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Nonlocal interactions and supersolidity of moiré excitons
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Heterobilayer transition metal dichalcogenide (TMDC) moiré systems provide an ideal framework to inves-
tigate strongly correlated physics. Here we theoretically study bosonic many-body phases of excitons in moiré
TMDCs. By using two moiré models and cluster mean-field theory, we reveal that, due to nonlocal Coulomb
interactions, moiré excitons can feature exotic supersolid phases, i.e., superfluids of broken translational invari-
ance, and correlated insulating states. The correlated phases exist at experimentally accessible temperatures and
are tunable via the twist angle and exciton density.
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Introduction. Rapid advances in nanofabrication tech-
niques have allowed for experimental realizations of mul-
tilayer van der Waals moiré heterostructures, where lattice
mismatch or a twist angle between monolayers, results in a
tunable long-wavelength potential for electrons [1–3]. Moiré
potential leads to localized electrons, reducing their kinetic
energy and thus enhancing the role of interactions. Moiré sys-
tems, therefore, serve as versatile platforms to study strongly
correlated electronic systems. Prominent interaction-driven
phases observed in moiré systems include superconductivity
in twisted bilayer and multilayer graphene [4–6] and corre-
lated electronic states, such as Wigner crystals, stripes, and
Mott insulators in bilayer transition metal dichalcogenides
(TMDC) [7–15].

Moiré TMDCs are also an ideal platform for revealing
many-body effects of bosons. Namely, in TMDC monolayers,
excitons, i.e. bound electron-hole pairs, can be optically cre-
ated. Correspondingly, the moiré potential of electrons leads
to formation of moiré excitons [9,16–25]. While most of the
research has focused on probing moiré electrons with excitons
[9,11,12,14,15,26], less attention has been given to possible
bosonic many-body phases of moiré excitons. As the moiré
potential allows the confinement of bosons to triangular or
honeycomb lattice geometries [19], and as repulsive Coulomb
interactions between moiré excitons can be very strong com-
pared to their kinetic energy, it is tempting to expect that
moiré excitons form Mott insulating phases. This was indeed
predicted in a recent theoretical study [27] for a large range of
tunable parameters. Moreover, the possibility to reach super-
fluidity of moiré excitons has also been speculated [27,28].

Due to the strong on-site interaction, weaker nonlocal in-
teractions between excitons are often ignored. However, at
sufficiently low densities the on-site interaction can, by virtue
of hard-core boson constraint, be discarded so the nonlocal
interactions become the dominant interaction channel. In this
work, we theoretically study possible many-body phases of
moiré excitons by taking into account nonlocal interactions.
We employ two different continuum models [18,29], from

which we derive the effective tight-binding models for moiré
excitons and compute nonlocal exciton-exciton interactions.
By using cluster mean-field (CMF) theory [30–34], we show
that in addition to possible conventional Mott and superfluid
states, moiré excitons can also exhibit more exotic many-body
states, namely correlated insulating and superfluid phases of
broken translational invariance. The latter is widely known as
the supersolid phase. We show that these states are accessi-
ble using reasonable twist angles and exciton densities, and
experimentally accessible temperatures.

Hamiltonian. We consider moiré excitons of a TMDC het-
erobilayer system of layers 1 and 2. TMDC monolayers have a
hexagonal lattice structure and direct band gaps at the corners
of their hexagonal Brillouin zone (BZ), namely in the K and
K ′ valleys [35–37]. Small lattice constant mismatch or twist
angle θ between layers causes the interlayer electron tunnel-
ing to hybridize the low-energy states of two layers in the K
and K ′ valleys [18,38]. This gives a rise to moiré flat bands
of excitons, long moiré periodicity am, and reduced moiré
BZ (mBZ), see Figs. 1(a)–1(c). As excitons can be created
valley-selectively [35,39–44], we from now on consider only
the K-valley excitons and small twist angles θ ∼ 0 − 4◦.

We study the many-body properties of moiré excitons
by employing two different one-particle continuum Hamil-
tonians. The first one, which we call hybridized moiré
exciton model and denote HH , has been used successfully
in Refs. [17,18] to study the hybridization of intralayer and
interlayer excitons in moiré structures. The model treats the
interlayer electron tunneling t (k, k′) from momentum k′ to
k in the microscopic level as t (k, k′) ∝ δk,k′ + δk−k′,bm

1
+

δk−k′,bm
2

[bm
i are the moiré reciprocal vectors, see Fig. 1(b)],

which leads to the emergence of moiré excitons (see Supple-
mental Material (SM) [45] for further details).

