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Electronic confinement of surface states in a topological insulator nanowire
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We analyze the confinement of electronic surface states in a model of a topological insulator nanowire.
Spin-momentum locking in the surface states reduces unwanted backscattering in the presence of nonmagnetic
disorder and is known to counteract localization for certain values of magnetic flux threading the wire. We show
that intentional backscattering can be induced for a range of conditions in the presence of a nanowire constriction.
We propose a geometry for a nanowire that involves two constrictions and show that these regions form effective
barriers that allow for the formation of a quantum dot. We analyze the zero-temperature noninteracting electronic
transport through the device using the Landauer-Büttiker approach and show how externally applied magnetic
flux parallel to the nanowire and electrostatic gates can be used to control the spectrum of the quantum dot and
the electronic transport through the surface states of the model device.
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I. INTRODUCTION

Topological insulators (TIs) are bulk insulators that exhibit
surface states with unique electronic properties. Three-
dimensional (3D) TI nanowires (TINWs) are promising
candidates for studying the electronic surface transport [1–4];
they admit two-dimensional (2D) helical surface states that
prohibit backscattering and reduce localization in the absence
of magnetic disorder while reducing any residual bulk trans-
port due to their geometry [5–9]. While this protection from
unintended scattering harbors promise, designing mesoscopic
scale structures that can exploit the topological protection
does require control of the electronic transport, including
methods to control transmission and to generate electronic
confinement (e.g., quantum dots, quantum point contacts).
Successful control of charge transport would pave the way for
various applications of TIs ranging from improved spintronic
devices, through more accurate charge pumps for quantum
metrology to quantum computing [10–13].

There have been various theoretical proposals for inducing
a gap in the surface spectrum of the TIs since this would allow
one to achieve the electronic confinement and control needed
for practical devices. These include exploiting the exchange
coupling induced by a proximitized magnetic insulator [14],
by means of surface pairing through a proximititzed super-
conductor [15], or realizing a tunnel coupling between the
top and bottom surfaces of an ultrathin TI [16–19]. The latter
method has been experimentally explored in a quantum dot
fabricated from a thin film of a 3D TI with a gate tunable bar-
rier. It was found by varying the gate voltage that the charge
transport ranged from Ohmic to tunneling regimes [20], al-
though signatures of quantized levels localized within the dot

region remained elusive. On the other hand, geometrically
constructed quantum devices for charge confinement have not
been fully explored in TINWs.

TINWs are promising with regard to realizing full elec-
tronic confinement, and progress in understanding transport
was made in recent works which studied effects of disorder,
ripples, and magnetic fields [21–26]. Recently, signatures of
the subbands of the TI nanowire have been detected exper-
imentally [27] creating additional motivation to analyze the
potential of such devices for quantum confinement along the
nanowire.

In this work we show, by analyzing the conditions for
quantum confinement within a defined section of a long
TINW, that a quantum dot can be created whose transport is
uniquely based on the nature of the topological surface states.
The emergence of the quantum dot in our work is strictly a
quantum mechanical effect which is based on the quantum
interference of the Dirac surface states. The analysis is based
on an effective cylindrical model for a microstructure with
defined radius variations and external electric and magnetic
potentials. A key element is a reduced radius region (constric-
tion) exhibiting an increased gap in the spectrum of surface
states. We show that this region acts like a potential barrier
which can backscatter Dirac electrons [22]. Conditions for
charge confinement can be found when backscattering in the
TINW is allowed between non-time-reversal symmetric states
as well as for cases where backscattering is facilitated by the
dynamics in the constrictions where time-reversal symmetry
(TRS) is broken. The radius variation is essential when the
TINW is flux biased to the gapless state of half-flux for which
the surface states are topologically protected from backscat-
tering by scalar potentials. This is considered to be the point
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FIG. 1. Geometrical model of the quantum dot based on a 3D
TINW: (a) The geometry used for the theoretical study of the trans-
port properties. N and C denote regions of radius R1 and the reduced
radius regions of radius R2 formed by etching the wire, respectively.
The interfaces between N and C regions are drawn flat for simplicity.
(b) The band-gap profile (as explained in the main text) experienced
by an incident electron. (c) A smooth interface connecting the N and
C regions of the TINW. (d) The radius dependence of the TINW as a
function of the coordinate z along the wire with the parameter a = 8
corresponding to (c) and a = 0.01 generating a steplike interface.

