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Two-fluid plasma model for ultrashort laser-induced electron-hole nanoplasmas
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We present a two-fluid plasma model to describe localized interaction, at submicrometer scale, of highly
focused ultrashort laser pulses within dielectrics and semiconductors. This model includes transport of the
electron-hole plasma, electron-hole scattering, photoionization, impact ionization, and interactions between
charge carriers and phonons. We start with a plasma kinetic description, and we consistently derive the two-fluid
plasma model equations. Our numerical results highlight that transport of the electron-hole plasma can strongly
affect the plasma density profile in the case of extremely localized interaction.
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I. INTRODUCTION

Ultrashort laser pulses are a powerful tool to induce
modifications of materials [1–4]. Particularly in transparent
dielectrics, ultrashort laser pulses can be used to locally mod-
ify, inside the material’s bulk, the chemical structure, the index
of refraction, and the density of color centers; photopoly-
merize; and generate nanogratings, surface nanostructures, or
internal voids. A large number of application fields have ben-
efitted from fundamental advances: surgery and biomedicine,
photonics, microfluidics, and high-speed laser manufacturing
[2,5–7].

Pushing forward these applications to nanometric structur-
ing requires the support of numerical modeling [8]. Under
laser-induced strong field, bound electrons transit from the
valence band to the conduction band [1,9,10], leaving a hole in
the valence band. Particles of the electron-hole plasma are ac-
celerated in the laser field, which results in the multiplication
of the free carrier density via impact ionization and potentially
in the creation of a dense electron-hole plasma. Finally, at
timescales much larger than several picoseconds, thermal and
structural events take place inside the material [1]. Our model
is focused on the plasma density buildup at timescales up to
several picoseconds.

A large number of different models have been developed
to study the propagation of ultrashort laser pulses (∼100 fs)
in the high-intensity regime (∼1014 W/cm2) inside dielectrics
and subsequent ionization. These models can be classified into
two groups. In the first, several models were developed to
study the filamentation regime inside transparent solids with
propagation scales on the order of several tens of micrometers
[11,12]. Pulse propagation models, such as the unidirectional
pulse propagation equation [13], are derived from Maxwell’s
equations and coupled with a rate equation for free-electron
generation [14]. These models are well suited to describing
the spatiotemporal evolution of the pulse under the different
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linear and nonlinear phenomena: Kerr and Raman effects,
group velocity dispersion, diffraction, nonlinear ionization,
plasma absorption, and recombinations. They can be refined
to describe nonparaxial propagation [15,16]. However, the
derivation of the pulse propagation equation requires as-
sumptions of unidirectionality, local neutrality, and transverse
fields. These assumptions are not well suited to the case of
nanoplasmas (<1 µm) induced by tightly focused beams [3].

In the second group, the models are intended to describe
energy deposition in dielectrics at the micrometric scale and
are computationally very expensive because the full set of
Maxwell equations is solved. Several descriptions of the
plasma have been used: in Refs. [17–19], plasma formation
and heating are described by rate equations. A more refined
model is the single-fluid hydrodynamic approach [20,21]. An
approach based on a two-temperature model was used in
Ref. [22].

In these previous works, the transport phenomena were
conventionally neglected since valence holes are convention-
ally heavy compared to the effective electron mass (m∗

h =
5me–10me) [21,23,24]. Because of Coulomb attraction, trans-
port of electrons and holes remains quasi-identical. The fluid
of the heaviest particle (the electron or hole) limits the
transport of the lightest one. If the electron and hole have
comparably light masses, then actual transport can be sig-
nificant. Neglecting transport phenomena can therefore be
inappropriate for materials with light holes such as sapphire
[25], magnesium oxide [26], silicon [27], and zinc oxide
[28]. Ultrafast transport at high speed (1.5×106 m/s) was
recently observed experimentally in the latter material with
pump-probe imaging ellipsometry [28]. A density-dependent
two-temperature model was recently developed [29] and in-
cludes electron-hole transport in semiconductors. This model
describes the evolution of free-carrier density, carrier temper-
ature, lattice temperature, density, and energy transport but
hypothesizes plasma neutrality and the same temperature for
conduction electrons and valence holes.

