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Geometric energy transport and refrigeration with driven quantum dots
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We study geometric energy transport in a slowly driven single-level quantum dot weakly coupled to electronic
contacts and with strong on-site interaction, which can be either repulsive or attractive. Exploiting a recently
discovered fermionic duality for the evolution operator of the master equation, we provide compact and
insightful analytic expressions of energy pumping curvatures for any pair of driving parameters. This enables
us to systematically identify and explain the pumping mechanisms for different driving schemes, thereby also
comparing energy and charge pumping. We determine the concrete impact of many-body interactions and
show how particle-hole symmetry and fermionic duality manifest, both individually and in combination, as
system-parameter symmetries of the energy pumping curvatures. Building on this transport analysis, we study
the driven dot acting as a heat pump or refrigerator, where we find that the sign of the on-site interaction plays a
crucial role in the performance of these thermal machines.
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I. INTRODUCTION

Energy transport in driven mesoscopic systems is of high
interest from the perspective of two very different research
fields. First, while steady-state transport spectroscopy is a
well-established experimental tool to characterize quantum
devices, opportunities arising from the combination of ac
driving [1–17] and heat or energy transport [18–26] in spec-
troscopy are promising but have been less explored. Of
specific interest in this context is whether these two “knobs”
can be leveraged in adiabatic energy pumping [27–30], which
is expected to give new insights, especially when factoring
in the geometric nature of pumping due to slow driving
[27,29,31–33]. Second, periodic driving to pump controlled
energy flows in mesoscopic conductors is at the heart of realiz-
ing cyclic thermal machines at the nanoscale. A broad analysis
of such cyclic small-scale engines has been put forward in
very different types of devices; see, e.g., Refs. [34–40] and
references therein. Driven quantum dots are one of the most
basic setups in which a cyclic operation for, e.g., heat engines
[41,42] and motors [43–50] can be implemented. Geomet-
ric charge pumping by slowly driving such dots has been
analyzed in great detail in theory [3,51–60] and experiment
[61–64]. However, energy pumping has only been studied
addressing specific aspects [27,29,65–68], whereas a detailed,
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full-fledged analytical study is still missing, even for the sim-
plest case of a single-level quantum dot.

This paper therefore systematically analyzes geometric
energy pumping through a single-level quantum dot with

FIG. 1. (a) Energy landscape of a spin-degenerate single-level
quantum dot with level position ε and local two-particle interaction
strength U , tunnel coupled to two reservoirs α = L, R at temperature
Tα and chemical potential μα , where μL − μR = Vb, with coupling
strengths �L/R = �(1 ± �)/2, where � is a fixed typical tunneling
frequency and � is the left-right asymmetry. The sketch shows the
usual situation of repulsive Coulomb interaction U > 0, but we also
consider the attractive case U < 0. (b) Representation of the closed
driving path C in parameter space of a pair of generic driving pa-
rameters R1 and R2, encircling the surface with vector δS and area
S = |δS| around a working point defined by time-averaged param-
eters M̄ = (ε̄, Ū , V̄b, �̄, T̄L). The pumping procedure is detailed in
Sec. II B. (c) Example of a driving cycle as considered in Sec. V,
implementing a refrigerator with TL > TR and μL = μR and driving
parameters ε and �, the latter indicated by vertical lines of different
thickness.
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possibly strong on-site interaction, which can be either re-
pulsive or attractive, and weak tunnel coupling to electronic
reservoirs. We address the characteristics of energy pump-
ing for transport spectroscopy as well as cyclically operated
quantum-dot heat engines. Appealing to both the geomet-
ric character of the driving and general symmetries of open
fermionic systems, we derive analytical expressions directly
linking the intuitively understandable, well-known dc linear
response properties of the dot [69,70] to the pumped charge
and energy. This enables an in-depth pumping analysis reveal-
ing the pumped energy to be significantly more insightful into
the resonant and off-resonant dot dynamics than the charge,
especially for attractive interaction. Moreover, we directly
relate the efficiency of the dot operated as a driven refrigerator
or heat pump to the dot’s steady-state thermovoltage. This
makes particularly transparent how local electron pairing due
to attractive on-site interaction would influence this operation.

To realize geometric charge and energy pumping, we as-
sume the system to be slowly driven in time by the periodic
modulation of an arbitrary pair of parameters (see Fig. 1). This
includes any finite, and possibly driven interaction strength,
bias voltage [6,31,71] and temperature differences between
the leads, with the latter two being particularly relevant when
operating the system as an engine, a refrigerator, or a heat
pump. Namely, time-dependent driving can result in charge
and energy flow against the current direction imposed by
biases. Beyond thermoelectrics, geometric pumping currents
which superpose bias-induced stationary currents have also
been shown to be useful as a spectroscopic tool [6,31].

We also include the less usual attractive interaction in our
analysis. In locally confined systems, an electron pair can
experience such attractive interaction if, by bringing the pair
closer together, additional electrons repelling off the pair are
enabled to redistribute in a way that overcompensates the
added Coulomb energy between the pair [71]. This effect
was shown experimentally for quantum dots in Refs. [72–75],
thus providing a simple tunable platform to test the effect
of possibly strong electron pairing on various transport phe-
nomena. In particular, the energy current through such a dot
directly probes the interaction energy, in contrast to the charge
current [76,77], and attractive interaction has been predicted
to exhibit unusual features already in stationary thermoelectric
transport [78]. It is thus not only fundamentally interesting to
extend the previous work on geometric charge pumping with
attractive interaction 71] to energy pumping. In fact, it is also
expected and confirmed by our work that interaction-induced
pairing can have a considerable effect on the operation and
performance of a dot as a driven thermal machine.

To efficiently cover the many different system parameter
regimes, we make use of a recently discovered dissipative
symmetry of the master equation of fermionic systems [76],
which is referred to as fermionic duality. This duality relation
has proven useful to describe heat and energy transport not
only in time-dependently driven [77,79,80] but also in sta-
tionary systems [78,81,82]. Importantly, fermionic duality is
valid for arbitrary local interaction strengths, as well as for
any bias voltage or temperature difference between the leads;
it hence yields general yet compact and easy to interpret an-
alytical results for the complete geometric formulation of the
pumped energy. We thereby systematically identify, for both

strong repulsive or attractive on-site interactions, different
pumping mechanisms [71] and pinpoint the nature of the con-
tributions of different modes of the dissipative dot dynamics.
This in particular exposes the parameter regimes in which the
pumped energy differs nontrivially from the pumped charge
and highlights the impact of many-body interactions. More-
over, our formalism clearly identifies symmetries between
the pumped energy at different working points and with dif-
ferent interaction signs, due to particle-hole symmetry and
due to fermionic duality itself. Equipped with these general
physical insights into energy pumping, we then address the
slowly driven quantum dot specifically as a refrigerator or heat
pump. Our analytical approach relates the performance of this
quantum-dot machine directly to the dot’s steady-state See-
beck coefficient, its equilibrium charge fluctuations, and its
typical RC time [83]. This provides intuitive yet quantitative
predictions for the output power and efficiency and elucidates
how the interplay between on-site interaction, its sign, and the
driving frequency affects these quantities.

The paper is organized as follows. We introduce the the-
oretical approach in Sec. II. Section III then sets up the full
analytical formulation of the pumping transport equations re-
lying on the fermionic duality and discusses general properties
of (energy) pumping based on these analytical results. Specific
features of energy pumping for different driving schemes are
discussed in detail in Sec. IV A for a quantum dot with re-
pulsive on-site interaction and in Sec. IV B for a quantum dot
with attractive on-site interaction. In Sec. V we analyze the
driven quantum dot as a refrigerator or heat pump, where heat
is pumped out of the cold and into the hot contact, and identify
the performance characteristics for repulsive and attractive
quantum dots. Readers more inclined towards this last part
may also skip the discussion in Sec. IV, as Sec. V focuses
on a different system parameter regime. Further details and
derivations are presented in extensive Appendixes.

II. THEORETICAL APPROACH

We start by introducing the model for the quantum dot
and the time-dependent driving leading to pumping. This also
includes an overview of the master-equation approach our
theoretical analysis is based on.

A. Quantum-dot model

We consider a single-level quantum dot, with a spin-
degenerate energy level ε, tunnel coupled to an environment
as represented in Fig. 1(a). The total Hamiltonian Ĥtot = Ĥ +∑

α Ĥα + Ĥtun describes the isolated quantum dot (Ĥ ), two
macroscopic electronic contacts (Ĥα=L,R), and their tunnel
coupling to the dots (Ĥtun). The dot Hamiltonian reads

Ĥ =
∑

σ=↑,↓
εN̂σ + UN̂↑N̂↓. (1)

Here the occupation number operator for the different spin
directions is given by N̂σ = d̂†

σ d̂σ , with the dot annihilation
operator d̂σ for spin σ and N̂ = ∑

σ N̂σ . We account for (pos-
sibly strong) on-site interaction between electrons, which is
characterized by the interaction strength U . Importantly, in the
present paper, we analyze the standard situation of repulsive
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Coulomb interaction, where U > 0, but also the case where
the on-site interaction is attractive, U < 0. Such quantum dots
with attractive interaction have recently been studied theoret-
ically [84–88], and have been realized in experiment [72–75].
The possible states of the dot are the empty state |0〉, the single
occupied state with either spin up (|↑〉) or spin down (|↓〉), or
the state of double occupation |2〉.

The two macroscopic electronic contacts α = L,R are
assumed to be simple spin-degenerate metallic leads. The
corresponding Hamiltonian of the lead α is given by

Ĥα =
∑
k,σ

εα,k ĉ†
α,k,σ

ĉα,k,σ , (2)

with the annihilation operator ĉα,k,σ acting on states with
orbital quantum number k. The lead occupation number oper-
ator is given by N̂α = ∑

k,σ ĉ†
α,k,σ

ĉα,k,σ . The Fermi functions
f ±
α (E ) = {1 + exp[±(E − μα )/kBTα]}−1 with the electro-

chemical potential μα and the temperature Tα quantify the
corresponding average particle (+)/hole (−) occupation per
mode with energy E .

The state of the quantum dot can change in time due to
tunneling to or from the leads. The corresponding tunneling
Hamiltonian is assumed to be spin independent,

Ĥtun =
∑
α,k,σ

Vα,k ĉ†
α,k,σ

d̂σ + H.c. (3)

Given the simple metallic contacts described above, the tun-
neling Hamiltonian Ĥtun conserves spin and charge. On an
energy scale given by the internal dot splittings, the density
of states in the contacts and coupling strength Vα,k typically
vary little around the chemical potential. We therefore sim-
plify the typical tunneling rate �α = πρα|Vα|2 also as energy
independent, i.e., with Vα,k ≡ Vα (wideband limit).

The focus of our studies is on the (experimentally relevant)
weak-coupling regime �α � kBTα . Since we are particularly
interested in the role of electron-electron interaction for en-
ergy pumping, we furthermore mostly study (but are not
limited to) the case |U | � kBTα , especially for the detailed
analysis in Sec. IV. Also note that here we consider only de-
vices in which the energy flow via coupling between electrons
and bosonic degrees of freedom (phonons, photons, etc.) is
negligible. Finally, we henceforth set h̄ = kB = |e| = 1.

B. Adiabatic charge and energy pumping

This paper deals with adiabatic charge and energy pump-
ing, i.e., charge and energy transport across the quantum dot
due to the slow periodic modulation of system parameters. We
hence analyze the time-resolved particle and energy currents
into one contact α,

INα (t ) = ∂t 〈N̂α〉, IHα (t ) = ∂t 〈Ĥα〉, (4)

averaged over one period 2π/� of the driving, Nα =∫ 2π/�

0 dtINα (t ) and Hα = ∫ 2π/�

0 dtIHα (t ). We denote the
expectation value with respect to the total-system state by
〈•〉. The adiabatically pumped transport quantities1 Nα and

1This study can straightforwardly be extended to heat currents
IQα (t ) = IHα (t ) − μα (t )INα (t ) (see also Appendix A).

Hα are geometric quantities [32,33,89–92] and require the
modulation of at least a pair of driving parameters encircling
a finite surface in parameter space, as indicated in Fig. 1(b).

A pure pumping current is obtained when modulating the
dot and coupling parameters ε(t ), U (t ), and �α (t ). This can in
practice be achieved by externally driven local gate voltages.
In the theoretical description, their time dependence enters
directly the Hamiltonian parameters introduced in Sec. II A.
With regard to the dot-contact coupling, it was previously
found for our setup [71] that the variation of the combined
coupling strength �(t ) = �L(t ) + �R(t ) does not lead to any
pumping. We hence set �(t ) = � and consider the left-right
asymmetry �(t ) = [�L(t ) − �R(t )]/[�L(t ) + �R(t )] as the
only coupling-related pumping parameter.

Beyond pure pumping, we also consider a more generic
situation with finite, possibly time-dependent voltage biases
and temperature differences. The adiabatic pumping currents
are then the first order in driving-frequency contributions
in addition to the zeroth-order currents, the latter stem-
ming from steady-state biases or rectification effects. Driven
electrochemical potentials μα (t ) are routinely realized in ac
transport experiments. However, the time-dependent modu-
lation of temperatures Tα (t ) of electronic contacts requires
well-controlled heating and cooling [93,94]. The theoretical
treatment of these macroscopic parameters can be performed
here by replacing the parameters in the Fermi functions
by time-dependent parameters. A more detailed justifica-
tion of this procedure is given in Appendix A (see also
Refs. [95–97]). For practical reasons, we choose to mod-
ulate the bias voltage Vb(t ) = μL(t ) − μR(t ) symmetrically
with respect to both leads, thereby setting the average poten-
tial μ0 = (μL + μR)/2 ≡ 0 as reference energy. Temperature
driving is instead only performed on the left reservoir TL(t );
the right contact remains at a fixed temperature TR ≡ T , which
we typically use as energy unit.

Adiabatic pumping due to any of these driving parameters
is geometric and does not depend on the detailed time de-
pendence of the driving, but only on the area of the enclosed
surface.2 Since the precise boundary shape of this surface is
not essential for our discussion, we assume an analytically
convenient, sinusoidal form

Ri(t ) = R̄i + δRi sin(�t + ϕi ), (5)

with frequency � for the periodically driven parameters
ε(t )/T , U (t )/T , Vb(t )/T , �(t ), and TL(t )/T . The working
point defined by the constant contribution R̄i and the am-
plitude δRi are set independently for all different modulated
parameters. The phases ϕi need to differ between the different
Ri to achieve a finite encircled surface in parameter space
and hence a possibly finite pumped quantity. The adiabaticity
condition reads [6]

�δRi � �. (6)

For better readability, we will later collect the set of any
two driving parameters for a specific protocol in a three-

2At higher orders in frequency, a single driven dot parameter is
sufficient since the required asymmetry is provided by the slight
lagging behind of the particle current compared to the driving [98].
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component vector R = (R1(t ), R2(t ), 0)T. We call any pair of
two parameters a driving scheme.

C. Master equation and fermionic duality

To describe the dynamics of the driven quantum-dot system
and to calculate the sought transported charge and energy, we
resort to a master-equation approach [3,6,98]. This is valid in
the regime of weak coupling relevant here � � minα{Tα} and
for up to moderately slow driving 0 < �δRi/� � 1. Perform-
ing an expansion in �/�, the time evolution of the reduced
quantum-dot density matrix ρ(t ) reads

0 = W |ρ (0)(t )), ∂t |ρ (�−1)(t )) = W |ρ (�)(t )). (7)

This introduces the instantaneously time-dependent kernel su-
peroperator W , which describes transitions due to tunneling
events between dot and reservoirs. The kernel acts on the
reduced density operator |ρ(t )) = ρ̂(t ). We choose a notation
with rounded kets |x) for operators x̂ in Liouville space and
with rounded bras for the corresponding covectors (x|• =
Tr{x̂†•} with respect to the Hilbert-Schmidt scalar product.
The driving-frequency expansion is denoted by the superscript
(�), representing the �th order in �/�. The solution for the
density operator |ρ(t )) = ∑∞

�=0 |ρ (�)(t )) then follows from
the master equation (7), including the instantaneous station-
ary state |ρ (0)(t )) ≡ |z) with respect to the modulated system
parameters at some time t , as well as the corrections |ρ (�)(t ))
in �th order in �/�.

Note that due to charge- and spin-conserving tunneling, the
occupation probabilities Pi(t ) = 〈i|ρ(t )|i〉, namely, the diago-
nal elements of the reduced density matrix in the basis of dot
energy eigenstates, decouple from the coherences, namely, the
off-diagonal elements 〈i|ρ(t )| j〉. Since the pumped charge and
energy (as the observables relevant here) are also diagonal
in the energy eigenbasis, the coherent dynamics is com-
pletely discarded and we determine only the time-dependent
probabilities to obtain the relevant transport quantities. The re-
quired matrix representation of the kernel W in the remaining
probability subspace consists of transition rates between the
dot energy eigenstates of zero [|0) = |0〉〈0|], single3 [|1) =
1
2

∑
i=↑,↓ |i〉〈i|], and double [|2) = |2〉〈2|] occupation. The

rates can be calculated using the lead decomposition W =∑
α W α and Fermi’s golden rule for each lead-resolved kernel

W α separately. They are given by4

W α
10 = 2�α f +

α (ε), W α
21 = �α f +

α (ε + U ),

W α
01 = �α f −

α (ε), W α
12 = 2�α f −

α (ε + U ). (8)

The diagonal elements of the matrices representing W α and
hence W are obtained from these rates by total probability
conservation, dictating (1|W α = (1|W = 0 with identity op-
erator 1̂. The instantaneous time dependence of W comes

3The spin degree of freedom does not play any role in this work
and we therefore do not separately treat the different spin state
occupations in the singly occupied mixed state.

4The basis is trace normed, but not orthonormal, since (1|1) = 1/2.
Therefore, W = ∑

i j
(i|W | j)

(i|i)( j| j) |i)( j| (see the Supplemental Material of
[76]).

from the driving parameters [Eq. (5)] entering the expressions
of the tunneling rates and Fermi functions in Eq. (8).

While the solution for the occupation probabilities as well
as for the transport quantities can in principle be straightfor-
wardly carried out, such a straightforward approach typically
yields rather long, inaccessible expressions that offer little
clues towards further parameter-regime specific simplifica-
tions and approximations. An improved understanding based
on more compact and insightful analytical results, can how-
ever be obtained from a recently discovered fermionic duality
relation. This has proven to be particularly useful in under-
standing dot systems driven out of equilibrium [76,77,79,80]
and observables influenced by strong many-body effects, such
as the energy being affected by a large Coulomb interaction
|U |/T � 1 [78,81].