of optimal performance due to the resilience against disorder
in the leads. Based on this, we propose a geometrical con-
struction that can lead to resonant tunneling [28] and form
discrete states within a confined central region (see Fig. 1).
We show that the geometry exhibits clear evidence of quantum
dot formation that is manifested in the electronic transport as
subgap resonances.

The remainder of this paper is organized as follows. In
Sec. II, we present the geometrical construction of a TINW for
a quantum dot and discuss the scattering between incoming
and reflected states that can lead to finite reflection. In Sec. III,
we describe the Hamiltonian and the scattering matrix for
the model device to compute the conductance employing the
Landauer-Büttiker approach. We also investigate the effect of
the curved interface on the motion of the surface states by
incorporating the spin connection which is essential to analyze
the motion of Dirac particle on a curved space-time [21,29–
31]. We discuss the numerical results in Sec. IV and conclude
our findings in Sec. V.

II. PROPOSED GEOMETRY

We start by presenting the proposed geometry for the
TINW quantum dot [Fig. 1(a)]. We consider a cylindrical
nanowire of radius R1, which is etched at two regions to a
radius R2 (R2 < R1). We label this device NCNCN where
“N” refers to the region with radius R1 and “C” denotes the

region with the reduced radius R2. Both regions are assumed
to have full rotational symmetry around the wire axis. The
wave functions in each region satisfy an antiperiodic boundary
condition around the nanowire perimeter due to the curvature-
induced π Berry phase. As detailed in Sec. III, due to the
radius-dependent band gap in the TINW [32,33], the band-gap
profile experienced by the incoming electronic states is ex-
pected to behave as shown schematically in Fig. 1(b). Etching
is expected to have some gradual radius profile, as depicted in
Fig. 1(c). To incorporate its effect on the electronic transport
we model the interface using a z-dependent radius, as demon-
strated in Fig. 1(d), with

R(z) = R1 + (R2 − R1)F (z), (1)

where F (z) = 1
2 [1 + 2

π
tan−1( z

a )] is the smooth Heaviside
theta function with the parameter a tuning the interface from
steplike (small a) to smooth (large a).

Controlled reflection of the electrons from the interfaces is
essential to realizing charge confinement. The motion of the
particle belonging to a specific subband can be thought of as
one dimensional (only dispersing along the wire axis) with the
gap proportional to the angular momentum l . The incoming
and reflected states of same l are not Kramers pairs and hence,
are prone to backscattering due to disorder [22,32,34]. The un-
usual finite reflection here is strikingly different than the zero
reflection (unit transmission) situation where backscattering
is prohibited due to the spin-momentum locked gapless and
orthogonal surface states. The scattering between nonorthog-
onal surface states in TINW, characterized by k of opposite
sign and same l , can be thought to be a result of the finite
angular momentum. Similar scattering is paradigmatic to the
suppression of Klein tunneling in graphene [35,36] and in
TIs [37,38] when a massless Dirac fermion is incident at an
oblique angle to the potential barrier. A finite transverse com-
ponent of the momentum arising from the oblique incidence
allows backscattering of the incident Dirac fermions [38–42]
due to the nonorthogonal incoming and reflected states.