The second model, which we denote HE , treats the moiré
effects with a slowly varying effective potential �(r) (r being
the spatial coordinate) i.e., the single-particle Hamiltonian for
excitons is simply HE = −∇2/2m + �(r), where m is the
exciton mass. We call this as an effective potential model,
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FIG. 1. (a) Schematic of the moiré system in the momentum
space. Blue (orange) hexagon depicts the BZ of layer 1 (2) and black
hexagon presents the moiré BZ (mBZ) in the K valley. (b) K-valley
mBZ. The momentum space is spanned by vectors bm

1 and bm
2 . The

red path gives the x axis of panel (c). (c) Moiré exciton K-valley
spin-down band structure at θ = 0.5◦ obtained for MoSe/WS2 with
HH . (d) Corresponding triangular tight-binding model for the lowest
band moiré excitons, characterized by the NN hopping tNN and moiré
periodicity am.

and it has been widely used to study moiré electrons [46–49]
and excitons [16,19,27,29,50]. Recent first-principles studies
[51] have argued that continuum models are sufficient to
capture the nature of the lowest energy moiré excitons, the
primary focus of this work. Following the experimental works
of [16,17], we apply HH (HE ) to study a hybrid moiré excitons
(moiré interlayer excitons) in a MoSe2/WS2 (MoSe2/WSe2)
heterobilayer system.

Both HH and HH yield one-particle Hamiltonians in the
form H0 = ∑

nk∈mBZ εknγ
†
knγkn, where n is the band index and

γkn annihilates a moiré exciton at momentum k and energy εkn

[45]. For both the models, the lowest energy band εk1 at small
θ is extremely flat and well isolated from higher bands by a
large band gap (see Fig. 1(c) and SM [45]). Subsequently, the
Wannier functions of the lowest moiré exciton band form a tri-
angular lattice characterized by the nearest-neighbor hopping
tNN [45], see Fig. 1(d). We thus write the effective tight-
binding Hamiltonian of the excitons in the lowest moiré band
as

H =
∑
<i, j>

ti jx
†
i x j +

∑
i

U0x†
i x†

i xixi +
∑
i, j

Ui jx
†
i x†

j x jxi, (1)

where xi annihilates a moiré exciton in lattice site i, ti j

describes hopping from site i to j, U0 is the repulsive
on-site interaction, Ui j denotes the nonlocal interactions be-
tween sites i and j, and the sum over the hopping terms is
limited to nearest-neighboring sites. Interaction terms arise
due to Coulomb interactions between excitons, and the val-
ues of ti j , U0, and Ui j depend on the chosen continuum
model. The hopping values are obtained as the Fourier
transform of the energies of the lowest moiré band, i.e.,
ti j = 1

N

∑
k∈mBZ εk1e−ik·(Ri−R j ). Here, N is the number of

moiré unit cells, and Ri denote the locations of moiré lattice
sites.

Deriving interaction terms U0 and Ui j is more involved and
depends on the chosen model. We detail how to do this for HH

in the next section. In Fig. 2 we present U0, nearest-neighbor

FIG. 2. (a) and (b) U0, UNN, and UNNN with respect to |tNN|
as a function of θ obtained with HH and HE continuum models,
respectively.

(NN) and next-nearest-neighbor (NNN) interactions, UNN and
UNNN, with respect to |tNN| as a function of θ for the two
continuum models. In both cases, U0 is the dominant energy
scale, being roughly one to two orders of magnitude larger
than UNN. Furthermore, UNN is comparable to tNN in case of
HH and much larger than tNN when using HE . We also see
that in the case of HE , NNN interaction is comparable to tNN

and cannot be ignored. We thus keep the interactions up to the
NN (NNN) terms when using HH (HE ). In the case of moiré
electrons, nonlocal interactions have been predicted to lead a
rich landscape of many-body phases [47–49,52–54].

