard machine.

II. A TUNABLE MODEL FOR MAJORANA EDGE MODES

We focus on the 1D KH model describing an even number
L of spin-1/2 subsystems interacting via nearest-neighbor
(NN) couplings. The unit cells consist of two spins, where the
interaction inside the unit cell is different from the interaction
between neighboring unit cells. The interaction between the
spins is described by the Hamiltonian

ĤKH = K
L/2∑
j=1

(
Ŝx

2j-1Ŝx
2j + Ŝy

2jŜ
y
2j+1

) + J
L∑

i=1

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1

)

= 2J + K

4

L∑
i=1

(
Ŝ+

i Ŝ-
i+1 + Ŝ-

i Ŝ
+
i+1

)

+ K

4

L∑
i=1

(−1)i
(
Ŝ+

i Ŝ+
i+1 + Ŝ-

i Ŝ
-
i+1

)
. (1)

Here j is the unit cell index, and i is the spin index. Ŝx
i corre-

sponds to a local operator of spin i, describing spin along the
x axis. We further set h̄ = 1, so that ŜD

i = 1/2 · σ D
i in terms

of Pauli matrices σ D
i . This quantum MB Hamiltonian, with

tunable parameters J and K , can be considered an inhomoge-
neous and anisotropic Heisenberg XY model with exchange
terms and additional sign-alternating double spin-flip interac-
tions [6,54]. Similar models have been studied in the context
of quantum phase transitions, criticality and magnetic long-
range order [14,55,56]. We shall introduce perturbing terms
V̂δ to this Hamiltonian, as to produce Majorana edge modes.
The appropriate form of these perturbation will be derived
later in this section. We, however, first parametrize the basic
Hamiltonian in terms of a polar parameter, θ , governing the
relative strength and signs of the interactions according to

K = sin θ, J = cos θ, (2)

and we use
√

K2 + J2 = 1 as the unit of energy throughout.
We begin by studying the phase diagram of the sys-

tem close to the so-called Kitaev points, located at θKP =
±π/2 → K = ±1, J = 0 and θKP = 5π/4 ± π/2 → K =
±1/

√
2, J = ∓1/

√
2. Applying the Jordan-Wigner transfor-

mation, we can find the corresponding fermionic model (see
the Supplemental Materials [57] Sec. I). The fermionic Hamil-
tonian can be directly decomposed into a sum of two separate
systems, A and B, of length L/2 so that

ĤKH = K + J

4
ĤA + J

4
ĤB,
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with

ĤA = 1

2

∑
j=1

d̂†
j d̂ j + 1

4

∑
j=1

(d̂†
j d̂ j+1 + d̂†

j d̂†
1+ j ) + H.c.,

ĤB = −1

2

∑
j=1

ˆ̃d†
j

ˆ̃d j − 1

4

∑
j=1

( ˆ̃d†
j

ˆ̃d j+1 + ˆ̃d†
j

ˆ̃d†
1+ j ) + H.c.

with two independent sets of fermionic creation(annihilation)

operators d̂†(d̂) and ˆ̃d†( ˆ̃d). The subsystems describes two
independent systems, each corresponding to one instance of
Kitaev’s model for a p-wave paired superconductor [4] at
the boundary point between the trivial and topological phase
(see the Supplemental Materials [57] Sec. I). Exactly at the
Kitaev points, only one of the subsystems A or B contributes
energy in the Hamiltonian so the full system acquires one
free spin per unit cell, leading to groundstate degeneracies
2L/2 and 2L/2 -1 for open and closed chains, respectively [6].
For the open chain this amounts to L/2 Majorana operators,
which are entirely absent from the Hamiltonian, so that the
entire spectrum exhibits the same degeneracies as found in the
ground state. This global degeneracy is a stronger condition
than what is usually required for general topological order
[58]. The system here hosts multiple bulk Majorana modes
distributed all across the chain, with a hierarchy of multiply
degenerate states. Specifically, the highly degenerate ground-
state multiplet is separated from the excited states by a gap, a
necessary condition for the presence of non-Abelian quasipar-
ticles [2,3]. Throughout the text, a globally N-fold degenerate
spectrum means that each level in the spectrum is at least N-
fold degenerate, but additional degeneracies may be present.

In this work, we focus specifically on the realization of
MEMs around the Kitaev point θKP = π/2. In Kitaev’s orig-
inal model, the MEM phase supports topologically protected
modes at the edges [4], which correspond to a spontaneously
broken spin-reflection symmetry when mapped to the Ising
spin model [7]. We will nevertheless use the term MEM also
in the spin picture.

A. Majorana edge modes via perturbative interactions

To achieve the MEM phase in our setup we must invoke
an additional term V̂δ into the Hamiltonian. To find the appro-
priate perturbations we start at the Kitaev point θK = π/2 →
K = 1, where only subsystem A enters the full Hamiltonian.
To help the discussion, we temporarily invoke a more general
form of the fermionic Hamiltonian of subsystem A:

ĤA = K1

2

∑
j=1

d̂†
j d̂j + K2

4

∑
j=1

(d̂†
j d̂j+1 + d̂†

j d̂†
1+j) + H.c. (3)

For our case we currently have K1 = K2 = 1, and j is the unit
cell index (see the Supplemental Materials [57] Sec. I). As
noted before, this gives the boundary point between the trivial
and the topological phase of the Kitaev model [4]. Therefore,
for topological modes the relative size of the first term must
be decreased, so that |K1| < K2. We may thus either decrease
|K1| or increase K2 to enter the topological regime.

We first consider the (local) energy term proportional to K1

and map this back to the spin picture (see the Supplemental
Materials [57] Sec. II), revealing the appropriate perturbation

term,

V̂ intra
δ = δ

L/2∑
j=1

Ŝx
2j-1Ŝx

2j, (4)

with the MEM phase occuring for |K1 + δ| < K2. This term
corresponds to interactions within a unit cell of two spins. We
can compare this situation to the equivalence of the transverse-
field Ising model and the Kitaev model [7,59], where the local
fermionic energy term maps onto the local energy of a single
spin in a magnetic field. For our case, each term in Eq. (4)
instead represents the local energy of the unit cell dimer j.
Precisely at the Kitaev point, where K1 = K2 = 1, the dimer
energy equals that of the interdimer bond, and the system
remains gapped for L → ∞. Here the global degeneracy is
that of L/2 dimers with one free spin each, giving 2L/2 states.
For |K1| < K2 the interdimer bonds instead dominate, and an
additional global twofold symmetry arises for L → ∞, cor-
responding to zero-energy Majorana modes, giving a global
degeneracy of 2 × 2L/2. The degeneracy is perfect in the limit
of infinite chains, whereas the finite-size gap between the two
degenerate multiplets scales with e-L/2. Aside from additional
degeneracies, the energy spectrum of this system coincides
perfectly with that of a transverse field Ising model with L/2
spins, ĤI = ∑

K2Ŝy
i Ŝy

i+1 + K1Ŝx
i . The Hamiltonian (1) is thus

very similar to the transverse field Ising model but differs in
its dynamical properties due to the additional degeneracies.

As noted above, we can also enter the MEM phase by
increasing the relative size of the terms scaling with K2 in the
Hamiltonian (3), giving

V̂ inter
δ = δ

L/2∑
j=1

Ŝy
2jŜ

y
2j+1, (5)

with the unit cell index j and the MEM phase occurring for
|K1| < K2 + δ. This term corresponds to interactions between
two unit cells.

