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Identifying Majorana vortex modes via nonlocal transport
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The combination of two-dimensional Dirac surface states with s-wave superconductivity is expected to gener-
ate localized topological Majorana zero modes in vortex cores. Putative experimental signatures of these modes
have been reported for heterostructures of proximitized topological insulators, iron-based superconductors or
certain transition metal dichalcogenides. Despite these efforts, the Majorana nature of the observed excitation
is still under debate. We propose to identify the presence of Majorana vortex modes using a nonlocal transport
measurement protocol originally employed for one-dimensional settings. In the case of an isolated subgap state,
the protocol provides a spatial map of the ratio of local charge- and probability-density which offers a clear
distinction between Majorana and ordinary fermionic modes. We show that these distinctive features survive in
the experimentally relevant case of hybridizing vortex core modes.
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I. INTRODUCTION

In condensed matter physics, Majorana zero energy modes
are highly sought after subgap states localized in topological
superconductors and certain fractional quantum Hall states
[1,2]. Whereas initial efforts were mainly directed towards
one-dimensional systems based on semiconductor quantum
wires in proximity with conventional superconductors (“Ma-
jorana” wire) [3], recent progress in this direction has been
slowed by the ambiguity related to the interpretation of trans-
port measurements [4] local to the ends of the wire. As a
consequence, it has been proposed that nonlocal transport
setups can give a much cleaner picture of the nature of sub-
gap states [5–8] with a small number of recent experiments
already available [9,10].

Candidate systems for Majorana zero modes are not
limited to one spatial dimension. In a classic paper [11], Fu
and Kane proposed to realize Majorana zero modes in the
center of a vortex in the superconducting order parameter
assuming the latter pairs a single-species of two-dimensional
Dirac quasiparticles. The resulting zero-energy excitations
are also known as Majorana vortex modes (MVM). The initial
proposal was framed in the context of topological insulator
surface states proximitized to a superconducting layer, which
was subsequently realized in experiment [12,13]. However the
unambiguous identification of MVM in the experimentally
observed local density of states (LDOS) is complicated
by the fact that the putative MVM at E0 = 0 is by far not
the only subgap state localized at the vortex position. In

addition, theory predicts a whole ladder of finite-
energy Caroli-de Gennes-Matricon (CdGM) states, with
Em = m�2

0/μ, m = 0,±1,±2, . . . [14–17] where �0 is the
pairing far away from any vortices and μ is the chemical
potential. The detection of energetically isolated MVMs
at E0 = 0 requires E1 = �2

0/μ to exceed the experimental
energy resolution.

Recently, progress in this direction was made in a variety
of novel “Fu-Kane” materials that combine bulk super-
conductivity with two-dimensional surface Dirac states of
topological origin and feature E1 on the order of a few
hundred μeV. Prominent example materials with claims for
MVM based on LDOS measurements are the iron-based su-
perconductors FeTe0.55Se0.45 [17–22], (Li0.84Fe0.16)OHFeSe
[23,24], LiFeAs [25], CaKFe4As4 [26] or the transition metal
dichalcogenide 2M − WS2 [27,28]. Besides the agreement of
the observed energy spacings with the above theory, another
point consistent with the existence of MVMs is the nonoscil-
latory radial profile of the MVM-LDOS [24].

On the other hand, for the same sample of FeTe0.55Se0.45,
a coexistence of topological vortices and trivial vortices (with
CdGM spectra in accordance with m = ± 1

2 ,± 3
2 , . . .) has been

reported [17]. A possible explanation is a high sensitivity
of the surface topological superconducting phase to the ex-
act stoichiometric composition and local chemical potential
[20,21,29]. There are other concerns regarding the MVM in-
terpretation of experimental results in the putative Fu-Kane
materials. They include the possible trivial origin of a non-
split zero-energy vortex bound state [30], the sensitivity of
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FIG. 1. Schematic of the proposed nonlocal transport setup for
a Fu-Kane material with superconducting surface Dirac state in
the vortex phase. In addition to the standard scanning-tunneling
spectroscopy setup using grounded bulk and tip contact (“T”), an
additional contact (“C”) is required. This contact does not need to be
realized as a second tip but can be spatially extended.

the vortex subgap state’s energy spacings to the pairing pro-
file �(r) and to impurities [31], or the lack of a robustly
quantized conductance plateau in a strong-coupling transport
experiment [32].

In this work we propose a framework to identify the
presence (or absence) of MVMs in the two-dimensional plat-
form using ideas of nonlocal transport first developed for
one-dimensional superconducting heterostructures [6]. In par-
ticular, we propose to use a non-local transport measurement
to spatially map the ratio [q/n](r) of local charge density
(q) and probability-density (n) of subgap wave functions at
various energies. We discuss how the data reveals telltale
signatures of either topological MVM or ordinary CdGM
states. In contrast to a closely related pioneering experiment
on a one-dimensional quantum wire [9], the application of the
proposed technique to realistic vortex modes comes with a
number of important modifications: In the one-dimensional
wire case, the spatial resolution is usually limited to the po-
sitions of the tunneling contacts at the two ends of the wire
as STM is not applicable. In the two-dimensional case at least
one of the two required surface contacts can be realized as
a movable STM tip (see “T” in Fig. 1), which is sufficient
to achieve a spatially resolved q/n. The second contact (“C”)
can be another STM tip [33–35], if available, or any other
extended type of electrical contact like a patterned metallic
overlayer or a graphene flake.