Here, we propose a more general theoretical description
of laser-induced excitation of dielectrics and semiconductors
that takes into account the transport phenomena and hence is
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valid for any effective mass ratio. We will particularly empha-
size here the case where the mass ratio is around 1 since it is
the case that differs most from the state of the art described
above. In this case, we observed a significant transport and
also important consequences resulting from the hole dynamics
(modification of the cutoff frequency, additional impact ion-
ization, warm holes). Our fluid model includes five-moment
transport equations for each fluid, photoionization, impact
ionization, electron-hole scattering, and interactions between
carriers and phonons. The approach is valid only when the
band structure of the material remains and is intended to
describe the transient regime before the occurrence of non-
thermal melting [30] or of the transformation of the plasma
into warm, dense matter [31–33].

This paper is organized as follows: in Sec. II, we recall the
two-fluid plasma model equations for an electron-hole plasma
inside a band gap material with parabolic energy bands, and
we briefly review the different physical phenomena included
in the model. In Sec. III, we derive the source terms describ-
ing electron-hole scattering, interactions between carriers and
phonons, photoionization, and impact ionization. Finally, in
Sec. IV, our numerical results for Bessel beam interaction

with sapphire highlight that transport can significantly affect
the plasma profile throughout extremely localized interactions
inducing nanoplasmas.

II. THE TWO-FLUID PLASMA MODEL

The fluid model developed in this article is intended for
materials that can be described by an isotropic parabolic band
structure: the effective masses of conduction electrons and va-
lence holes are independent of the direction and position in the
Brillouin zone. The fluid model can be derived consistently
by calculating moments of the kinetic equation with respect
to velocity [34] and by assuming a local thermodynamic equi-
librium [35] for electrons and holes. This implies Maxwellian
distributions for both particle species. The fluid description
allows us to save computational effort in comparison with the
kinetic approach [36]. In our case, we consider that the plasma
is sufficiently collisional to keep the particle distribution close
to a Maxwellian distribution. The equations of the two-fluid
plasma model in the balance law form (i.e., a conservative
form on the left side of fluid equations and a source term on
the right one) are given by [37,38]:

∂

∂t

⎡
⎢⎢⎢⎢⎢⎣

ne

neue

εe

nh

nhuh

εh

⎤
⎥⎥⎥⎥⎥⎦ + ∇ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

neue

neue ⊗ ue + pe

m∗
e
I

(εe + pe )ue

nhuh

nhuh ⊗ uh + ph

m∗
h
I

(εh + ph)uh

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
neqe

m∗
e

(E + ue×B)
neqeue · E

0
nhqh

m∗
h

(E + uh×B)
nhqhuh · E

⎤
⎥⎥⎥⎥⎥⎥⎦ +

[
SColl

e

SColl
h

]
. (1)

The system of equations (1) corresponds to three conservation
laws for each fluid (electrons and holes): conservation of
particle number, momentum, and energy. The term with the
divergence operator is called the transport term, whereas the
terms on the right are called the source terms. For a specie
of particles a (a = e for conduction electrons and a = h for
valence holes), qa is the electric charge, m∗

a is the effective
mass, na is the density, ua is the mean velocity, pa is the scalar
pressure, εa is the fluid energy density, E is the electric field,
and B is the magnetic field. I is the identity matrix, and ⊗ is
the tensor product. To obtain the system of equations (1), we
additionally made the assumption that electron and hole fluids
are nonviscous. The effects of viscosity are usually unimpor-
tant in ultrafast dynamics [39]. This allows us to consider
scalar pressures instead of pressure tensors.

