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Optotwistronics of bilayer graphene
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We present a study of the nonlinear optical response of twisted bilayer graphene. We discuss the contribution
of the Berry phase to the nonlinearity when inversion symmetry is broken, thus underlining the interplay between
band and real-space geometry, and nonlinear response. We also highlight an effect that is characteristic of
extreme nonlinear optics, namely the generation of harmonics in disguise. This effect emerges in twisted bilayer
graphene at relatively moderate field strengths because of the much reduced bandwidth. Our findings contribute
to the understanding of the link between geometry and optical properties, as well as of the extreme nonlinear
optical regime in twisted bilayer graphene.
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I. INTRODUCTION

The discovery of correlated phases for Dirac-like electrons
in twisted bilayer graphene (TBG) has paved the way for a
large amount of research on the relation between the geometry
of a lattice and its electronic properties [1]. Of particular
interest is the emergence of flat bands at specific twisting
angles (magic angles). In this case, TBG becomes supercon-
ductive and exhibits correlated-insulating phases at integer
filling fractions [2,3]. Hitherto, a number of microscopic theo-
ries have been developed to understand such new phenomena,
concerning not only unconventional superconductivity but
also correlated insulation [4–8] (see also [9,10] and references
therein). On the contrary, the nonlinear optical response of
TBG began attracting attention only recently. Floquet band
theory has been proposed as a method to tune magic angles
and in general to get control over the twisted-graphene physics
by modifying intra- and interlayer hopping amplitudes with
a driving field [11–13]. The photogalvanic effect has also
been investigated by means of perturbative methods and the
Boltzmann equation [14,15]. On the contrary, only a handful
of studies have focused on a proper theoretical description of
the harmonic generation process [16–19].

In this paper, we use a nonperturbative approach based on
the formalism of the Dirac Bloch equations (DBEs) [20–23] to
study the high-order response of TBG and how such response
varies with the twisting angle, i.e. the optotwistronic. We
elucidate the contribution to the nonlinear current of intraband
and interband transitions. Furthermore, we study the variation
of the current spectra due to the introduction of an energy
gap. In particular, we show that a complex interplay between
lattice geometry (twisting) in real space, eigenstate geome-
try (Berry phases) in momentum space, and optical response
emerges naturally from the dynamical equation. This topic has
attracted significant attention recently and has been addressed
mostly within perturbation theory [24,25]. We also highlight
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the phenomenon of even harmonics in disguise, which is pe-
culiar to extreme nonlinear optics.

The DBEs are based on the formalism of instantaneous
eigenstates. These equations parallel the well-known semi-
conductor Bloch equations [26], but they are nonperturbative
and encapsulate both intraband and interband dynamics. They
were introduced for the first time by Ishikawa in 2010 [20] to
study the nonlinear response of graphene, and later extended
to include doping effects [21], gap opening [22], and Coulomb
interactions [23]. More recently, they have also been applied
to materials presenting type-II (tilted) Weyl low-energy dis-
persion [27].

This paper is organized as follows. In the next section, we
review the formalism of instantaneous eigenstates, introduced
in [20], for the simple case of a two-band model. In Sec. III,
we briefly review the continuum limit of TBG, we introduce
the electromagnetic interaction, and we derive the DBEs. In
Sec. IV, we study the nonlinear response to a short electro-
magnetic laser pulse in two different configurations: gapless
flat bands at the magic angle, and gapped bands both away
from and at the magic angle. In this last configuration, we
study the generation of odd harmonics in disguise of even
harmonics.

II. INSTANTANEOUS EIGENSTATES FORMALISM

In this section, we review the application of the instanta-
neous eigenstates formalism to the case of a two-band model.
Traditionally, this approach has been used to describe time-
dependent Hamiltonian quantum systems in the adiabatic
limit, i.e., under the assumption that the system does not
transition from an instantaneous eigenstate to another during
a long time interval t (t → ∞ in the adiabatic limit) [28]. We
will see that, in our case, such an assumption is not necessary
[29].