A second important difference pertains to the complex-
ity of the electronic system: While an ideal one-dimensional
topological superconductor harbors two Majorana zero modes
at its ends, the two-dimensional situation is characterized by
the fact that vortices (and their putative MVMs) are located
in a disordered lattice with local but essentially random hy-
bridizations [36,37] that modify the spectrum from the case
of a uniform lattice [38,39]. Although we start discussing the
most simple case of a single vortex-pair analytically, we then
take into account experimental reality with many vortices us-
ing extensive numerical simulations based on a tight-binding
model of the Dirac Hamiltonian.

The rest of the paper is organized as follows: In Sec. II
we present the low-energy two-dimensional Fu-Kane model
and its tight-binding approximation. We then review the
description of nonlocal superconducting quantum transport
in Sec. III. The case of a single vortex pair is treated in
Sec. IV which is suitable to present our protocol proposed for

experiments. The applicability of our main ideas to a realistic
disordered vortex lattice is demonstrated in Sec. V and a
conclusion is contained in Sec. VI.

II. MODEL AND VORTEX MODES

We consider a single two-dimensional Dirac surface
Hamiltonian H0 = −ih̄v[σx∂x + σy∂y] − μ with velocity v,
chemical potential μ and the σ -Pauli matrices acting in spin
space [40]. The second-quantized s-wave pairing Hamiltonian
reads [11,36,37]

HBCS =
∫

r
ψ†

r H0ψr + �ψ
†
r,↑ψ

†
r,↓ + �∗ψr,↓ψr,↑, (1)

where � is the pairing field and the spinor of electronic
annihilation operators is given by ψr = (ψ↑,r, ψ↓,r )T. The
ansatz ψr,σ ≡ ∑

n uσ,n(r)γn + v∗
σ,n(r)γ †

n leads to the follow-
ing Bogoliubov–de Gennes (BdG) equations for eigenmodes
γn and -energies En,

HBdG�(r) = En�(r) (2)

HBdG = τz(v[σx px + σy py] − μ) + τxRe� − τyIm� (3)

with �T(r) = (u↑, u↓, v↓,−v↑) and Pauli matrices τμ act-
ing in particle-hole space. The particle-hole symmetry is
P = σyτyK with P2 = +1 and K complex conjugation. In the
homogeneous case, the energies for momentum k are given by
Ek = ±(�2 + (±vk − μ)2)1/2.

A magnetic field Bz applied orthogonal to the surface cre-
ates vortices in the pairing field [41],

�(r) = �0

∏
j

f (|r − R j |) (x − x j ) + i(y − y j )

|r − R j | (4)

with R j = x jex + y jey the vortex positions and the function
f (r) = tanh(r/ξ ) modeling the decay of the pairing ampli-
tude from its bulk value �0 towards the vortex core within
lengthscale ξ . For a single vortex at the origin, Eq. (4) re-
duces to the simple polar-coordinate expression �(r, φ) =
�0 f (r)eiφ . The magnetic field can be found from the so-
lution of the London equation which, for the single vortex
case, reads Bz(r) = �0

2πλ2 K0(r/λ) with corresponding vector
potential A(r) = eφ

�0
2πr [1 − r

λ
K1(r/λ)] in the London gauge.

Here, �0 = π h̄/e is the magnetic flux quantum piercing the
vortex while the radial decay of Bz(r) is controlled by the
London penetration depth λ. The modified Bessel function of
the second kind is denoted by Kl (x). The vector potential en-
ters in the Hamiltonian via the replacement p → p − τzeA(r).
The generalization to the vector potential for multiple vor-
tices corresponding to Eq. (4) is straightforward, A(r) →∑

j A(r − R j ).
For numerical simulations, we regularize the continuum

model on a two-dimensional square lattice. We set the lat-
tice constant a = 1, along with the choice v = 1, h̄ = 1. The
straightforward regularization H0 → H0,L = ∑

k σx sin kx +
σy sin ky + σz(−2 + cos kx + cos ky) − μ can be improved
upon replacing sin(k) → 4

3 sin(k) − 1
6 sin(2k) and cos(k) →

4
3 cos(k) − 1

3 cos(2k) which more faithfully approximates the
continuum model H0 around k = 0 by canceling series ex-
pansion coefficients of order k3

x and k4
y at the cost of involving
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hoppings along bonds 2aex,y. This will ultimately allow us
to choose a large chemical potential (μ = 0.6) for the sim-
ulations in the lattice model while still approximating the
dispersion of the continuum model at the Fermi level to a
satisfactory degree. This in turn yields a small length scale for
the Fermi wavelength k−1

F (μ = h̄vkF ) allowing for tractable
overall system sizes. In real space, the lattice Hamiltonian
reads

H0,L =
∑

r

c†
r [−2σz − μ]cr + c†

r+ex

[
4

3
× σz + iσx

2

]
cr

+ c†
r+ey

[
4

3
× σz + iσy

2

]
cr

+ c†
r+2ex

[
− 1

6
× 2σz + iσx

2

]
cr

+ c†
r+2ey

[
− 1

6
× 2σz + iσy

2

]
cr + H.c., (5)

and the BdG Hamiltonian becomes

HBdG,L =
(
H0,L �

�∗ −σyH∗
0,Lσy

)
. (6)

The inclusion of magnetic field and vortices in the lattice
model is achieved via a discretized version of Eq. (4) and the
Peierls substitution for the hopping matrix element from r1 to
r2 in H0,L,

tr2,r1 → tr2,r1 exp

(
ie

h̄

∫ r2

r1

dr · A(r)

)
. (7)

In the limit λ � a, the argument of the exponent can be
approximated by i

∑
j

θ j (r12 )
2 [1 − r j (r12 )

λ
K1(r j (r12)/λ)] where

r j (r12) ≡ |R j − (r1 + r2)/2| is the distance between the vor-
tex j and the midpoint of the bond from r1 to r2 and θ j (r1,2)
is the angle between the connection lines r1,2 − R j measured
at the vortex position [41].