The system of equations for electron and hole fluids
is closed by assuming local thermodynamic equilibrium
(Maxwellian distribution) for both species:

εa ≡ pa

γ − 1
+ 1

2
nam∗

a ua
2, (2)

where γ is the adiabatic index. The local thermodynamic
equilibrium allows linking pressure and temperature through
the ideal gas law [35]: pa = nakBTa, where Ta is the tempera-
ture and kB is the Boltzmann constant.

The terms SColl
e and SColl

h are the collisional terms for elec-
tron and hole fluids. We use the same general method as in
Refs. [40,41] in order to include different physical phenom-
ena; that is, we split the collisional terms in Eq. (1) into several
terms:

[
SColl

e

SColl
h

]
︸ ︷︷ ︸

≡SColl

≡
[

Se−h
e

Se−h
h

]
︸ ︷︷ ︸

≡Se−h

+
[

SImp−e
e

SImp−e
h

]
︸ ︷︷ ︸

≡SImp−e

+
[

SImp−h
e

SImp−h
h

]
︸ ︷︷ ︸

≡SImp−h

+
[

SPh
e

SPh
h

]
︸ ︷︷ ︸
≡SPh

+
[

Se−p
e

Se−p
h

]
︸ ︷︷ ︸

≡Se−p

+
[

Sh−p
e

Sh−p
h

]
︸ ︷︷ ︸

≡Sh−p

, (3)

where the superscript e-h is related to electron-hole scat-
tering, e-p is related to interactions between electrons and
phonons, h-p is related to interactions between holes and

phonons, Ph is related to photoionization, Imp-e is related to
electron-initiated impact ionization, and Imp-h is related to
hole-initiated impact ionization.
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The electric and magnetic fields in Eq. (1) are determined
by Maxwell equations:

∇ · εrE = 1

ε0
[qene + qhnh], (4)

∇ · B = 0, (5)

∇×E = −∂B
∂t

, (6)

∇×B = μ0J + 1

c2

∂εrE
∂t

, (7)

where ε0 and μ0 are, respectively, the vacuum permittivity
and permeability. c = (ε0μ0)−1/2 is the speed of light. εr is
the relative permittivity of the background dielectric. The
total current density J is composed of the contribution from
conduction electrons and the one from valence holes:

J = qeneue + qhnhuh. (8)

In our description, we consider an electron-hole plasma local-
ized in the background dielectric of relative permittivity εr .
The effect of bound charges is also taken into account through
relative permittivity εr, whereas the effect of charge carriers is
included through the current density J in Eq. (8).

We finally remark that, here, the medium response to an
electromagnetic excitation is taken into account through a
fluid approach. This approach is valid only when the spatial
scales are larger than the Debye length [42]. The typical
densities involved in numerical results in Sec. IV are around
1021 cm−3, and the temperatures are in the range of 1–100 eV,
leading to a Debye length between 0.2 and 2 nm.

III. COLLISIONAL SOURCE TERMS

In this section, we specify the source terms SColl
e and SColl

h
in Eq. (3). We include the different physical phenomena one
by one in our model.

A. Electron-hole scattering

We start with the elastic scattering between conduction
electrons and valence holes. We have chosen to include
this phenomenon via the Bhatnagar-Gross-Krook (BGK) ap-
proach [43]. This approach assumes that the elastic scattering
restores local equilibrium with an exponential decay in time.
This description usually gives a first approximation to the
problem under consideration [35] and is relatively easy to link
to the Drude model of plasmas [44]. The inclusion of the BGK
term in the two-fluid plasma equations is performed via the
following source term [45]:

Se−h =
[

Se−h
e

Se−h
h

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−neνeh

μ

m∗
e
(ue − uh )

− κνehne
γ−1 (Te − Th) + κνehne

2

[
m∗

e ue
2 − m∗

huh
2 + (m∗

h − m∗
e )ue · uh

]
0

−nhνhe
μ

m∗
h
(uh − ue )