Specifically, this dissipative symmetry for the kernel W
of the master equation, i.e., the fermionic duality, connects
the Hermitian conjugate of W to the kernel of a dual model,
in which all energies are inverted (see Appendix B). This
allows us to straightforwardly write the kernel in its eigenbasis
[79,81]

W = −γp|p)(p′| − γc|c)(c′|, (9)

which can be interpreted in a meaningful way. The eigen-
values of the kernel are the negative of the relaxation rates,
which one identifies as the charge relaxation rate γc, the parity
rate γp, and the additional eigenvalue 0, which corresponds
to the stationary state. The fermionic duality cross relates
the relaxation rates to each other. In particular, the parity
rate γp = 2� connects to the zero eigenvalue of the kernel
through the duality-based decay rate relation between any two
eigenmodes x and y,

γy = 2� − γ i
x . (10)

The superscript i indicates the dual model with inverted ener-
gies

εi = −ε, U i = −U, μi
α = −μα. (11)

The temperature and coupling rate � are not inverted by
the dual transform. The charge relaxation rate γc = f +

ε + f −
U ,

where we use the compact notation for combinations of Fermi
functions f ±

ε = ∑
α �α f ±

α (ε) and f ±
U = ∑

α �α f ±
α (ε + U ), is

self-dual following the relation of Eq. (10).
In a similar way, the right and left eigenvectors of the

kernel are interconnected through the duality-based cross
relation

(y′| = [(−1̂)N̂ |xi )]† = [eiπN̂ |xi )]†. (12)

This relation leads to the compact form of charge and parity
decay as well as the stationary state |z), given by

|z) = 1

�γc
[ f −

ε f −
U |0) + f +

ε f −
U |1) + f +

ε f +
U |2)],

|p) = |(−1)N ), |c) = 1

2
(−1̂)N̂ [|N ) − N i

z |1)], (13)

and the corresponding left eigenvectors

(z′| = (1|, (p′| = (zi(−1)N |,
(c′| = (N | − Nz(1|. (14)
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Equations (13) and (14) contain the dot occupations

Nz = (N |z), N i
z = (N |zi ) (15)

with respect to the stationary state |z) and with respect to the
dual stationary state |zi ), that is, the stationary state in the dual
model with inverted energies (see Appendix B for explicit
analytical expressions).

Our following analysis of energy pumping benefits from
this approach using the duality-based eigendecomposition of
the kernel W in Eqs. (9)–(15). The basic starting point is to
write both the zeroth-order solution |ρ (0) ) and the first-order
correction in frequency |ρ (1) ) in terms of the instantaneous
eigenmodes and the corresponding decay rates

|ρ (0) ) = |z), |ρ (1) ) = 1

W̃
∂t |z), (16)

with the pseudoinverse of the kernel

1

W̃
= − 1

γp
|p)(p′| − 1

γc
|c)(c′|. (17)

This pseudoinverse was constructed by exploiting that it only
ever acts on vectors |x) orthogonal to the zero-eigenvalue
subspace, i.e., with (1|x) = 0. Finally, for energy pumping in
a refrigerator scheme as discussed in Sec. V, we also require
second-order corrections in frequency,

|ρ (2) ) = 1

W̃
∂t

[
1

W̃
∂t |z)

]
. (18)

This correction constitutes a limitation for thermodynamically
efficient pumping [41].

III. TRANSPORT EQUATIONS

A. Transport of a generic observable due
to time-dependent driving

Based on the theoretical approach introduced in Sec. II,
we now calculate the stationary current as well as the first
order in �/� correction leading to pumping, for an arbitrary
observable. One can write the �th-order contribution to the
current into contact α as

I (�)
Oα

= (O|W α|ρ (�) ), (19)

that is, in terms of a local dot observable Ô, as long as this
observable is conserved [99]. This means that the flow of the
expectation value of the observable Ô out of the local dot
system equals the sum over the currents into all contacts. It
is naturally fulfilled for the dot charge as the local observable
and the resulting charge currents into the contacts. For the
energy current, Eq. (19) is only valid if no energy is stored on
the tunneling barriers, that is, when 〈Ĥtun〉(t ) is constant. The
latter is true for the weakly coupled dot considered here [100]
as long as nonelectronic energy flow due to, e.g., dissipation
to phonons is negligible. By contrast, in strong-coupling sit-
uations, the time-dependent storage of energy on the barriers
can play an important role [46,101,102].

The ingredients of Eq. (19) are known for stationary
charge and energy currents (� = 0) and have been analyzed
by exploiting the fermionic duality in detail [81]. Also, time-
dependent charge and energy currents through a quantum dot

have been analyzed after a rapid switch in the parameters
[76,77,79]. By contrast, a detailed analysis of the pumping
currents exploiting the fermionic duality has been missing.

Collecting the time-dependent parameters in the driving
scheme R = (R1(t ), R2(t ), 0)T as prescribed at the end of
Sec. II B, we can write the pumping current as [31]

I (1)
Oα

= (O|W α 1

W̃
∇R|z) · ∂t R, (20)

with the gradient defined as ∇R = (∂R1 , ∂R2 , 0)T. The re-
sulting transported observable per driving period equals a
geometric phase, as pointed out by Ning and Haken [103] and
Landsberg [104] (see also Refs. [32,33,105]),

O(1)
α =

∫ 2π/�

0
dt I (1)

Oα
(t ) =

∮
C

dR · AOα (R) (21a)

=
∫∫

S
dS · BOα (R), (21b)

with the geometric connection

AOα (R) = (O|W α 1

W̃
∇R|z) (22)

and the pseudomagnetic field, also called the pumping curva-
ture,5

BOα (R) = ∇R × AOα (R). (23)

The pumping curvatures BHα (R) and BNα (R) for the en-
ergy (Ô = Ĥ ) and charge (Ô = N̂ ) will be analyzed in detail
in Sec. IV for different sets of pumping parameters, using the
insights from the fermionic duality relation. However, before
addressing any specific transport observable, we note that the
time-dependent driving of parameters can excite the quantum
system away from the stationary state in two different ways,
namely,

1

W̃
∇R|z) = xC|c) + xP|p), (24)

with a charge-type excitation and a parity-type excitation.
Exploiting the duality-based kernel decomposition, the am-
plitudes of these excitations can be written as

xC = − 1

γc
(N |∇R|z) = − 1

γc
∇RNz, (25a)

xP = − 1

γp
(zi(−1)N |∇R|z) (25b)

= − 1

4γp
∇R pz − 1

2γp

(
N i

z − 1
)∇RNz, (25c)

5By using more general differential forms than ∇R × •, one can
generalize Stokes’s theorem (see, for example, Ref. [106]) to connect
Eq. (21a) with Eq. (23) for any discrete dimensional vector R, corre-
sponding to driving arbitrarily many parameters simultaneously. Our
treatment, however, focuses on the minimal and experimentally rel-
evant situation of two-parameter driving, for which the driving cycle
describes a path C enclosing the surface S of a flat two-dimensional
plane in parameter space as shown in Fig. 1(b).
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with the stationary quantum-dot parity pz = ((−1)N |z) (see
Appendix B for explicit analytical expressions). The function
xC for the chargelike excitation is expectedly proportional to
the inverse of the charge relaxation rate γc and the paritylike
term xP is proportional to the inverse of the parity rate γp.
However, when expressing xP in terms of observables as in
(25c), we find gradients of both the stationary parity pz and
occupation number Nz, with the latter also entering via the
dual occupation N i

z . This observable decomposition in (25c),
as well as the vector-overlap form in Eq. (25b), will offer
valuable insights for the interpretation of energy pumping in
the remainder of this paper.

Further exploiting the mode decomposition (24), we can
split the geometric connection of a specific observable Ô,
transported into a specific contact α, AOα (R), into contri-
butions AOα (R) = AC

Oα (R) + AP
Oα (R) coming, respectively,

from the chargelike and paritylike system excitations due to
the driving,

AC/P
Oα

(R) = (O|W α|c/p)xC/P. (26)

The crucial point is now that the eigenmode decomposition
given in Eqs. (9)–(15) for the full kernel W only derives from
probability conservation, from the local equilibrium state in
each individual lead α, and from fermionic duality [79,81].
The decomposition can hence be carried out in exactly the
same way for the lead-resolved kernel W α . This yields a
lead-resolved stationary state |zα ), dual state |zi

α ), and their
associated lead-resolved dot occupation numbers

Nzα = (N |zα ), N i
zα = (

N |zi
α

)
. (27)

These quantities together determine the full set of lead-
resolved eigenvectors of W α as well as the correspond-
ing charge rate γcα = �α[ f +

α (ε) + f −
α (ε + U )] and parity

rate γpα = 2�α . In particular, we again obtain the par-
ity mode |pα ) = |p) = |(−1)N ) as a parameter-independent
right eigenvector. When inserted together with Eq. (25) into
Eq. (26), this eigenvector yields

AC
Oα (R) = aC

Oα∇RNz, (28a)

AP
Oα (R) = aP,p

Oα
∇R pz + aP,N

Oα
∇RNz, (28b)

where

aC
Oα = γcα

γc
(O|cα ) + γpα

γc
(p′

α|c)(O|p), (29a)

aP,p
Oα

= γpα

4γp
(O|p), aP,N

Oα
= γpα

2γp

(
N i

z − 1
)
(O|p). (29b)

This set of equations readily shows the requirements that a
certain observable must fulfill in order to make the different
excited modes (chargelike and paritylike) visible. The second
term in Eq. (29a) and the two paritylike terms from Eq. (29b)
in particular only contribute if the observable Ô is sensitive
to many-body effects. Geometric charge pumping (Ô = N̂ )
in the quantum-dot system studied here is therefore not sensi-
tive to the parity mode excitation, as (N |p) = (N |(−1)N ) = 0
leaves only the first term in Eq. (29a) to contribute. The
consequence is that the charge pumping current is directly
proportional to the inverse of the charge relaxation rate
[6,107]. Moreover, since a finite bias voltage or temperature
difference generally causes the lead-resolved eigenvectors of

W α to differ from those of the full kernel, (p′
α| �= (p′| and

|cα ) �= |c), the ratio between chargelike and paritylike con-
tributions generally also depends on the contact in which the
transported observable is detected.

To obtain compact and insightful expressions for the
pumped transport variables (such as the pumped charge
and energy), we split the pumping curvature in a similar
way, BOα (R) = BC

Oα (R) + BP
Oα (R), with BC/P

Oα
(R) = ∇R ×

AC/P
Oα

(R). The pumping curvature then generally reads

BC
Oα (R) = ∇RaC

Oα × ∇RNz,

BP
Oα (R) = ∇RaP,p

Oα
× ∇R pz + ∇RaP,N

Oα
× ∇RNz. (30)

Equation (30) clarifies that a finite pumping current needs not
only a finite parameter gradient of the stationary dot occu-
pation and/or parity but in particular a gradient component
orthogonal to ∇RaOα [31,71].

The analysis of charge and energy pumping put forward in
this paper mainly relies on the functional form of Eqs. (28)–
(30) in order to understand the different pumping mechanisms
and pumping schemes.

B. Energy pumping

To support our detailed pumping analysis for various
parameter drivings and external conditions in Sec. IV, we
employ the fermionic-duality-based approach to highlight
general analytical features relevant for energy pumping.

1. Geometric connection

We begin with analytical results for the geometric con-
nection of energy pumping and their general physical
implications, in particular in comparison to charge pumping.
Equations (28) and (29) yield

aC
Hα = aC,TC

Hα + aC,NTC
Hα , (31a)

aP,p
Hα = U�α

4�
, (31b)

aP,N
Hα = U�α

2�

(
N i

z − 1
)
, (31c)

where we have defined

aC,TC
Hα = Eα γcα

γc
, (32a)

aC,NTC
Hα = U

2

γpα

γc

(
N i

zα − N i
z

)
. (32b)

The term aC,TC
Hα includes the characteristic energy

Eα = ε + U

2

(
2 − N i

zα

)
(33)

as a function of the lead-resolved dual occupation number N i
zα

introduced above.
To interpret Eq. (31), we first note that charge pumping

only senses the chargelike excitation (ANα ∼ xC):

ANα (R) = aC
Nα∇RNz, aC

Nα = γcα

γc
. (34)
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Based on the expression of aC
Nα , we identify aC,TC

Hα as the
tight-coupling contribution to energy pumping. This term is
“tightly coupled” to the charge current through multiplica-
tion by the characteristic energy Eα , which in fact equals the
(stationary) Seebeck coefficient of the quantum dot [81]. The
other term in the chargelike contribution, aC,NTC

Hα , contributes
only if N i

zα �= N i
z , i.e., when a stationary temperature differ-

ence or bias voltage is applied across the dot. This and all
other contributions to energy pumping given in Eqs. (31) are
uniquely due to the on-site interaction U and hence vanish in
a noninteracting quantum dot.

To gain additional insight into the properties of the parity
contribution AP

Hα (R) to the geometric connection, let us return
to its original definition in Eq. (26):

AP
Hα (R) = (H |W α|p)xP = −UγpαxP

= Uγpα

γp
(zi(−1)N |∇R|z). (35)

We first note that this contribution fulfills a symmetry under
the dual transform, namely, under the sign inversion of all en-
ergies. Concretely, using the product rule of ∇R together with
the eigenvector orthogonality (zi(−1)N |z) = (z(−1)N |zi ) =
0, Hermiticity of the states z = z† and zi = (zi )†, and parity su-
perselection dictating [z, (−1)N ] = [zi, (−1)N ] = 0, we find
xP to be antisymmetric with respect to the transformation to
the dual model:6

xP,i = − 1

γp
(z(−1)N |∇R|zi )

= + 1

γp
(zi(−1)N |∇R|z) = −xP. (36)

This and the sign inversion of U under the dual transform
means that AP

Hα (R) = −UγpαxP is self-dual, i.e., identical
when transforming to the dual model. In Sec. IV B, we further
translate this to a symmetry of the paritylike energy pumping
curvature BP

Oα (R) for repulsive vs attractive on-site interac-
tion of equal strength.

Second, we can derive from the general form of Eq. (35)
and the behavior of |z) and |zi ) that AP

Hα (R) is nonzero only
for specific parameter regions, meaning that the geometric
connection for energy pumping is in many cases dominated
by the charge-mode contribution AC

Hα (R). Let us consider a
parameter regime where both dot transition energies ε and
ε + U lie outside the bias window, |ε|, |ε + U | > |Vb|/2. The
dot state is then in either the empty or the doubly occupied
state, but never in the single occupied state. The dual state
|zi ) describes, by its inverted nature, a nearly opposite occu-
pation compared to |z), i.e., an empty dual state N i

z = 0 for a
fully occupied stationary dot state Nz = 2 and vice versa. A
similar situation occurs for strong interaction: |U | > |Vb| and
|U | � Tα . Assuming a repulsive on-site interaction U > 0
on the dot, the fictitious dual model with inverted energies
[characterizing |zi )] has a stationary state that is characterized
by an attractive interaction, U i = −U , and is hence dominated

6This assumes an energy inversion prior to taking the gradient ∇R,
the latter not commuting with energy inversion.

by electron pairing [79,81]. Therefore, the dual model exhibits
a single, sharp two-particle transition at ε + U/2 = 0. This
means that the dual steady-state probability for single occupa-
tion is strongly suppressed.7 For both of these situations, the
overlap in Eq. (35) can then, independently of the sign of the
interaction U , be well approximated by

AP
Hα (R) → Uγpα

γp

[
Pi

0∇RP0 + Pi
2∇RP2

]
, (37)

where P0 = (0|z) and P2 = (2|z) are the probabilities for the
dot to be empty (0) or doubly occupied (2) in the stationary
state |z) and Pi

0 = (0|zi ) and Pi
2 = (2|zi ) are the corresponding

duals in the state |zi ). The crucial point is now that for |Vb| <

|U | and |U | � Tα , or if both ε and ε + U are outside the bias
window, Pi

0 and Pi
2 are only sizable for parameters in which P0

and P2 are stably suppressed, meaning Pi
0∇RP0, Pi

2∇RP2 → 0.
Equation (37) thereby implies that the parity contribution
AP

Hα (R) to pumping of energy and in fact the parity contribu-
tion AP

Oα (R) to pumping of any observable become negligible
in all the above-mentioned parameter regimes.

The key physical insight derived from Eq. (37) is that
unless both dot resonances ε and ε + U are close to or within
a bias window |Vb| > |U |, the time-dependent energy current
due to the slow driving, as represented by the geometric
connection AHα (R), is well approximated by its charge-mode
contribution,

AHα (R) ≈ aC
Hα∇RNz = AC

Hα (R). (38)

In other words, the corrections at the first order in �/� to
the time-dependent energy and charge current become pro-
portional, I (1)

Hα (t ) ≈ C(t )I (1)
Nα (t ). The factor C(t ) = aC

Hα only
depends on the momentary system parameter configuration,
but not on the time derivative of that configuration as de-
termined externally via the driving frequency �. The energy
pumping curvature in this regime is accordingly governed by
the charge component BHα (R) → BC

Hα (R). Since aC
Hα con-

sists only of the Seebeck coefficient Eα and terms proportional
to dual occupation numbers N i

z and N i
zα , our detailed energy

pumping analysis in Sec. IV can, in many parts, simply refer
to the intuitive and well-known physics governing these quan-
tities.

Let us point out that it is rather surprising at first glance
that the energy pumped through a system with comparably
large interaction strength |U | is due to the charge-mode exci-
tation only, in extended parameter regions. Indeed, in contrast
to the charge current, the energy current is directly sensi-
tive to many-body effects via the Coulomb energy that can
be transferred through the quantum dot even in the absence
of net charge current. The suppression of paritylike terms
can nevertheless be understood when distinguishing close-
to-steady-state from excited-state dot dynamics. As clarified
in Ref. [79], a maximally excited (or unstable) quantum-dot

7An equivalent statement can be made for a quantum-dot model
with attractive interaction U < 0. In this case, it is the stationary state
of the actual dot model |z) that is always given by either the empty or
the doubly occupied state while the probability of single occupation
is strongly suppressed.
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state with respect to the environment is in fact closely approx-
imated by the dual inverted state |zi ) if |U | � |Vb|, Tα or if
|ε|, |ε + U | � |Vb|/2, Tα . For example, a doubly occupied dot
would be maximally unstable if the stationary dot state is close
to an empty state. The overlap (35) thus expresses that (as
long as the notion of a maximally unstable state is meaningful)
the parity mode only enters for excitations close to maximal
instability. Such maximally unstable states can be created,
e.g., with fast level switches as studied in Refs. [76,77,79].
The key difference of adiabatic pumping with respect to the
fast-switching case is that slow driving alone cannot induce
such a strong excitation away from the steady state. The sup-
pressed paritylike contribution to geometric energy pumping
simply reflects this fact.