Exciton-exciton interactions. We now derive the interaction
terms of Eq. (1) in the case of HH (derivation for HE is
given in SM [45]). In this model, the moiré excitons consist
of superpositions of intra and interlayer excitons labeled as
|X〉, |X′〉, |IX〉, and |IX′〉. Intralayer excitons |X〉 (|X′〉) and
holes of interlayer excitons |IX〉 (|IX′〉) reside in layer 1 (2).
However, due to the permanent dipole moment of interlayer
excitons, IX-IX, IX’-IX’, and IX-IX’ interactions are much
larger than other interaction terms. Hence, we write the inter-
action Hamiltonian for the direct Coulomb interactions as

Hint = 1

2A

∑
kk′q

t t̃

gdir
t t̃ (q)x†

t,k+qx†
t̃,k′−qxt̃,k′xt,k, (2)

where A is the system area, t, t̃ ∈ {IX,IX’}, xt,k annihilates an
interlayer exciton of momentum k and type t , gdir

tt (q) is the
interaction vertex and the momenta sums are not limited to
mBZ. We transfer to the moiré exciton basis:

Hint =
∑

kk′q∈mBZ
i jkl

gdir
i jkl (k, k′, q)

2A
γ

†
k+qiγ

†
k′−q jγk′kγkl (3)

with

gdir
i jkl (k, k′, q) =

∑
t,t̃

∑
αβγ

gdir
t t̃ (q + Gγ )〈ui,k+q|t, α + γ 〉

× 〈u j,k′−q|t̃, β − γ 〉〈t̃, β|uk,k′ 〉〈t, α|ul,k〉.
(4)

Here |ui,k〉 is the periodic part of the moiré Bloch function for
the ith band of momentum k, and matrix elements 〈t, α|ui,k〉
represent its components related to the exciton of type t at
momentum k + Gα with Gα ≡ qαbm

1 + pαbm
2 (qα and pα are

integers).
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The Coulomb interaction vertex gdir
t t̃ (q) can be straightfor-

wardly computed by deploying the excitonic wave functions
φ(k) [45]. For example, the interaction vertex between two IX
excitons is

gdir
IX,IX(q) ≈ e2

2q

{
f
(
xIX

h q
)2

εintra,2(q)
+ f

(
xIX

e q
)2

εintra,1(q)

− 2 f
(
xIX

e q
)

f
(
xIX

h q
)

εinter(q)

}
. (5)

Here e is the elementary charge, f (k)= ∑
q̃ φ∗

IX (q̃)φIX (q̃ + k)
and xIX

e (xIX
h ) is the relative electron (hole) mass of the

IX exciton such that xIX
e + xIX

h = 1 [45]. The terms inside
the wave brackets arise due to electron-electron, hole-hole
and electron-hole Coulomb interactions, respectively. We
have approximated the excitons to be tightly localized in
the momentum space around the K-point [45]. Further-
more, we take into account the two-layer geometry via
the momentum-dependent intralayer and interlayer dielectric
functions, εintra(q) and εinter,l (q) [55], derived in SM [45].

We rewrite Eq. (3) for the tight-binding model (1) by dis-
carding all but the lowest moiré band and using the Wannier
function expansion, i.e., γk1 = 1√

N

∑
i eik·Ri xi [45], to obtain

Hint ≈ 1

2A

∑
kk′q∈mBZ

gdir
1111(k, k′, q)γ †

k+q1γ
†
k′−q1γk′1γk1

=
∑

a,b,c,d

gabcd x†
ax†

bxcxd (6)

with

gabcd =
∑
kk′q

gdir
1111(k, k′, q)

2AN2

eik′ ·Rc+ik·Rd

ei(k+q)·Ra+i(k′−q)·Rb
. (7)

Equation (7) gives rise to different scattering processes
such as direct and exchange interactions (gabba, gabab),
interaction-assisted hopping gaaab, and pair hopping gaabb. The
importance of such terms was highlighted in Ref. [49] for the
case of moiré electrons. Here, however, the direct interaction
is the dominant one and we discard nondirect terms to obtain
Eq. (1).

Supersolidity of moiré excitons. As U0 in (1) is much larger
than other energy scales, it is presumable that the ground
state is a Mott insulator when the exciton density n, i.e.,
the number of excitons per lattice site, is n = 1. However,
for smaller densities, the ground state can be very different.
Namely, U0 is so large that for n < 1, one can employ the
hard-core constraint (HCC), i.e., to limit the occupation num-
ber of each lattice site to be less than 2. HCC is accurate
when n < 1/Auc, where Auc is the area of the moiré unit
cell. For example, with twist angle θ = 2◦, 1/Am

uc = 3.1 ×
10−12 cm−2 for a MoSe2/WS2 structure. This density is to
be contrasted with experimentally measured critical density
nc above which interlayer moiré excitons dissociate to free
electron-hole plasma [56,57]. In the case of MoSe2/WSe2,
nc was measured and theoretically computed to be roughly
nc ∼ 1.6 − 3 × 10−12 cm−2 [56]. We therefore restrict our
analysis to n < 1

2 and employ HCC, as justified by the ex-
periments.

