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Light-matter interactions in van der Waals photodiodes from first principles
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Strong light-matter interactions in van der Waals heterostructures (vdWHs) made of two-dimensional (2D)
transition metal dichalcogenides (TMDs) provide a fertile ground for optoelectronic applications. Of particular
interest are photoexcited interlayer electron-hole pairs, where electrons and holes are localized in different
monolayers. Here, we present an ab initio quantum transport framework relying on maximally localized Wannier
functions and the nonequilibrium Green’s functions to explore light-matter interactions and charge transport in
2D vdWHs from first principles. Electron-photon scattering is accurately taken into account through dedicated
self-energies. As testbed, the behavior of a MoSe2-WSe2 PIN photodiode is investigated under the influence
of a monochromatic electromagnetic signal. Interlayer electron-hole pair generations are observed even in the
absence of phonon-assisted processes. The origin of this phenomenon is identified as the delocalization of one
valence band state over both monolayers composing the vdWH.
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I. INTRODUCTION

An intriguing feature of van der Waals heterostructures
(vdWHs) based on two-dimensional (2D) transition metal
dichalcogenides (TMDs) is their ability to give rise to type-II
band alignments, i.e., the conduction band minimum of the
whole system is situated in one material, while its valence
band maximum is located in another one. As a consequence,
electrons and holes are confined in different layers. This,
combined with the small interlayer spatial separation of vd-
WHs, leads to strong electron-hole Coulomb interactions with
large binding energies. As a consequence, spatially separated
electron-hole pairs called interlayer excitons (IXs) can be cre-
ated [1–3]. It is interesting to note that the spatial separation
of the carriers induces a permanent electrical dipole moment
aligned with the out-of-plane direction. Through this dipole,
it is possible to control the electrical and optical properties of
vdWHs [4,5]. Due to the spatial distribution of IX, a reduced
overlap of the electron and hole wave function is observed as
compared to their intralayer counterparts. Hence, the lifetime
of IXs can reach hundreds of nanoseconds and beyond [6–8].
Moreover, it has been shown that the lifetime of IX can be
modulated either by applying an external electric field [8,9],
changing the interlayer distance [10,11], modifying the tem-
perature at which the system operates [4,12], encapsulating
the vdWH with hBN [13,14].

The extremely long lifetime of IXs allows them to
more easily dissociate into free charge carriers (electrons
and holes residing in different TMD monolayers) prior
to their recombination. Photocurrent generation has been
observed experimentally in MoSe2-WSe2 and MoS2-WSe2

vdWHs [15–17]. Fascinating many-body effects such as
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Bose-Einstein condensation [18] and exciton transport [19]
have been reported in such structures. Compared to coupled
double quantum well systems [18,20,21] that can also host
spatially indirect excitons, IXs in vdWHs possess unique
properties that result from the vdW coupling and the enhanced
Coulomb interactions present in 2D materials. The weak cou-
pling between 2D monolayers enable various stacking orders,
relative slidings [22], and twisting angles [23].

The physical mechanism behind the formation of IXs in
vdWHs continues to be an active research area [24]. Photolu-
minesence (PL) excitation spectroscopy shows an enhanced
IX intensity when the exciting light signal corresponds to
the intralayer exciton energy [2,25]. Intuitively, one would
expect inhibited interlayer charge transfers between different
TMDs as a consequence of the weak out-of-plane coupling
and the type-II band alignment [26–29]. However, experi-
mental measurements revealed that ultrafast interlayer charge
transfers occur in TMD-based heterostructure [30–33]. Such
observations have been theoretically confirmed in Ref. [34]
via time-dependent ab initio nonadiabatic molecular dynam-
ics. In this study, it was proved that ultrafast interlayer charge
transfer processes are promoted by specific phonons, which
lead to carrier relaxations from one layer to the other. Here,
through accurate device simulations it will be demonstrated
that electron-hole pairs can also be created without the help of
phonons. However, the probability and magnitude of the latter
processes strongly depend on the band structure characteris-
tics of the considered heterobilayer, which are sensitive to the
stacking order and twisting angle of the monolayers.

Theoretical studies on light-matter interactions in opto-
electronic nanodevices are usually carried out with model
Hamiltonians relying on the effective mass approximation
[35–37], k · p method [38], or tight-binding framework
[39,40] with empirical parameters as inputs in all cases. Such
models are ideal to validate methodological developments or
to investigate quantum well structures made of conventional
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semiconductors, e.g., GaAs or Si [41–44] and carbon nan-
otubes [39,40]. However, they are not suitable to examine
heterobilayers of 2D materials that approach the ultimate
atomic thickness and exhibit complex band structure, inter-
layer coupling, and electron-photon coupling matrix elements,
whose features are unknown. On the other hand, ab initio
calculations based on density functional theory (DFT) cap-
ture the full electronic band dispersion of heterobilayer, they
automatically include the coupling between 2D monolayers,
and they can provide electron-photon interactions from first
principles [45–48]. Nevertheless, DFT calculations are typ-
ically performed assuming periodic boundary conditions in
representative supercells that are kept at equilibrium with their
environment. Such situations differ from those encountered in
PIN vdWHs to which a voltage is applied: the periodicity is
broken and an out-of-equilibrium current starts to flow. Hence,
to predict the performance of 2D heterobilayer photodiodes
and to shed light on the underlying physical processes, an
advanced ab initio quantum transport tool is needed. One
possibility to satisfy these requirements consists of combining
density functional theory with the nonequilibrium Green’s
function (NEGF) formalism [49–51] and to include electron-
photon interactions through scattering self-energies.