We now invoke a third option for the perturbing interaction,
V̂δ , corresponding to a fully connected Ising term,

V̂ Ising
δ = δ

L∑
i=1

Ŝy
i Ŝy

i+1, (6)

where i is the spin site index. This perturbation does not
map the fermionic Hamiltonian onto a Kitaev model, but
we nevertheless see the emergence of an MEM phase for
|K1| < K2 + δ. We will see that this perturbation simultane-
ously creates MEMs and breaks local symmetries within each
dimer, giving rise to a beating pattern in the time-dependent
edge spin correlation functions. In conclusion, we use δ as an
effective parameter that controls the onset of MEMs, using
either of the perturbations in Eq. (5) or Eq. (6). The two dif-
ferent perturbations are used to highlight two different effects
in dynamical simulations of the MEM regime. The spectrum
due to the interdimer perturbation (5) is depicted in Fig. 1.
We want to treat all choices of perturbation on equal footing
and study the systems dynamics in the spin picture. Therefore,
although the fermion mapping could be employed to solve the
system for the perturbations in Eqs. (4) and (5), we will in the
following exclusively employ the spin picture.
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FIG. 1. Phase diagram of the anisotropic Kitaev-Heisenberg (KH) quantum spin model for L = 8 in the vicinity of a critical Kitaev point
(KP), located at (δ = 0, θ = π/2). Here the Hamiltonian supports a degenerate ground state with multiple Majorana modes. The hierarchy
of degenerate multiplets at the KP is directly observed in the spectrum in panel (a). Adding a term V̂δ with strength δ > 0 drives the system
into the Majorana edge mode (MEM) phase, giving rise to a bulk gap, dividing all energy states into two sectors. Perturbing around the KP
with the Y-bond interaction term V̂ inter

δ in Eq. (5) realizes a dimer Majorana edge mode phase, with each level attaining a 2 × 2L degeneracy
for L → ∞, whereas a nonvanishing gap is attained for finite L, as seen in panel (b). For θ = π/2 − dθ and δ ∼ 0, shown in (a), the system
becomes a Tomonaga Luttinger liquid (TLL), which persists for moderate perturbation strengths |δ|. For θ = π/2 + dθ and δ ∼ 0, the system
is in a spiral XY phase, also persisting for moderate perturbations. For θ ∼ π/2 and δ < 0, the system is in a gapped (G) phase with no MEMs.
The MEM phases show a distinctly different behavior than the other phases in terms of the dynamical development of local spins.

III. PHASE DIAGRAM AND STATIC PROPERTIES

Let us now briefly discuss the four phases in the phase
diagram shown in Fig. 1, spanned by the parameters θ and
δ in the vicinity of the critical Kitaev point at θ = π/2 and
δ = 0. The characterization of these phases will be helpful
when discussing the dynamical features of local spins in the
later sections:

(1) Majorana edge mode (MEM) phase (θ = θKP =
π/2, δ > 0): the bulk energy spectrum in this regime is
gapped, with two zero-energy edge modes in the thermody-
namic limit. However, in finite systems, their energies remain
small but finite, yielding a finite-size gap that vanishes ex-
ponentially with increasing system size. For the perturbing
term, V̂ inter

δ , each level has a global 2L/2-fold degeneracy due
to free parameters in the Hamiltonian, so that for L → ∞ the
spectrum becomes 2 × 2L/2-fold degenerate. We call this the
dimer MEM phase. For V̂ Ising

δ the spectrum becomes globally
twofold degenerate for L → ∞. We call this the Ising MEM
phase. In the MEM phase, the corresponding free fermion
model supports topological edge modes.

(2) Gapped (G) phase (θ = θKP = π/2, δ � 0): this
regime has a gapped energy spectrum, with no Majorana edge
modes present.

(3) Spiral XY phase (θ > θKP = π/2, δ = 0): the energy
spectrum in this regime is gapless, and no Majorana modes
are present.

(4) Tomonaga Luttinger liquid (TLL) phase (θ < θKP =
π/2, δ ≈ 0): The low-energy spectrum is gapless.

Further characterization and discussion of the static prop-
erties of these phases are presented in the Supplemental
Materials [57] Sec. III.

IV. DYNAMICAL FOOTPRINTS
OF THE MAJORANA MODES

Time-dependent observables are a powerful tool for the
analysis of physical systems beyond their ground-state phases
[42,44,45,48,50]. In particular, local measurements, ŜD

i (t ), of
a spin i along D ∈ {x, y, z} are intuitive and experimentally
accessible probes that can be used to highlight the emergence
of MEMs [50,60].
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FIG. 2. Time evolution of mean autocorrelation �D
i (t ) at an edge site, i = 1, and at a bulk sites, i = 2, i = 3 for a system of L = 14 spins.

(a) The mean autocorrelation function in the MEM phase achieved for Ĥ inter
δ = ĤKH(θ = π/2) + V̂ inter

δ with δ = 0.4. Both i = 1 and i = 2
show long-time coherence for a spin initially pointing in the y direction, owing to the presence of zero modes which commutes with Ĥ up to
an exponentially small factor ε. This is also true for spin z, but only at the edge. Other spins decay. (b) The corresponding autocorrelations for
Ĥ Ising

δ = ĤKH(θ = π/2) + V̂ Ising
δ . Here the autocorrelation �z

i (t ) for an edge spin i = 1 along z oscillates perpetually with an amplitude scaling

with the corresponding value of �
y
1 (t ). We emphasize that, in both plots, the decaying spins would go to zero for L → ∞ and t → ∞.

We first consider the spin operator,

ĜD =
L∏

k=1

σ̂ D
k . (7)

The eigenstates of ĜD are denoted | ± 	D
n 〉 = [|sD

1 sD
2 sD

3 · · · 〉].
These state are parity eigenstates, where we use ± to denote
positive or negative parity, respectively. These eigenstates will
serve as the initial states for the dynamical simulations, where
we numerically evolve each state in time under the Hamilto-
nian operator (1) and study the dynamical evolution of local
spins. We also note that this spin-operator flips all spins along
the axes perpendicular to D, i.e., along x and y for Ĝz.

For quantitative measures, we consider the mean autocor-
relation function,

�D
i (t ) = (1/N )

N∑
n=1

�D
i,n(t ) = (1/N )

N∑
n=1

〈
ŜD

i (t )ŜD
i (t = 0)

〉
n,

(8)

where the sum over N produces the average over
a randomly sampled set of N initial states |±	D

n 〉 ∈
{|↓↓↓ · · · 〉, . . . , |↓↓↑ · · · 〉} in the basis of spin D. We also
consider the (discrete) Fourier transformed evolution func-
tions F (〈ŜD

i (t )〉), again taking the average over a large set of
initial states,

∣∣cD
i (ω)

∣∣ = (1/N )

∣∣∣∣
N∑

n=1

F
(〈

ŜD
i (t )

〉
n

)∣∣∣∣. (9)

We further calculate variances to highlight which features
are largely independent of the particular input states we

choose.1 By sampling over multiple initial states and tak-
ing the average, we specifically access robustfeatures of the
system in the sense that an experimental setup would not
rely on repeated and deterministic preparation of any spe-
cific initial state. Measurements can instead be performedwith
mixed states for those spins which are not directly probed,
which is especially relevant for detection of strong zero modes
[29,50]. To simplify the computations we, however, consider
pure initial states for the individual runs and take the average
afterward, i.e., we essentially perform a Monte Carlo sam-
plingof a completely mixed density matrix. Figure 2 shows
mean autocorrelations for a set of randomly sampled states
developing in time under two different Hamiltonians. As will
be discussed in the following section, there are several robust
features in the mean autocorrelations of edge spins (like the
constant spin-y projection in each plot), even though they
essentially represent time development of mixed states.