To study competition between the hopping and non-local
interaction terms, we treat moiré excitons as ideal bosons
and employ cluster mean-field (CMF) theory [30–34]. As we
are using sufficiently small exciton densities, excitons follow
to a good approximation bosonic commutation relations, and
therefore our bosonic model is well justified [45]. CMF the-
ory has been used in earlier works to investigate nonlocally
interacting hard-core bosons in square and triangular lattices,
revealing that such systems can feature Mott states, superfluid
states, and supersolid phases [31–33]. Moreover, CMF theory
has been shown to agree well with Monte Carlo calculations
[31,58]. Previous studies have considered only real-valued
hopping parameters, whereas here the moiré potential can ren-
der tNN complex valued in case of HH . One therefore cannot
apply directly the results of previous studies [31] here.

In the CMF method, a cluster of sufficiently many-lattice
sites is solved exactly, and the coupling between the cluster
and sites outside the cluster is treated in the mean-field level.
Specifically, the cluster Hamiltonian reads

HC =
∑
ic, jc

(tic jc − μδic, jc )x†
ic

x jc +
∑
ic, jc

Uic jc x
†
ic

x†
jc

x jc xic

+
∑
i, jc

(ti jcψ
∗
i x jc + H.c.) +

∑
ic, j

2Uic jn jx
†
ic

xic . (8)

Here ic (i) refers to the sites within (outside) the cluster and
we have introduced the chemical potential μ. The mean fields,
namely the superfluid order parameter ψi and exciton density
ni, are solved selfconsistently. This is done by solving suf-
ficiently many cluster problems, centered at different lattice
sites. If site i belongs to Mi different clusters (as clusters
can overlap), an average over these clusters is taken, i.e.,
ψi = 1

Mi

∑
C〈xi〉, where C is the cluster index (details are

provided in SM [45]). The expectation values 〈xic〉 in clus-
ter C are computed by exactly diagonalizing the cluster
Hamiltonian HC and taking the thermal average, i.e., 〈xic〉 =
1

ZC
Tr{e−βHC xic}, where β = kBT with kB and T being the

Boltzmann constant and temperature, and ZC = Tr{e−βHC } is
the partition function for cluster C. Obtained mean fields ψi

and ni are inserted back to the cluster Hamiltonian (8) and the
iterative procedure is continued till ψi and ni converge for all
i. We use several different initial ansatzes for ψi and ni, and
select the result with the lowest free energy � = −kBT ln Z
where Z is the total partition function of the system.

To exactly diagonalize Eq. (8), we consider the Hilbert sub-
space spanned by the Fock states which have, at maximum,
one particle per each site. Moreover, we do not fix the particle
number as the average density is controlled by μ in Eq. (8).
This ensures that we can access the superfluid order parameter
that breaks the U (1)-gauge symmetry.

We present in Figs. 3(a) and 3(b) our CMF results for
MoSe2/WS2 as a function of μ and θ , obtained with 10-site
clusters (see SM [45]) by using tNN, U0, and Ui j of HH . To
study possible broken spatial symmetries, we define the stag-
gered density as �n ≡ max ni−min ni

max ni
. We show both the average

superfluid order parameter ψ̄ [Fig. 3(a)] and �n [Fig. 3(b)].
For clarity, ψ̄ , �n, and average density n̄ are also depicted in
Figs. 3(c) and 3(d) as a function of θ for μ/UNN = 0.4 and
μ/UNN = 5.8, respectively.
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FIG. 3. (a) and (b) CMF results for ψ̄ and �n, respectively, as a
function of θ and μ at T = 0 by using HH . Inset of panel (b) shows
the spatial profile of ni of the solid phase (yellow denotes ni = 1 and
blue ni = 0) with n̄ = 1/3. (c) and (d) ψ̄ , �n, and n̄ as a function of
θ for μ/UNN = 0.4 and μ/UNN = 5.8, respectively, at T = 0.