III. SURFACE HAMILTONIAN AND SCATTERING
ANALYSIS

The Hamiltonian for the surface states of a nonuni-
form 3D TINW can be derived using a field-theoretic
approach [21–24]. We provide the derivation of the Hamil-
tonian in the Appendix for notational convenience. To include
the coaxial magnetic field we use the symmetric gauge to
write the vector potential Aφ = −Br/2 = −�/2πr, where φ

denotes the azimuthal direction, r is the radial coordinate,
and � is the magnetic flux along the nanowire axis. With
the minimal coupling of the magnetic field to the transverse
motion of the Dirac surface states the Hamiltonian becomes

H = h̄vF

[
1√

1 + R′(z)2

{
i∂z + iR′(z)

2R(z)

}
σy

+ 1

R(z)
(−i∂φ − ϕ)σz

]
, (2)

where R(z) is the radial function which is defined to model
the interface between the N and C regions and ϕ = �/�0

is the dimensionless magnetic flux. The term proportional to
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FIG. 2. The allowed and forbidden scattering between orthogo-
nal [ψk,l−ϕ (pink) and ψ−k,−(l−ϕ) (green)] and nonorthogonal states
[ψk,l−ϕ (pink) and ψ−k,l−ϕ (brown)] is shown schematically.

R′ is the spin-connection contribution to the Dirac fermions
moving along the curved surface [21–24]. This Hamiltonian is
particularly useful for finding the appropriate boundary con-
dition at the curved interface between the normal and reduced
radius regions. We note that we only consider the orbital effect
of the applied magnetic field because at low magnetic field
(e.g., ϕ = 0.5), the Zeeman energy is negligible compared to
the energy spacing of the subbands [43].

For the cylindrical surfaces in the N and C regions, away
from the interface, R′ = 0. For this case, exploiting the rota-
tional symmetry of the cylinder and translational invariance
along the wire axis we can write the solution of the time-
independent Schrödinger equation for this Hamiltonian as

	k,l (z, φ) = eikzeilφψk,l , (3)

where ψ is a two-component spinor and l is a half-integer
angular momentum due to the presence of a π spin Berry
phase acquired by the 2π rotation of the spin around the cylin-
drical surface [4,29,44]. Using the solution given in Eq. (3) the
Hamiltonian in the N and C regions can be written as

H1,2 = h̄vF

[
−kσy +

(
l − ϕ1,2

R1,2

)
σz

]
. (4)

The energy of the surface states can be found by diagonalizing
the above Hamiltonian,

E1,2 = ±h̄vF

√
k2

1,2 + (l − ϕ1,2)2/R2
1,2,

where 1,2 refers to the N and the C region, respectively. Due to
the reduced cross section in the C region, the flux penetrating
into this region is given by ϕ2 = ϕ1R2

2/R2
1.

We now explain the scattering processes in Fig. 2 where
we schematically show the allowed and forbidden scattering
between the right- and left-moving spinors. Note that the
magnetic flux threaded along the wire axis breaks TRS and
all the surface states become nondegenerate. However, TRS
can be restored at integer and half-integer values of magnetic
flux, and all bands, except the l = ϕ band, become degener-
ate [23,29,32,45]. Now, if we fix the Fermi energy within the
bulk gap such that it crosses the lowest degenerate subband

FIG. 3. (a) The uniform TINW in the presence of two electro-
static potentials V . (b) If the energy of the incoming state is fixed
between the conduction band for V = 10 meV and V = 0 subgap
transmission resonances are found within the region between the
potential barrier. The inset shows the dispersion of the l = 1/2 band
in a uniform nanowire of radius 30 nm for zero flux in the absence
(orange) and presence (blue) of a potential barrier.

(which happens at integer values of magnetic flux), there
always exist two right-moving spinors ψk1,±(l−ϕ) and two lef-
moving spinors ψ−k1,±(l−ϕ) as demonstrated in Fig. 2. As
discussed in Sec. I, although the backscattering is prohibited
between the time-reversal partner ψk1,l−ϕ and ψ−k1,−(l−ϕ), it
is allowed between two other available nonorthogonal states
ψk1,l−ϕ and ψ−k1,l−ϕ . As a result, the nonmagnetic disorder
can backscatter the Dirac surface states.