In this work, we introduce a DFT + NEGF approach for
optoelectronic device simulations, in particular those con-
cerned with vdWHs of TMD layers. As basis set, maximally
localized Wannier functions (MLWFs) are used because of
their limited extension in space [52]. First, an expression
for the electron-photon scattering self-energy is derived in
a localized basis set. Because carrier-carrier interactions are
not included due to their high computational burden, our
approach cannot describe excitons as quasiparticles. Still it
captures the generation of electron-hole pairs resulting from
the application of an optical signal and the subsequent sep-
aration of these carriers caused by the built-in potential.
We showcase the developed methodology by analyzing a
MoSe2-WSe2 heterobilayer PIN photodiode, as shown in
Fig. 1, with two stacking orders, AA and AA’. The main find-
ing of this work is that interlayer electron-hole pairs can be
created via hybridized (delocalized) wave functions extending
across both monolayers, without phonon-assisted interlayer
transfers. This wave-function delocalization depends on the
stacking order of the heterobilayer. We will also show that
the nonlocal character of electron-photon interactions calls
for the inclusion of long-range interactions in the quantum
transport simulations.

This paper is organized as follows. In Section II the mod-
eling framework and the equations for transport as well as
for light-matter interactions are presented. The details of the
ab initio calculations and the device specifics are described in
Section III. Section IV is devoted to the presentation, analy-
sis, and discussion of the device simulation results when an
electromagnetic source is shined on a PIN photodiode made
of a MoSe2-WSe2 vdWH. Finally, conclusions are drawn in
Section V.

II. THEORY

The quantum transport equations at the core of our de-
vice simulations are solved using the nonequilibrium Green’s

FIG. 1. Schematic view of a vdWH PIN photodiode with a
vertically incident, linearly polarized optical signal. The N-doped
(P-doped) region of length Ldop = 10 nm is represented by the blue
(red) shaded box. The parameter Lint indicates the length of the
intrinsic region and is equal to 40 nm as well. The yellow and purple
(orange and green) spheres represent the Mo and Se (W and Se)
atoms, respectively. Transport is aligned with the x axis, while z is
assumed to be periodic. The simulation domain includes 2496 atoms
in total.

function formalism [51]. All computations have been carried
out with an in-house tool named OMEN that has been ex-
tensively tested [53–55]. It relies on self-consistent solutions
of the Schrödinger and Poisson equations in 1D, 2D, and 3D
geometries. For electrons, the following system of equations is
solved:

(E · I − H (kz ) − �R(E , kz )) · GR(E , kz ) = I, (1)

G≷(E , kz ) = GR(E , kz ) · �≷(E , kz ) · GA(E , kz ), (2)

where I is the identity matrix, E the electron energy, kz

the electron momentum along the direction(s) assumed pe-
riodic (z in Fig. 1), and H (kz ) the Hamiltonian matrix (see
Appendix). The GR, GA = (GR)†, G<, and G> quantities are
the retarded, advanced, lesser, and greater Green’s functions,
respectively. The symbol † indicates the Hermitian transposi-
tion. The size of all matrices in Eqs. (1) and (2) is NO × NO,
where NO is the total number of localized orbitals in the
considered device. The �R,≷ self-energy matrices contain a
boundary �R,≷B and electron-photon scattering �R,≷S term.
The former connects the simulation domain to two semi-
infinite left and right leads. It can be efficiently computed
through contour integral techniques [56].

To compute the relevant entries of the Green’s function
matrices, the selected inversion (SINV) algorithm [57] imple-
mented in the PARDISO library [58] was used in this work.
It produces all GR entries that correspond to the nonzero
elements of the H (kz ) + �R(E , kz ) matrix. The same is ob-
tained for G≶ based on the sparsity pattern of �≶. The
advantage of SINV over, for example, the recursive Green’s
function (RGF) algorithm [59] is that the off-diagonal entries
of GR and G≶ can be calculated at a lower computational
cost.
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Taking into account the impact of an electromagnetic
field translates into the following scattering self-energy
expression:

�≶,S
nm (E , kz ) =

∑
λ,l1,l2

∑
�q

e2h̄2

2V ε0Eph,λm2
0

[�e�qλ · �pnl1 (kz )]

× [
N�q,λG≶

l1l2

(
E ∓ Eph,λ, kz − qz

)

+ (N�q,λ + 1)G≶
l1l2

(
E ± Eph,λ, kz − qz

)]
× [�e�qλ · �pl2m(kz − qz )], (3)

where e is the electron charge, c0 the speed of light, ε0 the
vacuum permittivity, m0 the rest mass of electron, V the vol-
ume of the box that contains one period of the electromagnetic
field, �e�qλ a unit vector aligned with the light polarization, N�q,λ

the Bose-Einstein distribution of the photon mode λ, qz the
z component of the photon momentum vector �q, and h̄ the
reduced Plank constant. The photon energy Eph,λ is equal to
h̄ωλ, where ωλ is the frequency of the photon mode λ. The
indices n, m, l1, and l2 run over all possible localized orbitals
in the simulation domain. The momentum operator �pnm in
real space can be computed as the commutator between the
Hamiltonian operator and the position operator �r that must be
evaluated in the same localized basis,

�pnm( �R) = im0

h̄
〈 �R, n| [H, �r] |�0, m〉 , (4)

where �R is a lattice vector connecting the unit cell located at
the origin �0 to its periodic replica at �R, i is the imaginary unit,
whereas the indices n and m run over all localized orbitals in
each unit cell. By expanding Eq. (4), we obtain

�pnm( �R) = im0

h̄

∑
�R′l

[
Hnl ( �R− �R′)�rlm( �R′)−�rnl ( �R − �R′)Hlm( �R′)

]
.

