PHYSICAL REVIEW B 106, 035301 (2022)

Biaxial strain modulated valence-band engineering in III-V digital alloys
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A series of III-V digital alloy avalanche photodiodes have been recently seen to exhibit very low excess
noise. These alloys have low hole ionization coefficients due to enhanced effective mass, a large separation
between light-hole and split-off bands in the valence band, and in one case (InAlAs), potentially the creation
of a small minigap in computed band structures. Whereas such minigaps would indeed provide a reliable way
to suppress hole transport and reduce excess noise, their physical origin is explored here. In this paper, we
provide an explanation for the formation of the minigaps as arising from oscillations in certain orbital overlaps.
We demonstrate that decreasing the substrate lattice constant would increase the minigap size and mass in the
transport direction. This leads to reduced quantum tunneling and phonon scattering of the holes. Finally, we
illustrate the band-structure modification with substrate lattice constant for other III-V digital alloys. We, thus,
provide a recipe for deterministic engineering of sizable valence-band minigaps as a potential recipe for high

gain avalanche photodiodes.
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I. INTRODUCTION: THE POTENTIAL IMPACT OF
MINIGAPS ON AVALANCHE PHOTODIODE DESIGN

The fields of silicon photonics, telecommunication and
light imaging, detection and ranging systems are undergoing
unprecedented growth with the emergence of the internet of
things, spawning a correspondingly increased demand for effi-
cient photodetectors [1-8]. The avalanche photodiode (APD)
is an ideal candidate for such applications due to its intrinsic
gain mechanism which enables higher sensitivity [9]. How-
ever, the gain performance of an APD is associated with
excess noise which arises due to the stochastic nature of the
impact ionization process. The excess noise factor F (M) is
set by the variance in particle count a,fl = (m?) — (m)? vs the
mean particle gain (m) = M through the relation o /M? =
F(M)—1= (M —1)/M + k(M — 1)*/M. The average parti-
cle strength (mz), in turn, contributes to the shot-noise current
fluctuation (i32h0l> = 2qIM 2F (M)A f [10-12] for uncorrelated
electrons. Here, ¢ is the electron charge, I is the total photo
plus dark current, M represents the average multiplication
gain, and Af gives the bandwidth. The excess noise can be
minimized by reducing the ratio k of the hole ionization co-
efficient 8 to the electron ionization coefficient « for electron
injected APDs. For hole-injected APDs the ratio is reversed.
Primarily, we can reduce the excess noise in three possi-
ble ways—choosing semiconductor materials with favorable
impact ionization coefficients, adjusting the multiplication re-
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gion width to utilize the nonlocal aspect of impact ionization
and designing heterojunctions in order to engineer the impact
ionization process [9].

Recently, III-V digital alloy APDs with very low excess
noise and high gain-bandwidth product operating in the short-
infrared wavelength spectrum have been reported [13—15].
Digital alloys are short-period superlattices that include alter-
nately stacked binary compounds in a periodic fashion. The
low k in these few digital alloys can be ascribed to multiple
factors—the generation of minigaps in the material valence
band, a corresponding enhanced valence-band effective mass
and finally a large separation between the light-hole and the
split-off bands [16—19]. These properties prevent holes from
gaining energy and keep them localized near the valence-band
edge. However, in these electron-injected APDs, the electrons
in the conduction band can easily move to higher energies,
bypassing the conduction-band minigaps in order to impact
ionize due to their low effective mass.

Minigaps are seen to arise naturally in the first-principles
unfolded band structures calculated for the superlattice stack.
However, their chemical origin is not well understood and
require an in-depth analysis. In Ref. [19], we established that
minigaps play a crucial role in limiting hole impact ionization
in some III-V digital alloys, particularly, InAlAs, that lead
to low excess noise. A sizable minigap prevents transport
across it by quantum tunneling and optical phonon scattering
processes, thus, restricting them near the valence-band edge.
This leads to a reduced hole ionization coefficient and the
resulting large asymmetry with the electron ionization coeffi-
cient brings about the low excess noise. Whereas the presence
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FIG. 1. The schematic of a typical ternary InAlAs digital alloy
structure. Here, the InAs and AlAs layers are stacked alternately in a
periodic manner.

of minigaps is not a necessary condition for high photogain
with low excess noise, it may well prove to be a sufficient
condition in many cases. It is, thus, useful to identify ways to
engineer such minigaps deterministically with various design
knobs, such as alloying and strain.