First, we analyze a uniform nanowire for the case of zero
magnetic flux. We consider the scattering of surface states
belonging to the l = 1/2 band in the presence of a double
barrier electrostatic potential V induced by gates in a TINW
with uniform radius [see Fig. 3(a)]. Notice that due to a
nonzero potential, there is a uniform upward shift in the en-
ergy spectrum as shown in Fig. 3(b) which creates a finite
energy difference between the conduction bands belonging to
the section with potential V and the section without the poten-
tial. By fixing the energy of the incoming surface state within
this energy window, we compute the transmission through
the TINW for zero magnetic flux and find subgap [the gap
between the conduction band for V = 10 meV and V = 0 in
Fig. 3(b)] resonances in the transmission probability function
of the surface states through the TINW as shown in Fig. 3(c),
which is a typical signature of bound-state formation within
the middle region. The formation of bound states indicates
the fact that surface states in a TINW can backscatter from
a scalar disorder (nonmagnetic disorder).

For a half-integer value of flux along the nanowire, there
is always a corresponding value of l for which the surface
state is nondegenerate and gapless [23,32]. In this particular
state, an electrostatic barrier as shown in Fig. 3(a), cannot
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backscatter the Dirac particles. Thus, in order to generate
confinement we need an additional mechanism to ensure a
finite gap in the constrictions in the TINW system. Hence,
we propose to have reduced radius regions in the TINW so
that the flux penetrating these regions is not a half-integer as
opposed to the N region. Consequentially, the surface states at
these constricted regions become gapped due to the breaking
of TRS. To summarize, a constricted region ensures a larger
band gap between the surface states as compared to N regions
for both with and without magnetic flux.

The external flux control on the electronic transport
through the clean NCNCN geometry is a unique feature of the
TINW quantum dot where each C region has radius R2 < R1.
The finite reflection due to breaking of TRS in C regions
resembles the backscattering in quantum spin Hall edge in the
presence of local magnetic disorder that breaks the TRS [37].
Furthermore, the external gate tunability of the band gap in
the constricted region can provide another probe to control
the electronic transport through the model device. In Sec. IV,
we discuss both external magnetic flux and gate-dependent
transport in detail.

Now, we present the scattering matrix approach to find the
scattering coefficients for the noninteracting electrons. Let us
consider the interface at z = 0 between an N and a C region
in the presence of a finite flux along the nanowire axis. We
compute the transfer matrix that connects the wave function
from the left side of the interface [ψ (z < 0)] to the right side
of it [ψ (z > 0)]. This can be done by solving the Schrödinger
equation Hψ = Eψ , where H is given by Eq. (4). By integrat-
ing the Schrödinger equation across the interface we arrive
at the following wave-function matching condition [for the
curved interface as shown in Fig. 1(c)]:

ψ (z > 0) = Tzψ (z < 0), (5)

where the 2 × 2 transfer matrix Tz is given by

Tz = Pzexp

[∫ z1

z0

{−R′

2R
−

√
1 + R′2

R
(l − ϕ)σx

− iE
√

1 + R′2

h̄v
σy

}
dz

]
, (6)

where Pz is the path-ordered product of the exponential factor
along the wire.

Next, considering the elastic scattering within the device
we can write the wave functions in each region of the model
device shown in Fig. 1(a) as

ψ1,3,5 = a1,3,5√
2

(−χl +E
ik1

1

)
eik1z + b1,3,5√

2

(−χl +E
−ik1

1

)
e−ik1z,

ψ2,4 = a2,4

(−χ2+E
ik2

1

)
eik2z + b2,4

(−χ2+E
−ik2

1

)
e−ik2z, (7)

where ψ1,3,5 and ψ2,4 are the wave functions in the normal
N and reduced radius regions C, respectively, and k1,2 =√

E2 − χ1,2
2, χ1,2 = (l − ϕ1,2)/R1,2. a1,2,3,4,5 and b1,2,3,4,5 are

the scattering coefficients. Here 1,3,5 refers to N regions while
2,4 indicates C regions. We use the wave-function matching
condition given in Eq. (5) to find the total transfer matrix M
that connects the incoming states in the leftmost N region to

the outgoing states in the rightmost N region and we get

M = α−1
1 Tzβ1α

−1
2 T †

z β2α
−1
3 Tzβ3α

−1
4 T †

z β4, (8)

where α1,2,3,4 and β1,2,3,4 are given as

αi =
(−χi+E

iki
eikizi −χi+E

−iki
e−ikizi

eikizi e−ikiz1

)
,

βi =
(−χi+E√

2iki
eikizi −χi+E

−√
2iki

e−ikizi

eikizi e−ikizi

)
,

α3 = α1 (at z1 = z3), α4 = α2 (at z2 = z4),

β3 = β1 (at z1 = z3), β4 = β2 (at z2 = z4). (9)