We start from the following time-dependent Schrödinger
equation in momentum space:

i
∂

∂t
ψk(t ) = Hk(t )ψk(t ), (1)
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with Hk(t ) = Hk+A(t ), where A(t ) is a homogeneous external
vector potential. We make the following ansatz for the solu-
tion:

ψk(t ) =
∑

λ

cλ
k(t )ϕλ

k (t )e−iEλ
k (t ), (2)

where cλ
k(t ) are expansion coefficients, λ = ±1 is the band

index, and Eλ
k (t ) is a time-dependent phase to be determined.

The states ϕλ
k (t ) are the so called instantaneous eigenstates,

which are an exact solution of the instantaneous eigenvalue
problem,

Hk(t )ϕλ
k (t ) = ελ

k (t )ϕλ
k (t ). (3)

Here, ελ
k (t ) is the instantaneous eigenvalue. Substituting

Eq. (2) into (1), we rewrite its left-hand side as (from now on,
we drop the explicit time dependence in longer expressions)

i
∂

∂t
ψk = i

∑
λ

(
ċλ

kϕ
λ
k + cλ

kϕ̇
λ
k − icλ

kĖλ
k ϕλ

k

)
e−iEλ

k . (4)

As for the right-hand side of Eq. (1), using Eq. (3) we obtain

Hkψk = Hk

∑
λ

cλ
kϕ

λ
ke−iEλ

k =
∑

λ

ελ
k cλ

kϕ
λ
ke−iEλ

k . (5)

The compatibility between (4) and (5) can be realized by
defining the dynamical phase

Eλ
k (t ) =

∫ t

−∞
ελ

k (t ′) dt ′, (6)

and simultaneously eliminating the first two terms on the
right-hand side of Eq. (4). We consider the equation[

ċλ
k(t )ϕλ

k (t ) + cλ
k(t )ϕ̇λ

k (t )
]
eiEλ

k (t ) = 0 (7)

and we multiply it by ϕλ̄,∗
k (t ). Then summing over λ̄ = ±λ

and using the state orthonormality [ϕλ̄,∗
k (t ) · ϕλ

k (t ) = δλ,λ̄], we
obtain

ċλ
k = i�k c−λ

k eiEλ
k −iE−λ

k + iγ̇k cλ
k, (8)

where we have defined the two quantities γ̇k(t ) = iϕλ,∗
k (t ) ·

ϕ̇λ
k (t ) and �k(t ) = −iϕλ̄,∗

k (t ) · ϕ̇λ
k (t ) (the Rabi frequency—see

below). We observe that the second term in Eq. (8) can be
removed by a local gauge transformation of the wave function
as

ψk(t ) → ψk(t )eiγk (t ), (9)

where γk(t ) = ∫ t
−∞ γ̇k(t ′)dt ′ is a time-dependent Berry phase.

The time variation Eq. (8) thus reduces to

ċλ
k(t ) = i�k(t ) c−λ

k (t )eiEλ
k (t )−iE−λ

k (t ). (10)

As we show in Eq. (17) below, Eq. (10) is used to derive the
DBEs.

Equation (10) plays an important role in the theory of
the adiabatic evolution of quantum systems. In the proof of
the adiabatic theorem, this equation corresponds to requir-
ing adiabaticity. In fact, as shown by Ishikawa in Ref. [29],
Eq. (10) admits solutions in both the adiabatic and the diabatic
limit. They considered the case of graphene (massless Dirac
fermions) when the electron momentum varies along a circu-
lar path around the Dirac point. This situation can be realized

under normal incidence of a circularly polarized pulse in the
linear regime. In this case, Eq. (8) is analytically solvable,
and it describes two different dynamics in the adiabatic and
diabatic limit. In the first case, the electron remains in the
state fixed by the initial condition. If, for example, ck,1 = 1
and ck,−1 = 0, then it will remain in the upper band. At
the same time, the instantaneous wave function acquires a
constant Berry phase π when the electron completes a cycle.
In the diabatic limit instead, the electron population is com-
pletely transferred to the lower band at half a cycle and it is
transferred back to the upper one after a cycle. In contrast to
the adiabatic limit, the Berry phase is canceled by a phase
acquired through the interband dynamics. These considera-
tions can also be applied to a gapped material (massive Dirac
fermions) in the linear optical regime. Interestingly, it has
been shown that for massive Dirac fermions in the nonlinear
regime, the impact of the Berry phase on the low momentum
state dynamics is not negligible even for short time intervals
(i.e., in the diabatic limit) [22].