In this paper, we illustrate the role of strain and its con-
sequent effects on the digital alloy bonding chemistry, that
leads to the formation of minigaps. We draw elements from
the well-known and simple sp* tight-binding model [20,21]
to perform this analysis. To perform a detailed analysis,
we then employ a more elaborate environment-dependent
tight-binding (EDTB) model [22,23] with band unfolding
techniques [24-26] to investigate the role of strain in the
formation and modulation of these digital alloy minigaps.
Furthermore, we study the relationship between biaxial strain
and minigap size and their overall impact on carrier transport.
This paper provides a convenient design principle towards
efficient photodetectors and for overall tunability of electron
wave function in digital superlattices.

II. SIMULATION METHOD

A. Environment-dependent tight binding and band unfolding
for an atomistic description

A digital alloy (see Fig. 1) band structure requires par-
ticular attention to two multiscale attributes—short-range
atomistic modifications at the heterointerfaces and long-range
band modulation by the superlattice potential. Conventional
tight-binding models are typically not suitable for handling
the material chemistry at interfaces and surfaces as they
are calibrated to the higher-order symmetry of the bulk

crystallographic point group [23]. One alternative is to use
nonorthogonal tight-binding approaches, such as extended
Hiickel theory with explicit atomic basis sets, generating pa-
rameters that are transferrable between diverse environments,
such as bulk vs severely strained and reconstructed surfaces
[27,28]. As an alternate, the tight-binding parameters of our
EDTB model are explicitly environment dependent, calibrated
to state-of-the-art hybrid density functional theory [29] band
structure as well as their orbital-resolved wave functions. As a
result, the model is able to accurately capture changes due to
effects, such as strain and interface reconstruction by tracking
changes in the atomic coordinates, bond lengths, and angles.
Unstrained and strained bulk III-V materials as well as select
alloys were used as fitting targets for the model calibration. In
the past, we have demonstrated that our model matches bulk,
strained layer and superlattice band structures generated using
hybrid functionals [22,30].

Whereas atomistic details are captured by our EDTB, we
still have to deal with the large unit cells of our digital alloys,
which generate an aggressively scaled Brillouin zone (BZ)
and a very complicated band structure due to the proliferation
of a large number of zone-folded bands [30]. The sphagettilike
band structure is simplified by employing a band-unfolding
technique [24-26]. In this method, the supercell bands are
projected onto the Brillouin zone of a primitive cell with
weights set by decomposing individual eigenfunctions into
several Bloch wave functions with separate wave vectors of
the primitive cell Brillouin zone. The eigenvector of the super-
cell |[Km) can be written as a linear combination of primitive
cell eigenvectors kin). Additionally, the atomic eigenstate E,
for wave-vector k is represented as a linear combination of
atomic-orbital wave functions. The supercell wave-function
WS?() can be then denoted as a linear combination of primitive
cell electron wave functions as [13]

’wri%) = Za(kl’ n; K m)’wnk >
i (1)
ki € {ki),

where the electron wave function for the wave-vector &; in the
nth band of the primitive cell is represented by |1ﬂP C) The
supercell and primitive cell reciprocal vectors are des1gnated

as K and k, respectively. The folding vector Gk_)  containing
the projection relationship is written as

- -

K=k-G; ;. )

The projection of the supercell wave-function |¢Z§) into the
primitive cell wave-function |/'%) is denoted by

mK - Z | me ' 3

A pristine image of the band evolution from the individual

primitive components to the superlattice bands can be ob-
tained by plotting these projection coefficients. The EDTB
model together with the band-unfolding tool are used to
compute the band structures in the subsequent Results and
Discussion section.
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B. Nonequilibrium Green’s-function method for coherent
transmission

When it comes to simulating carrier transport, it is worth
keeping in mind that there are two primary mechanisms by
which carriers can bypass the minigaps, namely, quantum
tunneling and optical phonon scattering. The impact of tun-
neling through a minigap is readily captured by computing
the ballistic transmission in three-dimensional (3D) using the
nonequilibrium’s Green’s-function (NEGF) formalism [31].
For this purpose, we developed a NEGF model that utilizes the
Hamiltonian obtained from the EDTB model. The digital al-
loys are translationally invariant on the plane perpendicular to
the growth direction, whereas having finite nonperiodic hop-
ping in the growth (transport) direction. The 3D Hamiltonian
is broken into nearest-neighbor blocks, including the applied
electric field, in the real-space basis along the transport z
direction, whereas Fourier transforming in the transverse x-y
directions, in the k-space basis to capture in-plane struc-
tural periodicity. This results in a Hamiltonian of the form
H(r;, k¢, ky). We start with the 3D EDTB Hamiltonian whose
matrix elements are in symmetrically orthogonalized atomic
orbital basis |nbR). Here, the atom position is denoted by
R, the orbital type (s, p, d, or s*) is given by n and b
represents the atom type (cation or anion). The full Fourier
transformation of this real-space Hamiltonian results in the
elements being represented in the k-space basis |nbk). This
3D Hamiltonian is converted into a position-dependent (along
growth direction) quasi-one-dimensional (-1D) Hamiltonian
by performing a partial Fourier transform in the basis [nbjk )
with “paralle]” momentum k; = (k,, k,) and “perpendicular”
positions x; = ay /4 [19,32,33],