− κνhenh
γ−1 (Th − Te ) + κνhenh

2

[
m∗

huh
2 − m∗

e ue
2 + (m∗

e − m∗
h )uh · ue

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where μ = m∗
e m∗

h
m∗

e +m∗
h

is the reduced mass, κ = 2μ

m∗
e +m∗

h
, and νeh

is the scattering frequency for momentum transfer from
electrons to holes, whereas νhe is from holes to electrons.
Equation (9) is symmetrical to the permutation e ↔ h, and
conservation of momentum and energy imposes the following
condition [45]:

neνeh = nhνhe. (10)

B. Interactions between charge carriers and phonons

As in Ref. [41], we consider two scattering phenomena
for the interactions between charge carriers and phonons. The
first one is the charge carrier–phonon elastic scattering, where
charge carriers undergo a momentum change due to phonon
emission/absorption. The second phenomenon is the carrier-
phonon-photon interaction. In these two phenomena, the loss
of energy to the phonon bath is negligible at the subpicosec-
ond timescale [9,33]. The impact of these scattering events on
the conduction electron fluid and on the valence hole fluid is a
modification of the distribution of the particle, i.e., a reduction
of the mean velocity and an increase of the thermal energy.
We include these phenomena in a classical way (i.e., in a

nonquantum treatment) via frictions terms [23]:

Se−p =
[

Se−p
e

Se−p
h

]
≡

⎡
⎢⎢⎢⎢⎢⎣

0
−ne(νepp + νep)ue

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦, (11)

where νepp is the electron-phonon-photon interaction rate and
νep is the electron-phonon scattering rate. Similarly, we have
for the hole fluid

Sh−p =
[

Sh−p
e

Sh−p
h

]
≡

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

−nh(νhpp + νhp)uh

0

⎤
⎥⎥⎥⎥⎥⎦, (12)

where νhpp is the hole-phonon-photon interaction rate and νhp

is the hole-phonon scattering rate.
In this description with friction terms, the total energies

εa of the fluids do not change [no term in the third and sixth
components of Eqs. (11) and (12)]. The scattering induces a
conversion of directed energy 1

2 nam∗
a ua

2 into thermal energy
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pa

γ−1 . It also induces a weakening of the current density J, thus
absorbing energy from the electromagnetic fields.

We note that here, we discard the energy transfer from the
carriers to the phonon bath since it is effective at timescales
of several picoseconds, while our model is intended to model
typically subpicosecond dynamics [9,33].

C. Electron-electron and hole-hole scattering

Electron-electron and hole-hole elastic scattering do not
affect fluid equations (1) [29,35]. The reason is that in the
fluid approach, the shape of the distribution is fixed to a
Maxwellian one, before and after the scattering process. In
addition, during a scattering event, the change in momentum
(energy) of a particle is equal to the change in momentum
(energy) of the other particle. This implies that the total mo-
mentum (energy) of the fluid remains constant during elastic
scattering between particles of the same species [35].

D. Photoionization

Photoionization, impact ionization, and recombination can
be considered inelastic collisions [35]. However, it is con-
ventionally difficult to rigorously describe inelastic collisions
in the framework of the fluid description [46]. In this sec-
tion, we insert photoionization (promotion of electrons in
the conduction band by absorption of field energy) into the
two-fluid plasma model. Impact ionization will be modeled in
the following section. We start by defining nev as the density
of electron available in the valence band: this number is a
function of time and space. We set n0 as the initial density
of electrons available in the valence band and αPh as the
photoionization rate (in m−3 s−1).

To include photoionization, we make the following as-
sumptions: (i) The number of created fluid particles (electrons
and holes) through photoionization is given by the rate equa-
tion used in Ref. [17] ( ∂

∂t ne = nev
n0

αPh). We use the Keldysh
ionization rate in solids [47] (see the Appendix), but it could
be replaced by more sophisticated models [48] without chang-
ing the overall architecture of our model. (ii) As in Ref. [49],
we consider that during photoionization, valence electrons
are promoted to the bottom of the conduction band. This is
equivalent to neglecting the residual energy transfer to charge
carriers after photoionization: fluid particles are generated
with zero energy (pa = 0 and ua = 0).