A. Zero modes of the Hamiltonian

A Hamiltonian that supports MEMs can be represented in
terms of Majorana operators in such a way that some of them
drop out of the Hamiltonian in the infinite (L → ∞) system
limit [4], giving rise to global symmetries and corresponding
degeneracies in the entire energy spectrum. In line with the
procedures in Refs. [4,49,50], we elucidate the dynamical
properties of the finite-size system by first deriving the zero

1Because of computational limitations, the frequency-dependent
quantities are generally displayed on rather coarse grids in frequency.
We stress, however, that the significant features, which will be used
to identify the MEM phases, are visible already for rather short evo-
lution times. To extract more detailed information we run simulations
for longer times.
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modes, which correspond to the Majorana modes in the cor-
responding fermionic model. These modes are constructed
to approximately commute with the Hamiltonian, with cor-
rections ∼e−L, and are associated with long-time coherent
features in the dynamical evolution.

We first consider the Hamiltonian (1) at the Kitaev point
θ = π/2, using the perturbation V̂ inter

δ , so that

Ĥ inter
δ = ĤKH(θ = π/2) + V̂ inter

δ

=
L/2∑
j=1

(
Ŝx

2j-1Ŝx
2j + Ŝy

2jŜ
y
2j+1

) + δ

L/2∑
j=1

Ŝy
2jS

y
2j+1

≡ (1 + δ)(Ĥ0 + Ŵ ). (10)

For convenience, we have rescaled the Hamiltonian in the last
line, so we end up with

Ĥ inter
δ → Ĥ0 + Ŵ , Ĥ0 =

L/2∑
j=1

Ŝy
2jŜ

y
2j+1,Ŵ = 1

1 + δ

L/2∑
j=1

Ŝx
2j-1Ŝx

2j,

where we recognize that δ > 0 yields the dimer MEM phase.
We now proceed to analytically constructing the zero

modes for a set of different operators. We start by considering
a spin observable that commutes with the Hamiltonian Ĥ0

and from there we proceed to construct higher-order terms
as to build a mode that commutes, up to a small correction,
with the full Hamiltonian. As a first example, we take a local
spin along y at the edge of the spin chain as the zeroth-order
approximation of the mode operator �

(0)
A = Ŝy

1, which clearly
commutes with the dominant term Ĥ0 in the Hamiltonian (10).
It does, however, not commute with the full Hamiltonian, and
for Ĥ0 + Ŵ we find

[
Ĥ inter

δ , �
(0)
A

] = i
1

1 + δ
Ŝz

1Ŝx
2 .

We can offset this by introducing first- and second-order terms
to the mode operator �

(1)
A = M1Ŝz

1Ŝy
2 and �

(2)
A = −4[1/(1 +

δ)]Ŝz
1Ŝz

2Ŝy
3 so that

[
Ĥ0, �

(1)
A + �

(2)
A

] = −4
1

1 + δ

[
Ŝy

2 Ŝy
3, �

(2)
A

] = −i
1

1 + δ
Ŝz

1Ŝx
2,

where the factor of four is absorbed by an emerging operator
Ŝy

3 Ŝy
3 = 1/4. The first-order term always commutes with the

full Hamiltonian, so we can freely choose the constant M1.
�

(2)
A does not commute with Ŵ , but results in a higher-order

term when commuting the mode the Hamiltonian. This can
again can be offset by adding additional terms of higher or-
der into the mode. Continuing in this fashion until we reach
the end of the chain we finally get (see the Supplemental
Materials [57] Sec. IV)

�A =
L/2∑
j=1

�
(2j)
A +

L/2∑
j=2

�
(2j-1)
A = Neσ

y
1 + Ne

L/2∑
j=2

(
− 1

1 + δ

)j-1

× σ
y
2j-1

2j-2∏
k=1

σ z
k + No

L/2∑
j=1

Mj-1σ
y
2j

2j-1∏
k=1

σ z
k , (11)

which we can show commutes with the Hamiltonian up to
an exponentially small factor. The constants N0 and Ne are

normalization constants, found by setting �2
A = 1. In this

expression, we have changed the representation to Pauli spin
operators, ŜD

i → σ D
i /2, and separated the odd and even orders

for convenience. Each term in the sums now corresponds to a
Majorana fermion [4]. For the second sum we have one free
choice for the constant Mi per term, meaning each unit cell
adds a degree of freedom for the zero mode. This is consistent
with the global 2L/2-fold degeneracy in the spectrum. For
simplicity, we have chosen M j = Mj-1.

Each term in the sum of Eq. (11) anticommutes with all the
others, so that

�2
A = N 2

e
1−

(
1

1+δ

)L

1−
(

1
1+δ

)2 + N 2
o

1−ML

1−M2

≈ N 2
e

1

1−
(

1
1+δ

)2 + N 2
o

1
1−M2 , (12)

and we proceed to choose the normalization so that �2
A = 1

for |M| < 1 and δ > 0. It is now clear the each of the zero
modes constructed in Eq. (11) commutes with the Hamilto-
nian H , now in matrix representation, up to an exponentially
small term,

[
Ĥ inter

δ , �A
] =

[
σ x

L-1σ
x
L

1 + δ
,Ne

(
− 1

1 + δ

) L
2 −1

σ
y
L-1

L-2∏
k=1

σ z
k

]

= 2i
Ne

1 + δ

(
− 1

1 + δ

) L
2 −1( L-1∏

k=1

σ z
k

)
σ x

L

= −2
Ne

1 + δ

(
− 1

1 + δ

) L
2 −1

Gzσ
y
L = εrem, (13)

where Gz is the spin-flip operator in Eq. (7). We also note that
the zero mode anticommutes with the spin-flip operator so that
{Gz, �A} = 0. This means that Gz toggles between different
eigenstates of �A and vice versa. Together with normalizabil-
ity and the vanishing commutator εrem, these properties of the
zero mode constitute the necessary conditions for long-time
edge spin coherence [50]. Alternatively, zero modes can be
constructed similarly by starting at the other edge, Ŝy

L.
We also find that for Ŝy

2 and Ŝz
1, which also commute with

Ĥ0, two corresponding zero modes, �B and �C can be found
(see the Supplemental Materials [57] Sec. IV). These modes
differ in their construction, since they are each derived from
different starting points. However, the different zero modes
�A, �B, and �C each span the same operator space, so that the
implicated global degeneracy of the energy spectrum for L →
∞ is still 2 × 2L/2. In summary, we can construct normalizable
zero modes �A, �B, and �C for the Hamiltonian (10), which
includes the perturbation V̂ inter

δ with δ > 0.
Interestingly, the zero modes �A and �B also commute, up

to an exponentially small factor, with the alternative Hamilto-
nian

Ĥ Ising
δ = ĤKH(θ = π/2) + V̂ Ising

δ , (14)

which instead uses the perturbing Ising term V̂ Ising
δ . This is

true for δ > 0, providing we set all constants in front of odd
orders to zero, so that MA = 0 and MB = 0. This means
that for each of the operators, Ŝy

1, Ŝy
2, one may use the same

construction of zero modes for Hamiltonian Ĥ Ising
δ as for
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Ĥ inter
δ . However, for this choice of perturbation Ĥ Ising

δ the free
parameters Mi for the previously constructed zero modes are
removed, so the global degeneracy in the spectrum becomes
only twofold in the limit L → ∞, resulting in different behav-
ior in the dynamical simulations.