Here i = 1, 2, 3, 4, 5 as before. The inverse of the matrix ele-
ment M11 gives the transmission probability which we use in
the next section to discuss the characteristics of the quantum
dot device proposed in this work.

IV. NUMERICAL RESULTS

We now discuss the zero-temperature electronic transport
through the nanowire structure. We consider the energy of
the incoming states such that they are propagating modes
in N regions (with radius R1) and the radius of C regions
is always smaller than R1. The propagating states with total
angular momentum l = 1/2 coming from the left side of the
device can have a finite reflection at the first interface between
N and R. This is due to nonorthogonality of the incoming
state ψk1,(l−ϕ) and the outgoing states ψ−k1,(l−ϕ) which are not
the time-reversal partner. Since the C regions have a larger
gap than in N, these constricted regions effectively behave
like the potential barrier for the Dirac particles and thus can
scatter the incoming particles. The multiple scattering events
in the middle region of NCNCN give rise to resonance effects
which manifest in the total transmission function through the
device. We employ the Landauer-Büttiker approach [46] to
compute the conductance through the NCNCN device at zero
temperature and plot it in Fig. 4(a) (red) as a function of the
chemical potential μ for the flat interface which corresponds
to the boundary condition with Tz = 1. In experiments, μ

is influenced by substrate, contacts, etc., and can be locally
tuned using electrostatic gates. The conductance peaks corre-
spond to the subgap resonances in the transmission probability
through the model device and exhibit clear evidence of bound
states formation inside the middle N region of the device.
Notice that the N regions are immune to scalar disorder for
ϕ = l due to the appearance of gapless surface states. More
generally, when the dimensions of the middle section are
small compared to the mean free path, we do not expect
disorder to significantly affect the resonances.

The position of the conductance peaks in Fig. 4(a) gives
the energy of the bound states. The width of a conductance
peak depends on the length L of the C regions while the
number of these peaks depends on the length L0 of the
middle N region (the confined region) where we find the
bound states. The value of the model parameters used in
this work are chosen as R1 = 80 nm, R2 = 15 nm, L =
80 nm, L0 = 100 nm, and ϕ1 = 0.5 which are experimentally
attainable [1,2,27]. Surface-sensitive experiments on Bi2Se3

estimate the value of the coherence length to be 500 nm and a
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FIG. 4. (a) Conductance through an etched TI nanowire with
flat interfaces [as sketched in Fig. 1(a)] is plotted as a function of
chemical potential μ for a dot length L0 = 100 nm. Red depicts
the result for flat interface. The position of conductance peaks not
only shifts but also broadens in the case of a curved interface as
shown by the blue (dotted) and green (solid) curves (here, the former
and latter colors represent the result with and without incorporating
spin connection for the curved manifold). It is due to the modified
boundary conditions [see Eq. (6)]. More detail about the boundary
conditions in all three cases is discussed in the main text. (b) Sub-
gap resonant transmission through the long quantum dot L0 = 400
nm in TI nanowire NCNCN geometry having flat interfaces. The
numerical values of the system parameters are chosen as R1 = 80
nm, R2 = 15 nm, L = 80 nm, ϕ1 = 0.5, and ϕ2 = ϕ1R2

2/R2
1.