The source term for photoionization of Eq. (3) is therefore
given by

SPh ≡
[

SPh
e

SPh
h

]
≡

⎡
⎢⎢⎢⎢⎢⎢⎣

nev
n0

αPh

0
0

nev
n0

αPh

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦. (13)

For each electron-hole pair generated, one valence electron
must be removed. This leads to the following rate equation for
the density of valence electrons:

∂

∂t
nev = −nev

n0
αPh. (14)

Moreover, to ensure energy conservation, we have to remove
the ionization energy from the electromagnetic fields. We use
a fictive ionization current density as in Refs. [39,50]:

JPh = nev

n0

αPhUg

E2
E, (15)

where Ug is the dielectric band gap. The fictive ionization
current density (15) is added to the current density in the
Maxwell-Ampère equation (7).

E. Impact ionization

In this section, we include impact ionization in the two-
fluid plasma model. We consider electron-initiated impact
ionization and hole-initiated impact ionization. In the first
phenomenon, an above-threshold energetic conduction elec-
tron collides with a valence electron: the valence electron is
promoted to the conduction band, and a hole is left in the
valence band. A symmetric scenario can happen in the valence
band with an energetic hole.

To include electron-initiated impact ionization in the two-
fluid plasma model, we define αe, the reaction rate (in s−1).
We model the number of created fluid particles (electrons and
holes) through impact ionization via a rate equation used in
Ref. [17], ∂

∂t ne = nev
n0

αene. As in the case of photoionization,
we consider that fluid particles are generated with zero energy
(pa = 0 and ua = 0).

The source term for electron-initiated impact ionization
becomes

SImp−e ≡
[

SImp−e
e

SImp−e
h

]
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nev
n0

αene

0

− nev
n0

neα
eUg

nev
n0

αene

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

For hole-initiated impact ionization, these equations are

SImp−h ≡
[

SImp−h
e

SImp−h
h

]
≡

⎡
⎢⎢⎢⎢⎢⎢⎣

nev
n0

αhnh

0
0

nev
n0

αhnh

0
− nev

n0
nhα

hUg

⎤
⎥⎥⎥⎥⎥⎥⎦, (17)

and the corresponding rate equation for the density of valence
electrons reads

∂

∂t
nev = −nev

n0
αene − nev

n0
αhnh. (18)

Impact ionization rates are usually calculated from Fermi’s
golden rule and depend on particle energy. The Keldysh im-
pact ionization rate for a single particle is given by [49,51]

αSingle =
{
αe

0

(Ee−ET
Ug

)ϒ
for Ee � ET,

0 for Ee < ET,
(19)
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where Ee is the energy of the initiator electron, the exponent
is ϒ = 2 [51], and ET is the threshold energy of the reaction:

ET =
1 + 2 m∗

e
m∗

h

1 + m∗
e

m∗
h

Ug. (20)

The coefficient αe
0 is given by [51]

αe
0 =

(
q2

e

4πε0

)2
m∗

e A2
cA2

v

ε2
r h̄3

(
1 + 2 m∗

e
m∗

h

)3/2 , (21)

where Ac and Av are overlapping integrals between the initial
states and final states of the conduction electron and valence
electron involved in the reaction [51].

In order to extend the rate αSingle for a single particle to
fluid particles, Peñano et al. [49] used the energy distribution
of particles to determine an effective impact ionization rate in
the fluid description based on a centered Maxwellian velocity
distribution (ua = 0). In a strong laser field, the mean velocity
of particles can be important: we therefore generalized this
approach to a noncentered Maxwellian velocity distribution.
The velocity distribution for particles of species a is given
by\vskip-2pt

Ga(Ea ) = 2√
πm∗

a ||ua||
[

m∗
a

2kBTa

]1/2

× exp

(
− m∗

a

2kBTa

[
2Ea

m∗
a

+ ||ua||2
])

× sinh

(
m∗

a ||ua||
kBTa

√
2Ea

m∗
a

)
. (22)