The commutations between the finite-size zero modes and
the Hamiltonians Ĥ Ising

δ and Ĥ inter
δ are identical, so the finite-

size gap between zero modes, i.e., the energy gap associated
with the nonzero commutation between the zero mode and the
Hamiltonian L = E1 − E0, are also the same for the differ-
ent perturbations. We will see that the long-time coherence
depends crucially on this gap, and we therefore expect some
identical long-time features for both Hamiltonians.

B. Long-time dynamics of edge spins

We now proceed to summarize the impact of zero modes
on the long-time dynamics of our system. For details, we refer
the reader to the Supplemental Materials [57] Sec. V, and for
a comprehensive theoretical background to Refs. [49,50]. We
evaluate the autocorrelation function �D

1 (t ) for an eigenstate
|SD〉, with corresponding eigenvalue sD

1 , of the edge spin op-
erator ŜD

1 along direction D. In practice we will use states
| ± 	D

n 〉 which are eigenstates of GD, but here we consider
a general state |SD〉. We get for the autocorrelation

�D
1 (t ) = 〈SD|ŜD

1 (t )ŜD
1 (t = 0)|SD〉

= sD
1

2

∑
n,m

e−it (Em−En )〈SD|n〉〈n|σ D
1 |m〉〈m|SD〉, (15)

where 〈n|, 〈m| are eigenstates of some Hamiltonian Ĥ with
corresponding zero mode �A. Since �A (almost) commutes
with the Hamiltonian we may divide all energy states into two
sectors denoted by positive or negative sign, corresponding
positive or negative eigenvalues of �A so that

Ĥ |n±〉 ≈ En|n±〉, �A|n±〉 = ±|n±〉, (16)

We can now rewrite the autocorrelation function with new
indicies

�D
1 (t ) = sD

1

∑
n,m

e−i(Em−En )t (〈SD(|n+〉〈n+| + |n−〉〈n−|)

× σ D
1 (|m+〉〈m+| + |m−〉〈m−|)SD〉).

For long times t and large system size L, terms with En �= Em

add up incoherently while terms with En = Em add up coher-
ently, i.e., terms with En �= Em get a random phase so that we
can ignore them. The double sum may then be approximated
for long times by

�D
1 (t ) ≈ sD

1

∑
n

(
T D

1 + T D
2 + T D

3 + T D
4

)
(17)

with terms T D
1 –T D

4 relating to the time-independent matrix
elements between |n±〉:

T D
1 = 〈SD|n−〉〈n−|σ D

1 |n−〉〈n−|SD〉,
T D

2 = 〈SD|n−〉〈n−|σ D
1 |n+〉〈n+|SD〉,

T D
3 = 〈SD|n+〉〈n+|σ D

1 |n−〉〈n−|SD〉,
T D

4 = 〈SD|n+〉〈n+|σ D
1 |n+〉〈n+|SD〉. (18)

This shows that for an infinite system, the long-time spin
oscillations are stable. For finite systems this is no longer the
case, and the oscillations will eventually decay. The coher-
ence time, i.e., the time during which the spin autocorrelation
function remains stable, either displaying a finite value or
a persistent oscillation, is generally set by the commutation
between the Hamiltonian and the zero mode, which vanishes
with L → ∞ [50]. Interestingly, if the finite-size gaps L

between semidegenerate states in a system’s spectrum are all
identical, spin autocorrelations which first appear to decay
will have a revival time of order 1/L ∝ 1/〈εrem〉. If all gaps
are different we will instead have only partial revivals. For
integrable systems, like the Ising model, these revival times
may be directly calculated [61]. This is also true for the
Hamiltonian in Eq. (10), which will be apparent from the
dynamical simulations. We stress that we employ a closed
quantum system where revivals do occur after an initial decay.
However, these happen at exponentially long times that are
controlled by the system size. Before such revivals, equili-
bration processes occur that are due to the scattering between
modes [62].

So far we have not specified the direction D in which we
aim to measure the spin, and we proceed to study the effect
of two particular choices of ŜD

1 . We here aim to explain the
behavior of different spin observables by invoking the expres-
sion for the autocorrelation (17) and explicitly evaluating the
matrix elements in Eq. (18). Since we specifically use the
Pauli-spin representation of operators in this chapter, we will
use σ D

i to represent a spin operator at site i along D. We
begin with the Hamiltonian Ĥ inter

δ and σ
y
1 (spin measured in

the y direction) with the corresponding zero mode �A derived
in the pervious section. To evaluate the matrix elements T y

2
and T y

3 we exploit the spin-flip operator in Eq. (7) which
anticommutes with �A so that Gz|n±〉 = |n∓〉 and we get

T y
2 = 〈Sy|n−〉〈n+|Sy〉 × 〈n+|

{
σ

y
1 ,Gz

}|n+〉/2,

T y
3 = 〈Sy|n+〉〈n−|Sy〉 × 〈n+|

{
σ

y
1 ,Gz

}|n+〉/2. (19)

Now we note the anticommutation {σ y
1 ,Gz} = 0, leading to

T y
2 = T y

3 = 0. For T y
1 and T y

4 we instead employ Eq. (16):

T y
1 = |〈Sy|n−〉|2 × 〈n+|

{
�A,Gzσ

y
1 Gz

}|n+〉/2,

T y
4 = |〈Sy|n+〉|2 × 〈n+|

{
�A, σ

y
1

}|n+〉/2. (20)

For T y
4 we may use Eq. (11) directly, giving {�A, σ

y
1 } = Ne +

C, where C represents (exponentially) small corrections. For
T y

1 we see that {�A,Gzσ
y
1 Gz} = {�A, σ z

1 σ
y
1 σ z

1 } = −{�A, σ
y
1 }.

This gives the long-time limit of the autocorrelation

�
y
1 (t ) ≈ sy

1(Ne + C)
∑

n

(|〈Sy|n+〉|2 − |〈Sy|n−〉|2), (21)

which depends on only the initial state and how much overlap
it has with each sector of eigenstates for �A. The exact form
of the corrections C depend specifically on the model [50], but
they are always exponentially decreasing with L/2.