typical value of the mean free path to be 100 nm [1,27,43].
Therefore, the electronic transport in the TINR studied in
this work is expected to be ballistic and phase coherent. It
is important to note that device parameters can be found for
the case with one nondegenerate subgap resonance. In that
case, only one electron can be inside the dot. However, there
will be multiple quantum dot states for a larger quantum dot.
We show the transmission through the device for a larger
dot of length L0 = 400 nm and the same radius R2 = 15 nm
in Fig. 4(b) which exhibits many subgap resonances in the
transmission function. A useful quantity in the discussion of
quantum dot is the charging energy Ec = e2/C0, where C0 is
the capacitance that depends on the device dimensions and
the dielectric constant of the material. The value of C0 can be
inferred from the experiments based on Bi2Se3 nanowires. For
a Bi2Se3 nanowire on a SiO2/Si substrate C0 = 2 × 10−17 F
for a surface area 8.6 × 10−14 m2 was found [20], giving an
effective capacitance Ceff = 2.3 × 10−4 F m−2. We can now
estimate the charging energy of the quantum dot (R2 = 15 nm,
L0 = 400 nm) using [21], Ec = e2/2πR1L0Ceff and this gives
3.6 meV. That is, Coulomb blockadelike oscillations of the
conductance are expected in transport experiments on a large
dot by varying the gate voltage applied to the central NCNCN
region. However, as we pointed out earlier, the origin of the
discrete quantum dot states here uniquely arises from inter-
ference of the surface states, different from the appearance of
quantum dot based on Coulomb blockade [47,48].

Next, we examine the effect of a curved interface. We uti-
lize the radial function given in Eq. (1) of Sec. II to incorporate
the curvature effects on the electronic transport. Here, we use
the boundary condition, ψ (z > 0) = Tz ψ (z < 0) where Tz is
the transfer matrix for R′ = 0. It is clear from Fig. 4(a) (blue
curve) that not only the position of the conductance peak gets

FIG. 5. (a) The lowest two bound-state energies as a function of
the magnetic flux ϕ1 for l = 1/2 and l = −1/2. (b) Quantum con-
tribution to the Coulomb energy (Eq

c ) as a function of the magnetic
flux. The dotted line in (b) is drawn to represent the degeneracy point.
Other parameters are the same as in Fig. 4(b).

shifted but also the peak broadens compared to the situation
when we consider the flat interface. Furthermore, we analyze
the motion of the Dirac particle on the curved interface incor-
porating the spin connection in the transfer matrix (R′ �= 0).
We plot the conductance again in Fig. 4(a) (green curve)
which coincides with the plot computed for R′ = 0 (blue). The
findings suggest that the electronic transport is unaffected by
the inclusion of the spin connection.

Apart from the classical charging energy of the formed
quantum dot, which arises from the long-range Coulomb po-
tential, we also estimate the quantum contribution Eq

c due
to the screened short-range Coulomb interaction [49] which
depends on the quantum dot states. We study its dependence
on the magnetic flux. In Fig. 5(a), we show how the energy
of the bound states varies as a function of magnetic flux
ϕ1. We represent the lowest two bound states corresponding
to the l = 1/2 and l = −1/2 bands as E1

l=1/2, E2
l=1/2 and

E1
l=−1/2, E2

l=−1/2, respectively, in Fig. 5(a). We model the
short-range interaction as a contact interaction and compute
the Coulomb energy between electrons which occupy the two
lowest energy states. For ϕ1 < 0.3, the two occupied states
correspond to E1

l=1/2 and E1
l=−1/2 while E1

l=1/2 and E2
l=1/2

become the lowest energy states for ϕ1 > 0.3. We plot the
Coulomb energy Eq

c in Fig. 5(b) as a function of flux ϕ1. We
observe a smooth decay in Eq

c as the magnetic flux increases
up until the point of degeneracy at ϕ1 = 0.3. As flux increases
beyond 0.3 we notice a slow decrease in Eq

c . We note that we
do not estimate Eq

c at one point ϕ1 = 0.3 as the second lowest
quantum dot state is degenerate [see Fig. 5(a)].