The MVM wave function for a single vortex in the contin-
uum model reads [36,37]

�(r, φ) ∝ exp

[
− ζ−1

∫ r

0
d p f (p)

]⎛
⎜⎜⎝

e−iπ/4J0(rkF )
e+iπ/4+iφJ1(rkF )
e−iπ/4−iφJ1(rkF )
−e+iπ/4J0(rkF )

⎞
⎟⎟⎠,

(8)
where Jl (x) is the Bessel function of the first kind and the de-
cay in radial direction is governed by the Majorana coherence
length is ζ = h̄v/�0. Here, the effect of the vector potential
A(r) has been neglected as justified for a single vortex if
λ � ζ .

We choose the lattice model parameters as μ = 0.6,
�0 = 0.2, ξ = 2, λ = 30, the unit of energy is given by
h̄v/a = 1 and the unit of length is a = 1. As summarized in
Table I, this choice of parameters is motivated by compar-
ison to the experimentally extracted values for FeTexSe1−x,
which are of similar relative size. Only the London penetration
length λ of the lattice model, while still being by far the largest
length scale, is chosen smaller than what would be appropriate
in FeTexSe1−x to keep the required lattice sizes tractable. The
one-dimensional gapless Majorana mode localized at the open
boundaries of the system does not affect the results below due

TABLE I. Summary of parameters used for the lattice model
simulations and for the experimentally realized material FeTexSe1−x ,
x 	 0.55 as compiled in Ref. [41]. Here, v and μ are the velocity and
chemical potential of the Dirac surface Hamiltonian, respectively.
For the lattice model, we set h̄v = 1 and a = 1 for the lattice con-
stant. The surface state pairing amplitude without vortices is given
by �0 while ξ denotes the length scale on which the pairing decays
towards vortex cores. The superconducting coherence length is ζ and
the London penetration length is denoted by λ.

h̄v μ �0 kF = μ/h̄v

Lat. model 1 0.6 0.2 1.66
FeTexSe1−x 25 meV · nm 5 meV 1.8 meV 0.2/nm

ξ ζ = h̄v/�0 λ

Lat. model 2 5 30
FeTexSe1−x 4.6 nm 13.9 nm 500 nm

to sufficient distance between vortices and boundary, so that
the hybridization between vortex bound states and the edge
modes is negligible compared to inter-vortex hybridizations.
The LDOS ρ(ω) [see Eq. (9) below for a definition] of the
finite-size lattice model without vortices and averaged in the
center region is shown in Fig. 2 and agrees to the expectation
from the continuum model. Further, we have checked that the
wave function obtained numerically for a single vortex zero
mode agrees with the analytic prediction for the MVM in
Eq. (8) and that the first excited CdGM-state appears at an
energy of order 0.09 ∼ �2/μ as predicted by theory [14,16].

III. NONLOCAL TRANSPORT

We now consider a transport setup and attach a scanning
tunneling microscope (STM) tip “T” as well as a ground
contact, see Fig. 1 (contact “C” is to be added at a later
stage, see below). For concreteness and to set the stage for the
lattice model simulations using the KWANT software package
[42], we model the tip “T” as a one-dimensional chain of

FIG. 2. Tunneling LDOS ρ(ω) = ∫
drρ(ω, r)/

∫
dr for the two-

dimensional Fu-Kane model in the absence of magnetic field as
found from exact diagonalization of the lattice model (6) with pa-
rameters μ = 0.6 and �0 = 0.2 and system size Lx×Ly = 84×86.
The oscillations are due to finite-size effects which are incompletely
smoothed by the intrinsic level broadening �0 = 0.02�0 = 0.004.
The superconducting gap ω = ±�0 is indicated by grey vertical lines
and the density of states (DOS) of the normal-state Dirac Hamilto-
nian D(ω) = ω

2π (h̄v)2 is depicted by the red dashed line.
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single sites with hopping t = 1 diagonal in spin space. This
choice will provide a density of states that does not vary
appreciably over the small range of bias |ω| � 1 applied in
the following. The lead is locally coupled to the surface with
hopping γT which reflects the tip-sample tunneling matrix
element [43] but will be chosen in an ad hoc manner below
as we are not aiming to model a specific setup. The tip-
induced broadening of an eigenstate � is �T ≡ γ 2

T nT /t where
nT ≡ ∑

σ |uσ (rT )|2 + |vσ (rT )|2 is the eigenstate intensity at
the lead position.

With the exception of the strong-tunneling experiment by
Zhu et al. [32], all existing experimental or numerical trans-
port studies of the Fu-Kane setup were done at weak coupling
to the tip. This regime is characterized by a tip-induced broad-
ening �T which is smaller than the intrinsic relaxation rate �0

of the quasiparticles. This means that an injected quasiparticle
decays in the sample before it can return to the lead. In
the case when the intrinsic broadening exceeds the thermal
broadening from the leads, T � �0 (kB = 1), we obtain the
broadened LDOS from [44]

ρ(ω, r) =
∑
En>0

�0/π

(ω − En)2 + �2
0

∑
σ=↑,↓

|un,σ (r)|2

+
∑
En>0

�0/π

(ω + En)2 + �2
0

∑
σ=↑,↓

|vn,σ (r)|2, (9)

where we choose �0 = 0.02�0 = 0.004 in Fig. 2 and for the
simulations below. The LDOS is proportional to the differ-
ential conductance dI/dV at the bias ω = eV relative to the
ground contact, see Fig. 1. In light of Eq. (9), the LDOS yields
information about the eigenenergies of the system and the
spatial distribution of their wave function’s electron and hole
content. In particular, it cannot distinguish a MVM at E0 = 0
from an ordinary excitation with energy En > 0 but smaller
than �0 or T .