(5)

Since �pnm( �R) is a lattice periodic operator, it is diagonal
in the wave vector �k basis and can thus be expressed in �k
space as

�pnm(�k) =
∑

�R
ei�k· �R �pnm( �R). (6)

A more extensive treatment of the momentum operator both
in real and reciprocal space can be found in Ref. [60]. Impor-
tant is that it is computed at the ab initio level using the same
DFT inputs as for the Hamiltonian matrix.

Under the approximation that N�q,λ � 1, the spontaneous
emission term in Eq. (3) can be neglected and the number of
photons is assumed to be proportional to the energy density of
the incident optical signal

J�qλ = c0

V
N�q,λEph,λ. (7)

In our simulations, light enters the 2D vdWHs orthogonal
to their surface, as illustrated in Fig. 1. Furthermore, the
photon momentum �q is neglected due to its small magni-
tude as compared to the electron one so that Eq. (3) can be

simplified to

�≶,S
nm (E , kz ) =

∑
λ,l1,l2

Jλ

E2
ph,λ

Mλ
nl1 (kz )

× [G≶
l1l2

(E ∓ Eph,λ, kz )

+ G≶
l1l2

(E ± Eph,λ, kz )]Mλ
l1,m(kz ). (8)

The electron-photon coupling matrix elements Mλ
nm(kz ) are

defined as

Mλ
nm(kz ) = c0�e�qλ · �pnm(kz ). (9)

Note that all matrix blocks in Eq. (8), that is �
≷,S
nm , G≷

nm,
and Mλ

nm, have the same dimensions, Norb,n × Norb,m, where
Norb,n/m is the number of localized orbitals centered at
position �Rn/m.

Contrary to other scattering mechanisms such as electron-
phonon, light-matter interactions extend over long distances
so that the self-energy in Eq. (8) cannot be reduced to its
diagonal entries [61]. At the same time, considering full self-
energy matrices is not possible from a computational point
of view. We therefore introduced a cutoff radius rcut that
determines the largest possible interatomic interaction range.
If the distance between atoms m and n, i.e., | �Rm − �Rn| is larger
than rcut, then G≶

nm, Mλ
nm, and �

≶
nm in Eq. (8) are all set to 0.

The influence of rcut on the transport calculation results will
be carefully analysed in Sec. III C.

Finally, the photoexcited current flowing through the
vdWH devices can be computed with the following
equation [62]:

Id = 2e

h̄

∑
kz

∑
n,m

∫
dE

2π
tr(Hnm(kz ) · G<

mn(E , kz )

− G<
nm(E , kz ) · Hmn(kz )). (10)

Here, the indices m and n run over all orbitals situated within
two consecutive transport cells. Spin is included through the
prefactor 2 in Eq. (10).

Excitonic effects have a significant impact on the optical
and optoelectronic properties of devices based on TMDCs.
However, including such effects into an ab initio quantum
transport framework goes beyond existing modeling capabili-
ties due to the high computational burden associated with the
treatment of many-body phenomena. A qualitative analysis of
excitonic effects is provided in Sec. IV E.

III. COMPUTATIONAL DETAILS

A. DFT calculations

A MoSe2-WSe2 van der Waals heterostructure is inves-
tigated to illustrate the developed simulation approach and
study interlayer electron-hole pair generations. The chosen
stacking order is AA’, which belongs to the D3d point group,
following the same notation as in Ref. [63]. This config-
uration has been proved to be the one with the lowest
energy [1,63–65].

The DFT package VASP [66,67] was employed to per-
form the required ab initio calculations for the primitive unit
cell of the vdWH using the generalized gradient approxima-
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tion (GGA) of Perdew, Burke, and Ernzerhof (PBE) [68], a
�-centered Monkhorst-Pack k-point grid of dimension 21 ×
1 × 21 and a plane-wave cutoff energy of 600 eV. The DFT-
D3 method of Grimme [69] accounts for the van der Waals
interactions. For the forces acting on each ion, a convergence
criterion smaller than 10−8 eV/Å was applied, while a total
energy difference smaller than 10−10 eV between two sub-
sequent iterations was set as the target. Along the stacking
direction (c axis), aligned with the y axis of the device in
Fig. 1, a large vacuum of 30 Å was placed to avoid spurious
dipole interactions between the unit cell of interest and its
periodic replica in the out-of-plane direction [70]. For the sake
of simplicity, spin-orbit coupling (SOC) was neglected in our
calculations, but we analyze its effects and discuss its impact
on the results in Sec. IV C.

B. Quantum transport simulations

To determine the quantum transport properties of the de-
vice, it is more convenient to use a localized basis set. It
facilitates the separation of the investigated domain into a
central region and two contact regions and allows to model
different device geometries. Therefore the plane-wave (PW)
Hamiltonian obtained from VASP was transformed into a ba-
sis of maximally localized Wannier functions employing the
WANNIER90 tool [52]. To provide an accurate description of
the MoSe2-WSe2 band structure around its band gap, we used
as initial projections five d-like orbitals per Mo and W atom
and three p-like orbitals per Se atoms. With this setting, the
MLWF band structure differs from the PW one around the
conduction and valence band edges by no more than 10 meV.