The band-gap tunability of the surface state by an external
flux enables us to investigate the electronic transport as a
function of the flux threaded along the wire axis. We plot
the conductance through the model device in Fig. 6 for the
flat interfaces between the N and C regions as a function
of chemical potential μ and the flux ϕ1 applied along the
wire axis in the N region. Evidently, if the chemical poten-
tial is fixed (consider the dotted white line in the plot) the
transport of the surface states can be externally controlled by
the application of a flux along the wire. The checkerboard
region in Fig. 6 corresponds to the presence of evanescent
modes in the N region and hence is nonphysical. Next, we
examine the gate voltage tunability of the electronic transport
in the presence of half-integer flux. The two gate voltages in
C regions change the band-gap profile by shifting the band
spectrum (with respect to the band spectrum in N regions)
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FIG. 6. Conductance as a function of chemical potential μ and
the flux along the wire axis ϕ1. Device parameters are fixed at
R1 = 80 nm, R2 = 20 nm, L = 80 nm, and L0 = 100 nm. The
checkerboard region is nonphysical because of the evanescent modes
in the N region.

upward by the electrostatic potential V applied by the gate. We
plot the conductance as a function of induced gate potential
and the chemical potential in Fig. 7 for flux ϕ1 = 0.5 and we
find that the conductance can be controlled by varying the gate
voltage.

So far, we study the quantum dot considering the flat in-
terfaces between different sections of the device. However,
while etching/patterning nanowire the interfaces are likely
to undergo geometrical deformation. As discussed earlier in
Sec. II, to address the transport in this situation, we model
the interface as shown in Fig. 1(d) and assume a smoothness
a = 8 nm, a relatively smooth interface that is obtainable
using modern nanofabrication techniques, yet significantly
smaller than other dimensions of the NCNCN structure. We
investigate the influence of such interfaces on the electronic
transport as a function of external flux, gate voltages, and

FIG. 7. External gate tunability of the conductance is shown as
a function of the electric potential induced on the dot by the elec-
trostatic gates applied in the C regions and the chemical potential μ.
The values of other parameters are taken as in Fig. 6.

FIG. 8. The conductance through the NCNCN quantum dot
model considering the smooth interface [taking a = 8 nm, as shown
in Fig. 1(d)] as a function of chemical potential and magnetic flux
ϕ1. The values of all parameters are the same as in Fig. 6.

chemical potential. First, we show the conductance as we vary
flux and chemical potential in Fig. 8. We observe that the
resonance line broadens and gets shifted on the energy axis.
The broadening of the conductance peak relates to the inverse
of the lifetime of the quantum dot state which means that the
particle would quickly escape the dot. Similar features are
found when we plot conductance as a function of chemical
potential and the gate voltage in Fig. 9. These results can be
attributed to the strong coupling of the dot to the left and
right N regions which determines the shape and position of the
conductance peaks. Thus, from an experimental point of view
it is important to engineer as sharp interfaces as possible.

The external control of quantum transport is a necessary
prerequisite in the fabrication of field-effect transistors and
other quantum devices. The external magnetic flux as well as
induced gate voltage tunability makes our geometrical con-
struction of the TI quantum dot experimentally feasible for

FIG. 9. The conductance through the NCNCN quantum dot
model considering the smooth interface (the same as for Fig. 8) as a
function of chemical potential and external gate voltage. The values
of all parameters are the same as in Fig. 6.
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experimental implementation. Moreover, we anticipate that
the transmitted current through the quantum dot states in this
device might have different spinor state for different condi-
tions fixed by chemical potential, magnetic flux, and voltage
bias. We leave the thorough study of characterizing the finite
temperature current in the presence of Coulomb interaction
and disorder for degenerate and nondegenerate dots for future
work.

V. CONCLUSIONS

In this work, we exploited the finite reflection processes
for designing a model for a quantum dot in a TINW. We
showed that finite reflection is possible essentially due to
the transverse angular momentum modes. We demonstrated
that in the presence of double barrier potential, the uniform
nanowire can host bound states if the Fermi energy lies within
the conduction band minimum for V �= 0 and V = 0 for a
fixed value of angular momentum l . We elucidated the neces-
sity of the constricted region in the presence of half-integer
magnetic flux along the wire axis in the N region (half-integer
magnetic flux is important to prevent the backscattering due to
accident disorder in the N region). In particular, we propose a
theoretical model of a quantum dot in a TINW exploiting the
unique characteristics of the surface states and show that the
confining potential due to the larger gap in the surface states
in constricted regions localize the Dirac surface state. Fi-
nally, we explicitly show that the electronic transport through
discrete quantum dot states can be modulated by external
magnetic flux and gate voltage. This will facilitate some of
the most desirable quantum devices for metrology (single-
electron devices, charge pumps), spintronics (spin-polarized
current source), quantum optics, and quantum computing.
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APPENDIX: HAMILTONIAN ON THE CURVED SURFACE