We can use an identical derivation for σ
y
2 by making the

substitutions �A → �B and redefining the quantum number
n so that �B|n±〉 = ±|n±〉. For σ z

1 we instead put Gz → Gx,
�A → �C and �C|n±〉 = ±|n±〉.
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FIG. 3. Time evolution of mean autocorrelation �D
i (t ) at an edge site, i = 1, and at a bulk site, i = 2 for a system of L = 14 spins. (a), (b)

The mean autocorrelation function (8) in the Ising MEM phase and at the Kitaev point, respectively. The former has Majorana modes only at
the edges, and the latter has one Majorana mode per unit cell throughout the bulk. In the MEM phase, a single dominant oscillation frequency
is observed for the edge site. This spin precession is only weakly damped, whereas oscillations in the bulk decay fast. At the critical point (b),
no characteristic frequency is observed. (c), (d) The frequency Fourier components ω (9) of the local spin-expectation value, 〈Ŝz

i (t )〉, averaged
over the same set of initial states as for the autocorrelation functions, for the MEM phase (c) and the Kitaev point (d). Also shown are the
corresponding variances. The dominant single peak for the edge site i = 1 has low relative variance and indicates a single oscillation frequency,
which is independent of system size, L. The bulk site i = 2 has a strikingly different behavior, with several oscillation frequencies and higher
relative variances. The details of the frequency profile are dependent on system size, indicative of a bulk mode. (d) The characteristic behavior
of the Kitaev point, with a multipeaked structure and zero variance at both edge and bulk sites.

Figure 2(a) shows the simulated dynamical development
of spins for Ĥ inter

δ , confirming that the mean autocorrelation
for σ

y
1 , σ

y
2 , and σ z

1 is long-lived compared to other spins.
This is directly explained by the fact that we can construct
corresponding zero modes, as shown in the previous section.
This is not true for the other operators shown in the plot, where
the autocorrelation vanishes for long times.

C. Beating patterns for edge spins

In Fig. 2 we study how the autocorrelation function com-
pares for the Hamiltonians Ĥ inter

δ and Ĥ Ising
δ . The results for σ

y
1

and σ
y
2 are the same for the different Hamiltonians, whereas

σ z
1 is strikingly different. Curiously, long-time coherence is

still present for Ĥ Ising
δ , but with an oscillating factor which we

find is independent of system size. The coherence time of the
oscillation is however set by system size, as for σ

y
1 and σ

y
2 .

We can relate this result directly to the zero modes.
We derive in the Supplemental Materials [57] Sec. VI

that

�z
1(t ) ≈ sz

1

4
(cos2 δt − sin2 δt )(Ne + C)

×
∑

n

(|〈Sz|n+〉|2 − |〈Sz|n−〉|2). (22)

We see that the expression by symmetry is, except for the
time-dependent factor, identical to the autocorrelation �

y
1 (t ),

but here for an initial state |Sz〉. This precession of the edge
spin σ z

1 is hence given by an oscillation, with frequency δ, and
an envelope function given by the coherence time of σ

y
1 .

Comparing the evolution of different spin-components in
Fig. 3(a) we see that σ x

1 has a spin precession which does not
decohere, in contrast to σ z

1 . We note that the x component of
the edge spin commutes with ĤKH(θ = π/2), and using the
same technique as for σ z

1 one may again calculate the spin
precession of σ x

1 from the perturbation V̂ Ising
δ . This gives a time

dependence ∝ (cos2 δt − sin2 δt ) without any decoherence,
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FIG. 4. Comparison of static energy gaps and the mean autocorrelation �D
i (t ) at an edge site, i = 1, for a systems of varying size L. (a) Log

plot of the finite-size excitation energies, showing a bond-breaking YY-chain energy gap, δ = 2δ, and the zero-mode gap, L = E1 − EGS, as
functions of system size L. We note that δ is independent of system size L, and that L is repeated in the entire spectrum. (b) The inset shows
the bare energy of the lowest four levels for various system sizes L. The two characteristic frequencies in the temporal evolution of �D

i (t )
correspond to the transitions EGS ↔ E3 and E1 ↔ E2. (c, d) The long-time evolution of the edge autocorrelation function (8) for chains of
length L = 8 and L = 10, respectively. The characteristic frequency ∝ δ does not change with L. The revivals of the oscillations correspond
to a beat frequency fbeat ∝ L, which is, however, directly dependent on the zero mode gap, L, which in turn depends on L. The expected
beat frequencies calculated directly from the spectral gaps are T L=8

beat = 259 and T L=10
beat = 673, which is in good agreement with the observed

dynamics.

owing to the fact that σ x
1 does not couple the different zero

mode eigenstates. We find that the spin precession frequency
of σ x

1 and σ z
1 is independent of the chosen initial state, since

it explicitly depends on global gaps δ in the spectra. These
correspond to the gap within the edge unit cell, given by the
perturbation δŜy

i Sy
i+1. Since σ x

1 toggles between levels within
the unit cell split by δ, but not between zero mode eigenstates,
it corresponds only to the oscillation frequency from the gap
δ . The operator σ z

1 on the other hand, toggles between both
zero modes and unit cell energy levels. The decoherence time
now relates directly to the toggling between different zero
modes, corresponding to gaps L given by the commutation
of the zero modes and the Hamiltonian. This correspondence
is shown in Fig. 4, where the autocorrelation is evaluated for
longer times. Away from the Kitaev point θKP the global gaps
are no longer present, so the oscillations decay quickly in both
the TLL and XY phase.

Figure 5 shows that the persistent edge oscillations are
entirely absent in the other parts of the phase diagram, where
zero modes are not present. In these cases there are no global
degeneracies in the Hamiltonian, and oscillations at the edges
simply decay in the same manner as for spins in the bulk,
as seen from Fig. 5. Simulations show that the decoherence
becomes more profound, meaning that the system is fully
decohered for a longer time without signs of revival, as the

systems grow in size. We stress that the edges are still interact-
ing with the bulk in this MEM phase, which becomes apparent
from the fact that the coherence times increase with L (not
shown here). This means that we cannot think of the edges and
bulk as two completely separate systems described in terms
of a tensor product between them. However, observables like
�x

1 (t ) may still have trivial behavior if they fully commute
with the Hamiltonian, as seen in Fig. 3.

From the above results, we conclude that the autocorrela-
tion function can reveal a clear signature for the existence of
zero modes in the Hamiltonian, providing the correct spins
are measured. The oscillations are visible only for the edges
and not in the bulk since the bulk spins generally decohere
fast [49]. A handy explanation is offered in the limit δ � 1
where we notice that applying a local spin-z at the edge adds
the energy cost of breaking (or creating) exactly one antifer-
romagnetic bond: The operator σ̂ z

1 , which acts as a spin-flip
operator on a local spin − y state at the edge, will necessarily
break or create exactly one bond, connecting states separated
in energy by the gap δ = δ. These gaps are present through-
out the spectrum and result in a large set of coherent terms in
the autocorrelation function (15), giving a significant contri-
bution for long times. For σ̂ z

i , acting on a bulk state L > i > 1,
a spin flip is instead associated with either simultaneous cre-
ation and destruction of one bond (or simultaneous creation
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FIG. 5. Same as Fig. 3, but for the TTL phase (a), (c) and the XY phase (b), (d). Each of these phases displays a broad distribution of
frequencies, with high variance both in the bulk and at the edge. This is manifested in the rapid decay of the real-time oscillations in (a) and
(b). This is in strong contrast to the edge oscillations in the MEM phase, providing a clear signal for the onset of Majorana edge modes at
θ = 0.5π, δ > 0.

or destruction of two bonds) and will thus connect states with
energy differences smaller than the gap. This gives rise to a
set of low frequencies contributing to the temporal evolution
of the bulk spin, causing an effective decay of the oscillations.
In the limit of small δ, this discrepancy between bulk and edge
is reduced since δ is then of the same order as other, small
gaps in the spectrum. From the dynamical simulations, we
find that the number of dominating frequencies for the first
bulk spin corresponds to Npeaks = L − 2 which means that for
successively larger systems, the oscillations in real time will
be washed out for this site. The high relative variance for
the bulk spins, see Fig. 3 furthermore shows that the exact
dynamics here depend heavily on the input state. Directly at
the Kitaev point, the number of dominating frequencies cor-
responds to the system size L (Npeaks = L/2). The frequencies
are independent of the site index and input state, whereas their
relative weights depend on the site index. This explains why
no coherent oscillations are seen directly at the Kitaev point.