The experiment of Zhu et al. [32] reached the strong cou-
pling regime �T > �0 where quasiparticle transport becomes
(approximately) coherent and can be described by a unitary
scattering matrix formalism [45]. Due to the bulk supercon-
ducting gap, the quasiparticles at subgap energies solely enter
and leave through the tip. In the presence of a MVM, perfect
Andreev reflection is expected at zero bias which, according
to theory [46,47], should yield G ≡ dI/dV = 2e2/h. As this
result should be independent of details, a plateau in G as a
function of tip-sample separation is expected. It is currently
an open question why the experimental conductance plateaus
[32] typically show a significantly smaller value for G that
varies from vortex to vortex.

We now describe the three-terminal transport setup ana-
lyzed in the remainder of this work. We add a second lead
(“contact C”) at the sample surface in the vicinity of the tip
“T”, see Fig. 1. We keep the assumption of strong coupling,
�T,C > �0. At subgap energies |ω| � �0, this opens up a
multitude of quasiparticle scattering channels where electrons
and holes can enter or leave via either lead, provided there
is an eigenstate of the isolated sample with simultaneous
support at both lead positions. The objects of interest are the
(dimensionless) conductances gαβ ≡ dIα/dVβ/[e2/h] where
Iα is the electrical current flowing into lead α = {C, T } and

Vβ is the bias at lead β. The scattering matrix for this nonlocal
setup mediated by a single eigenstate at arbitrary energy E0

was analyzed by Danon et al. [6] for the case of spinless
electrons. In the Appendix we generalize this analytical calcu-
lation to the case with spin, but the quantitative behavior of the
conductances close to the resonance |ω| 	 E0 is not affected
by this modification. Focusing on equal bias voltage for the
two leads, one can approximate the nonlocal zero-temperature
conductance as [6]

gCT (ω 	 ±E0) 	 −8ξCE0[
ω2 − E2

0

]2 + 4�2E2
0

(E0ξT + ω�T ).

(10)
Here, � ≡ �C + �T is the sum over the two lead-induced
level broadenings �α ≡ γ 2

α nα/t where nα ≡ uα + vα is the
total wave-function intensity at the contact position, with
uα ≡ ∑

σ |uσ (rα )|2 and vα ≡ ∑
σ |vσ (rα )|2. It is assumed that

� � E0 for Eq. (10) to hold. The quantity ξα ≡ γ 2
α qα/t is

proportional to the local Bardeen-Cooper-Schrieffer (BCS)
charge qα ≡ uα − vα , which is of central interest in the fol-
lowing discussion. We emphasize that Eq. (10) describes
transport mediated by an extended state in the superconduct-
ing gap (E0 < �) where transport through the superconduct-
ing bulk is suppressed.

The crucial observation in Eq. (10) is the asymmetry of the
two peak heights ω 	 ±E0 due to the second term in paren-
thesis which is odd in ω. We define the symmetric and asym-
metric part of the nonlocal conductance as gsym/asym

CT (ω) ≡
1
2 [gCT (ω) ± gCT (−ω)] and observe [6] from Eq. (10)

gsym
CT

gasym
CT

(ω 	 E0) 	 qT

nT
= |uT |2 − |vT |2

|uT |2 + |vT |2 ∈ [−1, 1]. (11)

This relation allows for the extraction of qT /nT , the ratio of
BCS charge and intensity of an eigenstate at energy E0 at
the tip position. The prerequisite is that a pair of peaks at
ω 	 ±E0 can be identified in the gCT data.

The significance of the quantity qT /nT for detecting Ma-
jorana zero modes lies in the fact that an isolated Majorana
zero mode fulfills qT (r) = 0 at every position r due to the
particle-hole symmetric nature of the state. On the other hand,
for an isolated Majorana zero mode at E0 = 0, the condition
� � E0 cannot be achieved. Consequently, one has to rely
on the hybridization between zero modes to push the energy
E0 to finite values so that qT /nT can be detected by nonlocal
transport, thereby compromising qT = 0 to a certain degree.
In the following, we apply these general ideas to the case of
MVMs and show that MVMs set themselves apart from the
CdGM-states at finite energy by a peculiar spatial signature of
the qT /nT map.

Based on the above discussion and Eq. (10) we discuss the
requirements for the second contact “C”. While the achiev-
able spatial resolution of qT /nT hinges on the sharpness and
movability offered by the STM-tip “T”, the contact “C” can
be stationary. In particular, if no multiple-tip STM instrument
is available [33], the contact can even be spatially extended. In
light of Eq. (10), such an extended contact will reduce the risk
of hitting a contact position where ξC ∼ qC 	 0 which would
cause a vanishing nonlocal transport signal. On the other hand,
as we require � = �T + �C � E0 for Eq. (10) to hold in the
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first place, we must limit the contact-induced level broadening
which grows with contact area and density of states. It might
thus be beneficial to choose a contact material with a low
density of states, like a graphene flake, or limit the size of
the contact using nanofabrication techniques. For example,
local gold nanocontacts can be made at selective surface sites
using STM via a field-induced atomic emission process in situ
[48,49]. A discussion on the role of the contact-tip distance is
postponed to the end of Sec. V.