The analysis changes however for sufficiently large bias
voltage |Vb| > |U | if ε and ε + U lie either inside or at an
edge of the bias window. In this case, the overlap between
stationary and inverted stationary states is in general finite.
However, a pumped energy current deviating from a pure
charge-mode contribution for |U | � T requires not only large
biases |Vb| � |U |, but also at least ε or ε + U to be close to a
resonance with one lead potential μL or μR, since otherwise
the gradient ∇R|z) vanishes.8 If this resonance condition is
fulfilled, any driving affecting it can then in principle also
excite paritylike terms, as further illustrated in Sec. IV A. In
this case, the proportionality I (1)

Hα (t ) ≈ C(t )I (1)
Nα (t ) between the

first-order corrections of charge and energy current pointed
out above breaks down. This physically means either that
I (1)
Hα (t ) can be finite while I (1)

Nα (t ) = 0 or that C(t ) would no
longer be determined by the system properties alone, but also
by the driving speed set by the frequency � and amplitudes
δRi in Eq. (5).

2. Pumping mechanisms

To facilitate the detailed discussion of the features of en-
ergy pumping in Sec. IV, it is helpful to label interesting
areas of the parameter space. We call a pumping mechanism
[71] a quantum-dot configuration9 M̄ = (ε̄, Ū , V̄b, �̄, T̄L) to
which a driving scheme is applied such that it leads to charge
or energy transport. In the following, we focus only on the
impact of the three first parameters ε̄, Ū , and V̄b, while �̄ = 0
and T̄L = T . We classify the different mechanisms leading
to energy pumping for both a repulsive interaction (Ū > 0)
and an attractive one (Ū < 0). We sketch the electrochemical
potential configurations corresponding to these mechanisms
and we indicate their locations in the (ε̄, V̄b) space in Fig. 2.
Extending the notation used in Ref. [71] for charge pump-
ing, we have named the mechanisms X±

s . Here X is a letter

8If both transition energies are well inside the bias window, the
small coupling asymmetry � ≈ 0 considered in Sec. IV implies that
all possible dot states become equally stable or unstable in the sta-
tionary limit of this strongly bias driven configuration, |z) → |1)/4.
Then |zi ) → |z), but since |z) → |1)/4 results in a vanishing gradi-
ent ∇R|z) → 0, the overlap (35) still approximately vanishes.

9For notational simplicity, here and in the following we will drop
the units of parameters occurring in R and M̄, as introduced in
Sec. II B.

between A and H whose meaning is given in Table I. The
superscript ± corresponds to the sign of the bias voltage V̄b.
Finally, the subscript s takes the value s = 1 if the transition
energy ε is resonant with the Fermi level of one of the reser-
voirs and s = 2 if the transition energy ε + U is resonant. The
subscripts s = 3 and s = 4 indicate that a single transition
energy ε for s = 3 and ε + U for s = 4 lies within the bias
window.

As will be discussed in more detail in Sec. IV, mechanisms
A, D, E, and G are specific to the repulsive case while C is
present only in the attractive one. Mechanisms B, F, and H
are common to both cases. Note that B and F are the two
mechanisms involving paritylike pumping contributions.

3. Symmetry of pumping curvatures

The pumping curvatures plotted in Figs. 3 and 4 and dis-
cussed in full detail in Sec. IV exhibit several interesting
symmetries under particular changes of the working-point
parameters ε̄, V̄b, and Ū . This section provides the key analyt-
ical results underlying these symmetries, based on a rigorous
derivation in Appendix C 1.

Depending on the driving scheme, the pumping curvature
in Figs. 3 and 4 is either symmetric or antisymmetric un-
der the parameter transform T : (ε,U,Vb, Tα,�) �→ (−ε −
U,+U,−Vb,+Tα,+�). This parameter transform can be
shown to correspond to a particle-hole transform. Since the
quantum-dot system we consider here is particle-hole sym-
metric, also the pumped observables Nα and Hα , which are
obtained from a surface integral over the respective curvature,
are symmetric under a particle-hole transform.

We start by addressing driving schemes with time-
independent interaction U and driving of any two of the
parameters (ε,Vb, Tα,�). The transform T leaves the area
enclosed by the cycle invariant, but may affect the cycle ori-
entation. This goes along with sign changes of the curvature
that are found to be (Appendix C 1)

T BHα (R) = σ (R1)σ (R2)BHα (R), (39)

with the introduced signs

σ (Ri ) =
{−1 if Ri ∈ {ε,Vb}
+1 if Ri ∈ {TL,�}. (40)

By contrast, when driving U (t ), the particle-hole-
transformed driving cycle always involves an effectively
time-dependent ε, T ε = −ε − U (t ), regardless of which sec-
ond driving parameter R2 is chosen next to U . In this case, T
bends the driving surface out of the (U, R2) plane at fixed ε,
generally affecting both cycle orientation and enclosed area.
Remarkably, though, we show explicitly in Appendix C 1
that the additional ε driving can still be straightforwardly
accounted for by modifying Eq. (39) to10

T BHα ({U, R2}) = σ (R2)[BHα ({U, R2}) − BHα ({ε, R2})].
(41)

10For notational simplicity, here and in the following we will drop
the third component of R, which is always zero.
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FIG. 2. Electrochemical potential configurations corresponding to the discussed pumping mechanisms (see Table I) for a repulsive
interaction (top rows) and an attractive one (bottom rows). The solid black line indicates the transition energy ε, while the dashed one
corresponds to ε + U . The mechanisms specific to the repulsive case are highlighted in light orange, while the one specific to the attractive
case is highlighted in light blue. The mechanisms are also indicated on a map of the parameter space (ε̄, V̄b) in the bottom-right corner, with
circles for points at double resonances, the rectangles for lines of single resonances, and diamonds for surfaces, namely, regions in the absence
of resonance. The colormap indicates the stationary current from the left reservoir into the quantum dot, I (0)

NL. For simplicity, the sketch is done
for zero-temperature reservoirs.

In the special case in which we drive R1 = ε and R2 = U , this
results in

T BHα ({ε,U }) = −BHα ({ε,U }). (42)

The above argument also straightforwardly extends to charge
pumping. The only difference is that unlike for the energy
observable Ĥ , the transform T has no effect on the dot oc-
cupation operator N̂ itself. As a result, the charge pumping
curvature relations analogous to Eqs. (39), (42), and (41) all
have an additional minus sign on their respective right-hand
sides (see Appendix C 1).

Finally, it is interesting to note that while we have phys-
ically determined Eqs. (39), (42), and (41) for the full
curvatures, we also find these relations to hold separately for
the charge and parity components BP/C

Hα (R). This is because,
up to an overall sign, T also acts as a particle-hole transform
on each left and right eigenvector of the kernels W and W α

individually.

IV. CHARACTERISTICS OF ENERGY PUMPING

We now proceed with a detailed analysis of energy pump-
ing based on the analytical results obtained using fermionic
duality in the previous sections. We show plots of the
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TABLE I. Description of the different pumping mechanisms.

Mechanism Description

A Double resonance at zero bias voltage
B Double resonance at |V̄b| = |Ū |
C Particle-hole symmetric point, namely, ε̄ = −Ū/2
D Single resonance on the side of the Coulomb

diamond (bias window in between the two
transition energies)

E Single resonance while the bias window is not in
between the transition energies

F Single resonance while the other transition energy
lies within the bias window

G Single transition energy in the bias window
H Both transition energies in the bias window

energy pumping curvature BHR(R) of the right contact for all
different driving schemes in Figs. 3 and 4. Figures 7 and 8 in
Appendix D also display the corresponding charge pumping
curvatures BNR(R) for relevant comparisons between charge
and energy pumping. These pumping curvatures are calcu-
lated by setting α = R and Ô = N̂, Ĥ in Eq. (30), namely,

BNR(R) = BC
NR(R) = ∇R

γcR

γc
× ∇RNz (43)

and

BC
HR(R) = ∇RaC

HR × ∇RNz,

BP
HR(R) = ∇RaP,p

HR × ∇R pz + ∇RaP,N
HR × ∇RNz, (44)

where the coefficients a are given by Eqs. (31).
Furthermore, for sufficiently small driving amplitudes, the

geometric phase can be approximated by the bilinear response
O(1)

α ≈ BOα (R) · δS, where the vector δS is orthogonal to
the surface S and has the encircled area of S as its norm
[Fig. 1(b)]. Therefore, in this limit, the amount of pumped
energy or charge per driving cycle is directly proportional to
the pumping curvature plotted in the figures.

A. Quantum dot with repulsive on-site interaction

The energy pumped through the quantum dot per driv-
ing cycle shows a very rich behavior as a function of the
driving parameters as well as of the constant working-point
parameters. In Fig. 3 we show the pumping curvature for
the energy pumped through the quantum dot with repulsive
on-site interaction for all possible choices of pairs of driving
parameters (indicated by R on top of each panel). All curva-
tures are plotted as functions of the working-point dot level
position ε̄ and bias voltage V̄b. This choice of representation
is motivated by the fact that it allows all features to be com-
pared to the well-known Coulomb diamonds characterizing
the steady-state transport through interacting quantum dots.
We set the average temperature to be equal in both contacts
T̄L = T̄R ≡ T and much smaller than the average Coulomb
interaction Ū = 30T , a regime where Coulomb interaction
effects are dominant and clearly visible. For simplicity, the
working-point coupling asymmetry is furthermore chosen to
be zero, �̄ = 0.

1. Specific features of energy pumping and comparison
to charge pumping

As discussed on a formal level in Sec. III B 3, we observe
that the energy pumping curvature presented in all panels of
Fig. 3 is particle-hole symmetric or antisymmetric depending
on the driving scheme, except if U is one of the driving
parameters. Furthermore, in comparison with charge pump-
ing (see Appendix D), we identify a number of different
pumping mechanisms (see also Sec. III B 2) with features
specific to energy pumping. Generally, we find features at
double resonances, in particular at those crossing points of
the Coulomb diamonds, which we classify as mechanism B,
at single resonances, namely, the lines confining the Coulomb
diamonds, which are due to mechanisms D, E, and F, as well
as nonresonant features, appearing in the surfaces outside the
Coulomb diamonds, classified as mechanisms G and H.

We start by discussing the features that occur when
the coupling asymmetry is kept constant � = �̄, beginning
specifically at zero bias voltage, which is with mechanism A.
This mechanism, at a double resonance with an equilibrium
environment, is one of the mechanisms in charge pumping
with the largest magnitude (see Refs. [6,31] and Appendix D).
By contrast, the pumped energy precisely at these points is
vanishingly small. One rather finds that any feature occurring
in the vicinity of V̄b/T = 0 is not due to a unique double-
resonance mechanism, but rather occurs as part of the lines
associated with mechanisms D and E, which require a single
resonance only, as further discussed below. The reason for this
is the mostly tightly coupled energy flow [see Sec. III B 1 and
in particular Eq. (31a)]

AHα (R) ≈
(Eαγcα

γc

)
∇RNz, (45)

which yields the characteristic energy Eα related to the See-
beck coefficient [Eq. (33)] as the dominant contribution to the
energy current in a near-equilibrium environment. Since this
energy coefficient is suppressed close to the resonances, so is
the energy effectively carried by the pumped charge.

The situation is reversed for mechanism B, corresponding
to a double resonance with a large bias |Vb| ≈ |U |, where
not only the charge mode but also the parity mode starts
to contribute to energy transport (see Sec. III B 1). At this
double resonance, driving any parameter other than � leads
to pumping mostly by changing the balance between transport
at one resonance with energy ε vs the other one with energy
ε + U . This has a negligible effect on the net charge trans-
port as long as the coupling is symmetric, but it does affect
the transported energy stemming from two resonances, with
equally important chargelike and paritylike contributions (see
also Sec. IV A 2).

As a next step, we analyze the most common single-
resonance features in the pumped energy, namely, the lines
occurring due to mechanisms D–F. While strongly suppressed
in charge pumping for any driving scheme apart from those
involving �, energy pumping always exhibits at least some
of those features except when only driving macroscopic vari-
ables TL and Vb. To understand this, we note that for all these
mechanisms with constant �, the rate of particle transport be-
tween the dot and the nonresonant lead α′ is fixed in strength
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FIG. 3. Pumping curvatures BHR of the repulsive system (Ū > 0) in the (ε̄, V̄b) space for all possible two-parameter driving schemes
R = {R1, R2}. We have plotted the relevant component of BHR, which is the one perpendicular to the driving plane defined by (R1, R2), in
units of T . In each subfigure, the largest panel corresponds to the total pumping curvature, the top right one to the parity contribution BP

HR,
and the bottom right one to the charge contribution BC

HR. The driving is done around the working point M̄ = (ε̄, Ū , V̄b, T̄L, �̄) with �̄ = 0,
T̄L = T̄R = T , and Ū = 30T . We have taken μL/R = ±Vb/2, with the reference chemical potential μ0 set to zero.

and direction, i.e., ∂RiW
α′ ≈ 0, since the transport resonance

lies either significantly below or above the respective chemical
potential μα′ on the scale of the temperature. This results in
the driving of only one effective parameter associated with
the near-resonant lead α around a steady-state value at the
working point [6]. The charge current therefore averages out
over one cycle (see Appendix G for an explicit derivation).

Conversely, the net pumped energy for the single-
resonance mechanisms D–F can still be finite when work
done on the particles, via driven local dot energies ε and/or

U , affects the transported energy time dependently (see also
Appendix E). This formally corresponds to the direct (ε,U )
dependence of the prefactors a in the geometric connection for
energy pumping [Eqs. (31)], i.e., not the one entering implic-
itly via the occupation numbers, which depend on time only at
resonance. A nonzero cycle-averaged pumped energy more-
over requires the energy during a particle transfer from the
resonant lead to differ from the energy for the corresponding
reversed process to the lead at the same rate. This asymmetry
is established by the second driving parameter next to ε or U .
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FIG. 4. Pumping curvature BHR of the attractive system (Ū < 0) in the (ε̄, V̄b) space for all possible two-parameter driving schemes
R = {R1, R2}. We have plotted the component of BHR perpendicular to the driving plane defined by (R1, R2), in units of T . In each subfigure,
the largest panel corresponds to the total pumping curvature, the top right one to the parity contribution BP

HR, and the bottom right one to the
charge contribution BC

HR. Here BP
HR has been multiplied by a factor indicated in each panel to make its features visible using the same color

scale as in the other panels. The parameters are the same as in Fig. 3, except that Ū = −30T .

We also show pumping curvatures for a noninteracting dot in
Appendix F, providing even simpler examples of how work
done on the electron in the dot in resonance with a single
lead results in finite energy pumping in the absence of charge
pumping. By contrast, since driving the lead parameters alone
does not do any work on the transferred particles, we accord-
ingly find that BHα ({Vb, TL}) vanishes for the single-resonance
mechanisms. This is evident from Fig. 3(j) and formally de-
rived in Appendix G.

A particularly striking case in which work done on the
dot electrons causes nonzero energy pumping curvatures

BHα (R) �= 0 in the absence of cycle-averaged charge pump-
ing is the driving scheme involving only dot parameters,
R = {ε,U } [Fig. 3(i)]. Here mechanisms B and F yield fi-
nite energy pumping without charge pumping for the reasons
explained above. Charge pumping, on the other hand, can
in any case only occur for mechanisms A and B, at double
resonances. With mechanism B already ruled out, we find
that mechanism A also cannot contribute to the curvature
BNα ({ε,U }) because the dot is coupled to a constant equilib-
rium environment Vb = TL − T = 0 during the entire driving
cycle. The two leads α = L,R individually act equivalently to
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the sum of leads and the transport situation is fully symmet-
ric. Hence, the cycle-averaged particle current vanishes (see
Appendix E).

The comparison between charge and energy pumping
changes when the couplings �α are driven via their relative
asymmetry �, as apparent in the explicit formulas given in
Appendix G, in particular Eqs. (G9) and (G11). First, the
pumped charge for mechanisms D–F at a single resonance is
generally finite (see Fig. 7 in Appendix D). The nonvanishing
cycle average stems from the fact that the tunneling asymme-
try �(t ) enters the time-dependent charge current nonlinearly,
regardless of the resonance with the lead α. This is because
�(t ) influences the tunneling current both directly, via the
tunneling rates themselves, and indirectly, by affecting the
relative influence of each lead on the dot state.

A second characteristic of � driving which clearly dis-
tinguishes energy pumping from charge pumping is the
surface features due to mechanisms G and H, appearing for
ε or U as second driving parameter [Figs. 3(b) and 3(d)].
These plateaus correspond to a completely nonresonant sit-
uation outside the Coulomb diamond, in which the kernels of
both leads α = L,R and their derived quantities (apart from
N i

zα) are independent of any parameter except the couplings,
i.e., ∂RiW

α/� ≈ ∂RiW/� ≈ ∂Riγcα/� ≈ ∂Ri Nzα ≈ 0 for Ri �=
�. Since the charge pumping curvature [Eq. (43)] depends
on the parameters exclusively through these quantities, driv-
ing � and any other parameter Ri �= � effectively equals
single-parameter geometric driving with � only, which van-
ishes by definition. By contrast, a nonzero pumped energy
is still possible because it directly depends on ε and U via
the tight-coupling energy Eα given in Eq. (33). The physical
explanation again lies in the work done on the dot electrons.
Namely, while a modulation of � does not affect how much
charge is transported across the dot in one cycle, a simultane-
ous modulation of � and ε or U still means that the energy
taken out of one lead by a particle hopping to the dot is not
the same as the energy which the same particle carries when
hopping to the other lead.

Finally, let us end this section with a remarkable sim-
ilarity between charge and energy pumping which occurs
for temperature driving: Compared to the case of constant
temperature, all single- and double-resonance features exhibit
additional sign changes within the feature itself [Figs. 7(a),
7(c), 7(f), and 7(j) and Figs. 3(a), 3(c), 3(f), and 3(j)], that is,
when the transition energy ε̄ or ε̄ + Ū crosses the resonance
with the left lead (μ̄L = V̄b/2). Indeed, a temperature change
always affects the lead-electron occupation asymmetrically
around the chemical potential: Driving the temperature to,
e.g., a slightly higher value, the chance of finding electrons at
some energy E − μL > 0 above the chemical potential rises,
whereas the probability for electrons at −(E − μL) > 0 below
this potential lowers by the same amount. Consequently, the
temperature-driving effect on electron transport to or from the
lead is inverted when crossing the resonance and as such it
affects both the pumped charge and energy.

2. Paritylike contributions to energy pumping

Our general analysis in Sec. III B 1 has already re-
vealed, on a formal level, that for the case of strong

repulsive interactions U � Tα relevant here, paritylike exci-
tations only enter at large bias |Vb| � U and with at least
one of the two dot transition energies ε and ε + U being
nearly resonant with one of the lead potentials. The two
smaller side panels of every subfigure of Fig. 3, which
show the chargelike BC

HR(R) and paritylike BP
HR(R) con-

tributions to the pumping curvature separately, explicitly
confirm this behavior. Namely, we observe paritylike con-
tributions at pointlike features around double resonances at
V̄b = |Ū | (mechanism B) with U and � constant or at linelike
features when U or � are among the driving parameters
(mechanism F). In the following, we further elucidate these
features.