From Fig. 3 we see that by tuning θ and μ (i.e., n̄),
one can reach different many-body phases: spatially ho-
mogeneous superfluid (SF) phase (characterized by ψ̄ �= 0,
�n = 0), solid phase with broken translational symmetry
(ψ̄ = 0, �n �= 0) and, importantly, supersolid (ψ̄ �= 0, �n �=
0). The solid phase has the average density of n̄ = 1/3 and
its spatial density profile, depicted in the inset of Fig. 3(b),
is characterized by vanishing density within two-thirds of the
sites. The supersolid phase has a similar staggered density
pattern, with the exception of having finite density in all the
sites so that n̄ > 1/3.

To study how finite temperature affects the supersolid
phase, we plot in Fig. 4(a) ψ̄ and �n as a function of T
for μ/UNN = 5.88 at θ = 1.4◦ (symbols) and at μ/UNN = 5.8
with θ = 0.7◦ (dashed lines). At θ = 1.4◦, the superfluid com-
ponent of the supersolid vanishes around T ∼ 2.4 K, whereas
the staggered density pattern survives to slightly higher tem-
peratures. A similar trend can be seen more clearly in the case
of θ = 0.7◦ for which the staggered solid phase vanishes at
considerably higher temperatures compared to the superfluid
order. This is understandable as the superfluidity emerges
due to U (1) symmetry breaking and is thus more susceptible

FIG. 4. (a) Calculated �n, ψ̄, and n̄ as a function of T at
μ/UNN = 5.88, θ = 1.4◦ (symbols) and at μ/UNN = 5.8, θ = 0.7◦

(dashed lines) by using HH . (b) Corresponding results with HE for
μ/UNN = 5.7 and θ = 3◦.

to thermal phase fluctuations. Notably, the superfluid critical
temperatures Tc obtained here are experimentally accessible
[20,25]. One should note, however, that CMF accounts for
exactly local and short-ranged quantum fluctuations, but treats
long-range fluctuations in the mean-field level. Thus, CMF
most likely overestimates Tc. Our prediction, however, should
be better than that given by a simple Gutzwiller mean-field
theory. To improve the prediction for Tc, one should perform
a fluctuation analysis for the complex phase of ψi to access
the BKT-transition temperature. With CMF, this could be
done as in Ref. [33], where fluctuations of the density matrix
were studied, or computing the superfluid density by ex-
tending the quantum Gutzwiller theory [59] for our cluster
approach. We leave this aspect to future studies.

For completeness, we performed CMF computations for
MoSe2/WSe2 by using tNN, U0, and Ui j , obtained from HE .
With experimentally feasible parameters [16], twist angles
of θ ∼ 3◦ yield supersolidity (see SM [45]). In Fig. 4(b) we
show �n, ψ̄, and n̄ as a function of T at μ/UNN = 5.7 and
θ = 3◦. We see that Tc ∼ 1 K. Our prediction for excitonic
supersolidity is thus not model-dependent, but an intrinsic
property of moiré excitons that feature a finite interlayer exci-
ton component.

Discussion. We have demonstrated that moiré excitons,
in addition to previously predicted Mott and conventional
superfluid states [27,28], can also host superfluid and insulat-
ing states that break the periodicity of the original triangular
moiré lattice. By tuning the density of excitons and the twist
angle, one can reach these many-body phases within a rea-
sonable parameter regime and at experimentally accessible
temperatures. We employed two different continuum models
to build the tight-binding models and interactions for moiré
excitons. The common feature of these models is the presence
of interlayer excitons. Nontrivial states of broken translational
invariance emerge then from strong nonlocal Coulomb inter-
actions, which cannot be ignored in experimentally feasible
density regime.

We used here equilibrium CMF theory, whereas experi-
mental systems are inherently in nonequilibrium due to optical
pumping and decay processes of excitons. However, interlayer
excitons can exhibit relatively long lifetimes in moiré systems;
in Ref. [60] the lifetime of interlayer excitons was measured
to be around 1–10 nm for small twist angles, giving the decay
rate of γ ∼ 10−4 − 10−3 meV. This is still much smaller
than other energy scales. For example, |tNN| ∼ 0.1 meV at
θ ∼ 0.7◦ used in Fig. 4(a). Thus, we expect that including
a decay term in Eq. (1) does not change our conclusions
qualitatively. Moreover, recently realized dual-moiré systems
[61,62], where the system geometry suppresses the recombi-
nation of electron-hole pairs, can further enhance the lifetime
of interlayer excitons and can thus be a strong candidate
for realizing supersolid phases similar to the ones predicted
here. Nonequilibrium dynamics of excitons provide a rich
playground to reveal new properties of moiré systems [60,63]
and remain an important topic for future studies.