We now turn to the leading effect of temperature on the
quasiparticle structure, assuming that the temperature remains
low enough that the superconducting properties and vortex
locations are unmodified. First, the sample temperature Ts

needs to be small enough so that the temperature dependent
intrinsic quasiparticle decay �0 can be neglected against �T,C

for our coherent nonlocal transport theory to apply. We next
consider the effective electron temperature Teff,α in lead α

which usually exceeds the sample temperature (Ref. [50] de-
termined 85 mK for the former and about 40 mK for the latter
in the case of an STM tip). Theoretically, Teff,α is taken into
account by a convolution of gαβ (ω) with the derivative of the
Fermi function − df (ω,Teff,β )

dω
= 1

4Teff,β
cosh−2( ω

2Teff,β
). Since the

Vβ dependence of Iα is assumed to only enter via the distri-
bution functions of the leads [6], the broadening procedure
of gCT in Eq. (10) is to be applied with the effective electron
temperature of the tip “T”, Teff,T . The latter will be abbreviated
simply as “temperature” T in the following.

At zero temperature, the peaks of Eq. (10) which occur
at ω = ±E0 have the same width 2�. Hence their temper-
ature broadened amplitudes are diminished simultaneously
for both signs of ω. If temperature reaches the scale E0, the
broadening symmetrizes the overall trace gCT (ω) leading to
a underestimation of |gasym

CT | as compared to its T = 0 value.
As a consequence, the quantity |gsym

CT /gasym
CT (ω 	 E0)| can then

exceed unity in magnitude which should be taken as a warning
that the right-hand side of Eq. (11) no longer applies.

In the following we theoretically implement the above
protocol. We assume that �0 is sufficiently small so that
the scattering matrix approach is justified. However, we take
into account a finite temperature in the leads. While the case
with two vortices studied in the subsequent Sec. IV is still
analytically tractable, our numerical approach is particularly
useful for the realistic case of a distorted vortex lattice. Here
the above assumption of a single spectrally isolated subgap
state at energy E0 drastically fails as every pair of MVMs
contributes one fermionic state that cluster in a MVM or
CdGM band. However, our exact numerics still shows that the
peculiar signatures found for the vortex pair still survive in the
vortex lattice gsym

CT /gasym
CT map.

IV. VORTEX PAIR

We now investigate the case of a single pair of vortices
where for the hybridized MVMs, we can find [q/n](r) ana-
lytically from the single MVM wave function, Eq. (8). We
place the vortices at positions R1,2 = R0 ± R/2ex and use two
sets of polar coordinates r j = |r − R j | and φ j = arg(r − R j )
for j = 1, 2. The hybridized MVM states [37] can be ap-
proximated by �s=± = (�1 + si�2)/

√
2 where the phase of

the pairing field � just left to each vortex is �1 = 0 and
�2 = π , which is taken into account by a relative prefactor
eiτz� j/2 between � j and Eq. (8). Dropping the wave-function
normalization, we obtain for the profile of the intensity and
charge density

ns(r) ∝ e−2r1/ζ
[
J2

0 (r1kF ) + J2
1 (r1kF )

] + r1 →r2, (12)

qs(r) ∝ −2se−(r1+r2 )/ζ {J0(r2kF )J0(r1kF )

+ cos(φ1 − φ2)J1(r1kF )J1(r2kF )}. (13)

Note that ns(r) is proportional to sum of the two individual
MVM’s intensities, qualitatively similar to the LDOS ρ(ω, r),
see Figs. 3(a) and 3(b), for the corresponding plots based on
exact diagonalization (ED) of the lattice model. In contrast,
the spatial structure of qs(r) is dominated by the exponential
prefactor which gives rise to an ellipsoidal structure with the
two vortices in the focal points and oscillations caused by the
remaining terms.

We expand the Bessel functions at a sufficient distance
from the vortices r1,2kF � 1. We further restrict to a point
rc on the connecting line between the vortices, where φ1 = π ,
φ2 = 0, r1 + r2 = R and obtain

qs

ns
(rc) =

−2se−R/ζ 1√
r1r2

sin(kF R)
1
r1

exp(−2r1/ζ ) + 1
r2

exp(−2r2/ζ )
, (14)

which is peaked at the mid-point r̄c = (R1 + R2)/2. The peak
value is qs/ns(r̄c) = −s sin(kF R) which oscillates like the
MVM hybridization [37] E0 ∼ cos[kF R + 1

2 tan−1(ζkF )] with
a relative phase shift depending on the value of ζkF and valid
for R � ξ, 1/kF . Note that for the theoretically interesting
case of μ = 0, which is unrealistic in current materials, chiral
symmetry prevents hybridization (E0 = 0) for vortices of the
same vorticity [37]. For the lattice model with vortex distance
R = 13 and μ = 0.6, we present qs(r) and [qs/ns](r) of the
hybridized MVM state with E0 = 0.0045 in Fig. 3(c,d). The
data for qs/ns on the cut between the two vortices is depicted
in Fig. 4 (left) and shows good qualitative agreement with
the analytical prediction above. A quantitative comparison
is complicated due to an inaccuracy of the ansatz �s=± =
(�1 + si�2)/

√
2 as documented by a slight renormalization

of the wave-function peak-intensity separation beyond the
vortex distance R (data not shown). We remark that in one-
dimensional proximitized semiconductor quantum wires a
pair of hybridized Majorana bound states is expected to cause
a qualitatively similar form for the fraction qs

ns
(x) [6,51].