For ua = 0, Eq. (22) gives the formula given in Peñano et al.
[49]. The effective impact ionization rate in the fluid descrip-
tion is obtained by integrating the impact ionization rate for a
single particle αSingle over the energy distribution Ga(Ea ):

αa =
∫ ∞

0
αSingle(Ea )Ga(Ea )dEa. (23)

For reference, we plot in Fig. 1 the result of numerical inte-
gration of Eq. (23) as a function of kBTa in α-phase sapphire
for two different mean velocities (blue line for ||ua|| = 0 and
dashed red line for the typical mean velocity encountered in
the simulations in Sec. IV, i.e., ||ua|| = 3×106 m/s).

F. Comments

The effective approach we use could be completed further
by other mechanisms. For now, electron-hole-photon scatter-
ing is not done explicitly here since it would be modeled with
a friction term similar to those in Eqs. (11) and (12).

We neglected Auger recombinations (inverse process of
electron-initiated and hole-initiated impact ionizations) since
the timescale of this phenomenon is typically picoseconds [9].
However, we remark that these phenomena can be included
in the two-fluid plasma model in a way similar to that in
Secs. III D and III E.

The generation of self-trapped excitons is a nonradiative
recombination mechanism in which a conduction electron and
a valence hole are bound via a Coulomb interaction in the
vicinity of an impurity of the material [18]. This phenomenon

FIG. 1. Impact ionization rate in α-phase sapphire as a function
of kBTa. We set m∗

a = 0.4me [25] and Ug = 10 eV [52].

can be important in subpicosecond dynamics of dielectrics
such as fused silica [53]. In the following, we will consider
dielectrics in which this phenomenon is negligible (sapphire
or magnesium oxide [54,55]), but self-trapped-exciton gener-
ation can be included in the two-fluid plasma model with the
same reasoning as before.

IV. NUMERICAL SIMULATIONS OF FEMTOSECOND
BESSEL PULSE EXCITATION OF DIELECTRICS

In this section, we use the model presented above to nu-
merically investigate transport phenomena in the framework
of femtosecond laser pulse excitation of transparent materials
in a regime close to or above the ablation threshold. We show
that the transport phenomena can strongly affect the plasma
density profile in the case of localized laser-plasma interac-
tions. In previous work, we developed a numerical scheme to
integrate the two-fluid plasma system of equations combined
with Maxwell equations. Here, we use the pseudospectral
analytical time-domain method (PSATD) to solve Maxwell’s
curl equations and the Lax-Wendroff scheme to solve fluid
equations [56]. This approach has the benefit of avoiding
grid staggering in space and imposes fewer constraints on
sampling than other techniques [44].

The physical situation we investigate corresponds typically
to the case of plasma formation inside the bulk of α-phase
sapphire by a highly focused femtosecond zeroth-order Bessel
beam. We use parameters corresponding to a regime where
laser-generated nanoplasmas were experimentally shown to
open a void in the bulk [57].

A. Numerical setup

In our simulations, the beam is linearly polarized along the
x direction while propagating along the z direction. We use the
fact that the Bessel beam intensity profile is invariant along the
propagation direction to model only a three-dimensional box
with a length corresponding to one optical phase period in the
z axis [58].

The size of the numerical box is Nx = Ny = 460, and Nz =
26. For the x and y directions, we use perfectly matched layers
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FIG. 2. (a) |Ex| component at t = 0 fs for the x-polarized zeroth-
order Bessel beam in the absence of plasma and ionization. (b) |Ez|
component at t = 1.9 fs (maximal value). The dashed white line
corresponds to the position the injector.

for PSATD [59] and Neumann boundary conditions for the
fluid solver, where the spatial derivatives of fluid variables are
set to zero. Furthermore, we use periodic boundary conditions
in the z direction for both solvers. The spatial step is �x =
�y = �z ≈ 18.0 nm, whereas the temporal step is �t ≈ 53.3
as (with the PSATD algorithm, the Courant condition is not
necessary [44]).