Inbjky) = Ly, / dlc.e” %4 nbk). @)

Here, the length of the 1D Brillouin-zone Lgz = 87 /ay, over
which the k, integral is performed. The distance between
nearest-neighbor planes is one-fourth the lattice constant ay,
in a zinc-blende crystal resulting in x; = a; /4. The accu-
rate EDTB Hamiltonian offers significant advantages over
conventional DFT Hamiltonians that have well-known issues
with derivative discontinuity, orbital-independent functionals,
overbinding and quantitatively poor fitting of bulk semicon-
ducting band gaps (resolved to some degree with hybrid
functionals), but above all require significantly heavier com-
putational power.

At the two ends of the digital alloy device, we consider
extensions of the same material at constant potential as con-
tacts, generating a semiperiodic array of transport blocks with
on-site matrix ag, (i = 1, 2 for the bias-separated contacts at
the two ends) and hopping matrix ﬂ,;u. Using recursion, we

find the two contact surface Green’s-functions g and then the
self-energy matrices ¥, whose anti-Hermitian parts give us
the broadening matrices I related to the electron escape rates

into the contacts,
-1 _  _ at. _a I
gll?” =% ’Bl?uglku ﬂkn’ Elku ﬂl?”glkuﬁku’

—1

. _a .t gt
$ar, = %2k 'Bk”glk“ﬁ’?u’ ZZkH _’Bkunguﬂlzu’

s =iy — 3T
Fikn - l(Eiku EiEH)' ®)

We can then calculate the retarded Green’s-function G and
the quantum-mechanical transmission 7" using the Fisher-Lee
formula [31],

~ — 0ty . Lo 211
Gy (E)=UE +i0 —Hy =% — 17,
. (6)
T = ZTr(F”;” G, Iz, Gy )
ky

The energy-resolved net current density from the layer m to
layer m + 1 is expressed as [32]

nmir(B) = =4 [ K_pyerr g
m,m+1( ) A (27_[)2 r[ m+1,mIm,m+1

- G251+1Hm+l,m]- (7)

The tight-binding hopping element between layers m and
m + 1 along the transport/growth direction is denoted by
H,, n1 in Eq. (7). Here, electron (n) and hole (p) densities
are represented by G = GE"G' and G? = GX°"G', cor-
respondingly. The in-scattering function £ =T, f; + ', f>
and the out-scattering function T =T';(1 — f1) + (1 —
f>), where f), are the Fermi-Dirac distributions at the con-
tacts. These aforementioned quantities are all in the basis
of k. Using this model, we compute the energy-dependent
ballistic transmission to see how minigap size impacts the
quantum tunneling process.

C. Boltzmann transport model for incoherent scattering

Including phonon scattering in NEGF typically requires
generalizing from Fisher-Lee to the Meir-Wingreen incoher-
ent transport formulation with an added phonon self-energy
obtained within the self-consistent Born approximation [31].
Instead, we study the effect of phonon scattering in the
digital alloys using a multiband Boltzmann transport model
that focuses on classical transport with the quantum physics
hidden in the band parameters. The model outputs the energy-
resolved carrier occupation probability, which we calculate to
explore the effect of minigaps on phonon scattering.

Under the influence of an external electric field, the dig-
ital alloy carriers do not follow the standard Fermi-Dirac
distribution but rather redistribute themselves in real and
momentum space. We employed a multiband Boltzmann
transport equation model to compute the modified digital alloy
carrier distribution,

U Vefo+ F - Vicfu = Y (7 PO = fu(P)]
m,p'

= Y S(B. (DI — fulP)]. (®)
m,p'

In the equation, the carrier distribution is f = f(r, k) with n
and m representing band indices, p and ' are the momenta
of the carriers, and the scattering rate is S(77', ). The ballistic
trajectory in phase space under the applied field is described
by the left side of the equation. The right-hand side denotes
the intraband and interband scattering processes. For our sim-
ulations, we consider a homogeneous system with a constant
electric field. As a result, we can assume V,f = 0 since the

distribution function becomes independent of position.
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FIG. 2. In a toy model, we consider a unit cell (dotted box) consisting two arbitrary binary materials. By adjusting their on-site energies
and hopping parameters a material system with zero conduction-band offset and large valence-band offset is created. The large valence-band
offset results in the formation of a small gap called a minigap in the valence band (within red circle) as shown in the unfolded band structure.
There are no prominent conduction-band minigaps due to zero band offset.