As explained above, a constant � with only a single
resonant lead implies that any finite cycle-averaged energy
transport due to the time-dependent driving must involve work
done on the dot electrons. For constant U , this means that ε

must be a driving parameter and as such this driving modifies
both transition energies ε and ε + U equally. The energy
transferred in addition to the steady-state energy current is
hence tightly coupled to the charge transported back and forth
between the dot and resonant lead, i.e., each particle on aver-
age carries the same amount of pumped energy. Consequently,
the parity component to the pumping curvature disappears for
mechanism F with constant U and � [Figs. 3(a), 3(e), and
3(j)].

For mechanism B with the dot in resonance with both
leads, any two driving parameters generally affect the balance
between electron transfer at energy ε and energy ε + U . The
paritylike contribution to this energy pumping is then deter-
mined by how much pumped energy is transferred near a state
of maximal instability (this is a well-defined concept in the
vicinity of the special points |V̄b| = |Ū |); the dot state in fact
rapidly switches between empty and doubly occupied when
crossing the double resonance. In other words, the large bias
voltage provides a finite probability even for slow driving to
excite transport near maximal instability.

A driven U differs from the other parameters in that it
selectively affects only transport with transition energy ε +
U . Even in the single-resonance case for mechanism F, the
driving-induced time-dependent deviation from the steady-
state energy current thereby generates non-tightly-coupled
contributions, i.e., not every transported charge carries the
same energy, allowing the parity mode to contribute [see
Eqs. (31b) and (31c)]. A driven coupling asymmetry � instead
always equally affects the rates of transition via both energies
ε and ε + U , but as such still gives rise to paritylike time-
dependent corrections to the energy current. Indeed, as stated
before, a cycle-averaged contribution from these paritylike
corrections only arises if they are accompanied by a resonant
effect that modulates the balance between transport at the
two transition energies ε and ε + U . When driving only U
and �, this demands a lead potential resonant with the tran-
sition energy ε + U , explaining why the parity contribution
due to mechanism F in Fig. 3(d) disappears for ε̄ < −Ū/2.
Driving the temperature TL of the left lead and U or � anal-
ogously requires a resonance with the left lead to give finite
paritylike pumped energy per cycle so that BP

Hα (R) vanishes
for V̄b > Ū � TL and ε̄ < −U/2 as well as for V̄b < −Ū and
ε̄ > −Ū/2 [see Figs. 3(c) and 3(f)].
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B. Quantum dot with attractive on-site interaction

We now analyze the same driving schemes as above for
a quantum dot with an attractive on-site interaction U < 0
and we identify the major differences and similarities with the
more standard case of a repulsive on-site interaction. Results
for the energy pumped through a quantum dot with U < 0 are
shown in Fig. 4 for the different driving schemes. We consider
similar working points as previously, namely, T̄L = T , �̄ = 0,
and Ū = −30T , and plot the curvatures in the (ε̄, V̄b) space.

1. Specific feature of attractive on-site interaction:
Two-particle resonance

A unique feature of attractive on-site interaction is the
pairing-induced two-particle resonance at the particle-hole
symmetric point ε = −U/2 [78]. At this point, when � = 0
and TL = T , the dot switches from a stable empty state (for
ε/T � −U/2T ) to a stable double occupation (for ε/T �
−U/2T ), regardless of bias voltage (up to Vb ≈ |U |). Inter-
estingly, this transition in the dot occupation Nz still occurs
around ε/T ≈ −U/2T and depends little on Vb, even for
small but finite coupling asymmetries and temperature differ-
ences.

As justified in Sec. III B 1, only the charge mode con-
tributes to the energy pumping for |Vb| < |U |, namely,
BHα (R) ≈ ∇RaC

Hα × ∇RNz. Therefore, as visible in Fig. 4,
the energy pumping curvatures exhibits features only along
this two-particle resonance line for these biases, correspond-
ing to the mechanism C defined in Sec. III B 2. However, the
charge pumping, which has already been addressed in detail
in Ref. [71] for U < 0, only happens for |Vb|/T ≈ 0 and
ε/T ≈ −U/2T (see Fig. 8 in Appendix D).

In this section we compare charge and energy pumping
close to the two-particle resonance ε/T ≈ −U/2T and we
start by analyzing the pumping curvatures close to zero bias
voltage Vb/T � 1. First and foremost, energy pumping can-
not be understood by simply relating it to charge pumping.
As a matter of fact, unlike for a repulsive on-site interaction,
the contribution ∇RaC,TC

Hα × ∇RNz, tightly coupled to charge
pumping [Eq. (32a)], does not dominate the energy pumping
curvature. On the contrary, the features of the energy pumping
curvature mostly arise from the non-tightly-coupled contri-
bution ∇RaC,NTC

Hα × ∇RNz [Eq. (32b)], even at |Vb|/T ≈ 0.
This contribution is however less straightforward to inter-
pret for U < 0 than for U > 0 since it contains the ratio of
N i

zα − N i
z and γc, which is finite while both quantities individ-

ually are suppressed for mechanism C. To understand better
energy pumping, we therefore conduct an in-depth analysis
of BHα (R) for every driving scheme based on expressions
derived from the explicit formulas in Appendix H 2. In partic-
ular, we give analytical justifications of the features observed
in Fig. 4, found to be as follows.

Focusing on mechanism C±, at finite bias voltage |U | >

|Vb| > T , we note that charge pumping is always suppressed,
even though the system may be in a two-particle resonance
with the combined two-lead system at ε̄ = −Ū/2. This is
because even close to this resonance, the dot is nevertheless
off resonance with both lead potentials individually, namely,
(ε + U/2)/T � |μα|/T . The time-dependent charge flow is
then at most affected by a single driving parameter related to

the left-right balance of charge transfer, and single-parameter
driving results in a vanishing cycle average (see Appendix H 1
for an analytical derivation).

Finite energy pumping for mechanism C± can, by contrast,
still be achieved by doing work on the dot or by modulating
the left-right lead coupling balance in a voltage-biased envi-
ronment (see Appendix H 2). A crucial difference from the
|V̄b|/T ≈ 0 case occurs for a driven bias voltage Vb [Figs. 4(e),
4(g), 4(h), and 4(j)], which always features suppressed energy
pumping. This originates from the fact that for |Vb| > T any
further modulation of an already symmetrically applied bias
|U | > |Vb(t )| > T has no bearing on either charge or en-
ergy transport via the two-particle resonance, i.e., for ε/T ≈
−U/2T . Driving Vb and any second parameter is hence equiv-
alent to single-parameter driving even for the energy current,
thereby prohibiting adiabatic pumping altogether.

2. Comparison to repulsive on-site interaction

We now look more generally at the features of energy
pumping for a quantum dot with an attractive on-site in-
teraction and compare it to the repulsive on-site interaction
from Sec. IV A. First, the energy pumping curvature exhibits
the same particle-hole symmetry or antisymmetry as in the
repulsive case in each panel of Fig. 4, except if U is one of
the driving parameters (Sec. III B 3). Furthermore, the parity-
like component BP

Hα (R) of the energy pumping curvature is
very similar for both interaction signs, as revealed by com-
paring the top right panels in Fig. 3 to the corresponding
panels in Fig. 4. In particular, BP

Hα (R) for constant attrac-
tive interaction Ū < 0 equals BP

Hα (R) evaluated for repulsive
interaction −Ū > 0 and a working point ε̄ shifted by Ū =
−|Ū |. This stems from a combination of the self-duality of
AP

Hα (Sec. III B 1) and the particle-hole symmetry relations
(Sec. III B 3), as derived in details in Appendix C 2. The
paritylike pumping contributions can thus be understood in
the same way as discussed for the repulsive dot in Sec. IV A 2
and are not further discussed here.

We continue our comparison by noting that many mech-
anisms leading to charge or energy pumping for U > 0 are
absent for U < 0. Indeed, due to the pairing induced by attrac-
tive interaction, any particle flow to and from the dot is almost
always exponentially suppressed if at least one of the two dot
transition energies ε and ε + U lies significantly outside the
bias window on the scale of T . Accordingly, sizable contribu-
tions due to mechanisms A, D, E, and G are absent in both
energy and charge pumping (see Figs. 4 and 8, respectively).
On the contrary, mechanism C at the two-particle resonance
ε̄ = −U/2 is specific to attractive on-site interaction and the
most relevant mechanism for both charge and energy pumping
(Sec. IV B 1).

Mechanism B also does not contribute with distinct fea-
tures as for U > 0, but rather appears as a continuation of
mechanism C±, with vanishing charge pumping but generally
finite energy pumping. This is consistent with the fact that
at ε̄ = −Ū/2 and strong attraction −U � T , an effective
double-resonance situation with both leads combined is ful-
filled not only for |Vb| = |U | specifically, but for any bias
voltage |Vb| � |U |.
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We furthermore observe that mechanisms F and H con-
tribute to energy pumping at large bias |Vb| � |U | in both
cases. Since mechanism H corresponds to both dot transi-
tion energies ε and ε + U being inside the bias window, the
sign of the interaction strength U loses its significance and
we accordingly observe the same plateaus in the pumped
energy as for repulsive interaction [see Figs. 4(b) and 4(d)
and Figs. 3(b) and 3(d)]. The charge pumping curvature is
likewise suppressed for both U > 0 and U < 0. The situation
for mechanism F at constant U and � is again qualitatively
very similar to the case of repulsive interaction for both charge
and energy pumping. The difference is that for a working
point ε̄ below/above the particle-hole symmetric point, it is
not the energetically higher/lower dot transition energy as for
U > 0, but instead the energetically lower/higher energy that
is in resonance with one of the leads. While irrelevant for
constant U , a time-dependent U (t ) < 0 does yield a different
pumped energy than for U (t ) > 0 because of this distinction.
This can be seen by, e.g., comparing (ε,U ) driving in Fig. 4(i)
to Fig. 3(i). Repulsive interaction here features a larger magni-
tude of pumped energy for V̄b > 0 and ε̄ + Ū/2 < 0 as well as
V̄b < 0 and ε̄ + Ū/2 > 0, whereas attractive interaction yields
a larger pumping current with the sign of ε̄ + Ū/2 reversed.

The driving scheme R = {ε,U } gives similar results for
both signs of the interaction: Charge pumping is suppressed
[Fig. 8(i)] due to the constant equilibrium environment of the
dot while energy can still be pumped [Fig. 4(i)]. The reason
is that the (ε,U ) driving does work on the particles while
temporarily occupying the dot. However, unlike for U > 0,
energy pumping also happens at biases |Vb| < |U | due to
mechanism C (see Sec. IV B 1).

Addressing the effect of driven coupling asymmetry, the
obvious difference between repulsive and attractive interac-
tions is that while the pumped energy is qualitatively the same
for both interaction signs [Figs. 4(b), 4(d), 4(f), and 4(h) and
Figs. 3(b), 3(d), 3(f), and 3(h)], net cycle-averaged charge
pumping [Figs. 8(b), 8(d), 8(f), and 8(h) and Figs. 7(b), 7(d),
7(f), and 7(h)] is finite only for U > 0 but suppressed for
U < 0. The reason for this is the same as for mechanism
C±: With both lead potentials away from the two-particle
resonance, the driving has no additional effect on top of the
bias-induced stationary charge flow when averaged over a
cycle, but it can still affect the net energy of electrons passing
through.

Finally, when driving the temperature, like for U > 0, there
is a sign change in the feature at the single resonance with
the left lead, but only for mechanism F since D and E are
suppressed [Figs. 4(a), 4(c), and 4(f)]. However, the effect is
less visible due to the high values of the pumping curvature
for mechanism C. As discussed previously, the intensity of the
branches, above and below the resonance with the left lead, is
reversed since the transition energies are also inverted.

V. REFRIGERATOR AND HEAT PUMP

The regime of slow driving studied here is especially in-
teresting for periodically driven thermal machines [48,108].
Therefore, in this section we analyze the device as a cyclic
thermal machine, intended to further cool a bath colder than
its environment (refrigerator) or to further heat a bath warmer

than its surrounding (heat pump). The working substance is
the quantum dot itself and the contacts represent the hot and
cold baths, assuming equal chemical potential Vb = 0. We use
the results from Secs. III and IV specific to these parameters
to identify interesting driving operation points and to gain
insights into the mechanisms at play.

A. Driving scheme and thermodynamic quantities

As a paradigmatic (but not the only possible) way to
achieve refrigeration or heat pumping, we consider the driving
scheme (ε,�),

ε(t ) = ε̄ + δε sin(�t ), �(t ) = δ� sin(�t + φ), (46)

which moves the dot potential ε(t ) while modulating the left-
right tunnel coupling asymmetry �(t ) with a driving phase φ

relative to ε(t ). As an illustrative example, let us for a moment
assume an amplitude δ� = 1, tuning the dot all the way from
only coupled to the cold bath and decoupled from the hot
bath to the opposite configuration, only coupled to the hot
bath. For an appropriately chosen φ, this enables us to pump
electrons against a temperature difference, making the device
operate as a refrigerator or heat pump as sketched in Fig. 1(c).
Namely, in step (I), the dot is only coupled to the cold bath
while its transition energy is lowered below the Fermi level to
let an electron tunnel in. The dot is then decoupled from the
cold bath and coupled to the hot bath in step (II). Step (III)
increases the dot transition energy above the Fermi level so
that the electron tunnels into the hot bath. The final step (IV)
completes the cycle, reverting to a dot only coupled to the cold
bath.

To be in the adiabatic-response regime, the driving fre-
quency � as well as the amplitudes δε and δ� are chosen
such that �δε/T,�δ� � �. The targeted heat pump and
refrigerator driving cycles operate at zero bias voltage Vb = 0,
but are meaningful if a small but finite temperature difference
T̄L = T + δT and T̄R = T with 0 < |δT | � T exists, unlike
|δT | = 0 considered in Sec. IV. The device performance is
quantified via the heat QR emitted or absorbed to/from the
right reservoir and via the work W provided to the device
by the external driving, both in one driving cycle. In this set-
ting, the refrigerator (heat pump) operation mode corresponds
to δT > 0 and QR > 0 (δT < 0 and QR < 0). The average
cooling power is given by QR�/2π and the coefficient of
performance is defined as

η =
∣∣∣∣QR

W

∣∣∣∣, (47)

whenever QR has the desired sign, while we set η = 0 other-
wise. The corresponding Carnot efficiency reads

ηCarnot = T

|δT | . (48)

Since μR = 0, the heat current coincides with the energy
current IHR (Appendix A), so the heat QR can be expressed,
up to the first-order correction, as QR = Q(0)

R + Q(1)
R with

Q(�)
R = H (�)

R =
∫ 2π/�

0
dt I (�)

HR(t ), (49)
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where I (�)
HR(t ) is defined in Eq. (19) with Ô = Ĥ . The zeroth-

order Q(0)
R stems from the instantaneous stationary heat flow

I (0)
HR(t ) induced by the temperature difference between the con-

tacts; it is hence proportional to �/� and always detrimental
to the device operation, since heat always flows from the hot
to the cold bath in the steady state. The first-order correction
Q(1)

R , on the other hand, describes the geometric pumping
contribution. It is independent of both total coupling strength
� and driving frequency �, and an appropriate driving phase
φ between ε(t ) and �(t ) results in a finite cycle-averaged heat
pumped from the cold to the hot contact.

The work can be split into two contributions11 W = Wε +
W� coming from the driving of each parameter. With W� →
0 in the weak-coupling regime,12 the work is done exclusively
by the ε driving,

Wε =
∫ 2π/�

0
dt (∂t H |ρ(t )) =

∑
�>0

W (�)
ε , (50)

where the factor ∂t Ĥ = ε̇(t )N̂ suppresses the � = 0 term
∼�/� in the driving-frequency expansion in orders

W (�)
ε =

∫ 2π/�

0
dt ε̇(t )(N |ρ (�−1)(t )). (51)

Unlike for QR, we cannot truncate the series (50) already
at the first-order correction (� = 1), despite the slow driv-
ing. Appendix I specifically shows that W (1)

ε is of first order
in δT , whereas W (2)

ε contains a zeroth-order term in δT ,
making W (2)

ε the dominant contribution to the coefficient of
performance (47) for 0 < |δT |/T � 1. In fact, it was recently
shown on more general grounds [110] that a first-order expan-
sion in both temperature difference δT and driving frequency
� is typically not sufficient to adequately estimate the perfor-
mance of a thermal machine.

B. Limit of small driving amplitudes

With a full analysis of work Wε , heat QR, and performance
η of the quantum-dot device following in Sec. V C, we first
gain further analytical insight by considering only small driv-
ing amplitudes such that δε/T, δ� � 1 allows us to Taylor
expand all quantities up to leading order in these amplitudes.
The vanishing bias voltage Vb = 0, the assumption of strong
interaction |U |/T � 1, and the small temperature difference
|δT | � T furthermore enable us to use the linear-response re-
sults from Ref. [81] and the general steady-state linearization
approach from Ref. [79] to expand all quantities up to linear
order in δT .

Based on our findings from Sec. III A, we derive in Ap-
pendix I that the heat contributions for |U | � T are, up to

11If the bias voltage were finite, there would be an additional
chemical work contribution.

12Beyond the weak-coupling regime, higher orders in the tunnel
coupling induce a renormalization of the dot’s population [3], which
can then be related to a finite work cost. See also Ref. [109] for an
expression of the work in the strong-coupling regime for a noninter-
acting fermionic system.

leading order in δT , given by

Q(0)
R ≈ 2π

�

[(
EeqI (0)

NR − κδT
)(

1 − (δ�)2

2

)

+δε2

4

[
Eeq∂2

ε I (0)
NR + ∂εI (0)

NR − (
∂2
ε κ

)
δT

]] + O(δT 2),

Q(1)
R = BHR(R) · δS ≈ −δN2

eqEeq

2
δS + O(δT ). (52)

The heat thereby depends on the Seebeck energy Eeq, on the
Fourier heat [81]

κ|�=0 = 1

4
γpδN2

eq

(
δN i

eq

)2 U 2

4T 2
, (53)

on the oriented driving surface δS = ∫∫
S d�(dε/T ) =

−π sin(φ)(δε/T )δ�, and on the stationary charge current,
defined by the � = 0 component of Eq. (19):

I (0)
NR ≈ −1

4
γc,eqδN2

eqEeq δT

T 2
+ O(δT 2). (54)

All of the above quantities depend on the equilibrium charge
rate γc,eq, which determines the inverse RC time of the dot
[83], and on the Seebeck energy Eeq,

γc,eq = γc|δT,Vb=0 = �

�α

γcα

∣∣∣∣
δT,Vb=0

,

Eeq = Eα|δT,Vb=0 = ε + U

2

(
2 − N i

eq

)
, (55)

N i
eq = N i

z

∣∣
δT,Vb=0 = N i

zα

∣∣
δT,Vb=0,

as well as on the equilibrium charge fluctuations δN2
eq,

δN2
eq = ((N − Nz )2|z)|δT,Vb=0. (56)

These are well known from the dc linear-response behavior
of the dot [81] and here directly enter properties of the driven
system. This includes the work W corresponding to the driv-
ing cycle, which reads (Appendix I)

W (1)
ε = −∂�NzT δS ≈ −2T

I (0)
NR

γc,eq
δS + O(δT 2),

W (2)
ε ≈ π

�

γc,eq

δε2

T
δN2

eq + O(δT ). (57)

In the limit δT → 0, both reservoirs become identical and the
stationary current vanishes I (0)

N/HR → 0. Therefore, Q(0)
R → 0,

W (1)
ε → 0, and

Q(1)
R → sin(φ)

πδN2
eqEeqδε

2T
δ�, W (2)

ε → π�

γc,eq

δN2
eqδε

2

T
.