The zeroth-order Bessel beam is injected using the cylin-
drical antenna presented in Ref. [58]. The laser pulse has a
Gaussian temporal profile of the full width at half maximum
of 100 fs in intensity, with a cone angle in vacuum θ = 25◦
(equivalent to θm = 13.9◦ in sapphire). The wavelength in
vacuum is λ0 = 0.8 µm. The transverse electric field distribu-
tions of components Ex and Ez around t = 0 fs (i.e., maximum
of the temporal profile) are plotted in Fig. 2. The time is zero
when the peak intensity of the pulse reaches the center and the
simulation started at t = −334 fs. The peak amplitude of the
electric field in Fig. 2, i.e., E � 3×1010 V/m, corresponds to
an intensity of 4×1014 W/cm2 in (x, y) = (0, 0). The max-
imum of the amplitude of the beam will vary in the next
simulations, but the other parameters will remain the same.
Furthermore, we remark that the component Ey of the electric
field is negligible [58].

The relative permittivity of sapphire is εr = 3.09. We ne-
glect the anisotropy of the dielectric in order to simplify the
problem. The band gap is Ug = 10 eV [52]. In Secs. IV B
and IV C, the effective mass of conduction electrons is m∗

e =
0.4me [25], and the effective mass of valence holes is m∗

h =
0.4me [25]. In contrast, in Sec. IV D, we explore the impact
of the variation of the effective mass ratio. The initial den-
sity of electrons available in the last valence band is n0 =
2.35×1022 cm−3 [60].

B. Transport following resonance absorption

Reference [61] demonstrates the importance of resonance
absorption in the energy deposition process within dielectrics
when highly focused femtosecond Bessel beams are used.
In that reference, the simulations were performed for an
electron/ion plasma, i.e., assuming that either the holes are
heavy or the induced plasma is sufficiently dense to erase the
band structure, which can happen when, typically, 5%–10%
of the valence electrons are promoted to the conduction band
[62,63]. Here, in contrast, we assume that the band structure
remains, and we study resonance absorption with light holes.

We start here with the simulation of interaction between a
preexisting electron-hole plasma inside sapphire with a fem-
tosecond Bessel pulse in the absence of ionization in order
to isolate the phenomenon of plasma wave excitation through
resonance absorption. We use the pulse parameters described
in the previous section, except that we reduce the peak inten-
sity to IMax = 4×1012 W/cm2 in order to show that transport
of the electron-hole plasma can already have an important
impact at relatively low intensities. We use the same order
of magnitudes of the plasma parameters as in Ref. [22]. The
initial density profile (in cm−3) is defined by

ne(t = 0) =
{

0 r > R0,

1.5×1021 cos2
(

πr
2R0

)
r � R0,

(24)

with r =
√

x2 + y2 and R0 = 540 nm. This profile is initially
invariant in the z direction, and the plasma is initially neutral:
ne = nh. A crosscut of the initial density profile is shown in
Fig. 3(a).

We set the scattering rates with phonons as νe = νepp +
νep = 0.05 fs−1, νh = νhpp + νhp = 0.05 fs−1, following the
order of magnitude provided by Ref. [11]. We neglect
electron-hole scattering (νeh = 0 fs−1) in order to isolate and
to observe clearly the excited plasma waves, which are other-
wise partly damped.

Before discussing the numerical results, we define the crit-
ical density, which is the density at which the real part of the
total permittivity is zero:

nc = εrε0ω
2
0

q2
e

⎡
⎣ 1

m∗
e

(
1 + ν2

e

ω2
0

) + 1

m∗
h

(
1 + ν2

h

ω2
0

)
⎤
⎦−1

= 1.08×1021 cm−3. (25)

We note this value highly depends on the effective masses
of electrons and holes. The critical density is shown with a
yellow circle in Fig. 3(a). We also define the density at the
turning point (density at which total reflection occurs for the
incidence angle π/2 − θm of the Bessel beam on the plasma
inside the medium) [64]:

nt = nc sin2 θm = 0.06×1021 cm−3. (26)