By applying the upscale technique of Ref. [71] on the
hexagonal unit cell of the MoSe2-WSe2 heterostructure, we
constructed the simulation domain corresponding to the ge-
ometry in Fig. 1. For device calculations, an orthorhombic
transport cell was employed and derived from the hexagonal
unit cell by applying a transformation matrix of ((2, 0, 2),
(0, 1, 0), (−2, 0, 2)) to its lattice vectors. The resulting
transport cell has dimensions a = 1.15 nm (aligned with the
transport direction x) and b = 0.66 nm (aligned with the
periodic direction z, which is orthogonal to a). The final
MoSe2-WSe2 PIN junction used to investigate light-matter
interactions in vdWHs is presented in Fig. 1. It is made of
2496 atoms in total. The P- and N-doped regions measure
LDop=10 nm each, while the central intrinsic region is of
length LInt=40 nm. A monochromatic, vertically incident,
and x-polarized light is shined over the entire device from the
top. Its energy density J in Eq. (7) is equal to 1010 W/m2, a
value much larger than in experiments (103 W/m2) [72]. A
high energy density is required to ensure that the magnitude
of the photoexcited current remains above the numerical noise
associated with the SINV or RGF algorithms. This must be
done because the scattering electron-photon self-energy in
Eq. (8) is directly proportional to the energy density of the
incident light and typically orders of magnitude smaller than
the Hamiltonian entries. Increasing J in Eq. (7) has however
little influence on the results, the photocurrent depending lin-
early on this parameter, as shown in Fig. 2.

The simulation workflow proceeds as follows: first,
Poisson’s equation is self-consistently solved with the NEGF

FIG. 2. Photocurrent extracted from the vdWH PIN photodiode
in Fig. 1 as a function of the energy density J of the incident light.
The photoenergy is set to 2.1 eV, while the built-in potential of the
diode is equal to 0.4 V. The inset is a log-log plot of the results to
better visualize the very low energy densities.

system in the ballistic limit of transport. The resulting electric
potential, flat in the P and N regions and with a quasilinear
potential drop in the intrinsic region, is then passed as an
input to the dissipative quantum transport simulations with
the electron-photon interactions activated. Upon illumination
by a polarized light beam over the whole device region, a
photocurrent is induced in the MoSe2-WSe2 PIN junction.
Due to the very demanding computational burden associated
with the resolution of the electro-optical transport problem,
only one kz point, the one corresponding to the K point in
the Brillouin zone, was considered in this work. The energy
vector E over which the Green’s functions and self-energies
are evaluated is homogeneously discretized with an interval of
0.02 eV. Although large this energy discretization is sufficient
to capture the features of the generated photocurrents, as will
be shown in the Result section.

C. Electron-photon scattering self-energies

As a first step, we investigated the influence of the
cutoff radius, rcut, which is applied to the Green’s func-
tions, scattering self-energies, and optical matrix elements,
on the magnitude of the photoexcited current for the selected
MoSe2-WSe2 PIN device. To do that, the vdWH was illu-
minated by a monochromatic light signal with an energy of
2.1 eV, while the built-in potential of the PIN diode was equal
to 0.4 eV. The results are presented in Fig. 3(a). Perform-
ing such an analysis for this heterostructure is however very
demanding. More than 15 days are required on 32 CPUs to
include interactions up to rcut = 2.29 nm [see Fig. 3(b)]. For
this reason, to be able to explore larger radii (up to 5.7 nm),
we studied the influence of rcut on the individual WSe2 and
MoSe2 monolayers. No clear convergence of the photoexcited
current can be observed, but its values remain within 10%–
20% of the average taken over the entire rcut range. Hence,
adopting a relatively low rcut value can be envisioned.

Furthermore, even if the absolute values of the optically
induced current vary with rcut its spectral and spatial dis-
tributions do not change much, as can be seen in Fig. 4,
where the photocurrent density of a WSe2 PIN diode is
given as a function of the electron energy and its location
along the transport direction x using a photon energy of
2.1 eV, for three different cutoff radii, rcut = 1.1, 3.4, and
5.5 nm. Similarly, in Fig. 5, the photocurrents corresponding
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FIG. 3. (a) Optically induced electrical current in a 60-nm-long
MoSe2-WSe2 (solid green line with squares), MoSe2 (solid red line
with stars), and WSe2 (dashed blue line with dots) PIN photodiode
as a function of the cutoff radius that limits the range of the entries
in the scattering electron-photon self-energy in Eq. (8). The device
is illuminated by a monochromatic light signal of energy 2.1 eV
and the built-in potential is set to 0.4 V. (b) Time required to obtain
the results in (a) with 128 CPUs for the individual monolayers and
32 CPUs for the vdWH. The approximate times in hours for the last
points investigated are reported.

to rcut = 1.1, 3.4, and 5.5 nm are plotted as a function of
the electron energy at the position x = 32.9 nm along the
transport direction, i.e., in the middle of the device. Clearly,
the three curves qualitatively agree, thus justifying the usage
of a small rcut. To keep the computational burden manageable,
the subsequent simulations of the MoSe2-WSe2 vdWH have
been therefore carried out using rcut = 1 nm, which is ex-
pected to provide qualitatively meaningful and quantitatively
accurate (within 10%–20%) results. Our assumption is that
the behavior of the photoexcited current in the MoSe2-WSe2

vdWH follows the same trend as that of the individual layers
composing it.

IV. RESULTS AND DISCUSSION

A. Optical matrix elements

In Fig. 6(a), the electronic dispersion of the MoSe2-WSe2

vdWH projected onto the atomic orbitals of each TMD is
presented. It is worth highlighting that the chosen TMD
monolayers exhibit a direct band gap at the K point, but their
AA’ stacking leads to a slightly indirect band gap between the
K and � point, which might prevent this material combination
to be employed in high-efficiency optoelectronic applications.
While the nature of the band gap (direct/indirect) can be con-
trolled by fine tuning the atomic positions [73], introducing
strain or changing the stacking might give rise to energetically
less favourable configurations. Here, we decided to maintain
the energetically most favourable stacking because the differ-
ence between the top valence band at � and its value at K does
not exceed 0.13 eV.