III. THE MODEL

We begin by introducing the lattice structure and the model
Hamiltonian that we use as a starting point of this work. We
consider two layers of graphene with a modulated mismatch in
the relative position of the two lattices of a bilayer, obtained by
twisting the upper (lower) layer by an angle θ/2 (−θ/2). The
resulting mismatch produces a characteristic moiré pattern. In
the low-energy limit ε � 1 eV this system can be described
by the following Hamiltonian [4,30]:

H (k) =
(

H+
D (k) T̂ †(r)

T̂ (r) H−
D (k)

)
. (11)

H±(k) = vF σ || · (k + ±�K/2) + σz�M/2 are the single-
layer graphene Hamiltonians. Here �M is an energy gap at
the Dirac point of the graphene monolayers, due to broken
inversion symmetry, �K is the shift in the relative position
of the Dirac points in the two layers, and σ || = (σx, σy). The
hopping matrix T̂ (r) represents the interlayer hopping am-
plitude, which reflects the spatial alternation of the stacking
configuration (AA′, AB′, and BA′) due to the moiré pattern.
Here A (A′) and B (B′) correspond to the two sublattices
of the lower (upper) layer, respectively. As usual [4,30], we
assume that interlayer hopping is dominated by processes
with momentum transfer Q0 = 0 and Q12 = (±2π/

√
3, 2π )

[Fig. 1(a)] so that we can write the hopping matrix elements
as T̂lm = ∑

j ulm eiQ j r, (l, m) being layer-sublattice indices.
We expressed the Hamiltonian (11) as a 4N × 4N matrix in
k-space by using a plane-wave expansion, with N = 60 being
the number of plane waves, and we diagonalized it numer-
ically [Fig. 1(b)]. The eigenvalues and eigenstates obtained
from the Hamiltonian expanded in plane waves constitute the
setup for the study of the system coupled to the electromag-
netic radiation.

We now introduce the coupling with an impinging electro-
magnetic field. The minimally coupled plane-wave Hamilto-
nian reads

Hk,qi,q j (t ) = [
h(0)

k+eA(t ),qi,q j
+ V tw

0

]
δqi,q j + V tw

qi−q j
, (12)
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(a ) (b)(a )

FIG. 1. (a) Momentum space geometry of TBG. The small cen-
tral hexagon is the BZ of the moiré superlattice; �M , MM , and KM are
the high-symmetry points. The larger hexagons represent the BZs for
the upper and lower graphene layers. (b) Band structure for the six
lowest energy bands in the K (red) and K ′ (blue) valleys.

where h(0)
k is the uncoupled double-layer Hamiltonian, and

V tw is the plane-wave expansion of the twisting potential
matrix. Hence, we can write the related time-dependent Dirac
equation for the low-energy TBG Hamiltonian wave function
as

i∂tψk,qi (t ) =
∑

q j

Hk,qi,q j ψk,qi (t ). (13)

The solution of this equation is obviously rather complicated,
but, in analogy to what is shown in Sec. II, it can be expressed
as a superposition of instantaneous eigenstates that diagonal-
ize the interacting time-dependent Hamiltonian (12). Using
steps analogous to those shown in Sec. II, we obtain

ψk,qi (t ) =
∑

λ

cλ
k(t )ϕλ

k,qi
(t )e−iγ λ

k (t )−iEλ
k (t ). (14)

Here, λ is the band index, and ϕλ
k,qi

(t ) and ελ
k (t ) are instan-

taneous band eigenstates and eigenvalues, which solve the
following eigenvalue problem:∑

q j

Hk,qi,q j (t )ϕλ
k,q j

(t ) = ελ
k (t )ϕλ

k,qi
(t ). (15)

The extra phase term is the Berry phase, which, in analogy
with Sec. II, is defined as