In an APD, optical phonon scattering is the alternate
method for overcoming minigaps besides tunneling. The op-
tical phonon scattering S(7', p) for a phonon energy 7w, is
expressible in terms of Fermi’s golden rule,

-/ = 2 >/ -
S P) = = |Hpp 8 g E(P) = EP) £ o). (9)

The digital alloy band-structures E(p) and E(p) are calcu-
lated using the EDTB model. The constant effective scattering
strength Hj 5 is extracted from experimental mobility p =
gt /m*. Here, m* is the carrier effective mass and 7 is the
scattering lifetime, which is essentially 1/S(p', p). A more
detailed description of the calculation of Hj 5 is provided in
Ref. [19].

III. A TOY MODEL: ORIGIN OF VALENCE-BAND
MINIGAPS

Previous studies of digital alloys, such as InAlAs, All-
nAsSb, and AlAsSb [13,16-18] have demonstrated that
valence-band minigaps present in the material band structure
play a part in reducing excess noise by limiting hole carrier
transport. However, the role of minigap is firmly established
for one material combination InAlAs [19]. For the other ma-
terials either a systematic experimental comparison between
digital and random alloy superlattices does not exist, or when
it does, the random shows low noise as well and is attributed
to an energy separated split-off band [19]. Nonetheless, a
deterministic creation of a strong minigap can significantly aid
APD gain by suppressing one carrier type. In this section, we
explore the formation of these gaps using a one-dimensional
simple toy model.

We consider an arbitrary alloy consisting of two materials
X and Y stacked alternately, such as a digital alloy as shown in
Fig. 2. Each of these materials is essentially a dimer consisting
of a set of two atoms. For X, the component atoms are a and

b, and for Y they are c and d. The resulting Hamiltonian of the
unit cell for this material then looks, such as,

ay —Bx —Yrxi
—By ax  —Px
H— —By ax —¥xr1
—¥Yxy2 ay —Br ’
—By ay =Py
—Yrx2 —/3; oy
(10)
where
_(Ex -1 (0 0
Oy = <—t1 Ex>’ ﬁX - <t2 O)y (1])
_(Er -1 _ (0 0
oy = (_t3 EY)’ ﬁY - <t4 O)s (12)
0 O 0 1
Yxy1 = (ls O)’ Yxy2 = (0 8>, (13)
0 ¢ 0 O
Yrxi = <O 8>, Yrx2 = (t O)' (14)

For each material, we consider the on-site energies, Ex y to
be constant, whereas the hopping parameters #; 4 between
the dimer elements vary. #s_g represent the coupling between
material X and material Y. Here, we set Ex = 0.9, Ey = 0.8,
11 =0.6,b=05,13=0.7,1 =05, ts = 0.4, t¢ = —0.6,
t; = —0.4, and 13 = —0.6 in eV. These parameter values are
chosen such that there is a large valence-band offset between
X and Y but the conduction-band offset is zero as depicted in
Fig. 2. The resulting unfolded band structure is shown on the
right side of the figure. We observe that a clear minigap forms
in the valence band (highlighted with a red circle), whereas
correspondingly large minigaps do not arise in the conduction
band.

This simple example illustrates that sizable minigaps can
be engineered selectively in one band with large on-site
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FIG. 3. Six-monolayer (ML) InAlAs consists of InAs and AlAs
grown on an InP substrate. With respect to the InP lattice constant
amp, the InAs lattice constant dp,as dmas > dip and the AlAs lattice
constant asas < app. Thus, InAs experiences biaxial compression,
and AlAs experiences biaxial tension. Biaxial strain results in split-
ting the HH and LH bands. Since InAs and AlAs experience opposite
kinds of strain, their bands move in opposite directions, ensuing a
large valence-band offset. This opens minigaps in the InAlAs valence
band.

energy variations in the frontier atomic orbitals that generate
that band. We will now explore how such large offsets can
be deliberately and selectively engineered in one band in the
III-V digital alloys using strain.

IV. RESULTS AND DISCUSSION

In bulk heterojunctions, band discontinuities form at the
interface owing to the alignment of Fermi levels of the con-
stituent components, resulting in band offsets. The band offset
sizes can be manipulated if the position of band edges can be
altered [34]. This is achieved by means of hydrostatic pressure
[35], applying biaxial strain [36—40], and alloying [41,42]. In
digital alloys it is biaxial strain that results in the opening of
the minigaps as we will describe next.