The orbital character of each band significantly changes as
a function of the momentum. At the K point, the lowest con-
duction band (CMB) belongs to MoSe2, the highest valence
band (VBM) to WSe2. The second lowest conduction band
(CMB + 1) comes from WSe2, whereas the second highest

FIG. 4. (a) Spatial and spectral distribution of the optically in-
duced current flowing through a WSe2 PIN-junction using a cutoff
radius rcut = 1.1 nm, a monochromatic light illumination with en-
ergy Eph = 2.1 eV, and a built-in potential of 0.4 eV. The Fermi
level is indicated by the dashed green line. The conduction and
valence band edges are represented by the dashed black lines. The
black dashed and dotted line indicate the position x = 32.9 nm.
(b) Same as (a), but for rcut = 3.4 nm. (c) Same as (a) and (b), but
for rcut = 5.5 nm.

valence band (VBM-1) has a hybrid character, slightly shifted
towards MoSe2, making the wave functions corresponding to
this band delocalized over both layers. At the � point, the
highest valence band also has a strong hybrid character. The
indirect band gap between K and � measures EK� = 1.13 eV,

FIG. 5. Energy-resolved photocurrent at position x = 32.9 nm in
Fig. 4 for the three different cutoff radii rcut = 1.1, 3.4, and 5.5 nm
considered here.
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FIG. 6. (a) Partial band structure of the considered MoSe2-WSe2

van der Waals heterostructure projected onto the orbitals of MoSe2

(red) and WSe2 (blue). (b) Zoom into the dashed black box in (a).
The energy levels belonging to the different TMDs at the K point are
shown.

while the direct one at K is equal to 1.26 eV. The distance at K
between CBM and CBM + 1 is 0.3 eV, the distance between
VBM and VBM-1 0.2 eV [see Fig. 6(b)]. Our findings are
consistent with other theoretical studies [34,46].

Figure 7 shows the interband light-matter coupling matrix
elements Mx

αβ (�k) for the MoSe2-WSe2 vdWH evaluated be-
tween different conduction and valence bands on a uniform
k-point mesh in the entire Brillouin zone using a light po-
larization aligned with the in-plane x axis (�ex). The Mx

αβ (�k)

is obtained from the Mx
nm(�k) in the localized orbital basis

of Eq. (9) as

Mx
αβ (�k) =

∑
nm

cn∗
α (�k)Mx

nm(�k)cm
β (�k), (11)

where cn
α (�k) and cm

β (�k) are the coefficients of the wave func-
tion in the MLWF basis. They correspond to the nth and mth
entries of the eigenstates of the MLWF Hamiltonian at �k, for
the bands α and β, respectively. It can be first observed that the
Mx

αβ (�k)’s strongly vary with respect to the momentum vector.
For instance, the value at K in subplot (a) is much smaller than
the one at � for the coupling between CBM and VBM. This
can be explained by the fact that, at K , the two considered
bands belong to different TMDs, i.e., their wave functions
barely overlap, while at �, the lower valence band belongs to
MoSe2, while the conduction band has a hybrid character, i.e.,
its wave function is delocalized over both TMDs. The same
happens at �, but the resulting momentum operator is almost
negligible there, although this transition is not forbidden by
the symmetry of the wave function. Note also that the band
gaps at � (2 eV) and at � (2 eV) are much larger than at K
(1.26 eV) so that no transition is expected to occur at these
points.

Figures 7(b) and 7(c) depict the same quantity as in
Fig. 7(a), but evaluated between CBM + 1 and VBM and be-
tween CBM and VBM-1, respectively. In these cases, Mx

αβ (K )
connects bands that belong to the same TMDs (intralayer)
or have a hybrid character. The reported values are therefore
much larger than when the bands are situated in different
TMDs (interlayer), as in Fig. 7(a). At first sight, it appears
highly unlikely that interlayer electron-hole pairs can be di-
rectly created through light absorption at the K point. They
should be first generated inside the same monolayer and then
one charge carrier should be transferred to the other layer
via, for example, phonon emission processes [34]. In the
following, we will demonstrate that despite the weak inter-
layer matrix element, it is still possible to generate interlayer

FIG. 7. (a) Light-matter coupling matrix element Mx
αβ (�k) from Eq. (11) for a light polarization aligned with the in-plane x axis evaluated

between the lowest conduction band (CBM) and the highest valence band (VBM) of the MoSe2-WSe2 heterostructure in the entire Brillouin
Zone. Green/yellow (blue/black) indicates a high (low) value of Mx

αβ (�k). The high symmetry points, K, �, and � are explicitely marked.

(b) Same as (a), but for Mx
αβ (�k) evaluated between the second lowest conduction band (CBM + 1) and the highest valence band (VBM) of the

MoSe2-WSe2 heterostructure. (c) Same as (a), but for Mx
αβ (�k) evaluated between the lowest conduction band (CBM) and the second highest

valence band (VBM-1) of the MoSe2-WSe2 vdWH.
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FIG. 8. (a) Spectral and spatial distribution of the photocurrent
flowing through a MoSe2-WSe2 PIN photodiode at kz = K using a
photon energy Eph = 1.8 eV and a built-in potential of 0.4 eV. The
Fermi level is indicated by the dashed green line. The conduction
(MoSe2) and valence (WSe2) band edges are represented by the
dashed black lines. Red indicates electrons (holes) moving towards
the N(P) side, which is situated on the right (left) of the device. Blue
refers to the opposite direction. (b) Sketch of the elastic processes
occurring in (a). The solid green lines represent energy levels. Empty
and filled circles are holes and electrons, respectively. The blue arrow
shows the creation of an electron-hole pair, which is then coherently
separated by the electric field. Relaxation (promotion) into lower
(higher) energy states is not accounted for in our model.

electron-hole pairs in a coherent way, without phonon assis-
tance, by leveraging the hybrid character of the second highest
valence band, which is delocalized over the MoSe2 and WSe2

monolayers.