In the limit of long-time spin precession for the MEM
phase we observe decay and revival of the oscillation at the
edge, resulting in a beating pattern. The beating pattern, with
period T L

beat, observed in Fig. 4 is a finite-size effect directly
related to the revival of decohering spins, which was noted for
the pure Ising model in Refs. [50,61], where the revival time
scaled with system size. The envelope function in Eq. (22) is
given by the same function as for the spin σ

y
1 , which has some

important consequences. We know that the decoherence and
revival times of the autocorrelation function here are related
to the correction term C [50], so these properties are therefore
identical for σ

y
1 and σ z

1 . The revival time scales with the
few-body gap ∼1/L, as evident in Fig. 4. As noted before,
L is identical for Ĥ Ising

δ and Ĥ inter
δ . We have shown that the

long-time properties of these two systems can be mapped onto
those of an effective Ising model with two-site unit cells. The
complete revival and resulting beating pattern in the autocor-
relation plots of Fig. 4, scaling with T L

beat ∝ 1/L, is therefore
not surprising.

V. QUANTUM SIMULATION WITH TRAPPED IONS

For a possible quantum simulation of the MEM phase,
we here sketch a setup with ions trapped utilizing radio fre-
quency (RF) fields [63–65]. Experiments with such systems
typically realize effective Ising, XY, or XYZ spin-spin in-
teractions, and may be supplemented with global transverse
fields terms [66,67]. These setups have been used in a large
number of studies, for example simulation of quantum mag-
nets [68] entanglement propagation [37], and variations on the
quantum Ising spin chains [25,69,70], along with more gen-
eral quantum computing implementations [71,72]. Whereas
most quantum simulation experiments with trapped ions use a
linear configuration we will consider a geometry where the
trapping frequencies perpendicular to the tap axis are very
different. For suitable parameters this ensures that the ions
form a planar zig-zag structure as shown in Fig. 6. The use of
a zig-zag configuration allows for the direction and magnitude
of a laser field to control the size and sign of effective interac-
tions between different rungs of the zig-zag spin ladder [74]
and we will exploit this below. Furthermore, we assume that
every third ion in our setup is selectively hidden, requiring in-
dividual addressing of ions [75], so that they do not participate
in the simulation. The resulting pattern is sketched in Fig. 6.
To ensure a uniform distance between ions, we consider only
the central part of a crystal containing N ∼ 100 ions and
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FIG. 6. (a) Sketch of the zig-zag configuration of ions in an RF
trapping potential. The direction of optical beams is given by ϕa ∼
π/2 in the xy plane. Every third ion is hidden, as indicated by the
white circles, producing the effective order of interacting two-level
systems denoted by the numerals. (b) Numerically simulated equi-
librium positions of N = 70 ions for the considered trap parameters
ωx = 18.75ωz and ωy = 125ωz. We assume that all ions outside the
central region are hidden. so that the distance between different rungs
is roughly uniform for the participating ions. Alternatively, a similar
uniform spacing can be achieved by shaping the trapping poten-
tial [73].

assume that all other ions do not participate in the simulation,
e.g., because they have been optically pumped to a different
internal level [75]; see Fig. 6. Alternatively, a more uniform
distribution could also be obtained by carefully adjusting the
local trapping potential [73].

For convenience, we first employ a simple rotation on the
Hamiltonian in Eq. (1) so that

X → Zsim Y → Xsim Z → Ysim, (23)

where the subscript “sim” denotes the axes of the simulated
Hamiltonian. We aim to realize the Hamiltonian

Ĥ =
L/2∑
j’=1

V a,odd
j’ Ŝz

2j’-1Ŝz
2j’ +

L/2∑
j’=1

V b,odd
j’ Ŝx

2j’-1Ŝx
2j’

+
L/2∑
j’=1

V b,even
j’ Ŝx

2j’Ŝ
x
2 j′+1 + H.c. (24)

with the purpose of simulating the effective Hamiltonian
Ĥ Ising

δ = ĤKH(θ = π/2) + V̂ Ising
δ from the previous section.

We note that the indices j′ correspond to the effective indicies
in the simulated Hamiltonian, which correspond to the active
(not hidden) ions inside the ion trap, as shown in Fig. 6(a).

For the choice V a,odd
j’ = V b,odd

j’ = V b,even
j’ /2 the Hamiltonian

Ĥsim reduces to Ĥ Ising
δeff

with K = 1 and δeff = 1, assuming the

couplings V a,odd
j ,V b,odd

j and V b,even
j are uniform.

As we discuss below a major challenge is to remove
additional interactions induces by the coupling mechanism
corresponding to next-nearest neighbor (or higher) interac-
tions in each of the effective ZZ and XX interactions. The
residual interactions will cause decoherence and need to be
reduced enough for the beating mechanism to be observed
at different system sizes L. We find that a suitable parameter
regime to aim for is δeff ∼ 1.

The signature of the MEM phase of Ĥ Ising
δ requires the

edge spin to be initially prepared in an eigenstate of Ŝy
1. This

can be achieved by optical pumping and subsequent ±π/2
rotations around the x axis [76,77]. The remaining spins can
be prepared into any mixed state, but to be consistent with the
previous sections we here assume their initial states to also
be eigenstates of Ŝy

i . With the initial spin-state sy
1 known, the

autocorrelation function �
y
i (t ) in Eq. (8) can be evaluated by

measuring the spin along y at a later time t .
We now proceed to discuss the realization of the two differ-

ent interactions in Ĥsim, starting with the ZZ interaction. For
a detailed derivation and discussion of parameters of the ion-
trap simulation, see the Supplemental Materials [57] Sec. VII.