We now discuss the numerical lattice-model ED results for
ρ, n, q and q/n as obtained for one of the two hybridized first
excited states of each vortex which are split around E 	 0.1,
see Figs. 3(e)–3(h) and Fig. 4 (right). While the spatial struc-
ture of ρ and n are qualitatively indistinguishable from the
MVM case, q(r) shows local maxima around the two vortex
positions with radially oscillating signs. This resembles the
sum of q(r) of the solutions individual to each vortex. Note
that the structures of q/n at larger distances from the vortices
shown in Figs. 3(d) and 3(h) emerge from the ratio of two
numbers very small in magnitude and are likely unobservable
in a nonlocal transport experiment due to insufficient peak
visibility and intrinsic broadening, c.f. Eq. (10).
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FIG. 3. Numerical lattice-model results from exact diagonalization for a pair of vortices located at a distance R = 13 as indicated by the
black crosses. The parameters are μ = 0.6, �0 = 0.2, ξ = 2 and λ = 30 and the overall system size is Lx×Ly = 60×58. The top row shows
the LDOS ρ [Eq. (9) with �0 = 0.004, ω = E0 ] in panel (a), intensity n in panel (b), charge q in panel (c) and the ratio q/n in panel (d) for
the hybridized MVM state at energy E0 = 0.0045, the bottom row with panels (e)–(h) reports the same quantities for the lower one of the two
hybridized CdGM-state energies, E1 = 0.09.

In summary, based on the elementary case of a vortex
pair, we propose to identify hybridized states of MVMs by
their nonlocal spatial distribution of q/n which attains values
close to zero at the vortex positions and magnitudes attaining
their maxima in between. In contrast, ordinary CdGM states
show peaks of |q/n| at the vortex positions. The positions of
the vortices can be experimentally obtained from the LDOS
ρ(ω, r) map as usual [19], while the information on q/n
can be obtained experimentally from the nonlocal transport
measurement via gsym

CT /gasym
CT at an energy ω = E0 where gCT

peaks. While this relation could be shown analytically for the
case of a single energetically well-separated subgap state (i.e.,
the vortex-pair case), it remains valid qualitatively for the case
of a band of subgap states as in the case of a distorted vortex
lattice as we show below.

In the remainder of this paper, we will demonstrate the
above assertion using a numerical implementation of the
nonlocal transport measurement on a faithful lattice model
with finite-temperature leads attached. We start with the vor-
tex pair, see Fig. 5. The contact “C” is placed at the top
boundary of the field of view, in the vicinity of the vortices

FIG. 4. One-dimensional cut through the data depicted in
Figs. 3(d) and 3(h) along the brown line connecting the two vortices.
The vertical lines denote the vortex positions. The low energy MVM
data from Fig. 3(d) is shown in the left panel, the right panel displays
the hybridized finite energy CdGM-state from Fig. 3(h).

(green patch). In panel (d) we show the resulting gCT (ω, R1)
at the position of the right vortex, panel (a) zooms into
small energies. The non-local conductance shows temper-
ature broadened peaks and dips at |ω| = E0 = 0.0045 and
|ω| = E1 = 0.09 indicating the energies of the hybridized
MVM- and CdGM-states in agreement with the ED results
[see dashed vertical lines in panels (a) and (d)]. Panels (b) and
(e) show a spatial map of gCT (ω = E0,1, r), respectively. The
ratio gsym

CT /gasym
CT (ω = E0,1) for both peak positions is shown in

Figs. 5(c) and 5(f), respectively. The agreement with the ED
results in Fig. 3 is excellent in almost the entire field of view,
confirming the practical applicability of Eq. (11).

V. DISTORTED VORTEX LATTICE

We now turn to the experimentally realistic case of a dis-
torted vortex lattice. Owing to the presence of a finite density
of states both in the MVM and CdGM band, the analytical
treatment from Sec. III building on the presence of a single
spectrally isolated eigenstate a priori does not apply any
longer and we resort to numerical simulations. We use a large
sample Lx × Ly = 160×162 with an average vortex distance
R ∼ 13 similar to the separation of the vortex pair studied
above. To avoid edge effects, we focus on the central region
of the sample. In Fig. 6, the vortex positions in the central
region (which could be found experimentally via the LDOS
ρ) are denoted by crosses. The contact (green patch) is placed
on the bottom right relative to the scanning-tip field of view
which includes 13 vortices (colored crosses). The data for
gCT (ω, R j ) at these vortex positions are shown in panel (d)
and panel (a) shows a zoom-in about low energies where
the hybridized MVMs occur. We observe a peak structure
at |ω| 	 E0 = 0.0055 for the outer ten out of the 13 vortex
positions and at |ω| 	 E1 = 0.105 for all vortex positions in
the field of view. Panels (b) and (e) show the spatially resolved
gCT (ω, r) for ω = E0,1, respectively. Our main result is shown
in panels (c) and (f). Here we report gsym

CT /gasym
CT (ω = E0,1)

which qualitatively resembles the observations made for the

035413-6



IDENTIFYING MAJORANA VORTEX MODES VIA … PHYSICAL REVIEW B 106, 035413 (2022)

FIG. 5. Nonlocal transport simulation for a lattice model including a vortex pair. We model the tip “T” as a single-atomic lead with t = 1
and γT = 0.4 and the extended contact “C” as a AC = 4×4 patch of the same single-atomic leads with γC = 0.1 (green). For a local intensity
nC on the order of 0.01 (c.f. Fig. 3) this results in a broadening �C = nCACγ 2

C /t 	 0.002 which is smaller than the MVM hybridization
energy (we neglect the intrinsic broadening �0 in order to obtain a unitary scattering matrix). For the temperature of the leads, we take
T = 0.002. The model parameters (see Table I) are the same as in Fig. 3. The left column with panels (a), (d) shows the bias-dependent
nonlocal conductance gCT (ω, R1) with the tip positioned at the right vortex. A low-energy peak structure highlighted by the vertical dashed
lines appears at |ω| = E0 = 0.0045, see panel (a), and |ω| = E1 = 0.09, see panel (d). In panels (b) and (e), we depict gCT (ω = E0,1, r). The
right panels (c) and (f) depict gsym

CT /gasym
CT (ω = E0,1), which quantitatively agree to the q/n maps of Figs. 3(d), 3(h).