The surface of the TINW can be described using the space-
time metric in 2+1D (z, φ, t)

gμ,ν = (−1, 1 + R′2, R2), (A1)

where R′ is the change in radius along the nanowire. This
metric is related to the Minkowski metric for the flat surface
by the following relation:

ga,b = gμ,νeμ
aeν

b. (A2)

Here latin letters (a, b) denote the local coordinates and greek
letters (μ, ν) denote general coordinates. The Dirac equa-
tion in curved space is

iγ μDμφ = 0, (A3)

where the covariant derivative, Dμ = ∂μ + ωabμ �ab/4. It can
be shown that only ω12φ and ω21φ are nonzero [23] and given

by

ω12φ = ω21φ = R′
√

1 + R′2 , (A4)

so the covariant derivatives are given by

Dt = ∂t , Dz = ∂z, Dφ = ∂φ + ω12φ�21/2. (A5)

Using these expressions we can write the Dirac equation (A3)
as

iγ t∂tψ + iγ z∂zψ + iγ φ[∂φ + ω12φ�21/2]ψ = 0, (A6)

where

�21 = 1
2 [�1, �2] and γ μ ≡ eμ

a �a. (A7)

To calculate vierbein or tetrad, (eμ)a, we use Eq. (A2) and find
a set of three equations:

g00 = gμνeμ
0eν

0, g11 = gμνeμ
1eν

1, g22 = gμνeμ
2eν

2,

(A8)
which can be expended in terms of the components of gμν as

−1 = −(et
0)2 + (1 + R′2)(ez

0)2 + R2(eφ
0)2,

−1 = −(et
1)2 + (1 + R′2)(ez

1)2 + R2(eφ
1)2,

−1 = −(et
2)2 + (1 + R′2)(ez

2)2 + R2(eφ
2)2; (A9)

now taking only the following tetrad nonzero

et
0 = 1, ez

1 = 1√
1 + R′2 , eφ

2 = 1

R
, (A10)

we find γ μ using Eq. (A7):

γ t ≡ et
a�

a = et
0�

0 + et
1�

1 + et
2�

2 = �0,

γ z ≡ ez
a�

a = ez
0�

0 + ez
1�

1 + ez
2�

2 = 1√
1 + R′2

�1,

γ φ ≡ eφ
a�

a = eφ
0�

0 + eφ
1�

1 + eφ
2�

2 = 1

R
�2. (A11)

We can put these results in Eq. (A6) and get

i�0∂tψ + i
1√

1 + R′2 �1∂zψ

+ i
1

R
�2

[
∂φ + R′

√
1 + R′2 �21/2

]
ψ = 0. (A12)

Now, we choose the following Dirac matrices:

�0 = iσx, �1 = iσy, �2 = iσz, (A13)

and write Eq. (A12) as

− σx∂tψ + i
1√

1 + R′2 σz∂zψ

+ σy
i

R

[
∂φ + R′

√
1 + R′2 �21/2

]
ψ = 0, (A14)

where

�21 = 1
2 [�2, �1] = iσx.
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Inserting h̄ and vF we arrive at the following Hamiltonian:

−ih̄σx∂tψ = vF

[
1√

1 + R′2 σz

{
ipz + h̄R′

2R

}
+ h̄

R
σy∂φ

]
ψ.

(A15)

We can simplify by multiplying both sides by −σx and get the
following Hamiltonian:

H = vF

[
1√

1 + R′2

{
ih̄∂z + ih̄R′

2R

}
σy − ih̄

R
σz∂φ

]
. (A16)
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