(58)

As a consequence, unlike for a Carnot cycle, the cooling
power is nonzero and the coefficient of performance η is finite
when the temperature difference vanishes

η ≈
∣∣∣∣ Q

(0)
R + Q(1)

R

W (1)
ε + W (2)

ε

∣∣∣∣ −→
δT →0

|sin(φ)|γc,eq|Eeq|δ�
2�δε

(59)
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for the desired sign of QR (QR > 0 for refrigeration and
QR < 0 for the heat pump) and η = 0 otherwise. However, in
the limit of infinitely slow driving � → 0, namely, a perfectly
quasistatic cycle, η becomes infinite like the Carnot efficiency.
Equations (58) and (59) are crucial analytical results in the
following more detailed discussion of the dot acting as a
refrigerator or heat pump: Depending only on the driving am-
plitudes and well-known equilibrium quantities, i.e., charge
fluctuations δN2

eq, Seebeck energy Eeq, and the RC time scaled
by the driving frequency γc,eq/�, Eqs. (58) and (59) provide
simple estimates of the device performance as a function of
the system parameters.

C. Refrigerator and heat pump performance

To analyze the refrigeration and heat pump performance,
we focus mostly on the interesting operating points for the
thermal machine at Vb = 0 identified in Sec. IV: mechanism
A (resonance points) for a repulsive on-site interaction and
mechanism C (particle-hole symmetric point) for an attractive
on-site interaction. The thermodynamic quantities relevant to
the device performance for these parameters are plotted in
Fig. 5 as a function of ε̄ and δT , allowing us to compare
the two cases U > 0 and U < 0. All displayed curves were
obtained by numerically solving the master equation ∂t |ρ) =
W |ρ) (see Sec. II C) and therefore take into account all the
orders in �/� (see Appendix J for a comparison with the
adiabatic-response limit). Note that we have always set the in-
teraction strength to |U |/T = 10. The latter is slightly smaller
than in Sec. IV, in order to avoid that corrections at higher
orders in �/� become dominant (discussed below).

Let us start by discussing the influence of the driving pro-
tocol itself, through the phase φ, the amplitudes δε and δ�,
and the frequency �. Equations (58) and (59) clearly state
that φ has no influence on the W (2)

ε but maximizes the heat,
and hence the performance η for φ = π/2. We therefore set
φ = π/2 for the entirety of this analysis, including Figs. 5 and
6. The key point for the amplitude dependence is that up to the
leading order in �, the coupling asymmetry δ� only affects
the heat Q(1)

R ∼ δεδ�, but not the work W (2)
ε ∼ δε2, since it

is irrelevant to which contact the energy corresponding to this
work flows. As a result, the performance η ∼ δ�/δε improves
with larger asymmetry δ� increasing the directionality of
the heat flow, but still degrades with larger δε increasing the
work done on the system to induce this heat flow. Finally,
the driving frequency � only enters W (2)

ε in leading order; it
provides a typical timescale for the delayed system response
and the resulting work due to the driving, as further detailed
below.

The dependence of QR, W (2)
ε , and η on the working-point

dot level ε̄ is shown in Figs. 5(a)–5(d). For repulsive inter-
action U > 0, the proportionality QR, η ∼ Eeq predicted by
Eq. (58) and (59) implies the same well-known [69,70,111]
sawtooth behavior as a function of ε̄ as for the Seebeck co-
efficient Eeq. Indeed, the numerical results in Figs. 5(a) and
5(c) confirm that apart from small |δT | corrections, the sign
changes of Eeq near the resonances ε̄ = 0,−U and near the
particle-hole symmetry point ε̄ = −U/2 result in suppressed
QR and η, concomitant with switches from refrigeration (blue
curve) to heat pumping (red curve) behavior. The slope of QR

as a function of ε̄ is however attenuated around ε̄ = −U/2
compared to the slopes around ε̄ = 0,−U . This is because QR

is, unlike η, also proportional to the charge fluctuations δN2
eq,

which are generally stronger near the single-particle reso-
nances ε̄ = 0,−U . These fluctuations cancel out in η because
the work W (2)

ε as given in Eq. (58) is likewise proportional
to δN2

eq. The latter is due to the fact that net work can only
be done per ε-driving cycle if a crossing of a single-particle
resonance allows at least for temporary dot occupation
changes.

For attractive interaction U < 0 [Figs. 5(b) and 5(d)], the
Seebeck energy Eeq and hence QR only change sign once close
to ε̄ = −U/2 = +|U |/2, which is the pairing-related two-
particle resonance [78]. This means that in contrast to the case
U > 0, the system only switches once from a heat pump to a
refrigerator at small δT/T � 1 when sweeping through ε̄ =
−U/2, with QR < 0 → QR > 0 [Fig. 5(b)]. The second key
difference from the repulsive interaction visible in Fig. 5(d)
is that η is generally suppressed for dot levels 0 < ε̄ < −U .
This stems from the proportionality to the charge rate η ∼
γc, as predicted by Eq. (59). This rate enters the coefficient
of performance via the work (58), for which the dominant
second-order correction is in fact inversely proportional to the
equilibrium charge rate W (2)

ε ∼ �/γc,eq due to the delayed
system response. According to Eq. (51), W (2)

ε depends on
the first-order correction to the dot state ρ (1), representing the
delay of the state evolution due to the external driving. The
slower the system response, the larger the delay, as generally
stated by Eq. (16) and as quantified by γc/� specifically for
the charge-mode response. For attractive interaction and 0 <

ε̄ < −U , the rate γc is exponentially suppressed. The resulting
suppression of changes in the dot occupation during the ε

drive thus increases the required work significantly and hence
suppresses the performance η. Figure 5 indeed shows W (2)

ε for
U < 0 to be approximately two orders of magnitude larger
compared to the repulsive dot with U > 0 when comparing
the points of operation indicated by the red and blue stars.
Moreover, the smaller rate γc for U < 0 also requires a lower
driving frequency compared to the repulsive dot in order to
remain in the adiabatic-response regime (see Appendix J). The
issue can be mitigated by operating at higher base temperature
T , thus motivating our choice of |U | = 10T instead of 30T as
in Sec. IV.

Irrespective of the interaction sign, Figs. 5(a)–5(d) reveal
an approximate symmetry between the refrigerator and heat
pump case under a temperature inversion δT → −δT together
with a particle-hole parameter transform T (see Sec. III B 3).
This is because the work W (2)

ε is symmetric under both T
and δT → −δT [Eq. (57)], the pumped heat Q(1)

R ∼ BHR(R)
is antisymmetric under T but symmetric under δT inversion
[Eq. (52)], and the steady-state heat Q(0)

R ∼ δT is instead sym-
metric under T but antisymmetric under δT → −δT (see also
Appendix I). For an identical driving frequency � = 10−2�,
this symmetry between the refrigerator and heat pump is less
accurate for U < 0 than for U > 0, which comes from higher-
order contributions and confirms that the dot with an attractive
on-site interaction is less in the adiabatic-response regime.
This can be seen by looking at QR (solid lines) in Figs. 5(a)
and 5(b): For U > 0, rotating the blue curve (refrigerator) by
180◦ around (−U/2, 0) perfectly gives the red curve (heat
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FIG. 5. Thermodynamic quantities as functions of the (a)–(d) energy ε̄ and (e) and (f) temperature difference δT = TL − T for a repulsive
on-site interaction (left column) and an attractive one (right column), obtained by numerically integrating the full master equation. In (a)–(d) we
compare the refrigerator (δT > 0, blue curves) and heat pump (δT < 0, red curves) operating modes: (a) and (b) heat QR (solid lines, left axis)
and work Wε (dashed lines, right axis) and (c) and (d) coefficient of performance η, with the right axis indicating the ratio between η and the
Carnot efficiency. In (e) and (f) we only consider the refrigerator (δT > 0), with the blue stars in (a)–(d) indicating the chosen ε̄ values and the
red stars in (a)–(d) showing the corresponding values if one used the heat pump operating mode instead. The coefficient η is plotted only for
the values of ε̄ for which QR has the desired sign. In (g) and (h) the green dotted line indicates the efficiency ηδT →0 in the limit of small driving
amplitudes for a vanishing temperature difference [Eq. (59)]. The parameters are � = 10−2T , � = 10−2�, δε = 10−1T , δ� = 1, φ = π/2,
|U | = 10T , V̄b = 0, and �̄ = 0.

pump), while this is not the case for U < 0; in particular, the
blue star is exactly on the peak whereas the red one is slightly
on the side of the dip.

Nevertheless, the mapping between refrigeration and heat
pumping holds well enough so that we can, from now on,
focus exclusively on refrigeration to assess which temperature
differences δT allow for a dot operation with reasonable per-
formance η. First, we compare the δT dependences of heat,
work, and performance coefficient for repulsive interaction
[Figs. 5(e) and 5(g)] to the ones for attractive interaction
[Figs. 5(f) and 5(h)]. This mainly reveals that at the individ-

ually chosen working points ε̄ [blue stars in Figs. 5(a)–5(d)],
the attractive system has a considerably larger operation range
for δT/T . This is because the above-mentioned suppression
of the charge rate γc for U < 0 also suppresses the station-
ary particle current I (0)

NR ∼ γc,eq [Eq. (54)]. The detrimental
zeroth-order steady-state heat contribution Q(0)

R ∼ I (0)
NR ∼ γc,eq

[Eq. (52)] is therefore significantly smaller than the geo-
metrically pumped heat Q(1)

R , even for sizable temperature
differences δT . Finite interaction |U | > 0, however, always
has a detrimental effect on the cooling power due to the
leakage heat current, that is, the −κδT term in Eq. (52), since
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FIG. 6. Coefficient of performance η and heat QR parametrically
plotted as a function of a varied working point ε̄, for both U > 0
(orange solid lines) and U < 0 (blue dashed lines). The curves were
obtained by numerically integrating the full master equation. In
(a) we set δT = 10−5T in the repulsive case and δT = 4 × 10−5T
for the attractive dot. In (b) we choose δT such that η/ηCarnot is
maximized in Figs. 5(g) and 5(h), meaning δT = 3.75 × 10−4T and
1.5 × 10−3T for U > 0 and U < 0, respectively. The factor 4 be-
tween δT for the attractive vs the repulsive case accounts for the
increased operation range of δT/T observed in Figs. 5(f) and 5(h)
compared to Figs. 5(e) and 5(g). The parameters not indicated are set
as in Fig. 5.

the Fourier heat κ is proportional to U 2 [Eq. (53)].13 We also
note that the compact analytical expression (59) [dotted green
lines in Figs. 5(g) and 5(h)] accurately gives the efficiency
in the limit of vanishing δT , even for U < 0, though it was
derived in the adiabatic-response regime and in the limit of
small driving amplitudes. This therefore confirms that the
device performance can be easily assessed from the system
parameters.

Next we find a δT -dependent trade-off between perfor-
mance η and cooling power ∼QR�. This is highlighted in
Fig. 6, where both η and QR are plotted parametrically as a
function of the working point ε̄. For very small δT/T , the
maximum performance η is achieved at zero power, whereas
maximum power is reached at very small η/ηCarnot [Fig. 6(a)].
Conversely, for δT/T maximizing η/ηCarnot at the operating
point ε̄ indicated by the blue stars in Figs. 5(a)–5(d), this
trade-off is much less pronounced for U < 0 and almost
vanishes for U > 0. Maximum power in this case almost coin-

13Otherwise, the performances of the noninteracting case U = 0
are in between the repulsive and attractive cases, e.g., for the effi-
ciency or the maximum δT at which the refrigerator can be operated.

cides with the maximal coefficient of performance [Fig. 6(b)].
Also note that sweeping ε̄ for U > 0 always yields two sep-
arate (QR, η) curves, corresponding to the two disconnected
ε̄ ranges allowing for refrigeration as shown in Figs. 5(a) and
5(c); for U < 0, the single requirement ε̄ < −U/2 [Figs. 5(b)
and 5(d)] analogously yields only one connected (QR, η)
curve.

We finally emphasize that, despite the finite driving speed,
we find the system to operate at finite power with more than
15% of the Carnot efficiency. Furthermore, for U > 0 and
temperature differences δT/T ∼ 10−3, the device can even
be operated at maximum power while keeping an η close
to the achievable maximum. This is particularly unexpected
as single quantum dots are typically disregarded in favor of
double-dot devices that allow for a better decoupling from
the baths [41]. Quantum dots with a repulsive interaction
U ≈ 5 meV, like in Ref. [94], or an attractive interaction
U ≈ −0.2 meV, like in Ref. [75], would make it possible
to pump heat against a tiny but finite temperature difference
δT of the order of millikelvin. Devices with larger on-site
interaction strengths would allow operating at higher δT .

VI. CONCLUSION

We have analyzed geometric energy transport through
strongly interacting, weakly coupled quantum dots due to
the slow driving of a pair of system parameters. Based on a
master-equation analysis combined with a fermionic duality
relation, we have provided compact and intuitive analytical
results linking the pumped energy to the well-known steady-
state thermoelectric properties of the dot.

We have explicitly worked out that energy pumping, in
contrast to charge pumping, is the result of two different decay
modes of the dot being excited due to the time-dependent
driving: the charge mode, typically contributing via a tight-
coupling term proportional to the charge current via the
well-known stationary Seebeck coefficient, and the parity
mode, uniquely due to the on-site Coulomb interaction. Even
though the energy current is more directly susceptible to the
Coulomb energy, slow adiabatic energy pumping is typically
still governed by the charge mode, even for strong local inter-
action. The parity mode, however, does become important if
the external bias exceeds the Coulomb energy and then, as a
result of fermionic duality, yields a contribution symmetric in
the interaction sign, i.e., with respect to repulsive and attrac-
tive interactions.

Using the obtained analytical results, we have identified the
symmetries of the pumped energy with respect to the different
(time-averaged) system parameters and we have analyzed in
detail all possible pumping schemes and pumping mecha-
nisms. In particular, we have found a number of pumping
mechanisms unique to either attractive or repulsive interaction
and pumping mechanisms that are not possible for charge
pumping, but only for energy pumping. The latter emerge
whenever only one or even none of the quantum-dot energy
levels are in resonance with the contact chemical potentials.

We have furthermore demonstrated the time-dependently-
driven quantum dot to be operable as a heat pump or
refrigerator between biased contacts. We have derived a sim-
ple yet insightful analytical expression for the efficiency in the
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limit of vanishing temperature, linking the driving character-
istics to the well-known linear-response Seebeck coefficient,
the equilibrium charge fluctuations, and the dot’s RC time.
This reveals in particular how the performance is decisively
affected by the sign of the on-site interaction, in terms of
limiting driving speed, output power, and efficiency.

A perspective of high interest for the field of stochastic
and quantum (thermo)dynamics would be to extend this study
to the statistics of energy pumping [66,68]. This would yield
generalized fluctuation relations for this type of interacting,
fermionic, cyclic machines.
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APPENDIX A: TIME-DEPENDENT ELECTROCHEMICAL
POTENTIALS AND TEMPERATURES

Adiabatic pumping due to the driving of the reservoir po-
tentials μα and temperatures Tα was previously studied in
Refs. [50,59,60]. These quantities are however macroscopic
observables characterizing the (local and time-local) equilib-
rium density operators of the leads ρα = ρeq(μα, Tα ) and do
not directly enter their Hamiltonian Hα . Hence, including the
effect of lead potential and temperature driving on the state of
a tunnel-coupled quantum dot requires extra care.

More specifically, the master-equation approach employed
here, as detailed in Sec. II C, is based on the Born-Markov
approximation. This implies that the only dynamics induced
in the leads are due to the weakly coupled dot, causing
only a negligible deviation from local equilibrium. The re-
sulting dot dynamics after tracing out the leads then only
depends on the lead potentials μα (t0) and temperatures Tα (t0)
at some initial time t0 at which the dot and lead state
can be assumed fully uncorrelated, ρ̂tot(t0) = ρ̂(t0)

∏
α ρ̂α (t0).

However, time-dependent lead potentials and temperatures in
practice typically mean that lead state is also manipulated by
a combination of external fields and, crucially, coupling to
thermal superbaths exchanging particles and heat. A rigorous
treatment would therefore consider the combined dot-lead
system as an open subsystem and trace out the external super-
baths which are kept at constant temperatures and potentials.
Since this seems neither analytically nor numerically feasible,
we capture here the lead-superbath interaction in a simplified
fashion.

On timescales much larger than the thermalization time
in the leads, time-dependent μα (t ) and Tα (t ) can often be
mimicked by instead shifting and scaling the single-particle

lead spectra [95–97]

Ĥα → Hα (t ) = cα (t )Ĥ0
α + vα (t )N̂α, (A1)

with cα (t0) = 1 as well as vα (t0) = 0 and where Ĥ0
α denotes

the lead Hamiltonian from Eq. (2). The corresponding Born-
Markov master equation of the weakly coupled dot in the
slow-driving regime then becomes equal to the master equa-
tion for constant lead parameters, except for the parameter
replacement

Tα → Tα (t ) = cα (t )T̄α, (A2a)

μα → μα (t ) = cα (t )μ̄α + vα (t ). (A2b)

This paper employs this replacement scheme, since it can in
fact be physically determined for the weakly coupled Marko-
vian leads subject to slow driving relevant here. The key point
for this is the large timescale separation between the lead ther-
malization time ttherm and both driving period as well as typical
tunneling time: ttherm� � ttherm� � 1. Namely, we may as-
sume that instances of superbath-lead interactions take place
at separate times ti. With this, we “slice” the full driving period
into time intervals [ti, ti+1) for which we assume �ttherm �
1 � �t = �(ti+1 − ti ) � �/�. During each interval, we
can approximate temperatures and potentials as constant,
Tα (t ) = Tα (ti ) and μα (t ) = μα (ti), while the external super-
baths effectively decouple from the leads. Due to the very fast
lead rethermalization, the superbath-lead interaction should
result in small yet quick changes of temperatures Tα (ti ) →
Tα (ti+1) = Tα (ti ) + δTα,i and potentials μα (ti ) → μα (ti+1) =
μα (ti ) + δμα,i and should furthermore suppress any residual
dot-lead correlation that may have built up during the interval
[ti, ti+1). Since �t � 1 while �/� � 1, this means that
each time interval can be treated separately using the Born-
Markov master equation as in Sec. II C: Dot and leads are
uncorrelated at time ti, the initial dot state is given either by the
prepared initial state ρ(ti = 0) = ρ0 or by the solution to the
master equation in the previous interval ρ(ti ) = ρ(ti−1 + t ),
and the lead states at time ti are characterized by local equi-
librium states with respect to μα (ti) and Tα (ti ). Stitching all
time intervals together and using �t � 1, we find that on
the timescale of the long driving period, the dot dynamics ρ(t )
obeys the single Born-Markov master equation (7) with the
continuous parametric time dependence (A2).