FIG. 6. Nonlocal transport simulation for a lattice model including a set of vortices arranged in a distorted lattice. The parameters are
the same as in Fig. 5. The left column with panels (a), (d) shows the bias-dependent nonlocal conductance gCT (ω, Ri ) for 13 vortices
i = 1, 2, . . . , 13. The colors of the lines correspond to the color of the crosses in the other panels, the latter mark the vortex positions. Panel
(a) zooms to small bias voltages around the peak at E0 = 0.0055 while panel (d) shows a larger bias range including the peak at E1 = 0.105.
In panels (b) and (e), we depict gCT (ω, r) for ω = E0 and ω = E1, respectively. The right panels (c) and (f) depict gsym

CT /gasym
CT for ω = E0 and

ω = E1, respectively. As the inner three vortices (red, grey, yellow) do not show a pronounced peak structure at low energies ∼E0 in panels
(a), (b), we discard their vicinity for the plot in panel (c).
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vortex pair: For the MVM band around ω = E0, the data in
panel (c) vanishes at and around the ten outer vortex positions
and shows extended nonlocal features in between vortices.
We disregard the region around the three central vortices for
which no sizable peak structure was observed in the first place.
Presumably, the reason for the local absence of sizable peaks
is that the MVM band does not contain a state simultaneously
supported in the region of the central three vortices and at the
contact “C”.

The signatures of gsym
CT /gasym

CT (ω = E1) at the CdGM-state
energy shown in panel (f) are radially symmetric local max-
ima at all vortex positions with an oscillating behavior in
between vortices.

For an experimental realization, the question about the
maximally feasible distance between the tip “T” and contact
“C” is highly relevant. At this point, the local nature of the
intrinsic broadening �0 neglected beyond Eq. (9) will come
into play. It violates the assumption of a perfectly coherent
subgap state and we expect it to add to the lead-induced
broadening � in the denominator of the non-local conductance
gCT of Eq. (10) and cause a damping of the nonlocal conduc-
tance peaks. A detailed numerical modeling of the associated
crossover to purely local conductance in Eq. (9) would require
the addition of a spatially distributed self-energy term in the
simulation which is beyond the scope of this paper (and the
state-of-the-art). However, we anticipate that the modification
of the gCT signal should not compromise the peak-height
ratios and the assessment of q/n until the effective broadening
reaches the scale E0, compare to the discussion of temperature
effects in the leads at the end of Sec. III.

Another aspect is a possible (single-particle) Anderson lo-
calization [52] in the band of MVM states, which would limit
the tip-contact separation to the localization length. However,
the two-dimensional Majorana-only model (symmetry class
D) is known to feature weak-antilocalization and thus hosts
both a localized Anderson insulating phase and a delocalized
“thermal” metal phase, with a phase diagram that is largely
unknown. What has been studied is the transition from a regu-
lar triangular Majorana lattice with uniform π/2 flux through
each triangular plaquette (a topological band insulator) to the
thermal metal phase which occurs when a randomly chosen
minority of ∼15% of hopping terms have their signs flipped
[53]. Since the signs of the mutual MVM hopping terms are
known to oscillate [37] with k−1

F which is on the order of the
spread in the intervortex distances, we believe that the realistic
systems are well in the thermal metal phase. However, more
detailed studies, preferably performed in a Majorana-only ef-
fective model [54] are desirable.

VI. CONCLUSION

We proposed to apply a nonlocal quantum transport mea-
surement to identify the presence (or absence) of hybridized
Majorana zero modes in the vortex cores in Fu-Kane materi-
als, like the surface of iron-based superconductors. In contrast
to recent applications of this method to one-dimensional “Ma-
jorana” wires [6,9], the spatial resolution inherent in the
putative two-dimensional Majorana platforms allows us to
extract telltale spatial signatures of MVM or CdGM states
from the symmetry properties of the peaks in the nonlocal

conductance trace, see Eq. (11). We first treated the case of
a vortex pair analytically and confirmed our findings using
transport simulations based on a lattice model. Finally, we
showed that the proposed signatures persist in the experimen-
tally relevant case of a distorted lattice model.

We emphasize that the presented features in the ratio q/n
are generic. The only requirement is a sufficiently large hy-
bridization E0, a value that oscillates with separation R in
the two-vortex case. If E0 approaches zero as a matter of
fine-tuning, the nonlocal conductance peaks move towards
zero-bias and will not be observable such that the experi-
mental protocol cannot be implemented for that particular
state. This suggests that there is no danger in a false-positive
identification of MVM. Further evidence for this also comes
from the vortex-lattice case in Fig. 6(c), where, despite the
random (and certainly not fine-tuned) placement of more than
ten vortices, the features in question remain clearly distinct.
For other perturbations beyond our model (e.g., disorder po-
tentials), the stability of the proposed signatures remains to be
explored.

We expect our results to be relevant for all existing plat-
forms of candidate Fu-Kane materials showing signatures of
putative MVMs, see Sec. I. Moreover, our proposal should
be applicable to recently suggested alternative realizations of
MVMs, like giant topological vortices trapped in an ordi-
nary superconductors with a dislocation line [55]. For future
work, it would be interesting to extend our nonlocal trans-
port proposal to spin-polarized or superconducting leads [56]
or to consider the case of a non-negligible intrinsic level
broadening [57].