It is well known that biaxial strain in semiconductors re-
moves the degeneracy of the valence bands and results in the
splitting of the heavy-hole (HH) and light-hole (LH) bands
[42,43]. Let us consider the case of InAlAs to understand how
minigaps form. In Fig. 3, it is shown that InAlAs consists
of InAs and AlAs stacked alternately. The alloy is grown
on an InP substrate having a lattice constant 5.87 A [22].
Compared to InP, the lattice constant of InAs at 6.06 A is
greater wheereas that of AlAs at 5.66 A is smaller. As a result,
AlAs experiences biaxial tension on the x-y plane, whereas
InAs undergoes biaxial compression. In the (001) z direction,
InAs undergoes expansion, and AlAs undergoes compression.
As we detail in the Appendix, biaxial tension results in LH

0 0.5 1
k, (1 /A

FIG. 4. (a) Band structure of InAs and AlAs grown on an InP
substrate, (b) unfolded band structure of six-ML InAlAs with InP
as the substrate. The band structures above are calculated using the
sp’s*d® EDTB model. Here, at a wave-vector k., the color density
represents the probability of a supercell state projecting onto this
primitive cell state. Around the I" point (k, = 0) in (a) there is a large
band offset between the InAs and the AlAs bands. Consequently, in
(b) we observe minigaps in the InAlAs valence band around the I
point. A zoomed view of the minigap is provided in the inset of (b).

bands moving up and HH moving down in energy, depicted at
the bottom of Fig. 3. The opposite happens for biaxial com-
pression. As the bands in the alternately strained layers move
in opposite directions, the band offset increases, resulting in
the formation of the minigaps.

Figure 4(a), shows the band structure of the strained InAs
and AlAs (grown on the InP substrate) computed with the
sp*s*d®> EDTB model [22]. We observe a large valence-band
offset at the I point between the strained AlAs and the
InAs. The unfolded band structure of a six-monolayer InAlAs
showing the resulting valence-band minigaps, computed with
the EDTB model, is depicted in Fig. 4(b). The unit cell of
the InAlAs DA considered consists of three-ML AlAs and
three-ML InAs.

A short visual synopsis of the chemical origin of strain-
induced migration of valence bands is presented in Fig. 5.
In short, compressive strain along a cubic axis rotates and
reduces overlap among frontier orbitals responsible for LH
bands along that axis, decreasing their antibonding split and
raising LH bands in energy. Simultaneously, they increase or-
bital overlaps responsible for HH bands and push down those
bands in energy. In the Appendix, we deconstruct the separate
movement of LH and HH bands in terms of their detailed
orbital chemistry in the presence of strain. These results are il-
lustrated in detail in the Appendix, following well-established
arguments using sp’ tight-binding models. The EDTB model
we use to calculate digital alloy band structures incorporates
higher-order orbital interactions in an inhomogeneous envi-
ronment. However, the qualitative physics for strain-induced
band migration and eventually minigap formation remains the
same.

Having a detailed understanding of the underlying physics
of the minigaps, it is then useful to see how we can control
the minigap size in these digital alloys by tracking their band
evolution under strain. We compute the band structure for two
cases: contraction—the substrate lattice constant is smaller
than that of the active APD material (InP for InAlAs), and
expansion—in which the substrate lattice is greater. The band
structures for strained InAs and AlAs under contraction and
expansion are shown in Figs. 6(a) and 6(b). Under these
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FIG. 5. (Left) Degenerate valence-band edges in zinc-blended structures are created by degenerate antibonding splittings with light holes
along the z axis created by overlap of p, bonds and heavy orbitals by transverse p, , orbitals. Upon compressive strain along the z axis (middle),
the orbitals rotate around the center of the unit cell, becoming more edge on (7 like) for p, light holes with reduced overlap and antibonding
split, and more head on (o like) for p, , orbitals with increased overlap and antibonding split. The end result is LH bands are pushed up and
HH bands are pushed down, breaking the cubic degeneracy of the valence bands at the I point. The opposite happens for a tensile strain.

conditions, the binary constituents experience unequal biaxial
strains and due to their different Poisson ratios Do also
undergo different strains in the z direction. Thus, their valence
bands move by different amounts. InAs has a higher Dy than
AlAs [38], and, hence, bands of InAs are more responsive to
strain. We note that the valence-band offset under contrac-
tion is large compared to expansion case. Consequently, the

Contraction Expansion

Energy (eV)

5

Energy (eV)
S
o
Energy (eV)
. o
—- &)

L A
15 PR/ N

0 0.5 0.5
k, (1 /A

0 0.5
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FIG. 6. Band structure of strained InAs and AlAs for
(a) “contraction”—where the substrate lattice constant is 3%
less than the InP lattice constant and (b) the expansion—substrate
lattice constant is 3% more than the InP lattice constant. The
unfolded band structure of six-ML InAlAs under contraction and
expansion is shown in (c) and (d), respectively. Contraction results
in a larger valence-band offset around the I" point in (a) whereas
expansion causes the valence-band offset to decrease in (b). As a
result, there are larger valence-band minigaps in (c) and smaller
minigaps in (d), respectively.

valence bands of InAlAs under contraction become flatter,
and the minigaps increase in size as depicted in Fig. 6(c).
However, we can see in Fig. 6(d) that under expansion the
InAlAs top valence-band effective mass decreases, and the
minigaps become smaller.