Interestingly, while this paper studies the driving effect
on particle current INα and electronic energy current IHα , as
defined in Eq. (19), the above time-sliced picture also suggests
a generalization to heat currents: For a weakly-tunnel-coupled
dot and Markovian leads remaining approximately in local
equilibrium at potential μα , the stationary heat current IQα

is well approximated by the excess energy current with re-
spect to the chemical potential: IQα = IHα − μαINα . The lead
states within each time slice [ti, ti+1) can also be approxi-
mated by such local equilibrium states when setting the proper
time-dependent lead parameters μα = μα (ti ) and Tα = Tα (ti ).
Hence, on the timescale of the driving, the heat current gener-
alizes to IQα (t ) = IHα (t ) − μα (t )INα (t ). This is the reasoning
behind our claim from Sec. V that for a time-independent
μα = 0, the heat current is equal to the energy current.
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APPENDIX B: ANALYTICAL EXPRESSIONS
FOR DUALITY QUANTITIES

We first provide the fermionic duality relation for the
kernel W of the dissipative evolution due to Markovian,
weakly-tunnel-coupled baths in the wideband limit. For the
spin-degenerate dot, this duality reads [76,79]

W + P[W i]†P = −2�I, (B1)

where W i is the kernel corresponding to the dual model, � =
�L + �R is the above-defined lead-summed coupling strength
per spin, the bold † indicates Hermitian conjugation in Liou-
ville space with respect to the Hilbert Schmidt scalar product,
P• = (−1)N• = P†• is the Liouville-Hermitian superopera-
tor of applying the fermion-parity operator (−1)N from the
left to some operator •, and I is the Liouville space identity.
We furthermore introduce the duality parameter transform

D : (ε,U,Vb, Tα,�) → (−ε,−U,−Vb, Tα,�) (B2)

to write W i• = DWD•. The Liouville-space trace rela-
tion TrW = −�TrI then enables us, in analogy to how,
e.g., Ref. [112] treats open-system symmetries, to formulate
Eq. (B1) as an anti-Hermiticity relation

[PDW̃ ]† = −PDW̃ (B3)

for the traceless part of the kernel W̃ = W + �I with respect
to a Hilbert-Schmidt product with modified left (dual) vec-
tors (x| → (x|PD. This links right/left eigenvectors of the
inverted kernel W i to left/right eigenvectors of the original W .
Namely, starting from the expressions in Sec. II C, the right
eigenvectors of W i are

|zi ) = 1

�γ i
c

[ f +
ε f +

U |0) + f −
ε f +

U |1) + f −
ε f −

U |2)],

|pi ) = |p), |ci ) = 1

2
(−1̂)N̂ [|N ) − Nz|1)] (B4)

and the left ones read

((zi )′| = (1|, ((pi )′| = ((−1)N z|,
((ci )′| = (N | − Nz(1|, (B5)

with the charge relaxation rate γ i
c = f −

ε + f +
U . The expecta-

tion value of the quantum-dot occupation and parity in the
stationary state are given by

Nz = (N |z) = 2 f +
ε

f +
ε + f −

U

,

pz = ((−1)N |z) = f −
ε f −

U + f +
ε f +

U − 2 f +
ε f −

U

�( f +
ε + f −

U )
(B6)

for the original model and

N i
z = (N |zi ) = 2 f −

ε

f −
ε + f +

U

,

pi
z = ((−1)N |zi ) = f −

ε f −
U + f +

ε f +
U − 2 f −

ε f +
U

�( f −
ε + f +

U )
(B7)

for the dual one.

APPENDIX C: PROOF OF THE SYMMETRIES

This Appendix proves the particle-hole-transform-related
symmetries of the pumping curvatures BP/C

Hα (R) discussed in
Sec. III B 3 and the duality-related symmetry of the parity
component BP

Hα (R) under inversion of the interaction U →
−U identified in Sec. IV B.

1. Particle-hole transform

To prove the symmetries under the particle-hole parameter
transform

T : (ε,U,Vb, Tα,�) → (−ε − U,U,−Vb, Tα,�), (C1)

we first need expressions for its action on the rates and eigen-
vectors of the master-equation kernel W given in Sec. II C.14

The explicit expressions of the stationary state |z) in Eq. (13)
and of its dual |zi ) in Eq. (B4) make it straightforward to verify

T |z) = PH|z), T |zi ) = PH|zi ) (C2)

with the super-Hermitian and unitary particle-hole-transform
superoperator PH = P†

H = P−1
H acting on the three spin-

symmetric dot basis states |0) = |0〉〈0|, |1) = 1
2

∑
i=↑,↓ |i〉〈i|,

and |2) = |2〉〈2| as

PH|0) = |2), PH|2) = |0), PH|1) = |1). (C3)

Relations analogous to Eq. (C2) also hold for the (α) lead-
resolved states

T |zα ) = PH|zα ), T
∣∣zi

α

) = PH
∣∣zi

α

)
. (C4)

Furthermore, the explicit expressions for the charge and parity
rate γc and γp given in Sec. II C, as well as their lead-resolved
counterparts γcα and γpα , can be used to show that these rates
are T symmetric,

T γc/p = γc/p, T γc/pα = γc/pα. (C5)

Equation (C2) and (N |PH = 2(1| − (N | imply that T
acts also as particle-hole transform of the dot occupation
number T Nz = (N |T |z) = (N |PH|z) = 2 − Nz. Summarized
with analogous relations for the lead-resolved charges and all
duals, we find

T Nz = 2 − Nz, T Nzα = 2 − Nzα,

T N i
z = 2 − N i

z, T N i
zα = 2 − N i

zα. (C6)

Equations (C2) and (C6) together with the eigenvector
expressions from Sec. II C and the T invariance of parameter-
independent operators yield the T action on all left and right
eigenvectors of the kernels W and W α ,

T |z) = PH|z), T (1| = (1| = (1|PH,

T |c) = −PH|c), T (c′| = −(c′|PH, (C7)

T |p) = |p) = PH|p), T (p′| = (p′|PH,

14A complete transform would also act on the initially prepared
dot state. Since T has no effect on this initial dot state, our analysis
is only valid once all transient dynamics have decayed, which we
however assume throughout the paper.
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and equivalently for the (α) lead-resolved versions, where we
have used that the unit operator 1 and the fermion parity
(−1)N are invariant under the particle-hole transform PH.
The rate symmetries (C5) and the eigenvector relations (C7)
combine with the key symmetry relations

T W = PHWPH, T W α = PHW αPH,

T 1

W̃
= PH

1

W̃
PH, T 1

W̃ α
= PH

1

W̃ α
PH. (C8)

Together with Eq. (C2), this rigorously proves our statement
from Sec. III B 3 that T effectively implements a particle-hole
transform of the entire system evolution and its steady state.
Apart from these kernel relations (C8), the only remaining
ingredient required for our proof is the commutation relation
of T and the parameter gradient ∇R = (∂ε, ∂U , ∂Vb , ∂Tα, ∂�)T.
By the very definition of T in Eq. (C1), we have

T ∇R = σ̃∇RT , σ̃ =

⎛
⎜⎜⎜⎝

−1 0 0 01×2

−1 1 0 01×2

0 0 −1 01×2

02×1 02×1 02×1 12×2

⎞
⎟⎟⎟⎠.

(C9)
The diagonal elements of σ̃ correspond to the signs intro-
duced by T , whereas the single off-diagonal element in the
second row stems from the additional U shift of ε. Note
that with respect to the main text, we introduced here a five-
dimensional gradient ∇R. Whenever considering a concrete
driving scheme or calculating curvatures from cross products,
the relevant subspace needs to be considered for both ∇R
and σ̃ .

The most general form of the particle-hole symmetry rela-
tions discussed in Sec. III B 3 now follows straightforwardly
from the definition of the lead-resolved geometric connections
in Eq. (22) and the corresponding pumping curvatures (23),
namely,

T AOα (R) = σ̃ (T O|[T W α]

[
T 1

W̃

]
∇RT |z)

= σ̃ (T O|PHW αPHPH
1

W̃
PHPH∇R|z)

= σ̃A[PHT O],α (R). (C10)

For the two observables Ô discussed in this paper, energy Ĥ
and charge N̂ , we have

PHT Ĥ = Ĥ − (2ε + U )1, PHT N̂ = 2 × 1 − N̂,

(C11)
which, when using (1|W α = 0 in Eq. (22), gives

T AHα (R) = +σ̃AHα (R),

T ANα (R) = −σ̃ANα (R). (C12)

The only difference between energy and charge under action
of T is the relative minus sign. This formally explains why
all particle-hole symmetry relations for the energy pumping
curvatures are the same as for charge pumping except for an
overall sign.

Finally, the concrete form of the symmetry relations for the
pumping curvatures readily follows from the definition (23):

T BOα (R) = [σ̃∇R] × T AOα (R)

= [σ̃∇R] × [σ̃A[PHT O],α (R)]. (C13)

The (anti)symmetries for Ô = Ĥ stated in Sec. III B 3 are
simply the respective nonzero components of Eq. (C13) for
the individual two-parameter driving schemes. The diagonal
elements of σ̃ provide the parameter-dependent symmetry
signs σ (Ri ); the special form (41) for U driving arises from
the off-diagonal element of σ̃ and from the properties of the
cross product. To see that Eqs. (C10) and (C13) also hold
individually for the charge and parity component, we can
simply repeat the steps in Eq. (C10) with the respective pro-
jectors |c)(c′| and |p)(p′| inserted precisely to the left of the
gradient ∇R. Since Eq. (C7) separately ensures T [|c)(c′|] =
PH|c)(c′|PH and T [|p)(p′|] = PH|p)(p′|PH, the computa-
tion proceeds analogously:

T AC/P
Oα

(R) = σ̃AC/P
[PHT O],α (R),

T AC/P
Hα (R) = +σ̃AC/P

Hα (R),

T AC/P
Nα (R) = −σ̃AC/P

Nα (R),

T BC/P
Oα

(R) = [σ̃∇R] × [
σ̃AC/P

[PHT O],α (R)
]
. (C14)

This completes our proof of the symmetries related to the
particle-hole parameter transform T .

2. Interaction-sign symmetric parity component

We can prove the U -symmetric behavior of the paritylike
energy pumping curvature BP

Hα (R) highlighted in Sec. IV B
by studying the action of the duality parameter transform (B2)
on the ingredients of BP

Hα (R). First, it is clear by definition
that

D|z) = |zi ), D|zi ) = |z). (C15)

It is furthermore evident from Eq. (B2) that

Dγp = γp, D(−1)N = (−1)N , DU = −U (C16)

and that the commutation relation between D and the gradient
∇R reads

D∇R = σ̃D∇RD, σ̃D = diag(−1,−1,−1, 1, 1). (C17)

Equations (C15)–(C17) together show that the action of D on
the paritylike excitation xP as introduced in the first line of
Eq. (25c) is given by

DxP = − 1

Dγp
(Dzi(−1)N |D∇R|z)

= −σ̃D
1

γp
(z(−1)N |∇R|zi ) = −σ̃DxP. (C18)

The last line in Eq. (C18) follows from Eq. (36), with the key
difference being the matrix prefactor σ̃D. This factor signifies
that when applying the dual transform after taking the gradient
∇R, xP is no longer antisymmetric in all components, but at-
tains an additional sign according to Eq. (C17). This likewise
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FIG. 7. Pumping curvatures BNR for a quantum dot with repulsive on-site interaction, U > 0, in the (ε̄, V̄b) space for all possible two-
parameter driving schemes R = {R1, R2}. We have plotted the component of BNR perpendicular to the driving plane defined by (R1, R2). The
way the driving is done and the choice of all other parameters are the same as in Fig. 3.

translates to the parity component AP
Hα (R) of the geometric

connection given in Eq. (35),

DAP
Hα (R) = UγpαDxP = +σ̃DAP

Hα (R), (C19)

and to the corresponding pumping curvature

DBP
Hα (R) = σ̃D∇R × DAP

Hα (R)

= [σ̃D∇R] × [
σ̃DAP

Hα (R)
]
. (C20)

To show the symmetry of BP
Hα (R) with respect to the

sign of a time-independent interaction U , we now apply the
particle-hole parameter transform T defined in Eqs. (C1)–
(C20) from the left and shift it through to the right. Using
Eqs. (C9) and (C14), this gives

BP
Hα (R)|ε̄→ε̄−Ū |Ū→−Ū

= T DBP
Hα (R)

= [σ̃Dσ̃∇R] × [
σ̃Dσ̃AP

Hα (R)
]
, (C21)

with

σ̃Dσ̃ = σ̃ σ̃D =

⎛
⎜⎝

1 0 0 01×2

1 −1 0 01×2

0 0 1 01×2

02×1 02×1 02×1 12×2

⎞
⎟⎠. (C22)

As long as U is not driven, the second row and column of
σ̃Dσ̃ are excluded, the matrix σ̃Dσ̃ becomes a 4 × 4 identity,
and the interaction-inversion symmetry

BP
Hα (R) = BP

Hα (R)|ε̄→ε̄−Ū |Ū→−Ū if ∂tU = 0 (C23)

follows. In other words, the paritylike curvature BP
Hα for con-

stant attractive interaction Ū < 0 is equal to BP
Hα evaluated for

repulsive interaction −Ū > 0 and a working point ε̄ shifted by
Ū = −|Ū |. A comparison of the small panels in Fig. 3 to the
corresponding panels in Fig. 4 indeed confirms this. Beyond

this, Eq. (C21) also reveals the behavior with U as one driving
parameter:

BP
Hα ({U, R2}) = −BP

Hα ({U, R2})|ε̄→ε̄−Ū |Ū→−Ū

+ BP
Hα ({ε, R2}). (C24)

For the special case of R1 = ε and R2 = U , we find

BP
Hα ({ε,U }) = −BP

Hα ({ε,U })|ε̄→ε̄−Ū |Ū→−Ū , (C25)

as can be seen by comparing Fig. 3(i) to Fig. 4(i). Altogether,
Eqs. (C23) and (C25) are explicit analytical manifestations of
the strong similarities between energy pumping for attractive
and repulsive interactions observed at large bias |Vb| � |U |.

APPENDIX D: CHARGE PUMPING

Geometrical charge pumping for both a repulsive and an at-
tractive interaction has already been studied in Refs. [6,31,71].
Nevertheless, to make the comparison with our results for
energy pumping in Sec. IV easier, we also plot the pumping
curvatures BNR(R) in Fig. 7 for U > 0 and in Fig. 8 for
U < 0. There are no surfaces of finite pumping curvature due
to off-resonant pumping (absence of mechanisms G and H).
For U > 0, the most present mechanism is A, namely, at a
double resonance at zero bias voltage, while lines at single
resonances can be obtained when � is a driving parameter
(see Sec. IV A 1). For U < 0, the only mechanism is C (see
Sec. IV B 1 and Appendix H 1).

APPENDIX E: QUASISTATIONARY EXCHANGE
WITH ENVIRONMENT

We argue at several points in Sec. IV A 1 that the charge
pumping curvature BN = ∑

α BNα for the total lead-summed
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FIG. 8. Pumping curvatures BNR for a quantum dot with attractive on-site interaction, U < 0, in the (ε̄, V̄b) space for all possible two-
parameter driving schemes R = {R1, R2}. We have plotted the component of BNR perpendicular to the driving plane defined by (R1, R2). The
way the driving is done and the choice of all other parameters are the same as in Fig. 3.

system must vanish due to total charge conservation.15 Fur-
thermore, we argue that this exact vanishing is not generally
true for the energy pumping curvature BH , as dot parameter
driving does work on particles occupying the dot. This Ap-
pendix derives both statements.

First of all, for any observable Ô, the total stationary
current entering the dot is zero by definition: I (0)

O = I (0)
OL +

I (0)
OR = (O|W |z) = 0. However, for the total lead-summed

first nonadiabatic correction I (1)
O = AO · ∂t R, Eq. (22) and∑

α W α/W̃ = 1 − |z)(1| dictate

AO = (O|∇R|z). (E1)

This means that

BO = [∇R(O|] × [∇R|z)]. (E2)

Since the occupation number Ô = N̂ is parameter indepen-
dent, ∇RN̂ = 0, the curvature vanishes, BN = 0, expressing
that in the stationary limit, total charge conservation prohibits
any net charge buildup in the dot averaged over a driving
cycle. However, for Ô = Ĥ , any derivative with respect to ε or
U is generally finite. More explicitly, inserting a unit formed
by the spin-degenerate basis operators |1)/2, |N − 1)/

√
2,

and |(−1)N )/2 into Eqs. (E1) and (E2) and using that (H |N −
1)/2 = ε + U/2 as well as (H |(−1)N )/4 = U/4, we find

AH =
[
ε + U

2

]
∇RNz + U

4
∇R pz,

BH = ∇R

[
ε + U

2

]
× ∇RNz + 1

4
∇RU × ∇R pz. (E3)

15In the fully left-right symmetric case, the lead-resolved curvature
BNα is proportional to BN and hence also vanishes.

Hence, if ε or U is among the driving parameters, there is
generally a finite net work done on the dot that results in a net
cycle-averaged energy flow into the leads, H (1) �= 0. This is
however not the case for a completely unbiased environment,
with fixed δT = Vb = 0: Here |zα ) = |z) means that a driven
coupling asymmetry � has no effect on |z) and that f ±

ε →
f ±
α (ε) and f ±

U → f ±
α (ε + U ) in Eq. (13) imply for Eq. (E3)

that

BH
δT,Vb→0→ 0. (E4)

This is confirmed by Figs. 4(b), 4(d), and 4(i) and shown
approximately in Appendix H 2 for U < 0, but it holds exactly
and for any interaction sign. It is also consistent with the usual
understanding that equilibrium heating is an effect of at least
second order in the driving frequency [41].

APPENDIX F: CHARGE AND ENERGY PUMPING
THROUGH A NONINTERACTING DOT

The charge and energy pumping curvatures BNR and BHR

for a noninteracting quantum dot, namely, with U = 0, are
plotted in Fig. 9 for a few driving schemes. This figure ev-
idences the existence of interaction-induced pumping terms.
For instance, the contribution of mechanism A to charge
pumping for R = {ε, TL} and U > 0 [Fig. 7(a)] is absent in
Fig. 9(a). For energy pumping, mechanism B, which requires
a double resonance (Fig. 2), also vanishes in the absence of
interaction (Fig. 3 compared to the bottom row of Fig. 9).
Similarly, mechanism C for U < 0 (Figs. 8 and 4) is absent
from Fig. 9. However, when � is one of the driving param-
eters, both charge and energy pumping are always possible,
with and without interaction, like, for instance, in Fig. 9(b).
Additionally, Figs. 9(a) and 9(c) are simple examples of en-
ergy pumping in the absence of charge pumping.
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FIG. 9. Pumping curvatures BNR (left column) and BHR (right
column) for a noninteracting quantum dot, namely, U = 0, in the
(ε̄, V̄b) space. The way the driving is done and the choice of all other
parameters are the same as in Fig. 3.