A. Simulating ZZ and XX interactions

For the ZZ interaction we consider a two-photon � scheme
where the lasers coupling two stable ground levels |↑〉 |↓〉 to
an excited state are far-off resonant with the dipole allowed
transition and the detuning is given by D which is much larger
than the spontaneous decay rate of the system. In line with
Refs. [66,74] we employ a pair of laser fields with effective
Rabi frequencies �1,ς and �2,ς for ς = ↑,↓ coupling the
ground levels ς to the excited state. The effective Raman
wave vector of the two fields is given by �ka

l = �k1 − �k2 =
ka

l {cos ϕa, sin ϕa, 0}, and can be tuned via alignment of the
lasers. The laser beatnote ωa

l = ω1 − ω2 of the fields is chosen
close to the ions’ collective vibrational motion in the transver-
sal direction y, with mode energies ω

y
p, and far-off resonance

with the vibrational modes in the zig-zag plane with mode
energies ωxz

p . The transverse vibrational modes act as medi-
ators of an effective spin-spin interaction of the canonically
transformed Hamiltonian [66], and by carefully choosing the
detunings and alignments of the laser fields a nonisotropic
effective ZZ interaction with tunable strength and range can
be realized [74]:

Ṽ a
ij =

∑
ij

V a
ij σ̂

z
i σ̂ z

j . (25)

The overall strength of the interaction is controlled by the
magnitude and direction of the laser fields, affording some
freedom in choosing the parameters in our effective Hamil-
tonian. Crucially, the factor V a

ij is dependent the alignment

of the field and the relative equilibrium positions �̃r0
ij of the

interacting ions, so that the nonhomogeneity of the interaction
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can be tailored via the fields:

V a
ij ∝ −�2

a (sin ϕa)2 cos
[
ka

l (xj − xi ) cos ϕa + (yj − yi ) sin ϕa
]
.

(26)

The effective two-photon Rabi frequency is given by �a =
(�1,↓�∗

2,↓ + �1,↑�∗
2,↑)/2D.

For the zig-zag configuration of the ions, it is convenient to
choose �ka

l in the xy plane, i.e., perpendicular to the direction
of the rungs, as shown in Fig. 6 so that

Same rung: cos
(�ka

l �̃r0
ij

) = 1;

Different rungs: cos
(�ka

l �̃r0
ij

) = cos [(xi − xi+1) cos ϕa].

By choosing the angle ϕa we can now eliminate the interaction
between different rungs, even when the optical wavelength is
small relative to the mutual ion distances [74].

We numerically calculate the equilibrium configuration of
the ion trap with N = 70 to find the ions’ positions and their
transverse vibrational eigenmodes. We employ these quanti-
ties to evaluate the full expression for the effective interaction
given in the Supplemental Materials [57] Sec. VII. Choosing
the detunings of the fields, relative to the vibrational mode
energies along y such that (ωy

p − ωa
l )/ωy

p ∼ 0.05, we find that
the typical distance dependence of the interaction strength be-
comes ∼1/|i − j|R with R ∼ 3. Since this falls off of quickly
with the distance, the interaction will be dominated by NN
interactions [78]. We see from Fig. 6(a) that by hiding every
third ion, we can map the same rung NN interaction to odd
indices in the effective system whereas different rungs corre-
sponds to NN interactions starting on even indices:

Different rung: Ṽ a
i,i+1 → V a

2i’,2i’+1,

Same rung: Ṽ a
i,i+2 → V a

2i’-1,2i’ (27)

for the effective indices i′ of the active ions.
For the effective XX interaction we need to drive a tran-

sition between two internal levels. This can either be done
directly or as a two-photon Raman transition. The effective
spin coupling is implemented via the vibrational sidebands
of the transition [36]. The angular frequencies of the driving
are given by ωb

1 = ωb − ωb
l and ωb

2 = ωb + ωb
l . Here ωb is the

transition frequency between the considered internal levels of
the ions. The detuning ωb

l is roughly matched to the transverse
trapping frequency ωy so that ωb

l ≈ ωy. We aim to virtually
excite the vibrational sidebands, and we employ the sideband
detuning γ b = ωb

l − ωy. The sideband detuning is chosen to
be positive, so that the ωb

l lies above the highest vibrational
mode along y (out of plane), which is the center of mass mode
ωc.o.m.. We employ the same vibrational branch as for ZZ,
but we assume there are no interference effects between the
processes implementing ZZ and XX. This can be achieved
by ensuring that the frequencies are incommensurate. The
virtual phonon exchange between ions induces an effective
interaction

Ṽ b
ij = |�b|2

h̄
∣∣kb

l

∣∣2

4

∑
p

Mi,pMj,p(
ωb

l

)2 − ω2
p

, (28)

where the vibrational mode eigenvectors Mp and mode ener-
gies ωp are for the strongly confined direction y [79].

We again employ the calculated vibrational modes and ion
positions to explicitly calculate the effective interaction. The
overall strength of the XX interaction can be controlled by
the effective Rabi frequency �b [36]. Choosing the detuning
(ωy

p − ωb
l )/ωy

p ∼ 0.05, we may realize approximate interac-
tions ∼1/|i − j|R with R ∼ 3 for the XX interaction, so that
residual terms are of similar order as for ZZ. The detuning is
chosen to be different than that for the ZZ interaction, but on
the same order of magnitude. Since there is no angular factor
in Eq. (28) the effective interaction connects both sites within
the same rung and sites between rungs.

Putting everything together, we obtain for the zig-zag indi-
cies i, j:

ˆ̃Hsim =
L∑
i

(
Ṽ a

i,i+2Ŝz
i Ŝz

i+2 + Ṽ b
i,i+2Ŝx

i Ŝx
i+2

) +
L∑
i

Ṽ b
i,i+1Ŝx

i Ŝx
i+1

+
L∑

|i− j|>2

(
R̃a

ijŜ
z
i Ŝz

j + R̃b
ijŜ

x
i Ŝx

j

) + H.c. (29)

We now use the mapping in Eq. (27) to transform into the
indices i′ j′ for the active ions:

Ĥsim =
L/2∑
i’

(
V a

2i’-1,2i’Ŝ
z
2i’-1Ŝz

2i’ + V b
2i’-1,2i’Ŝ

x
2i’-1Ŝx

2i’

)

+
L/2∑

i

V b
2i’,2i’+1Ŝx

2i’Ŝ
x
2i’+1

+
L∑

|i′− j′ |>1

(
Ra

i’j’Ŝ
z
i’Ŝ

z
j’ + Rb

i’j’Ŝ
x
i’Ŝ

x
j’

) + H.c. (30)

This form of the Hamiltonian agrees with the desired model
in Eq. (24) apart from the residuals in the last line. According
to the arguments above these residuals can be rather small.
Furthermore, for a translationally invariant system, the desired
coefficients will be identical between units cells as desired and
can be adjusted to the desired values ratio to realize the MEM
phase of the Kitaev-Heisenberg model.

For a real ion trap, the parameters can suffer from numer-
ous imperfections. In particular, for a standard ion trap, the
density will be higher near the center of the trap and the ions
will not be equidistant, as shown in Fig. 6. In principle this
can be overcome by carefully designing the trapping potential
[80,81], but below we explore the limitations imposed by
operating in a standard ion trap with harmonic confinement.