The 2D energy contours of the top InAlAs band on the
x-y plane are shown in Fig. 7 for regular, contracted, and
expanded cases. We observe that for the regular and con-
traction cases, the top bands are highly anisotropic. Under
biaxial strain, in the in-plane (x and y) directions the bands
move in the opposite direction to that of the out-of-plane (z)
direction [43]. As a result, under contraction the effective
mass on the x-y plane decreases. Comparing Fig. 7(b) with
Fig. 7(a), we observe the contour lines become more elliptical
which indicates the lowering of the mass under contraction.
The effective mass increases for expansion as the contour lines
becomes flatter in Fig. 7(c). This observed anisotropic nature
of the bands can be utilized to explore the use of digital alloys,
such as InAlAs in other applications, such as transistors.

One key aspect we need to study is the impact of the
strain on carrier transport of digital alloys. Since we have been

FIG. 7. Two-dimensional energy contour on the x-y plane of the
top band of InAlAs for (a) regular, (b) contraction, and (c) expansion.
The energy range for the contour is from 0.025 to 0.5 eV below
the valence-band edge. On the transverse plane, the effective mass
decreases due to contraction as seen in the more elliptical shape in
(b). In (c), the flatter contour lines represent an increase in effective
mass on the transverse plane. The biaxial strain is an effective tuning
knob for the asymmetric band structure of the digital alloys.
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FIG. 8. (a) Band-edge diagram of the digital alloy considered. A
minigap act as a barrier to hole transport in the digital alloy valence
band. A large minigap cannot be bypassed by intraband tunneling or
optical phonon scattering processes, thus, limiting the holes near the
valence-band edge. (b) Ballistic transmission vs energy and (c) car-
rier occupation probability vs energy in the valence band for six-ML
InAlAs with regular, compressive, and tensile strains.

primarily concerned with the effect of strain in the valence
bands, we look at the effect on carrier transport in the InAlAs
valence band in Fig. 8. The effect of minigaps on digital alloy
valence-band carrier transport is shown in the band diagram of
Fig. 8(a). Here, the region between the dotted lines represent
the minigap. In the absence of a minigap the holes can easily
accelerate under bias and gain sufficient energy to impact
ionize as shown by the hole near the valence-band edge.
The minigap act as a barrier to carrier transport and can be
bypassed by quantum tunneling or optical phonon scattering.
A sufficiently large minigap prevents transport by these pro-
cesses. As a result, holes are restricted near the valence-band
edge, and their impact ionization is prevented. The result-
ing asymmetry between the electron and the hole ionization
coefficient makes the APD gain more deterministic, thus,
reducing APD excess noise. Figure 8(b) depicts the ballistic
transmission vs energy spectrum in the valence band under
regular, expansion, and contraction conditions in six-ML In-
AlAs, under an applied bias of 0.25 V. The transmission has
been computed using the NEGF formalism described earlier.
In order to study the effect of minigaps on intraband tun-
neling, we set the quasi-Fermi level of the left contact Ep,
at —0.25 eV below the valence-band edge and quasi-Fermi
level of the right contact Epg at another —0.25 eV below. The
reference point 0 eV is the valence band of the left contact.
The material for the contacts is same as the channel material,
i.e., InAlAs DA. We observe that as we go from expansion
to regular to contraction case the transmission gaps increase
in size due to increasing size of the minigaps and enhanced
effective mass. As a result, the probability to tunnel across the
minigaps decreases, and the holes become more localized near
the valence band. This will help in reducing the excess noise
in APDs. Another mechanism by which holes can bypass the
minigaps is optical phonon scattering. We look at the effect
of this scattering using the Boltzmann transport equation. The

carrier probability vs energy with optical phonon scattering
under an electric field of 1 MV /cm is shown in Fig. 8(c). Un-
der the expansion condition, holes have a higher probability
to occupy higher-energy states compared to the regular and
contraction cases. Under contraction, the probability is the
lowest. This is a further confirmation that contraction prevents
holes from reaching higher energies. It is then possible to
design better low noise electron injected digital alloy APDs
with lower hole impact ionization by applying contraction to
materials, such as InAlAs.