γ λ
k (t ) =

∑
qi

∫ t

−∞
ϕ

λ,†
k,qi

(t )ϕ̇λ
k,qi

(t ), (16)

where in this equation we have used Hermitian conjugation,
as the instantaneous plane-wave eigenstates ϕλ

k,qi
(t ) are four-

component spinors. By substituting Eq. (14) in Eq. (13), we
can derive a system of coupled differential equations, the
Dirac-Bloch equations, for the population inversion and mi-
croscopic polarization,

wλ,λ′
k (t ) = ∣∣cλ

k(t )
∣∣2 − ∣∣cλ′

k (t )
∣∣2

,

pλ,λ′
k (t ) = cλ

k(t )c∗λ′
k (t )e−i[Eλ

k (t ′ )−Eλ′
k (t ′ )]. (17)

The resulting system is numerically quite demanding as it is
comprised of a set of 4N (4N − 1) coupled differential equa-
tions (see the Appendix). In what follows, we consider the
dynamics of the lowest energy bands only. This allows us
to have a clear qualitative picture of the nonlinear response

without having to solve an excessively large system. For the
case of two bands, the DBEs read

ṗk = −i[ω0 − δεk(t )]pk − i�k(t ) e−iδγk (t )+iω0twk,

ẇk = −4 Re
{
[�k(t )]∗ eiδγk (t )+iω0t pk

}
, (18)

where ω0 is the central frequency of the impinging field, and
δεk(t ) [δγk(t )] is the energy (Berry phase) difference between
the two lowest energy bands. The quantity �k(t ) is the Rabi
frequency of the interacting system and is defined as

�k(t ) = −iμk(t ) · E(t ) = −i
∑

qi

ϕ
c,†
k,qi

(t )ϕ̇v
k,qi

(t ), (19)

where μk(t ) = μk+eA(t ) is the time-dependent dipole moment,
E(t ) = −Ȧ(t ) is the impinging electric field, and c (v) denotes
the conduction (valence) band. To characterize the nonlinear
response of the system from the solution of the DBEs, we
compute the time-dependent optical current, which is defined
as

Jμ(t ) = −e
∑

qi,q j ,k

ψ
†
k,qi

(t )vμ

k,qi,q j
ψk,qi (t ), (20)

where v
μ

k,qi,q j
= ∂kμ

Hk,qi,q j is the velocity operator. Using
Eq. (14) and the definition of population and inversion vari-
ables, we can separate the current into intraband and interband
contributions as

Jμ(t ) =
∑

k

[(
Jμ,c

k,intra − Jμ,v

k,intra

)wk + 1

2

+ Jμ

k,inter Re
(
pke−i[�γk (t )+ω0t]

)]
, (21)

where Jμ,λ=c,v
k,intra = −e

∑
qi,q j

ϕ
λ,†
k,qi

(t )vμ

k,qi,q j
ϕλ

k,qi
(t ) is the in-

traband contribution to the nonlinear optical current, while
Jμ

k,inter = −e
∑

qi,q j
ϕ

c,†
k,qi

(t )vμ

k,qi,q j
ϕv

k,qi
(t ) is the interband one.

Note that to simplify the notation, we have written our equa-
tion in one K valley of the original double-layer Brillouin
zone. In the numerical simulation, both valleys have been
considered to avoid introducing a spurious time-reversal sym-
metry breaking.

IV. NONLINEAR OPTICAL RESPONSE

A. Traditional nonlinear optics

We first characterize the nonlinear interaction of TBG with
an impinging electromagnetic field for different intensities.
The external electromagnetic potential is of the form

A(t ) =
(

A0
ω0

e−(t/t0 )2
sin(ω0t )

ε A0
ω0

e−(t/t0 )2
sin(ω0t − η)

)
, (22)

where A0 is the amplitude of the field and t0 is the pulse
duration. The parameter ε and the phase η control the field
polarization. For ε, η = 0 the field is linearly polarized along
the x-direction; for ε = 1, η = π/2 is circularly polarized;
while for an arbitrary value of η the polarization is elliptical.
We consider the case of gapless flat bands, namely θ = 1.05
for a linearly polarized incident electric field along the x-
direction [Figs. 2(a) and 2(b)]. The current spectra behave
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FIG. 2. (a), (b) Currents along the x- and y-directions for different values of the impinging field in logarithmic scale. (c) Variation of
harmonic amplitude for the x-polarization with the electric field strength. The solid lines show the theoretical polynomial curves AH ≈ En

0 in
log scale.