Our work considers excitons in the K valley only. On
the other hand, the hybridized exciton model HH allows us
to simultaneously consider the K ′-valley excitons. However,
the intralayer excitons of different valleys are coupled via
the intervalley exchange interaction [64–66]. Consequently,
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the lowest moiré exciton bands of two valleys hybridize and
a two-band tight-binding model is required [67] to faith-
fully study such intervalley moiré excitons. Intervalley moiré
physics can be very rich, e.g., possibly leading to topological
band structures [50] and excitonic phases of broken crystal
symmetries [68].

Moiré excitons can also easily couple with light, form-
ing moiré exciton polaritons [69] and therefore allowing
the creation of strong nonlinearities and many-body phases
of light [63,70]. Furthermore, electron-exciton interactions

[9,11,12,14,15,25,26,26,71–73] provide a promising platform
for studying strongly correlated Bose-Fermi mixtures. Our
work, describing the possibility to access supersolid phases,
manifests vast opportunities of moiré excitons and highlights
their significant role in studying strongly correlated bosonic
many-body phases.
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Tongay, A. C. Ferrari, and M. Atatüre, Commun. Phys. 4, 119
(2021).

[24] D. Huang, J. Choi, C.-K. Shih, and X. Li, Nat. Nanotechnol. 17,
227 (2022).

[25] X. Wang, C. Xiao, H. Park, J. Zhu, C. Wang, T. Taniguchi, K.
Watanabe, J. Yan, D. Xiao, D. R. Gamelin, W. Yao, and X. Xu,
Nature (London) 604, 468 (2022).

[26] E. Liu, E. Barré, J. van Baren, M. Wilson, T. Taniguchi, K.
Watanabe, Y.-T. Cui, N. M. Gabor, T. F. Heinz, Y.-C. Chang,
and C. H. Lui, Nature (London) 594, 46 (2021).

[27] N. Götting, F. Lohof, and C. Gies, Phys. Rev. B 105, 165419
(2022).

[28] C. Lagoin and F. Dubin, Phys. Rev. B 103, L041406 (2021).
[29] F. Wu, T. Lovorn, and A. H. MacDonald, Phys. Rev. B 97,

035306 (2018).
[30] D.-S. Lühmann, Phys. Rev. A 87, 043619 (2013).
[31] D. Yamamoto, I. Danshita, and C. A. R. Sá de Melo, Phys. Rev.

A 85, 021601(R) (2012).
[32] D. Yamamoto, A. Masaki, and I. Danshita, Phys. Rev. B 86,

054516 (2012).
[33] M. Malakar, S. Ray, S. Sinha, and D. Angom, Phys. Rev. B 102,

184515 (2020).

035406-5

https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1038/s41567-020-01154-3
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41586-019-1393-y
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1038/s41567-021-01171-w
https://doi.org/10.1038/s41586-020-2191-2
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41586-020-2085-3
http://arxiv.org/abs/arXiv:2202.08879
https://doi.org/10.1103/PhysRevLett.127.037402
https://doi.org/10.1038/s41563-021-00959-8
https://doi.org/10.1038/s41467-021-23732-6
https://doi.org/10.1038/s41586-019-0975-z
https://doi.org/10.1038/s41586-019-0986-9
https://doi.org/10.1103/PhysRevB.99.125424
https://doi.org/10.1126/sciadv.1701696
https://doi.org/10.1038/s41586-019-0957-1
https://doi.org/10.1038/s41586-019-0976-y
https://doi.org/10.1038/s41377-021-00500-1
https://doi.org/10.1038/s42005-021-00625-0
https://doi.org/10.1038/s41565-021-01068-y
https://doi.org/10.1038/s41586-022-04472-z
https://doi.org/10.1038/s41586-021-03541-z
https://doi.org/10.1103/PhysRevB.105.165419
https://doi.org/10.1103/PhysRevB.103.L041406
https://doi.org/10.1103/PhysRevB.97.035306
https://doi.org/10.1103/PhysRevA.87.043619
https://doi.org/10.1103/PhysRevA.85.021601
https://doi.org/10.1103/PhysRevB.86.054516
https://doi.org/10.1103/PhysRevB.102.184515


ALEKSI JULKU PHYSICAL REVIEW B 106, 035406 (2022)

[34] S. R. Hassan, L. de Medici, and A.-M. S. Tremblay, Phys. Rev.
B 76, 144420 (2007).