B. Photocurrent analysis

The spatial and spectral resolution of the photocurrent in
the MoSe2-WSe2 vdW PIN photodiode is given in Fig. 8(a)
using Eph = 1.8 eV and a built-in potential of 0.4 V. Once
an electron-hole pair is created through light absorption, elec-
trons in the conduction band and holes in the valence band
are accelerated by the electric-field of the intrinsic region
towards the contacts of the PIN junction. However, since no
inelastic processes are considered [Fig. 8(b)], states have to
be available at the same energy throughout the device to allow
for electrons (holes) to flow toward the N (P) side and be
collected there. When this condition is satisfied, a positive
current is observed. It is represented by the red background in
Fig. 8(a). The blue background, instead, depicts the condition
for which electrons are driven towards the P side and holes
towards the N side. Due to the weak electric field in the
regions near contacts, most photoexcited electron-hole pairs
are not separated before being collected. This leads to the
negative current densities seen in Fig. 8.

To continue our analysis, we investigated the electron (Ie)
and hole (Ih) components of the photocurrent. For that pur-
pose, we set the built-in potential to 0.2 V and the photon
energy to 1.8 eV. We chose a built-in potential lower than
the energy difference between CBM and CBM + 1 as well

FIG. 9. (a) Photocurrent flowing through a MoSe2-WSe2 PIN
photodiode with a built-in potential of 0.2 V and a photon en-
ergy Eph = 1.8 eV. The variable Ie (Ih) refers to the electron (hole)
current, while I = Ie + Ih is the total current as obtained from a
full-band simulation (black dots) or after separating the electron and
hole contributions (green line). (b) Decomposition of the electron
photocurrent in (a). Ie

MM (Ie
WW ) is the electron current flowing between

atoms in the MoSe2 (WSe2) layer, while Ie
MW (Ie

W M ) is the current
flowing from atoms in the MoSe2 (WSe2) layer to atoms in the WSe2

(MoSe2) layer. (c) Same of (b), but for holes.

as between VBM and VBM-1 in Fig. 6(b) in order to suppress
any interlayer tunneling path and to simplify the following
analysis of our results. First, we performed a simulation over
the entire electron and hole energy spectrum of interest, i.e.,
the energy range goes from below the valence band edge of
MoSe2 to above the conduction band edge of WSe2. After
running this simulation, all self-energy matrices were stored.
We then decomposed the current into Ie and Ih by passing
the self-energies corresponding to the appropriate energies as
inputs to two new simulations. The calculation of the hole
photocurrent relies on energies below the Fermi level in Fig. 8,
while its electron counterpart is obtained by summing up the
contributions above the Fermi level. As shown in Fig. 9(a),
adding up the electron and hole components produces the
same current as obtained with the full energy spectrum. This
demonstrates that the separation of the scattering self-energies
still delivers the expected result. Moreover, the hole current
dominates on the P side of the diode, the electron current
on the N side, while they have the same value almost in the
middle of the intrinsic region.

Going one step further, an atomistic resolution of the
photocurrent can be realized by applying Eq. (10) between
different atoms instead of different cells. We therefore divided
the current into intralayer [electrons and holes flow between
atoms in WSe2 (IWW ) or MoSe2 (IMM)] and interlayer [car-
riers are either transferred from WSe2 to MoSe2 (IW M) or
from MoSe2 to WSe2 (IMW )] contributions. The inter and
intralayer photocurrents for electron and holes are presented
in Figs. 9(b) and 9(c), respectively. It can be observed that
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FIG. 10. (a) Electron photocurrent flowing through the
MoSe2-WSe2 PIN photodiode in Fig. 1 with a built-in potential of
0.2 V and a photon energy equal to 1.55 eV. Only the contributions
to the momentum operator between atoms situated in WSe2 are
considered (P-WW). The Ie

MM , Ie
WW , Ie

MW , and Ie
W M quantities have

the same meaning as in Fig. 9. (b) Same of (a), but for holes.

IWW and IMM exhibit similar behaviours for both electrons
and holes, increasing (decreasing) from the left to the right
for electrons (holes). This indicates that carriers are generated
with almost the same probability in both monolayers. As
IMW and IW M are extremely small it can be deduced that the
electrons and holes remain in the monolayer where they were
created: there is almost no charge transfer from one layer to
the other.

Based on these results, it is not possible to determine
whether electron-hole pairs are generated across the MoSe2

and WSe2 monolayers (interlayer) or only inside the indi-
vidual TMDs (intralayer). To address this question, the PIN
built-in potential was kept at 0.2 eV and only the momentum
operator entries in Eq. (9) connecting atoms within the WSe2

monolayer (P-WW) were retained, as if we were only shining
light onto that material. A photon energy of 1.55 eV was
selected, in order to connect VBM and CBM + 1 at the K
point (Fig. 6). Figure 10 shows that both the electron and hole
currents reside inside the WSe2 layer: almost no interlayer
electron-hole pairs are created as the IMW and IW M contribu-
tions can be barely detected and thus only a very small IMM is
present.

Finally, the same experiment was repeated, but keeping
only the momentum operator entries connecting atoms within
the MoSe2 monolayer, i.e., P-MM. The photon energy was
set to 1.46 eV, in order to connect VBM-1 and CBM. As
expected, all electrons are created within MoSe2 (Ie

MM) and
they remain there, as can be seen in Fig. 11(a), because
the built-in potential (0.2 eV) is smaller than the energy
difference between CBM and CBM + 1 (0.3 eV). Hence,
electrons cannot gain enough excess energy to overcome
the energy difference and tunnel from the MoSe2 to the
WSe2 layer.