according to the symmetries of the system. Since the latter
is inversion-symmetric, the current spectra show only odd
harmonics. Figure 2(c) shows the harmonic amplitude, which
is defined as [16]

A(n,μ)
H =

n+1/2∑
�=n−1/2

Pμ(�), (23)

where � = ω/ω0, n is the harmonic order, and Pμ are the
components of the electric polarization vector, which, in the
time domain, is defined as

P(t ) =
∑

k

μk(t ) p∗
k(t ) + c.c. (24)

The nonlinear response is in line with perturbation theory
AH ≈ En

0 . It is useful at this point to compare the result ob-
tained so far with previous theoretical studies, in particular
with Ref. [16]. In [16] the high harmonic response is studied
in a specific commensurate configuration (θ = 21.79◦) by
solving directly the time-dependent Schrödinger equation. An
interesting result is the emergence of dynamical symmetries
coupled with the standard symmetries of the lattice (C2y and
C3). This generates characteristic selection rules for which
even (odd) harmonics are permitted (forbidden) in the Jx (Jy)
current. These selection rules are not present here because
of the additional symmetry constraints that emerge in the
low-angle regime [31,32], particularly the valley degeneracy
around the K points [32].

In what follows, we study what happens when we open
an inversion-symmetry-breaking energy gap. When a gap is
opened in each of the two monolayers, the same happens in

the moiré band structure. This effectively breaks the inversion
symmetry of the system, due to the inequivalence of the two
valleys, triggering the presence of even harmonics. These are
forbidden in an inversion-symmetric system due to selection
rules in the leading electric dipole contribution [33]. An inter-
esting aspect of the gapped case is that it elucidates the role
of the Berry phase in the nonlinear response. In Fig. 3 we
show the current spectra with and without the Berry phase.
We notice that the Berry phase enhances considerably the
even-order nonlinearity. This is to be expected. The role of
the Berry phase in the nonlinear dynamics is related to the
valley inequivalence [22], as in layman terms the latter can
be considered a measure of the inversion symmetry breaking.
In the low-energy continuum limit, the inversion symmetry
is represented by the simultaneous exchange of valley and
sublattice indices [34]. For this reason, we can expect even
harmonics to be significantly dependent on the Berry phase
terms in the current. At the same time, we can see that this
effect depends on the geometry in real space, i.e., it is stronger
for smaller angles.

This effect is due to the fact that the slope of the massive-
Dirac-fermion energy dispersion increases with twist angle,
thus causing a sharper decay of the dipole moment around
the K-points. In fact, around the K-point and larger than the
magic angle, we can approximate the energy spectrum and
dipole moment (along the real-space x-direction) as [22,23]

Eλ
k (θ ) ≈ λ

√
(θ vF k)2 + (�/2)2,

μk,x(θ ) ≈ evF

(
sin ϑk

Ek(θ )
+ i�

cos ϑk

E2
k (θ )

)
, (25)

FIG. 3. Current spectra for (a) θ = 1.35◦, (b) θ = 1.85◦, and (c) θ = 2.15◦ (bottom) with and without the Berry phase.
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FIG. 4. Spectrum and dipole moments for the two lowest energy
bands at different angles in the massive-Dirac-fermion approxima-
tion. The red curve is for θ = 1.35◦, while the blue one is for
θ = 2.35◦.

where ϑk = arctan(ky/kx ) is the polar angle and � is the
energy gap of the moiré band structure. In Fig. 4 we show
a qualitative plot of these quantities for ky = 0 and two values
of the twist angle. We see that, as the twist angle increases, the
massive-Dirac-fermion energy dispersion becomes steeper.
This in turn translates into a sharper decay of the dipole
μk,x(θ ). This is because, at larger angles, fewer states con-
tribute to the interband current.

B. Extreme nonlinear optics

We now focus on the extreme nonlinear optics regime,
which means probing the system with an ultrashort pulse with
relatively high intensity. In the following, we show numer-
ical results obtained by taking a pulse duration of 5 fs and
a pulse intensity of 284 GW/cm2. Under these conditions,
the system is in the extreme nonlinear optics regime. In this
regime, the perturbative expansion of the polarization in terms
of the electric fields fails and new effects emerge [35,36]. To
explore this scenario, it is worthwhile to study the case of
gapped flat bands, a situation in which the system shares some
properties with a pure collection of two-level systems. In this
case, in particular due to the flatness of the bands, the valleys
nonequivalence is greatly reduced, and inversion symmetry is
effectively recovered, at least within the k · p (low-energy)
approximation employed here. With regard to this, the most
peculiar effect is the so called odd harmonics in disguise of
even harmonics, which have been theoretically described [35]
and experimentally observed in thin ZnO films [36]. It is a
phenomenon typical of the nonperturbative regime.