In addition to InAlAs, we also computed the band struc-
tures of six-ML InGaAs, ten-ML AllnAsSb, five-ML AlAsSb,
and six-ML AlAsSb digital alloys under regular, contraction
and expansion conditions along the 001 direction. These band
structures are shown in Fig. 9. The primary binary constituents
for these alloys are as follows: InAs and GaAs for InGaAs,
InAs and AlISb for AllnAsSb, AlAs, AISb for AIAsSb, and
AlAs and GaAs for AlGaAs. For the regular band structures,
InGaAs and AlAsSb have an InP substrate, AlInAsSb has
a GaSb substrate, and AlGaAs has a GaAs substrate. The
lattice constants for all these materials are taken from the
paper by Tan er al. [22]. The period thicknesses used for
these materials represent the period thicknesses of the corre-
sponding fabricated devices [19]. For InGaAs, AllnAsSb, and
AlAsSb one of the binary constituents has a lattice constant
that is greater than the substrate lattice constant whereas the
other constituent lattice constant is smaller. Thus, the binary
components experience alternating types of strain. This is
not the case for AlGaAs. For all the material combinations,
we observe that the effective mass of the top valence band
increases under contraction and reduces for expansion. This
is mainly because under contraction HH states move up in
energy whereas under expansion they move down leaving LH
states as the top states in the valence band. Figure 10 shows
the relationship between the minigap size and the substrate
lattice is constant. We observe that minigap size decreases
with increasing lattice constant. For InGaAs, we see that
the minigap increases in size with contraction from 0.03 to
0.16 eV which is similar to the behavior of InAlAs described
earlier. In AllnAsSb there is a separation between the HH
and the LH bands around the I point under contraction. A
similar gap is seen for AIAsSb under the regular condition.
This gap size increases under contraction. The gaps vanish for
both AllnAsSb and AlAsSb under expansion. The minigap
sizes also increase under contraction by about 0.04 eV for
AllnAsSb and 0.02 eV for AIAsSb. However, for AlGaAs we
do not observe any minigaps in the light-hole band. This is
primarily because the HH/LH bands of the binary constituents
in AlGaAs move in the same direction under strain as both
experience same type of biaxial strain.

V. CONCLUSION

In this paper, we demonstrated that biaxial strain can be
used as a useful tool to control the oscillatory orbital contri-
butions and, thus, the split in degeneracy between LH and HH
valence bands, creating sizable minigaps and providing a po-
tential path towards deterministic engineering of digital alloy
APDs with low excess noise. As a general rule, we expect that
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FIG. 9. Band structure of six-ML InGaAs, ten-ML AllnAsSb, five-ML AlAsSb, and six-ML AlGaAs for regular, contraction, and
expansion cases. The substrate constant was decreased by 3% and increased by 3%, respectively, for the contraction and expansion cases
with respect to the regular case. The regular lattice constant is that of the material used as the substrate in the experimental device. Contraction
leads to a larger minigap in the LH band with flatter bands. On the contrary, smaller minigaps and lighter effective mass are generally observed

for the expansion cases.

decreasing the substrate lattice constant will increase minigap
size that will enhance the performance of digital alloy APDs.
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APPENDIX: IMPACT OF STRAIN ON VALENCE-BAND
DEGENERACY

In this Appendix, we will elaborate the orbital chemistry
underlying strain-induced migration of valence bands in the
III-V APD materials. In a bulk zinc-blende semiconductor,
each atom is tetrahedrally bonded to four neighboring atoms.
The bonds connecting these atoms point toward the (111)
directions of the cube that bounds around the tetrahedron.
Every bond consists of 25% contribution each from the s, p,,
Dy, and p, orbitals [43]. The chemical bonds of an unstrained
zinc-blende crystal have cubic point group symmetry, so the
valence bands are degenerate at the I" point. However, under
biaxial tension (uniaxial compression along z) all the bonds
are equally rotated towards the x-y plane, whereas under bi-
axial compression they move away from the x-y plane. Near
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FIG. 10. Minigap size vs substrate lattice constant. A decreasing
trend with an increasing lattice constant is observed for all the mate-
rials except AlGaAs.

the valence-band edge, bonding states arising from the overlap
of the directional frontier p orbitals that dominate formation
of the bands there. The spherical s orbitals contribute to the
conduction-band edge states. Considering only contributions
from the p orbitals and projecting one of the tetrahedral
bonds along a principal direction ((100), (110), or (111)),
the out-of-plane orbital forms the LH states, i.e., p, orbital
along the (001) or z direction. Then, HH states are formed
by the in-plane orbitals, for instance, p, and p, orbitals, if
we are looking from the z direction. We can then explain
the effect of strain on these p orbitals using a simple sp>
tight-binding model. The ignored virtual s* and d orbitals
end up being important quantitatively, the former for indirect
band-gap semiconductors, such as Si, the latter to nail down
its transverse effective masses. However, they have less quali-
tative relevance to direct band-gap III-V materials. We use the
full sps*d> set for our numerical evaluations, but a simplified
sp® for the current qualitative arguments.