Holes, instead, are generated both in MoSe2 and WSe2

[Fig. 11(b)] since the VBM-1 wave function is delocalized
over both monolayers (Fig. 6). As a consequence, the behavior
of Ih

WW is very similar to that of Ih
MM . The electron-hole pairs

created in this case either belong to the same layer (MoSe2) or
are generated across both layers (electrons in MoSe2 and holes

FIG. 11. Same as Fig. 10, but with a photon energy equal to
1.46 eV and considering only the contributions to the momentum
operator between atoms located in MoSe2 (P-MM).

in WSe2). These interlayer electron-hole pairs are physically
separated in space and less susceptible to recombine than
those localized in the same monolayer. To obtain an interlayer
exciton between CBM and VBM and not between CBM and
VBM-1, the holes situated in WSe2 should release their extra
kinetic energy by emitting phonons and relax from VBM-1
to VBM. Once this is done, they can interact and bind with
an electron in MoSe2. As compared to the widely assumed
theory of interlayer excitons formation via charge transfer, no
phonon-assisted tunneling is directly required in the mecha-
nism proposed here, as shown by the small interlayer currents
IMW and IW M in Fig. 11. It should nevertheless be emphasized
that the photoexcited currents in Fig. 11 (MoSe2 illumination)
are 3 to 5 times lower than in Fig. 10 (WSe2 illumination). The
interlayer processes, although efficient, are less strong than
the intralayer ones.

We would like to point out that the localized and delo-
calized nature of the wave functions strongly depends on
the stacking order. The electronic dispersion projected onto
the orbitals of the selected MoSe2-WSe2 system is given in
Fig. 12 for two different stacking orders. Subplot (a) shows the
result obtained for the AA’ stacking, the one used in this paper,
while subplot (b) presents the band structure of the AA stack-
ing where the transition metal (chalcogenide) atoms of the top
layer are aligned with the transition metal (chalcogenide) of
the bottom layer. At the K point the second highest valence
band, highlighted by a dotted circle, is localized in the MoSe2

monolayer in the AA stacking, contrary to the case with AA’
stacking, where it is delocalized. If the same numerical ex-
periment as in Fig. 11 is repeated for the AA stacking (only
contribution to the momentum operator for atoms in MoSe2),
all electron-hole pairs are generated in MoSe2, as can be seen
in Fig. 13. It is therefore clear that the interlayer electron-hole
pairs originate from the delocalized VBM-1 band in the AA’
stacking case.

C. Influence of spin-orbit coupling (SOC)

Since SOC is crucial to understand TMDC systems [74],
we performed additional calculations including this effect and
compared them to results without it. For our MoSe2-WSe2

vdWH with the AA’ stacking, including the SOC leads to a
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FIG. 12. (a) Partial band structure of a AA’-stacked MoSe2-WSe2 vdWH projected onto the orbitals of MoSe2 (red) and WSe2 (blue).
(b) Same as (a), but for the AA stacking. The inset in each subfigure shows the Kohn-Sham wave functions of the second highest valence band
(VBM-1) at K that is circulated.

reduced direct band gap at the K point, as shown in Fig. 14.
SOC has a particularly strong influence on the VBs, where
the two upper bands split into four bands. The lowest CB is
less affected by SOC, while the second lowest CB undergoes
a stronger variation. Particularly, the direct band gap at the
K point is reduced from 1.26 to 1.01 eV by SOC. Impor-
tantly, the second and third VB wave functions at the K point
in the calculation with SOC exhibit a similar delocalization
character as the (VBM-1) wave function in the calculation
without SOC, as depicted in Fig. 14. The magnitude of the
wave function appears smaller with SOC due to the usage of
a different normalization in both cases.

Next, we recalculated the photocurrent flowing through the
considered vdWH in the presence of SOC. As an example, we
used Eph = 2.1 eV and a built-in potential energy of 0.4 eV.
The photocurrent is reduced after including SOC by a relative
variation of around 20%. In view of the strong effect of SOC

FIG. 13. Same as Fig. 11, but for the AA stacking order of the
MoSe2-WSe2 vdWH.

on the band structure, such variation is expected. Hence, even
though including SOC quantitatively affects the value of the
photocurrent, it does not alter the main conclusion of our
work, namely that interlayer excitons can be created without
the need for electron-phonon interactions.

D. Impact of the interlayer distance

DFT typically struggles at determining the exact equi-
librium distance between adjacent layers in van der Waals
heterostructures due to the long-range correlation effects of
van der Waals interactions. It is therefore of practical interest
to examine the influence of the interlayer distance on the
band structure and photocurrent of our MoSe2-WSe2 device.
We artificially changed the interlayer distance from +3% to
−1% with respect to the equilibrium distance of the fully
relaxed structure. Figure 15 shows that the band structure is
very weakly affected by the interlayer distance and the largest
variation happens at the � point, not at the K point where most
of the light is absorbed.

The wave function delocalization between the layers is
compared for all these cases. We notice that the delocaliza-
tion is slightly sensitive to the interlayer distance, remaining
similar, from the +3% to the −1% case. The shorter the inter-
layer distance, the stronger the wave function delocalization
appears. Next, we computed the photocurrent based on these
DFT results relying on different interlayer distances. Here
again, we used Eph = 2.1 eV and a built-in potential energy of
0.4 eV. No noticeable variation of the photocurrent is observed
when the interlayer goes from −1% (39.8 μA/μm) to +3%
(39.7 μA/μm). It can thus be concluded that the uncertainty
in the interlayer distance does not qualitatively change the
findings of our paper.
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FIG. 14. Band structure of the MoSe2-WSe2 with and without SOC. The arrow indicates the second highest valence band at the K point.
The plots on the right side show the corresponding wave function.