While the even-order susceptibilities are always bound to
vanish because of inversion symmetry [33], in extreme non-
linear optics this does not necessarily imply that peaks at even
frequencies cannot be generated. In a certain sense, in this
regime the constraints of inversion symmetry, which are quite
strong in traditional (i.e., perturbative) nonlinear optics, are
relaxed. In fact, in traditional nonlinear optics, the spectral
width of higher harmonics is much smaller than the carrier
frequency ω0. For this reason, there is no interference effect
that could generate a peak at even spectral frequency. On the
contrary, in extreme nonlinear optics the spectral width of
higher harmonics is much broader and can approach ω0. Thus,
odd harmonics envelopes can generate lower harmonics side-
bands if they are resonant with transition frequencies between
electronic energy bands.

The effect is pictorially shown in Fig. 5. We show a two-
level system with a transition frequency resonating with twice

FIG. 5. Pictorial representation of third harmonics generation
and third harmonics in disguise of second harmonics in a two-level
system. The red lines represent the electron states, and the black
dashed lines are the virtual states where the nonlinear frequency
mixing takes place. In both cases, we assume that the transition
frequency is on resonance with twice the carrier frequency. In the
case of standard THG, the waves are well separated due to the
low spectral width with respect to the carrier frequency. In extreme
nonlinear optics, peaks are much more broad and can interfere by
generating a peak at twice the carrier frequency.

the carrier frequency ω0. The second harmonic appears when
the first- and third-harmonic peaks are broad enough that
they can interfere, generating a peak at frequency 2ω0. If the
laser pulse is short, the high-energy tail of the fundamental-
harmonic peak and the low-energy tail of the third-harmonic
peak meet at around twice the laser center frequency [see
Fig. 5(b)]. As the transition frequency between energy bands
is twice as large as the laser central frequency, a peak ap-
pears at the frequency ω = 2ω0 [36]. This phenomenon is
called odd harmonics in disguise of even harmonics [36].
We report this effect for the case of three flat bands with di-
mensionless transition frequencies �1/ω0 = 2, �2/ω0 = 2.4
and �1/ω0 = 4, �2/ω0 = 4.7. Here �1,2 represent the energy
gaps between the bands. The carrier frequency in our simula-
tions is tuned so that the field interacts with the three lowest
flat bands only. The energy gap between the two lowest bands
is �1 = 0.015 eV. In Fig. 6 we can observe the emergence
of third and fourth harmonics in disguise; the peak splitting
is due to the presence of two transition frequencies resonating

FIG. 6. Current spectra for a four-flat-band system with an im-
pinging field with pulse duration t0 = 5 fs and I0 = 284 GW/cm2.
(a) Third harmonics in disguise of second harmonics. (b) Fifth har-
monics in disguise of fourth harmonics.
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FIG. 7. Current spectra for a two-flat-band system with an im-
pinging field with pulse duration t0 = 5 fs and I0 = 284 GW/cm2

and varying transition frequency.

with the impinging field. Clearly the fourth-harmonic peak is
considerably lower as it scales with the fifth-order nonlinear
susceptibility χ (5) rather than χ (3) [33].

To clarify how harmonics in disguise behave while varying
the system energy gap (transition frequency), in Fig. 7 we
considered two flat bands, with a gap ranging from � = ω0

to � = 3.5ω0 interacting with an impinging laser frequency
ω0 = 0.015 eV. The white dashed line is the resonance line
ω = �, where we expect to observe the harmonics in disguise.
The strongest peak, as is foreseeable, is obtained when the
laser frequency is resonant with the band gap, i.e., � = ω0.
Higher-order harmonics scale with nonlinear susceptibilities,
which are considerably smaller than the linear ones [33]. The
response around the second and third harmonics, when on
resonance, is similar in magnitude, which implies that they
are both third-order effects. This is a strong indication that
the second-harmonic signal cannot be related to symmetry
properties and is indeed a higher harmonic in disguise.