ACKNOWLEDGMENTS

We acknowledge useful discussions with K. Flensberg.
Computations were performed at the Lawrencium cluster at
Lawrence Berkeley National Lab. B.S., A-P.L., M.B., R.G.M.,
and J.E.M. acknowledge support by the U.S. Department
of Energy (DOE), Office of Science, National Quantum In-
formation Science Research Centers, the Quantum Science
Center (QSC), a National Quantum Information Science Re-
search Center of the U.S. Department of Energy (DOE).
B.S. acknowledges financial support by the German National
Academy of Sciences Leopoldina through Grants No. LPDS
2018-12 and No. LPDR 2021-01. M.G. acknowledges support
by the European Research Council (ERC) under the European
Union’ s Horizon 2020 research and innovation program un-
der Grant Agreement No. No.˜856526, and from the Deutsche
Forschungsgemeinschaft (DFG) project Grant No. 277101999
within the CRC network TR 183 (subProject No. C01), and
from the Danish National Research Foundation, the Danish
Council for Independent Research | Natural Sciences.

APPENDIX: SPINFUL SCATTERING MATRIX FOR TWO
NORMAL LEADS COUPLED TO A SUBGAP STATE

AT ENERGY E0

We start from the general expression of the scattering ma-
trix [58]

S(ω) = 1 − 2i

t
HLS

1

ω − HS + i
t HSLHLS

HSL, (A1)
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TABLE II. Summary of abbreviations used in the analytical calculation in the Appendix.

|uα|2 ≡ ∑
σ |uα,σ |2 nα ≡ |uα|2 + |vα|2 �α ≡ γ 2

α

t nα � ≡ �L + �R

|vα|2 ≡ ∑
σ |vα,σ |2 qα ≡ |uα|2 − |vα|2 ξα ≡ γ 2

α

t qα ξ 2 ≡ ξ 2
L + ξ 2

R

[uv]α ≡ ∑
σ uσαvσα �α ≡ γ 4

α |[uv]α|2 4|uα|2|vα|2 = n2
α − q2

α ξ 2
LR = 1

t2 γ 2
L γ 2

R ([uv]R)�[uv]L

a ≡ 2γ 2
L [uv]L + 2γ 2

R [uv]R |a|2 = 8Reξ 2
LR + 4�L + 4�R b± ≡ ω ± E0 + i� c ≡ ω2 − �2 − E 2

0 + |a|2

which assumes normal (nonsuperconducting) leads with hop-
ping t . It can be derived from the Fisher-Lee relation which
is more complicated due to one additional matrix inversion.
Here, HS is the Hamiltonian of scattering region to which the
leads are coupled with HLS = H†

SL.
We now focus on a superconducting system in BdG formu-

lation and limit ourselves to a single particle-hole symmetric
pair of eigenstates, HS� = E0� and HS (P�) = −E0(P�).
We insert into Eq. (A1) and find

S(ω) = 1 − 2i

t
W † 1(

ω − E0 0
0 ω + E0

) + i
t WW †

W, (A2)

W ≡
(

�†

(P�)†

)
HSL. (A3)

We further assume a set of leads such that HSL is diagonal in
the lead index α. For lead α, we have in the BdG formulation
Hα

SL = γατz with γα ∈ R a spin-independent hopping.
For the spinless case, we can chose � = (u�, v)T and with

P = τxK we find

Wα = γα

(
uα −v�

α

vα −u�
α

)
, (A4)

where uα = u(rα ) is the electron part of the BdG wave func-
tion at the position of lead α and similar for the hole-part
vα . For the spinless case and in the presence of two leads
α = {L, R}, Ref. [6] derived an explicit expression for the
scattering matrix and conductances.

We now generalize the calculation for the spinful case
where � = (u↑, u↓, v↓,−v↑) and P = σyτyK. In this case, we
obtain

Wα = γα

(
u�

↑,α u�
↓,α −v�

↓,α v�
↑,α

v↑,α v↓,α −u↓,α u↑,α

)
. (A5)

We set t ≡ 1 in the following and use the definitions and
relations in Table II some of which already appeared in the

main text. We find

iWW † = i

(
� a�

a �

)
(A6)

and insert this in Eq. (A2), where α, β = {L, R}:

Sαβ (ω) = δαβ − 2iγαγβ

c + 2i�ω

⎛
⎜⎜⎝

u↑,α v�
↑,α

u↓,α v�
↓,α

−v↓,α −u�
↓,α

v↑,α u�
↑,α

⎞
⎟⎟⎠

×
(

b+ −ia�

−ia b−

)(
u�

↑,β u�
↓,β −v�

↓,β v�
↑,β

v↑,β v↓,β −u↓,β u↑,β

)
.

(A7)

We now extract the submatrices required for computing the
local and nonlocal conductance, gLL and gLR:

gLL = NL − tr[s†
ee,LLsee,LL] + tr[s†

he,LLshe,LL], (A8)

gLR = −tr[s†
ee,LRsee,LR] + tr[s†

he,LRshe,LR]. (A9)

After straightforward but lengthy algebra, we obtain

gLL(ω) = 4

|c + 2i�ω|2
[
4c

(
�L + Re

[
ξ 2

LR

])

+ (
��L − ξ 2

L

)
(2ω2 − c)

+ ωξL
{
2�RE0 − 8Im

[
ξ 2

LR

]}]
, (A10)

gLR(ω) = 4ξL

|c − 2i�ω|2
{
ξR(c − 2ω2)

− ω
(
2�RE0 − 8Imξ 2

LR

)}
. (A11)

In the main text, we are only interested in gLR(ω). We obtain
Eq. (10) for |ω| 	 E0 assuming that E0 is much larger than all
other scales appearing in Eq. (A11).
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