E. Excitonic effects

Excitonic effects profoundly affect the photoconductivity
and other optoelectronic properties of layered TMDCs and
their vdWHs due to their combination of a 2D planar struc-
ture and strong Coulomb interactions. On the one hand, large
excitonic binding energies enhance the optical absorption of
TMDCs, which could potentially lead to higher photocon-

FIG. 15. (a) Band structure of the MoSe2-WSe2 heterostructure
with interlayer distance varied from +3% to −1% as compared to
equilibrium distance obtained using PBE. (b) Wave function of the
second highest valence band at the K point for different interlayer
distances.

ductivity. On the other hand, larger exciton binding energy
requires stronger electric fields to ionize the excitons into
charged carriers and generate a photocurrent. Previous theo-
retical investigations of monolayer MoS2 predicted that the
ionization time of exciton in this material decays exponen-
tially when increasing the in-plane electric field [75]. For an
electric field strength similar to the one used in our simula-
tions (about 0.01 V/nm), the ionization time is expected to be
below 0.1 ns for monolayer MoS2. We expect similar values
and orders of magnitude for the ionization time of monolayer
MoSe2 and WSe2.

As photocurrent generation has been experimentally ob-
served in MoSe2-WSe2 vdWHs by several groups working
with similar structures as the one studied here, it can be
deduced that the possibility of dissociating interlayer excitons
exists in the devices modeled in this paper. Due to the type-II
band alignment and the atomically sharp interface in the van
der Waals heterostructures, the interlayer vertical electric field
is strong, which results in the ultrafast charge transfer between
the two layers [8,76]. Interlayer excitons with a reduced bind-
ing energy and much longer lifetime facilitate the ionization
by in-plane electric field. However, considering that the ef-
fect of exciton ionization could still overwhelm the increase
of absorption, our results should probably be seen as some
kind of upper limit for the photocurrents flowing through
MoSe2-WSe2 vdWHs. To definitively assess the impact of
excitons on the creation of interlayer excitons and their disso-
ciation into moving electron-hole pairs, a more sophisticated
simulation approach is needed that goes beyond the scope of
this paper.

V. CONCLUSIONS

We developed a theoretical framework to compute the pho-
togeneration of electron-hole pairs and carrier transport in van
der Waals heterostructures at the quantum mechanical level
using many-body perturbation theory and the nonequilibrium
Green’s function formalism. The electronic Hamiltonian and
electron-photon coupling matrix elements are obtained from
density functional theory calculations, thus avoiding the need
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for fitting parameters. Utilizing this simulation environment,
we investigated light-matter interactions in MoSe2-WSe2-
based PIN photodiodes illuminated by a monochromatic light,
polarized along the x axis, and vertically incident on the de-
vice. We found that the localized nature of the wave functions,
which can be controlled by the stacking order, allows to gener-
ate and maintain an electron or hole photocurrent exclusively
in one of the monolayers. When, instead, a band is delocal-
ized, both intra- and interlayer electron-hole pairs can be gen-
erated, paving the way for the formation of interlayer excitons.

In reality, the exchange of momentum between phonons
and electrons may play an additional important role in pro-
cesses involving light-matter interactions. For instance, they
may enable electrons and holes to move from the K to the
� or � valley in the Brillouin zone where the interlayer
coupling is stronger than at K . Electron-phonon scatter-
ing can be readily included in the framework developed in
this work. However, despite using efficient parallel numer-
ical algorithms, the inclusion of both electron-photon and
electron-phonon interactions at the ab initio level requires
prohibitively high computational resources and could not be
applied here. The usage of a phenomenological electron-
phonon scattering model could be a solution to this problem
and will be tested in the future.
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APPENDIX: CONSTRUCTION OF THE
HAMILTONIAN MATRIX

Periodic boundary conditions along z are imposed to
the Hamiltonian matrix by introducing a kz-dependence

according to

H (kz ) =
∑

n∈{−∞,...,−1,0,1,∞}
H(n)e

inkz
z . (A1)

Here, H(n) describes the hoping Hamiltonian matrix connect-
ing the central orthorhombic transport cell to its periodic
replica situated at z = z0 + n
z, where 
z is the width of
the central cell along z and z0 its position while −π/
z �
kz < π/
z. Typically, the transport unit cell is made large
enough so that only coupling to nearest-neighbor cells ex-
ists, i.e., n ∈ {−1, 0, 1}. Going beyond nearest-neighbor cell
coupling by decreasing the transport cell (here up to second
nearest-neighbor, n ∈ {−2,−1, 0, 1, 2}) allows to reduce the
computational burden. It should however be noted that reduc-
ing the size of the considered unit cell should be compensated
by a proportional increase of the number of kz momentum
points (Nkz) along the z direction, to keep the same accuracy.
Since the computational complexity for the calculation of the
Green’s function is proportional to Nkz × N3

O,UC , NO,UC being
the number of orbitals in the transport cell, scaling NO,UC

by a factor α and multiplying Nkz by the same factor is
advantageous, with a potential gain of α2. When different kz’s
are coupled to each other through scattering self-energies, as
encountered for example with electron-phonon interactions,
a higher number of kz’s is undesirable because the com-
putational intensity grows quadratically with Nkz, i.e., it is
proportional to N2

kz
× NA. As typically the time to compute

kz-dependent scattering self-energies dominates over that re-
quired to solve the Green’s functions. The benefit of reducing
the size of the transport unit cell vanishes in most cases.
With electron-photon interactions, the situation is different
as all kz’s are independent of each other due to the negligi-
ble magnitude of the photon momentum as compared to the
electron one. Applying the trick in Eq. (A1) then becomes
computationally attractive.
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