Another way to confirm that this is the case is to compare
the second-harmonic signal in Fig. 6 with the one in Fig. 3.
In the latter, we see that the second harmonic is always paired
with a zeroth-order peak, because sum frequency generation
(ω0 + ω0) and difference frequency generation (ω0 − ω0) oc-
cur with the same probability. On the other hand, in Figs. 6
and 7 the zeroth-order peak is absent, meaning that there is
no second-order sum frequency generation process involved
in the appearance of a second-harmonic peak.

V. CONCLUSION

We characterized the nonlinear optical response of TBG in
the framework of the Dirac-Bloch equation, which is a new
method in the context of twisted materials. We elucidated the
contribution to the current spectra of the Berry phase and its
relation to intraband and interband transitions when inversion
symmetry is explicitly broken. The observed effect shines
additional light on the complex interplay between the lattice

geometry in real space, the eigenstate geometry in momentum
space, and the optical response, which has recently attracted
significant attention. Lastly, we focused on a phenomenon that
is purely nonperturbative and peculiar of extreme nonlinear
optics, namely the generation of harmonics in disguise. We
have shown that this can be efficiently realized in a TBLG
sample at the magic angle, i.e., when the low-energy bands
of the system are flat. These findings provide further evidence
that TBLG is an interesting platform for nonlinear optics in
which the response is highly tunable due to the close relation
between the twisting and the strength of the dipole coupling.
The method and the formalism developed in this paper are
flexible enough to be applied to a variety of electronic and
magnetic systems.
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APPENDIX: GENERALIZED DIRAC-BLOCH EQUATION
FOR AN ARBITRARY NUMBER OF BANDS

The starting point is the Dirac equation for the instan-
taneous plane-wave expansion of the TBG Hamiltonian,
Eq. (13) of the main text, that we report here together with
the expansion in the base of the instantaneous eigenstates,

i∂tψk,qi (t ) =
∑

q j

[(
h(0)

k+eA(t ),qi,q j
+ V tw

0

)
δqi,q j

+V tw
qi−q j

]
ψk,q j (t ), (A1)

ψk,qi (t ) =
∑

λ

cλ
k(t )ϕλ

k,qi
(t )e−i[

∫ t
−∞ dt ′ ελ

k (t ′ )+γ λ
k (t )]. (A2)

Substituting Eq. (A2) into (A1), one obtains

ċλ
k(t ) = −

4N∑
λ′=1

∑
qi

ϕ
λ′,†
k,qi

(t ) · ϕ̇λ
k,qi

(t )ei[δγk (t )−δEk (t )], (A3)

where we have defined

δγk(t ) = γ λ′
k (t ) − γ λ

k (t ),

δEk(t ) =
∫ t

−∞
dt ′[ελ′

k (t ′) − ελ
k (t ′)

]
, (A4)

and N is the number of plane waves. Using the definition
of population inversion and microscopic polarization given in
Eq. (17) together with Eq. (A3), we can derive the generalized
DBEs,

ṗλ,λ′
k = −i[ω0 − δεk(t )]pk − i�λ,λ′

k (t )

× e−iδγ λ,λ′
k +iω0twk −

∑
λ̄ 	=λ′

�λ,λ̄
k (t )pλ′λ̄

k ,

ẇλ,λ′
k = −2

∑
λ̄

Re
{(

�λ̄,λ
k (t )

)∗
eiδγ λ̄,λ

k +iω0t pλ̄,λ
k

+ (
�λ̄,λ′

k (t )
)∗

eiδγ λ̄,λ′
k +iω0t pλ̄,λ′

k

}
. (A5)
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This is a 4N (4N − 1) system of differential equations that
accounts for all possible band couplings. In general, it would
be very hard to solve even for a relatively small number of
plane waves due to the high number of coupled bands in-
volved. Assumptions on the physics of the system can help

to reduce the size of the problem and hence the computa-
tional cost. In many cases, one can ignore the dynamics of
occupied states below the Fermi energy and consider external
fields with frequencies resonating with a limited number of
states.
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