To investigate the imperfections in a real ion trap we
consider the situation depicted in Fig. 6, consisting of 70
trapped ions, see the Supplemental Materials [57] Sec. VII
for further details. To evaluate the role of imperfections the
coefficients V a

ij ,V b
ij and residuals are evaluated for the numeri-

cally calculated ion positions and eigenstates. We specifically
do this by first fixing |ka

l |, |kb
l | and then the angle ϕa so that

different rung interactions disappear for ZZ, and proceed to
choose the exact detunings for all fields. We can then finally
match the Rabi frequencies �a and �a so that V a

2i’,2i’+1 ∼
V b

2i’,2i’+1 ∼ V b
2i’,2i’+1/2, mapping the simulated Hamiltonian

(30) onto Ĥ Ising
δ = ĤKH(θ = π/2) + V̂ Ising

δ with δeff ∼ 1, with
additional residual terms. Using the numerically coupling co-
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FIG. 7. Time evolution of the absolute mean autocorrelation
|�D

1 (t )| of an the at an edge site, i = 1, from a numerical simulation
of the ion trap Hamiltonian in Eq. (30). For the parameters consid-
ered in the Supplemental Materials [57] Sec. VII, we realize K =
1, δeff ∼ 0.61 with residuals O(10−1). In principle other values of δeff

can be simulated by adjusting the setup. The set of initial states are
chosen as pure eigenstates to the operator ŜD

i . Panels (a)–(c) indicate
that by increasing the number of active ions in the simulation, one can
observe a heavily damped beating pattern in |�y

1 (t )|, corresponding
to the undamped beating pattern observed for |�z

1(t )| in Fig. 3(a) (for
the idealized Hamiltonian). Note that the simulated Hamiltonian is
rotated relative to the idealized Hamiltonians via Eq. (23), so that the
oscillation for |�y

1 (t )| indeed corresponds to the oscillation for |�z
1(t )|

in Fig. 3(a). We see that |�x
1 (t )| exhibits revivals of the long-time

coherence scaling with L. This is due to the presence of a strong zero
mode in the Hamiltonian. The coherence time t z

c of the oscillation
in |�z

1(t )|, on the other hand, is more independent of system size
since it does not correspond to a zero mode. Its decoherence is
explained by the residual terms in the quantum simulation and gives
an overall estimate of the influence of impurities in the simulation.
The oscillation of |�y

1 (t )| should exhibit a beating pattern in the limit
of an idealized Hamiltonian, but decoheres on the same timescale
as |�z

1(t )|. There is however an indication of the first node in the

beating in |�y
1 (t )| for L = 8, which occurs before the system has fully

decohered. This is seen from the node in |�y
1 (t )| at t ≈ 6, which is

pushed towards longer times for larger system sizes L.

efficients we can then proceed to evaluate the dynamics in the
MEM phase corresponding to the time evolution in Fig. 4.

The results of a numerical simulation, performed for ∼40
sampled initial states, of the ion trap are shown in Fig. 7. For
the simulated setup the residual terms, the largest of which
correspond to ∼10% of V a and V b, clearly have a large effect
on the results. The beating pattern visible for the idealized
Hamiltonian in Eq. (24) is hard to observe due to the rapid
decay of oscillations in the autocorrelations. We can however

see the size-dependent revivals for the long-time coherent spin
along one of the axes, here along x [Note that when comparing
to the idealized Hamiltonian we use the rotation (23)]. In
Fig. 4, showing the dynamics of the idealized Hamiltonian,
we further had two precessing spin components which were
enveloped by a long-time beating.

Here we also saw that the decoherence of one of the pre-
cessing spin components (z) was enveloped by the long-time
coherent autocorrelation function for the y-compoenent, while
the other precessing spin component (x), evolves more inde-
pendently from the long-time coherent spin. This is behavior
is somewhat visible also in the ion-trap simulation when
comparing Figs. 7(a) and 7(b). We see that the oscillation of
|�z

1(t )|, which does not correspond to a zero mode, is less
dependent on system size than the other spins. We conclude
this by noticing that the oscillation of |�z

1(t )| is not suppressed
in the region around the first node in |�x

1 (t )| for L = 8. How-

ever, the amplitude of the oscillating |�y
1 (t )| is suppressed in

this region. For L = 10, the oscillation in |�y
1 (t )| is instead

suppressed at slightly later times. This is due to the longer
coherence time of |�x

1 (t )|, which envelopes the oscillation, as
shown in Sec. IV C. It is, however, evident that the precession
in |�y

1 (t )| also suffers from the same type of decoherence as

|�z
1(t )|, since there is no visible revival for |�y

1 (t )|. This gives
an estimate for the influence of the residual interactions in
the simulated Hamiltoninan, since |�z

1(t )| should not deco-
here in the limit of zero residuals. [Compare to the evolution
of the corresponding |�x

1 (t )| of the idealized Hamiltonian in
Fig. 3(a).] The behavior of the spins away from the edge (not
shown) is similar for the simulated Hamiltonian as for the
idealized Hamiltonian, where the long-time coherence is seen
also for s2 but not for s3. There is also no spin precession away
from the edge for either spin.

In the ideal case, the nodes in the beating and long-time
coherent spin autocorrelation can be used as a direct mea-
sure of the finite-size Majorana gap L = E1 − EGS , which
effectively simulates finite-size scaling in the MEM phase.
The residual interactions in the quantum simulation however
cause the oscillation of the edge spin to decohere rapidly,
generally before the first node. Furthermore, the residual in-
teractions destroy the global degeneracy corresponding to the
zero modes, so the gaps throughout the spectrum are no longer
homogeneous for the simulated Hamiltonian. By making a
more homogeneous distance between the ions and imple-
menting additional fields at different detunings and angles
into the quantum simulation, the residuals can be reduced.
This would allow for the decoherence time t z

c to be increased
so that the first node, and subsequent revival of the os-
cillation in |�y

1 (t )| can be observed for successively larger
systems.

VI. CONCLUSIONS AND OUTLOOK

We have showcased dynamical features of the anisotropic
Kitaev-Heisenberg Hamiltonian, particularly focusing on the
behavior around the so-called Kitaev point at which a multi-
degenerate set of Majorana modes appear. By perturbing the
model with a nearest-neighbor term ŜyŜy on even sites, we
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see that the model can be mapped directly onto the Majorana
edge mode (MEM) phase of Kitaev’s model for p-wave paired
superconductors, with one additional degree of freedom per
unit site. By perturbing with a uniform Ising term ŜyŜy be-
tween all sites, the additional degrees of freedom are lost but
the system retains the Majorana edge modes.

Studying the direct time development of local spins under
this Hamiltonian we show that the MEM phase of the latter
system can be identified via the precession of edge-site spins,
which oscillate with two dominant frequencies. This gives rise
to a beating pattern corresponding to the finite-size energy
gap between the semidegenerate Majorana edge-mode states.
The precession frequency of the spin is set by the interaction
within the outermost unit cell of the system, while the beating
is enveloped by the long-time coherent spin dynamics, which
depends on the system size L. This is analogous to the long-
time coherence of edge spins in the Ising model, an effect
caused by strong zero modes present in the system [49,50].
We show that zero modes affect the long-time coherence of the
spins measured along two different axes in our model, while
the dynamical evolution of a spin prepared along the third axis
is independent of zero modes, and therefore independent of
system size L. These characteristics are not present in other
parts of the phase diagram, or for spins in the bulk.

Crucially, this method of studying the dynamical properties
does not rely on the repeated and deterministic preparation
of a single initial state. It instead requires only deterministic
preparation of a single spin, while the remaining spins can be
randomly distributed.

We sketch an ion-trap quantum simulation, in which the
steady-state zig-zag configuration of harmonically confined
ions is exploited to realize the MEM phase. We see that
some finite-size scaling properties of the spin dynamics can
be observed, even for a setup with relatively large residual
interaction terms. If the residuals were to be further reduced,
our setup and readout mechanism could realize a quantum
simulation of an interesting numerical challenge: the finite-
size scaling of collective Majorana edge modes.
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