APPENDIX G: ANALYTICAL RESULTS FOR
SINGLE-RESONANCE PUMPING

In this Appendix we derive analytical pumping curvature
expressions for repulsive interaction U > 0 and constant cou-
pling asymmetry � in the single-resonance case, that is, with
one lead α′ being far off resonance. We start by noting that the
kernel W α′

for this nonresonant lead and all its derived quan-
tities become independent of any driving parameter Ri �= �,
namely,

∂RiW
α′

�
∼ ∂Riγcα′

�
∼ ∂Ri Nzα′ ≈ 0. (G1)

Note that we cannot generally approximate the dual occupa-
tion ∂Ri N

i
zα′ ≈ 0, since the latter changes at the resonances of

the dual attractive system, different from the resonances in
the repulsive system of interest. Using these results, we aim
at expressing the pumping curvature in terms of lead-resolved
quantities to make them easier to interpret and in particular

show that BNR(R) vanishes. Using that the total occupation
number can be decomposed into [81]

Nz =
∑
α′′

γcα′′

γc
Nzα′′ (G2)

and that
∑

α′′ γcα′′ = γc means γcα/γc = 1 − γcα′/γc for two
leads, we can use Eq. (G1) to rewrite

∂Ri Nz → ∂Ri

(
γcα

γc

)
(Nzα − Nzα′ ) + γcα

γc
∂Ri Nzα. (G3)

Near a resonance of the repulsive dot, i.e., for parameters
deviating from the particle-hole symmetric point, the lead-
resolved charge rate γcα can be expressed [79] in terms of
the lead-resolved coupling �α , stationary occupation Nzα , and
dual occupation N i

zα:

γcα = γpα

N i
zα − 1

N i
zα − Nzα

. (G4)

For ∂Riγcα′ → 0, the derivative of the charge rate ratio in
Eq. (G3) thereby can be decomposed into

∂Ri

(
γcα

γc

)
→ −γcα′

γ 2
c

∂Riγcα

= −γcα′γcαγ i
cα

γpαγ 2
c

1

N i
zα − 1

∂Ri N
i
zα

− γcα′γcα

γ 2
c

1

N i
zα − Nzα

∂Ri Nzα, (G5)

with γ i
cα = γpα − γcα . For the charge pumping curvature of

the resonant lead α, using Eqs. (G3) and (G5) gives

BNα (R) → ∇R

(
γcα

γc

)
×

[
(Nzα − Nzα′ )

(
∇R

γcα

γc

)

+ γcα

γc
∇RNzα

]

= ∇R

(
γcα

γc

)
× γcα

γc
∇RNzα

= −γcα′γ 2
cαγ i

cα

γpαγ 3
c

1

N i
zα − 1

∇RN i
zα × ∇RNzα. (G6)

This quantity vanishes in the single-resonance case because
the finite gradient ∇RNzα near resonance is overcompensated
by the nearly vanishing gradient of the inverted dual charge,
∇RN i

zα ≈ 0, whose inverted interaction causes its transition
energies to be far away from resonance with μα for U �
Tα > 0.

When driving temperature and bias voltage for constant
U and �α , the above derivation of the vanishing curvature
from the properties of the dual charges N i

zα and N i
z can also

be extended to the energy current. To do so, we are going
to collect all terms in ∇RNz separately from terms in ∇R pz

in the geometric connection AHR(R), unlike in Eq. (28). The
key ingredient for this is that according to Ref. [79], Eq. (G4)
generalizes in a remarkably simple fashion to the full charge
rate

γc =
∑

α

γcα = γp
N i

z − 1

N i
z − Nz

. (G7)
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This, together with γpα/γp = �α/�, enables us to rewrite the
finite-bias correction to the coefficient aC

Hα given in Eq. (32b)
as

aC,NTC
Hα = U

2

γpα

γc

[(
N i

zα − 1
) − (

N i
z − 1

)]

= U

2

γpα

γc

[
γcα

γpα

(
N i

zα − Nzα
) − γc

γp

(
N i

z − Nz
)]

= γcα

γc

U

2

(
N i

zα − Nzα
) + U�α

2�

(
Nz − N i

z

)
. (G8)

We can now straightforwardly sum Eq. (G8) with aP,N
Hα given

in Eq. (31c), yielding

ãC
Hα = aC

Hα + aP,N
Hα

=
[
ε + U

2
(2 − Nzα )

]
γcα

γc
+ U

2

γpα

γp
(Nz − 1). (G9)

We can thus rewrite the geometric connection

AHα (R) = ãC
Hα∇RNz + aP,p

Hα∇R pz. (G10)

The key difference between ãC
Hα and aC

Hα [Eq. (31a)] is that,
unlike for the tight-coupling energy (33), the prefactor in front
of the charge rate ratio γcα/γc in Eq. (G9) depends on the
actual lead-resolved occupation Nzα , and not on the dual N i

zα ,
and the finite-bias correction ∼γpα/γp likewise depends on Nz

instead of N i
z . This difference simplifies the analytical expres-

sion for the energy pumping curvature BHα (R) whenever U
and the couplings �α are constant during the driving cycle.
Namely, with ∇RaP,p

Hα = ∇R
U
4

γpα

γp
→ 0 and ∇RNz × ∇RNz =

0, the only terms ∼∇RNz which survive when inserting
Eq. (G10) into Eq. (30) are

BHα (R)
U,�α const→ ∇RãC

Hα × ∇RNz

U,�α const→
[
ε + U

2
(2 − Nzα )

]
BNα (R)

+
[
∇Rε − U

2
∇RNzα

]
γcα

γc
× ∇RNz. (G11)

The form (G11) provides useful estimates of the pumped
energy for constant tunnel couplings �α in the single-
resonance case.16 Most importantly, if we set Vb as well as
any temperature Tα′′ of the two leads as driving parameters and
assume the nonresonant lead α′ to fulfill the condition (G1),
we can use Eq. (G6) in Eq. (G11) to simplify BHα ({Vb, Tα′′ })
to

BHα ({Vb, Tα′′ }) →
[
ε + U

2
(2 − Nzα )

]
BNα ({Vb, Tα′′ })

− U

2

γcα

γc
∇RNzα × ∇RNz

16However, at first glance, Eq. (G11) suggests ε + (U/2)(2 − Nzα )
to be the energy effectively transported with the pumped charge
current, which is misleading. For example, for U > 0, this energy
would approach ε + U , close to a resonance at which Nzα ≈ 0 and
at which we would instead expect a pumped energy ∼ε, as correctly
predicted by the tight-coupling term (33). Moreover, the second line
of Eq. (G11) typically contributes significantly whenever BNα (R) �=
0.

=
[
ε + U

2
(2 − Nzα )

]
BNα ({Vb, Tα′′ })

+ U

2
(Nzα − Nzα′ )

(
∇R

γcα

γc

)

× γcα

γc
∇RNzα

→
[
ε + U

2
(2 − Nzα′ )

]
BNα ({Vb, Tα}).

(G12)

A vanishing charge pumping curvature thereby dictates a
vanishing energy pumping curvature.

APPENDIX H: ANALYTICAL RESULTS FOR THE
TWO-PARTICLE RESONANCE

This Appendix analyzes more in detail charge and energy
pumping for an attractive interaction U < 0 close to the two-
particle resonance ε/T ≈ −U/2T , by studying the analytical
expressions of the pumping curvatures for |Vb| � |U | (mech-
anism C).

1. Charge pumping

The identities Nz = ∑
α (γcα/γc)Nzα [Eq. (G2)] and∑

α (γcα/γc) = 1 for arbitrary interaction energy U show that
charge pumping is suppressed at finite bias voltage (mecha-
nisms C±). Indeed, at |U | > |Vb| � T and ε/T ≈ −U/2T , the
dot is actually off-resonance with each individual lead due to
the bias. This off-resonance condition and the strong pairing
effect exponentially suppress any parameter dependence of
the individual Nzα . The total charge gradient ∇RNz is therefore
proportional to the gradient of the charge rate ratio γcα/γc,

∇RNz ≈ (Nzα − Nzα′ )∇R

(
γcα

γc

)
. (H1)

This, together with the expression (34) for aC
Nα , dictates

∇RaC
Nα and ∇RNz to be parallel and hence a vanishing charge

pumping curvature (43).
Around Vb = 0, all driving schemes yield a sizable pumped

charge, except for R = {ε,U }, as shown by Fig. 8. The lat-
ter exception is, just as for U > 0, due to both leads being
effectively identical when |Vb| = TL − T = 0: The contacts
thereby combine to a single equilibrium environment with
vanishing cycle-averaged particle transfer to the dot due to
total charge conservation (Appendix E).

However, if only one of the dot energies ε or U is driven
together with TL or �, the latter two parameters affect the
left-right lead-dot coupling balance. The ε or U driving at
mechanism C with |Vb|/T ≈ 0 then makes the dot more likely
to accept particles when coupled more strongly to one lead
compared to when coupled more strongly to the other. This
yields a net pumped charge current [Figs. 8(a)–8(d)] whose
sign is only determined by the driving sequence, but not by
the precise working-point level ε̄ and bias voltage V̄b around
ε̄ = −Ū/2 and V̄b = 0.

The finite pumped charge for the driving schemes R =
{R1,Vb}, with R1 = ε,U , arises because the dot energy driving
changes the transmission strength for times with positive bias
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relative to the transmission strength for times with negative
bias. Depending on the driving phase φ in Eq. (5), a working
point ε̄ < −Ū/2 could then mean that the dot approaches
the two-particle resonance while Vb(t ) < 0, but moves further
away from this resonance while Vb(t ) > 0, which would favor
charge transport from right to left. The situation is reversed for
ε̄ > −Ū/2 and the same driving phase φ, thereby introducing
an ε̄-dependent sign change of BNα (R) [Figs. 8(e) and 8(g)].

If the dot energies remain constant and Vb is instead driven
together with TL or � affecting the left-right coupling balance,
the sign of BNα (R) changes as a function of both ε̄ and
V̄b around ε̄ = −Ū/2 and V̄b = 0 [Figs. 8(h) and 8(j)]. The
positive sign for ε̄ > −Ū/2 and V̄b > 0 and for ε̄ < −Ū/2
and V̄b < 0 means that the left/right lead potential μ̄α is
on average closer to a two-particle resonance with the dot
during cycle times in which the left/right lead is also more
strongly coupled; the complementary working-point regimes
with negative charge pumping curvature sign correspond to
the reversed relation between resonance and coupling.

Finally, for R = {TL,�}, the pumped charge switches
signs when crossing the line μ̄L = ε̄ + Ū/2 [Fig. 8(f)]. In-
deed, in this case, using Eq. (G2), we get

∂�Nz = (Nzα − Nzα′ )∂�

(
γcα

γc

)
,

∂TL Nz = (Nzα − Nzα′ )∂TL

(
γcα

γc

)
+ γcL

γc
∂TL NzL, (H2)

and therefore

BNα ({TL,�}) = −T ∂�

(
γcα

γc

)
γcL

γc
∂TL NzL. (H3)

The derivative ∂�(γcα/γc) has a constant sign, while the sign
of ∂TL NzL depends on the working-point level position ε̄ rel-
ative to the two-particle resonance with the left lead: NzL

increases with TL for ε̄ + Ū/2 < μ̄L due to the increase in the
number of available electrons in the lead at energy ε̄ and, on
the contrary, NzL decreases with TL for ε̄ + Ū/2 > μ̄L due to
the increased number of available holes in the lead at energy
ε̄ + Ū .

2. Energy pumping

The energy pumping curvature |Vb| < |U | is purely charge-
like, BHα (R) ≈ BC

Hα (R), just as for repulsive interaction.
However, close to zero bias, |Vb|/T ≈ 0, BC

Hα (R) is not dom-
inated by the tightly coupled contribution

BC,TC
Hα (R) = EαBNα (R) + γcα

γc
∇REα × ∇RNz (H4)

coming from Eq. (32a). On the contrary, the main contri-
bution comes from the second term in (32a), BC,NTC

Hα (R) =
∇RaC,NTC

Hα × ∇RNz, where aC,NTC
Hα is defined by Eq. (32b). To

see this, we first note that, like for U > 0, the tightly cou-
pled contribution BC,TC

Hα (R) is small around ε/T ≈ −U/2T
and |Vb|/T ≈ 0, since the Seebeck energy Eα vanishes at
this point, and its derivative ∂RiEα is nonvanishing only for
Ri = ε,U since N i

zα is approximately constant there. Knowing
the parameter dependence of Nz for U < 0 from the one of N i

z
for U > 0, it is clear from Eq. (H4) that only driving ε or

U in combination with TL or � gives sizable tight-coupling
contributions. However, for U > 0 the non-tightly-coupled
term BC,NTC

Hα (R) vanishes at |Vb| < U/2, while it is typically
the main contribution to the energy pumping curvature for
U < 0.

Quantifying the non-tightly-coupled contribution with the
expression (32b) for aC,NTC

Hα is difficult for U < 0: Both N i
zα −

N i
z and γc are individually suppressed for mechanism C, but

their ratio is actually finite. Indeed, N i
z ≈ N i

zα ≈ 1 at the point
of interest ε/T ≈ −U/2T , which lies in the Coulomb block-
ade regime for the inverted repulsive model. We therefore use
the rewriting from Eq. (G8) as a starting point. Then, using
Eq. (G2) and labeling the other lead by α′ �= α, we obtain

aC,NTC
Hα ≈ U

2

(
�α′γcα

�γc
(1 − Nzα ) − �αγcα′

�γc
(1 − Nzα′ )

)
. (H5)

For � = 0, TL = T , and |U | � T , we use the explicit expres-
sions of the Fermi functions and neglect the exponential terms
in U/2T , since we are interested in the parameters such that
|U |/2T � |2ε + U |/2T and |U |/T � |Vb|/T , to obtain

aC,NTC
Hα ≈ U

4
tanh

(
Vb

2T

)
. (H6)

For |V b| < |U |, Nz depends only on the sign of ε + U/2, that
is, whether the dot is above or below the particle-hole sym-
metric point and, as a consequence, ∂Vb Nz/T ≈ 0. Therefore,
when driving the bias voltage, using Eq. (H6), we get

BC,NTC
Hα ({R1,Vb}) = −Ū

8

[
1 − tanh[2]

(
V̄b

2T

)]
∂R1 Nz. (H7)

This pumping curvature has the sign of ∂R1 Nz since U is
negative. If R1 = ε,U , then ∂R1 Nz is negative for mechanism
C since the dot goes from double occupation to empty when
crossing the particle-hole symmetric point at ε = −U/2 (and
∂εNz ≈ 2∂U Nz). The curvature BC,NTC

Hα ({R1,Vb}) is thus always
negative, and suppressed for |V̄b| � T , as visible in Figs. 4(e)
and 4(g). On the other hand, if R1 = �, TL, ∂R1 Nz changes
sign with V̄b and so does the energy pumping curvature [see
Figs. 4(h) and 4(j)].

For (ε,U ) driving, Eq. (H6) gives

BC,NTC
Hα ({ε,U }) = −T 2

4
tanh

(
V̄b

2T

)
∂εNz. (H8)

The energy pumping curvature thereby has the sign of the
bias, vanishes at V̄b = 0, and takes finite values for T � |V̄b| <

|U | around the particle-hole symmetric point [see Fig. 4(i)]. In
other words, as soon as the system deviates from the perfectly
balanced case V̄b/T = T̄L/T − 1 = 0 shown in Appendix E,
the energy pumped by (ε,U ) driving is finite, with the sign of
V̄b determining the sign of the cycle-averaged energy flow.

We now look at (TL,�) driving and compute the deriva-
tives of aC,NTC

Hα from Eq. (H5). At �̄ = 0 and T̄L = T , for
|U | � T |U |/2T � |2ε + U |/2T and |U |/T � |Vb|/T ,

∂�aC,NTC
Hα = U

4γ 2
c

(γcα−γcα′ )[γcα (1−Nzα )−γcα′ (1−Nzα′ )]

≈ U

4
tanh[2]

(
V b

2T

)
tanh

(
2ε + U

2T

)
(H9)
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and

∂TL aC,NTC
Hα ≈ U

2ε̄ + U − Vb + U tanh
(

2ε+U
2T

)
16T cosh[2]

(
V b
2T

) . (H10)

The derivative ∂�aC,NTC
Hα [Eq. (H9)] expectedly vanishes at

V̄b = 0, since both leads are identical at the working point
T̄L = T and thus together behave as one unique equilib-
rium environment. The derivative precisely at ε = −U/2 also

goes to zero for Vb �= 0, as f +
α/α′ (ε)

ε=−U/2= f −
α′/α (ε + U ) for

T̄L = T̄R = T means γcα
ε=−U/2= γcα′ . Flipping the sign of Vb

amounts to exchanging the leads, again because T̄L = T , and
it is clear from Eq. (H9) that ∂�aC,NTC

Hα is unchanged under
α ↔ α′. Consequently, the sign of the � derivative is indepen-
dent of Vb, but changes with ε + U/2. Turning to ∂TL aC,NTC

Hα ,
Eq. (H10) indicates a strong suppression for |Vb| � T . At
low bias |Vb|/T � 1, the derivative ∂TL aC,NTC

Hα changes sign
as a function of ε close to the particle-hole symmetric point,
since |2ε + U − Vb| → |Vb| � |U |, while the sign of Vb has
no influence. As discussed above, both ∂TL Nz and ∂�Nz have
the same sign as V̄b but do not change sign with ε̄ + Ū/2.
Since ∂�aC,NTC

Hα and ∂TL aC,NTC
Hα have opposite signs as a func-

tion of ε̄ + Ū/2, this results in a pumping curvature with
four quadrants with alternating signs around the particle-hole
symmetric point [see Fig. 4(f)].

The energy pumping curvature for (ε,�) driving is given
by BC,NTC

Hα ({ε,�}) = −∂�aC,NTC
Hα ∂εNz. Since ∂εNz has a con-

stant negative value for ε/T ≈ −U/2T , BC,NTC
Hα ({ε,�}) is

mainly determined by ∂�aC,NTC
Hα [Eq. (H9)]. This derivative

has been shown above to vanish both at Vb = 0 and for
ε = −U/2, but to only change sign with ε + U/2, and this
is confirmed by Fig. 4(b). For (U,�) driving, Eqs. (H5)
and (H9) give, for |U | � T |U |/2T � |2ε + U |/2T and
|U |/T � |Vb|/T ,

BC,NTC
Hα ({U,�}) ≈ tanh[2]

( V̄b
2T

)[
T + Ū tanh

(
2ε̄+Ū

2T

)]
4 cosh[2]

(
2ε̄+Ū

2T

) ,

(H11)
which predicts a behavior similar to that for (ε,�) driving
given that |U | � T [see Fig. 4(d)].