[35] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie,
T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001
(2018).

[36] T. Mueller and E. Malic, npj 2D Mater. Applic. 2, 29 (2018).
[37] H. Yu, X. Cui, X. Xu, and W. Yao, Natl. Sci. Rev. 2, 57 (2015).
[38] Y. Wang, Z. Wang, W. Yao, G.-B. Liu, and H. Yu, Phys. Rev. B

95, 115429 (2017).
[39] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).
[40] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan,

E. Wang, B. Liu, and J. Feng, Nat. Commun. 3, 887 (2012).
[41] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol.

7, 490 (2012).
[42] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol.

7, 494 (2012).
[43] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L.

Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016).
[44] L. Zhang, R. Gogna, G. W. Burg, J. Horng, E. Paik, Y.-H. Chou,

K. Kim, E. Tutuc, and H. Deng, Phys. Rev. B 100, 041402(R)
(2019).

[45] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.035406 for details on derivation of HH

and HE continuum models, details on constructing the tight-
binding model, details on computing the interaction terms,
derivation of the dielectric functions, details on CMF com-
putations, the results of the weak-coupling Gross-Pitaevskii
equation and Bogoliubov theory, and additional Refs. [74–80].

[46] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,
Phys. Rev. Lett. 122, 086402 (2019).

[47] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Phys. Rev.
Lett. 121, 026402 (2018).

[48] H. Pan, F. Wu, and S. Das Sarma, Phys. Rev. Research 2,
033087 (2020).

[49] N. Morales-Durán, N. C. Hu, P. Potasz, and A. H. MacDonald,
Phys. Rev. Lett. 128, 217202 (2022).

[50] F. Wu, T. Lovorn, and A. H. MacDonald, Phys. Rev. Lett. 118,
147401 (2017).

[51] M. H. Naik, E. C. Regan, Z. Zhang, Y.-h. Chan, Z. Li, D. Wang,
Y. Yoon, C. S. Ong, W. Zhao, S. Zhao, M. I. B. Utama, B. Gao,
X. Wei, M. Sayyad, K. Yumigeta, K. Watanabe, T. Taniguchi,
S. Tongay, F. H. da Jornada, F. Wang et al., arXiv:2201.02562.

[52] H. Pan, F. Wu, and S. Das Sarma, Phys. Rev. B 102, 201104(R)
(2020).

[53] H. Pan and S. Das Sarma, Phys. Rev. B 105, L041109 (2022).
[54] H. Pan and S. Das Sarma, Phys. Rev. Lett. 127, 096802 (2021).
[55] M. Danovich, D. A. Ruiz-Tijerina, R. J. Hunt, M. Szyniszewski,

N. D. Drummond, and V. I. Fal’ko, Phys. Rev. B 97, 195452
(2018).

[56] J. Wang, J. Ardelean, Y. Bai, A. Steinhoff, M. Florian, F. Jahnke,
X. Xu, M. Kira, J. Hone, and X.-Y. Zhu, Sci. Adv. 5, eaax0145
(2019).

[57] J. Wang, Q. Shi, E.-M. Shih, L. Zhou, W. Wu, Y. Bai, D.
Rhodes, K. Barmak, J. Hone, C. R. Dean, and X.-Y. Zhu,
Phys. Rev. Lett. 126, 106804 (2021).

[58] S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005).
[59] F. Caleffi, M. Capone, C. Menotti, I. Carusotto, and A. Recati,

Phys. Rev. Research 2, 033276 (2020).
[60] J. Choi, M. Florian, A. Steinhoff, D. Erben, K. Tran, D. S. Kim,

L. Sun, J. Quan, R. Claassen, S. Majumder, J. A. Hollingsworth,
T. Taniguchi, K. Watanabe, K. Ueno, A. Singh, G. Moody, F.
Jahnke, and X. Li, Phys. Rev. Lett. 126, 047401 (2021).

[61] Y. Zeng, Z. Xia, R. Dery, K. Watanabe, T. Taniguchi, J. Shan,
and K. F. Mak, arXiv:2205.07354.