Chadi and Cohen [20] and Harrison [21] used the sp> ti ght-
binding model to investigate the electronic band structure of
various diamond and zinc-blende crystals. In the model, the
valence-band orbitals form the the conduction and valence
bands. Each atom in the primitive cell contributes an s, px, p,
and p, orbital. The resulting Hamiltonian is an 8 x 8 matrix
without inclusion of spin-orbit coupling. At the I point, the
sp® Hamiltonian can be simplified to

Esc  Vss 0 0 0 0

Ves Esa O 0 0 0

Epc Vxx O 0

Vxx Epa O 0

0 0  Epc Wy
0 0 Wy Epm

0 0 0 0 Epc Vi

0 0 0 0 Vzz Ep

(AD)

This Hamiltonian can be simplified into four 2 x 2 ma-

trices representing the overlap between the constituent two

ecleleNeNeNel
S oo oo

(=N eNoNoNoNol
SO OO OO

atoms of the four different orbitals considered. The eigenstates
at the valence-band edge can be computed from the Hamilto-
nians of the p,, py, and p, orbitals,

Epc  Vxx Epc  Vyy

H, = , Hy,= , A2
! <VXX Epa 2 Wy Epa (A2)

Epc  Vxx
H; = . A3
’ (VXX EPA) (A3)
Here, E4 ¢ represents the on-site energy of the anion and
cation, respectively, and Vj; is the interaction constant repre-

senting the orbital overlap. The valence-band states at the I'
point can be computed by diagonalizing these matrices to get

E; = EPC;LEPA _\/(EPC ;EPA>2+VX2X,
_ Epc+Ep Epc — Eps )\’ V2
== Tz ) v

Epc + Eps Epc — Epy
B=—— T2

E,

2
) +VE. (A4

For an unstrained system Vyx = Vyy = V2, which results in
degenerate bands. This is consistent with the observation that
bulk semiconductors are symmetric along all the cubic axes.
Each p orbital bond consists of head-on (o) and side-on (i)
couplings. The interaction constant V;; is written in terms of
contributions from these bonds. 6 represents the azimuthal
angle between the bond and the relevant axis for the constant
we are considering, i.e., x axis for Vyxx. These interaction
constants can be written in terms of the directional consines
(I, m,n) [44],

Vxx = lzvppa + (1 - lz)vpprra
Vyy = mzvppa + (1 - mz)vppn,

Viz = 1" Vype + (1 = 2*)WVpr. (A5)

For an unstrained system, (I, m,n) = (1, 1, 1)/«/§ resulting
in Vxx = Vyy = Vzz and, hence, degenerate energy levels at
the valence-band edge.

The strain tensor of a system can be broken down into
three components—a hydrostatic strain and two kinds of shear
strain [34]. The hydrostatic strain results in overall shifting
of the energy bands as the crystal symmetry is not broken.
However, biaxial shear strain results in the breaking of crystal
symmetry, lifting band degeneracy at the I" point and resulting
in band warping as well. Under biaxial strain on the x-y plane,
the traceless shear strain tensor can be written as

1 [ — €z 0 0
Y 0 €xx — €z 0 s (A6)
3
0 0 _Z(exx - eZZ)
where e, = q/a; — 1 and e,;; = —Dqo1ex,. Here, a| and a;

represent the substrate and epilayer lattice constants, respec-
tively. Also, the Poisson’s ratio D = 2Cy,/Cy; where Cy; and
Ci, are elastic constants [38]. Considering € = e,, — e, the
directional cosines change to (I,m,n)=(1+¢€,14+¢€,1—
2¢)/ V3. As a result, Vxx = Vyy, but these are not equal to
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Vzz. Using Eq. (AS) it is then possible to show the effect of
biaxial strain on the band structure.

Under biaxial tension as the bond rotates towards the x-y
plane, the overlap between the p,/p, orbitals of the two atoms
increases whereas overlap of the p, orbitals decreases. The
azimuthal angles 6, and 6, decrease whereas 6, increases. One
can think of the p./p, orbitals of the two atoms becoming
more head on whereas p, orbitals becoming more parallel.
This increases the contribution of the o components of the
Dx/py orbitals and weakens for the p, orbital. On the con-
trary, the contribution of the 7 bond of the p, orbital overlap
increases but diminishes for the p,/p, orbitals. As a result,

Vxx and Vyy will increase whereas V;, will decrease as can
be inferred by placing the values of the directional cosines
in Eq. (A5). Using Eq. (A4) we can then see that the HH
states go down whereas the LH states go up under biaxial
tension. The situation is reversed under biaxial compression.
The bond rotates away from the x-y plane increasing 6./6,
and reducing 6,. This, in turn, leads to lower Vxy /Vyy and
higher V. As a result, HH bands rise in energy whereas LH
states go down. This simplified picture explains the movement
of the bands in the InAlAs digital alloy, and, subsequently,
the essential physics of the minigap formation in the sp®
basis.
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