The non-tightly-coupled contribution to the curvature
BC,NTC

Hα ({ε, TL}) = −T 2∂TL aC,NTC
Hα ∂εNz for (ε, TL) driving is

suppressed at finite bias voltage [Eq. (H10)] |Vb| � T . The
pumped energy is therefore dominated by the tightly coupled
contribution [Eq. (H4)] BC,TC

Hα ({ε, TL}) ≈ [(1 − �̄)/2]∂TL Nz,
which has the same sign as V̄b [see Fig. 4(a)]. Con-
versely, at zero bias |Vb|/T ≈ 0, the non-tightly-coupled term
BC,NTC

Hα ({ε, TL}) dominates and changes sign with ε̄ + Ū/2
but not with V̄b [Eq. (H10)]. For (U, TL) driving, the fact
that ∂U aC,NTC

Hα does not vanish at Vb > T and is of the same
order of magnitude as BC,TC

Hα ({U, TL}) makes it difficult to
understand the origin of the features in Fig. 4(c). Focusing on
Vb = 0 only, ∂U aC,NTC

Hα ∼ Vb/8 [Eq. (H6)], |T ∂TL Nz| � 1, and
∂U Nz ≈ ∂εNz/2 imply BC,NTC

Hα ({U, TL}) ≈ BC,NTC
Hα ({ε, TL})/2.

This in particular predicts the same sign change of the energy
pumping curvature as a function of ε̄ + Ū/2 as for (ε, TL)
driving.

APPENDIX I: ANALYTICAL EXPRESSIONS AT FIRST
ORDER IN THE TEMPERATURE DIFFERENCE

This Appendix calculates the transport quantities of
Eqs. (52) and (57) from Sec. V, i.e., the heat contributions
Q(0,1)

R and work terms W (1,2)
ε up to linear order in a small

left-right temperature difference δT , such that T̄L = T + δT
and |δT | � T . We are considering �̄ = 0 and V̄b = 0.

The first step is therefore to expand all relevant relaxation
rates and stationary averages up to first order in δT around
the full-equilibrium values. Since we are looking at the linear
response of the system, these expansion will make the equi-
librium fluctuations δN2

eq and (δN i
eq)2 appear. We define

Neq = Nz|eq = Nzα|eq, N i
eq = N i

z

∣∣
eq = N i

zα

∣∣
eq,

γc,eq = γc|eq = �

�α

γcα

∣∣
eq,

Eeq = Eα|eq = ε + U

2

(
2 − N i

eq

)
,

Ēeq = Eeq|H,Vb→−H,−Vb = −ε − U

2
(2 − Neq),

δN2
eq = ((N − Nz )2|z)|eq = ((N − Nzα )2|zα )|eq,(

δN i
eq

)2 = ((
N − N i

z

)2|zi )
∣∣
eq = ((

N − N i
zα

)2∣∣zi
α

)∣∣
eq,

λN3
eq = ((N − Nz )3|z)|eq = ((N − Nzα )3|zα )|eq,(

λN i
eq

)3 = ((
N − N i

z

)3|zi )
∣∣
eq = ((

N − N i
zα

)3∣∣zi
α

)∣∣
eq, (I1)

where |eq corresponds to the limit δT,Vb → 0, and |zα ) and
|zi

α ) are the stationary state and its dual for the situation in
which only the lead α couples to the dot. The skewnesses λN3

eq

and (λN i
eq)3 will appear in the derivatives of the equilibrium

charge fluctuations. The expansion of the stationary averages
up to linear order in δT around δT,Vb → 0 is achieved with
the help of the state linearization derived in Eqs. (A31)–(A33)
of Ref. [81] for the spin-degenerate single-level quantum dot
with energy-independent couplings

|zR) = |z)|eq = |zeq),

[∂δT |zL)]|eq = 1

T 2
[H − (H |zeq)1]|zeq), (I2)

and

[∂δT |z)]|eq =
∑

α

�α

�
[∂δT |zα )]|eq

= 1 + �

2T 2
[H − (H |zeq)1]|zeq)

⇒ |z) ≈ |zeq) + 1 + �

2

δT

T 2
[H − (H |zeq)1]|zeq)

+ O(δT 2), (I3)

having used Vb = 0 and that for a constant TR = T , ∂δT only
acts on terms with α = L of the lead sums in Eq. (I3).
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Together with Eqs. (A47) and (A48) from Ref. [81],
Eqs. (I2) and (I3) imply

NzR = Neq, NzL ≈ Neq + δN2
eq
EeqδT

T 2
+ O(δT 2),

Nz ≈ Neq + 1 + �

2
δN2

eq
EeqδT

T 2
+ O(δT 2). (I4)

Since energy inversion commutes with ∂δT , we obtain the cor-
responding dual quantities from Eq. (I4) by simply applying
the dual parameter transform:

N i
zR = N i

eq, N i
zL ≈ N i

eq + (
δN i

eq

)2 ĒeqδT

T 2
+ O(δT 2),

N i
z ≈ N i

eq + 1 + �

2

(
δN i

eq

)2 ĒeqδT

T 2
+ O(δT 2). (I5)

To calculate the parity derivative ∂δT pz = ((−1)N |∂δT z),
we first insert the Liouville-space unit operator expansion
with respect to the eigenmodes of right-lead kernel W R and
then use Eq. (I4) as well as Eqs. (A55) and (A61) from
Ref. [81],

∂δT pz|eq = ((−1)N |cR)|eq∂δT Nz|eq

+ 4
[
∂δT

(
zi

R(−1)N |z)]∣∣eq

= 1 + �

T 2

[
Eeq(1 − N i

eq

) + U

2

(
δN i

eq

)2
]
δN2

eq, (I6)

where we have used[
∂δT

(
zi

R(−1)N |z)]∣∣eq = 1 + �

2

U

4T 2
δN2

eq

(
δN i

eq

)2
. (I7)

This means that

pzR = peq,

pz ≈ peq + 1 + �

T 2

[
Eeq

(
1 − N i

eq

) + U

2

(
δN i

eq

)2
]
δN2

eqδT

+ O(δT 2). (I8)

Next we need to expand the charge rate ratio γcR/γc.
We use Eqs. (G4), (I3), and (I5), γc = γcR + γcL, γcR =
(�R/�)γc,eq, and �L/R = �(1 ± �)/2 to derive

γcR

γc
=

[
1 + 1 + �

1 − �

γp

γc,eq

γcL

γpL

]−1

,

γcL

γpL
≈ γc,eq

γp
+ γ 2

c,eq

γ 2
p

δN2
eq

N i
eq − 1

EeqδT

T 2
+ O(δT 2) + inv, (I9)

which means

γcR

γc
≈ 1 − �

2
− (1 − �2)γc,eqδN2

eq

4
(
N i

eq − 1
)
γp

EeqδT

T 2
+ O(δT 2) + inv.

(I10)

The terms inv are contributions ∼(δN i
eq)2 that further below

will only appear in products ∼δN2
eq(δN i

eq)2 which are more
strongly suppressed by the very nature of the dual fluctuations
(δN i

eq)2 being sizable at different points in parameter space
than the fluctuations δN2

eq.
Having determined all relevant quantities up to linear order

in δT , we still require the derivatives of these quantities with

respect to ε and � in order to compute the quantities entering
Eqs. (52) and (57). Any quantity derived from the equilibrium
state |zeq) = |z)|eq is independent of the tunnel couplings,
hence giving a vanishing � derivative. For the ε derivative,
Eq. (A42) from Ref. [81] implies that

∂ε |zeq) = −N − Neq1̂

T
|zeq), ∂ε

∣∣zi
eq

) = N − N i
eq1̂

T

∣∣zi
eq

)
(I11)

and thus

∂εNeq = − 1

T
δN2

eq, ∂εN i
eq = + 1

T

(
δN i

eq

)2
,

∂εEeq = 1 − U

2T

(
δN i

eq

)2
. (I12)

For the equilibrium parity peq = ((−1)N |zeq), we insert
the unit expansion of the equilibrium eigenmodes and use
that (zi

eq(−1)N |∂ε |zeq) = −(zi
eq(−1)N N |zeq)/T = 0 accord-

ing to the eigenmode orthogonality (zi
eq(−1)N |zeq) = 0 and

Eq. (A46) of Ref. [81]:

∂ε peq = ((−1)N |ceq)∂εNeq = −2
(
1 − N i

eq

)
T

δN2
eq. (I13)

Moreover, using the definition (I1) of the fluctuations δN2
eq and

(δN i
eq)2, the derivative ∂ε (N − x1)n = −n(∂εx)(N − x1)n−1,

and Eq. (I11), we obtain the ε derivative of the fluctuations in
terms of the skewnesses λN3

eq and (λN i
eq)3 at full equilibrium:

∂εδN2
eq = −λN3

eq

T
, ∂ε

(
δN i

eq

)2 = +
(
λN i

eq

)3

T
. (I14)

The derivative of γc,eq with respect to ε is given by

∂εγc,eq ≈ −δN2
eqγ

2
c,eq

T
(
N i

eq − 1
)
γp

+ inv, (I15)

where inv indicates, as before, terms ∼(δN i
eq)2 which will later

drop out. With this, we are finally in the position to compute
the transport quantities in Eqs. (52) and (57) up to linear order
in δT around full equilibrium δT = Vb = 0. The stationary
charge and energy current between the dot and right lead α =
R read

I (0)
NR = (N |W R|z) = −γcR(Nz − NzR)

≈ −1 − �2

4
γc,eqδN2

eq
EeqδT

T 2
+ O(δT 2)

I (0)
HR = (H |W R|z) = EeqI (0)

NR − UγpR
(
zi

R(−1)N |z)
≈ EeqI (0)

NR − κδT + O(δT 2), (I16)

having recalled Eq. (I7) and identified the Fourier heat

κ = 1 − �2

4
γpδN2

eq

(
δN i

eq

)2 U 2

4T 2
(I17)

as defined in, e.g., Ref. [81]. The corresponding derivatives of
the currents and κ with respect to ε and � around � = 0 up
to linear order in δT are

∂�κ|� = ∂ε∂�κ|�=0 = 0,

∂�I (0)
NR

∣∣
�=0 ∼ ∂�I (0)

HR

∣∣
�=0 ∼ ∂ε∂�I (0)

NR

∣∣
�=0 ≈ 0 + O(δT 2),
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∂ε∂�I (0)
HR

∣∣
�=0 ≈ ∂εEeq∂�I (0)

NR

∣∣
�=0 ≈ 0 + O(δT 2),

∂εI (0)
NR

I (0)
NR/T

∣∣∣∣
�=0

≈ T

Eeq
− ∂εγc,eq

γc,eq/T
− λN3

eq

δN2
eq

+ O(δT 2),

∂εκ

κ/T

∣∣∣∣
�=0

= (λN i
eq)3

(δN i
eq)2

− λN3
eq

δN2
eq

(I18)

as well as

∂2
ε I (0)

NR

I (0)
NR/T 2

∣∣∣∣
�=0

≈
[

T

Eeq
− ∂εγc,eq

γc,eq/T
− λN3

eq

δN2
eq

]2

+ T ∂ε

[
T

Eeq
− ∂εγc,eq

γc,eq/T
− λN3

eq

δN2
eq

]
+ O(δT 2),

(I19)

∂2
ε κ

κ/T 2

∣∣∣∣
�=0

=
[(

λN i
eq

)3

(
δN i

eq

)2 − λN3
eq

δN2
eq

]2

+ T ∂ε

[(
λN i

eq

)3

(
δN i

eq

)2 − λN3
eq

δN2
eq

]
, (I20)

∂2
�κ

κ

∣∣∣∣
�=0

= −2,
∂2
�I (0)

NR

I (0)
NR

∣∣∣∣
�=0

≈ −2 + O(δT 2) (I21)

for the charge current I (0)
NR and Fourier heat κ and

∂εI (0)
HR

∣∣
�=0 ≈ I (0)

NR

∣∣
�=0 + Eeq∂εI (0)

NR

∣∣
�=0 − (∂εκ )|�=0δT

+ O(δT 2), (I22)

∂2
ε I (0)

HR

∣∣
�=0 ≈ ∂εI (0)

NR

∣∣
�=0 + Eeq ∂2

ε I (0)
NR

∣∣
�=0

− (
∂2
ε κ

)∣∣
�=0δT + O(δT 2), (I23)

∂2
�I (0)

HR

∣∣
�=0 ≈ −2 I (0)

HR

∣∣
�=0 + O(δT 2) (I24)

for the steady-state energy current I (0)
HR. Note that we have ne-

glected terms ∼δN2
eq(δN i

eq)2 and ∼δN2
eq(λN i

eq)3 that are, when
not scaled by the large prefactor (U/T )2 as in the Fourier
heat κ , strongly suppressed compared to the other terms, since
the quantities of the dual inverted system have finite support
at very different levels ε compared to the actual dot system
(see Ref. [81]). Inserting the driving protocol (46) into the
integral (49) and Taylor expanding the integrand I (0)

NR(t ) in the
small driving amplitudes δε and δ� around the working point
ε̄ and �̄ = 0 using Eqs. (I16)–(I24), we find the � = 0 heat
contribution

Q(0)
R ≈ 2π

�

[(
EeqI (0)

NR − κδT
)(

1 − (δ�)2

2

)

+ (δε)2

4

(
Eeq∂2

ε I (0)
NR + ∂εI (0)

NR − (∂2
ε κ )δT

)]
�=0

+ O(δT 2). (I25)

The � = 1 heat component depends on the energy pumping
curvature (30), i.e., on the (ε,�) derivatives of Nz, pz, and the
coefficients (31) in the geometric connection. The derivatives
of Nz follow from Eqs. (I4) and (I12) as well as Eq. (I14).
Again dropping any terms ∼δN2

eq(δN i
eq)2 which are not scaled

by a large prefactor ∼(U/T )2, we find

∂�Nz|�=0 ≈ 1

2
δN2

eqEeq δT

T 2
+ O(δT 2),

∂εNz|�=0 ≈ −δN2
eq

T
+

[
δN2

eq − EeqλN3
eq

T

]
δT

2T 2
+ O(δT 2).

(I26)

Differentiating, the parity pz is performed analogously using
Eq. (I8) together with Eqs. (I13) and (I14):

∂� pz|�=0 ≈ Eeq

T

(
1 − N i

eq

)
δN2

eq
δT

T
+ O(δT 2),

∂ε pz|�=0 ≈ 2

T

(
N i

eq − 1
)[

δN2
eq

(
1 − δT

2T

)
+ Eeq

T
λN3

eq
δT

2T

]

+ O(δT 2). (I27)

For the charge-mode coefficients in the mode-decomposed
geometric connection (31) and (31a), Eqs. (I5) and (I10)
yield

∂�aC
HR

∣∣
�=0 ≈ −Eeq

2
+ O(δT 2),

∂εaC
HR

∣∣
�=0 ≈ 1

2
− U

4T

(
δN i

eq

)2 + O(δT ). (I28)

The derivatives of the parity-mode terms (31b) and (31c)
are

∂�aP,N
HR

∣∣
�=0 ≈ −U

4

(
N i

eq − 1
) + O(δT 2),

∂εaP,N
HR

∣∣
�=0 ≈ U

4T

(
δN i

eq

)2 + O(δT ) (I29)

and

∂�aP,p
HR

∣∣
�=0 = −U

8
, ∂εaP,p

HR

∣∣
�=0 = 0. (I30)

Combining Eqs. (I26)–(I30), we obtain

Q(1)
R

δS
= BHR({ε,�})|�=0

= T
[(

∂εaC
HR + ∂εaP,N

HR

)
∂�Nz

− (
∂�aC

HR + ∂�aP,N
HR

)
∂εNz

]∣∣
�=0

+ T
[
∂εaP,p

HR∂� pz − ∂�aP,p
HR∂ε pz

]∣∣
�=0

≈ −δN2
eqEeq

2

(
1 − δT

T

)
− λN3

eqEeq

4

Eeq

T

δT

T
+ O(δT 2),

(I31)

with the surface element δS = ∫∫
S d�(dε/T ) =

−π sin(φ)(δε/T )δ� normalized by T as in the main text.
The final step is to compute the work, as defined in Eq. (57),
with the help of Eq. (I26). We arrive at

W (1)
ε = −∂�NzT δS|�=0 ≈ −2T

I (0)
NR

γc,eq
δS + O(δT 2), (I32)
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W (2)
ε = −π�δε2 ∂εNz

γc
− π� cos(φ)δεδ�

∂�Nz

γc

≈ π
�

γc,eq

δε2

T
δN2

eq

(
1 − δT

2T

)

+ π
�

γc,eq

δε2EeqδT

2T 3

(
λN3

eq − γc,eq

γp

[
δN2

eq

]2

N i
eq − 1

)

+ 2π
�

γc,eq
cos(φ)

I (0)
NR

γc,eq
δεδ� + O(δT 2). (I33)

This proves all relations necessary to derive the efficiency
given in Eq. (59).

APPENDIX J: VALIDITY OF THE ADIABATIC
APPROXIMATION

In Sec. V we studied energy pumping in the context of
cyclically driven refrigerators, using the master equation in
all orders in frequency. This Appendix studies to what extent
the work and heat from this full equation deviate from the
adiabatic approximation, that is, truncating at the first order
the expansion of |ρ) in �/�, when using it to compute ther-
modynamic quantities. Figure 10 shows the heat and work as
functions of the driving frequency computed with and without
the adiabatic approximation. More precisely, we have plot-
ted Qadia

R = Q(0)
R + Q(1)

R [Eq. (49)] and Wadia
ε = W (1)

ε + W (2)
ε

[Eq. (51)] and the QR and Wε obtained by numerically solv-
ing the master equation ∂t |ρ) = W |ρ) like in the figures of
Sec. V. The adiabatic approximation gives good results for
δRi� � � but, as explained in Sec. V C, requires a lower
driving frequency when the interaction is attractive. For the
value of � used in the figures of Sec. V (black dotted line),

FIG. 10. Comparison of the heat QR (left axis, in green) and
work (right axis, in red) computed with and without the adiabatic
approximation (see the legend). The interaction is repulsive in (a) and
attractive in (b). All the parameters, except for �, are the ones
corresponding to the blue stars in Fig. 5 and the driving frequency
used in the figures of Sec. V is indicated by the vertical black dotted
line.

the repulsive dot is perfectly in the adiabatic-response regime
while there is a significant deviation for the attractive dot.
We nevertheless chose not to take a smaller � because the
detrimental stationary contribution Q(0)

R scales like �/�.
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