[62] Y.-H. Zhang, arXiv:2204.10937.
[63] A. Camacho-Guardian and N. R. Cooper, Phys. Rev. Lett. 128,

207401 (2022).
[64] H. Yu, G.-B. Liu, P. Gong, X. Xu, and W. Yao, Nat. Commun.

5, 3876 (2014).
[65] T. Yu and M. W. Wu, Phys. Rev. B 89, 205303 (2014).
[66] F. Wu, F. Qu, and A. H. MacDonald, Phys. Rev. B 91, 075310

(2015).
[67] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847

(1997).
[68] B. Remez and N. R. Cooper, Phys. Rev. Research 4, L022042

(2022).
[69] L. Zhang, F. Wu, S. Hou, Z. Zhang, Y.-H. Chou, K. Watanabe,

T. Taniguchi, S. R. Forrest, and H. Deng, Nature (London) 591,
61 (2021).

[70] A. Camacho-Guardian and N. R. Cooper, arXiv:2206.06166.
[71] E. Marcellina, X. Liu, Z. Hu, A. Fieramosca, Y. Huang, W.

Du, S. Liu, J. Zhao, K. Watanabe, T. Taniguchi, and Q. Xiong,
Nano Lett. 21, 4461 (2021).

[72] Y. Tang, J. Gu, S. Liu, K. Watanabe, T. Taniguchi, J. Hone, K. F.
Mak, and J. Shan, Nat. Nanotechnol. 16, 52 (2021).

[73] X. Wang, J. Zhu, K. L. Seyler, P. Rivera, H. Zheng, Y. Wang,
M. He, T. Taniguchi, K. Watanabe, J. Yan, D. G. Mandrus,
D. R. Gamelin, W. Yao, and X. Xu, Nat. Nanotechnol. 16, 1208
(2021).

[74] H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Phys. Rev. Lett.
115, 187002 (2015).

[75] P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G.
Mandrus, W. Yao, and X. Xu, Science 351, 688 (2016).

[76] D. Leykam, A. Andreanov, and S. Flach, Adv. Phys.: X 3,
1473052 (2018).

[77] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[78] M. Angeli and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
118, e2021826118 (2021).

[79] Y. Castin, in Coherent Atomic Matter Waves, edited by R.
Caiser, C. Westbrook, and F. David (EDP Sciences and
Springer-Verlag, 2001).

[80] S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensa-
tion of Excitons and Biexcitons and Coherent Nonlinear Optics
with Excitons (Cambridge University Press, 2000).

035406-6

https://doi.org/10.1103/PhysRevB.76.144420
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1038/s41699-018-0074-2
https://doi.org/10.1093/nsr/nwu078
https://doi.org/10.1103/PhysRevB.95.115429
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1103/PhysRevB.100.041402
http://link.aps.org/supplemental/10.1103/PhysRevB.106.035406
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevResearch.2.033087
https://doi.org/10.1103/PhysRevLett.128.217202
https://doi.org/10.1103/PhysRevLett.118.147401
http://arxiv.org/abs/arXiv:2201.02562
https://doi.org/10.1103/PhysRevB.102.201104
https://doi.org/10.1103/PhysRevB.105.041109
https://doi.org/10.1103/PhysRevLett.127.096802
https://doi.org/10.1103/PhysRevB.97.195452
https://doi.org/10.1126/sciadv.aax0145
https://doi.org/10.1103/PhysRevLett.126.106804
https://doi.org/10.1103/PhysRevLett.95.127205
https://doi.org/10.1103/PhysRevResearch.2.033276
https://doi.org/10.1103/PhysRevLett.126.047401
http://arxiv.org/abs/arXiv:2205.07354
http://arxiv.org/abs/arXiv:2204.10937
https://doi.org/10.1103/PhysRevLett.128.207401
https://doi.org/10.1038/ncomms4876
https://doi.org/10.1103/PhysRevB.89.205303
https://doi.org/10.1103/PhysRevB.91.075310
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevResearch.4.L022042
https://doi.org/10.1038/s41586-021-03228-5
http://arxiv.org/abs/arXiv:2206.06166
https://doi.org/10.1021/acs.nanolett.1c01207
https://doi.org/10.1038/s41565-020-00783-2
https://doi.org/10.1038/s41565-021-00969-2
https://doi.org/10.1103/PhysRevLett.115.187002
https://doi.org/10.1126/science.aac7820
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.2021826118