Figure 3 summarizes our results. In Fig. 3(b), the distri-
bution of the x component of the electric field is shown at a
time slightly before the peak of the pulse. We observe that
the central lobe of the Bessel beam cannot form because of
the reflection at the turning point. This is apparent in the
crosscut shown in Fig. 3(d). The evanescent field can still
penetrate into the plasma up to the critical surface and excite
the resonance. The resonance peaks are visible in the field
cross section in Fig. 3(b) and correspond to the resonance
absorption phenomenon (excitation of plasma waves by a
p-polarized electromagnetic field) [64]. We observe in the
distribution of pressure [Fig. 3(c)] the localized heating of the
plasma at the resonance. The amplitude of the field due to the
plasma waves reaches � 109 V/m in an important temporal
range (−120 < t < 100 fs). The resonance peaks therefore
correspond to significant field gradients (variation of 109 V/m
over 50 nm) and strong gradients of pressure (variation of
107 Pa over 50 nm). The pressure and ponderomotive forces
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FIG. 3. (a) Initial electron density profile. (b) Numerical field at t = −15.8 fs. (c) Electron pressure at t = −15.8 fs. (d) x cuts of the
plasma density distribution at the initial time (solid blue line) and at t = 64.2 fs (dot-dashed blue line) and numerical field at t = −15.8 fs (red
line). Horizontal dashed black lines indicate the critical density and the density at the turning point. (e) Electron density profile at t = 64.2 fs.

lead to a sharp depletion of the plasma density around the
critical surface, as can be seen in Figs. 3(d) and 3(e).

It is therefore important to take into account the transport
terms in the modeling of electron-hole nanoplasmas with light
holes even at very moderate intensity (1012 W/cm2) since
the excitation of plasma waves can affect the density profile
and nonlinear ionization. Furthermore, we note that, when the
effective mass of holes is comparable to the electron mass, the
position of critical density can be strongly affected, which is
apparent from Eq. (25), as well as the response of the medium
to the field excitation.

The density profiles of electrons and holes are very close:
the difference (ne − nh) is typically around 1019 cm−3 (1%)
and originates from the difference in trajectory under the
electric field. This charge separation, over a distance of
only �x = 18 nm, is enough to create a Coulomb field of
109 V/m. The associated restoring force prevents more sig-
nificant charge separation.

We finally highlight that our model, like most hydro-
dynamic models, cannot capture collisionless absorption by
effects such as Landau damping [61] because the distributions
are fixed to isotropic Maxwellian ones. This mechanism is
partially responsible for the plasma wave absorption, and its
modeling requires a kinetic approach (Vlasov equation) or
particle description, e.g., particle-in-cell codes [64].

C. Simulations with ionization

In this section, we compare the influence of the trans-
port terms in the presence of ionization. We use here a

peak intensity of IMax = 1014 W/cm2. Regarding the impact
ionization rates (electron initiated and hole initiated), we
set at first approximation Ac = Av = 1 for the overlapping
integrals [51], and the exponent is ϒ = 2 [51]. The electron-
hole scattering rate is calculated following Ref. [29] (νeh =√

3ε0π (kBTe )3/2

2q2
e

√
1

m∗
e
+ 1

m∗
h
), and we reduce the rates of interaction

with phonons (νepp + νep and νhpp + νhp) to ν = 0.01 fs−1 [65]
in order to observe the transport phenomenon clearly. We will
comment on the relevance of these rates at the end of this
section.

Figure 4 compares the (x, t) distributions of intensity,
plasma density, and pressure for a simulation without the
transport term in Eq. (1) (left panels) and for a simulation
including this term (right panels). As in the previous section,
the density profile of holes is quasi-indistinguishable from the
electron one due to the Coulomb attraction, and it is not shown
here.

Before t < −50 fs, both simulations exhibit similar behav-
ior. We first observe in Figs. 4(a) and 4(d) the progressive
buildup of the central lobe of the Bessel beam, with peak
intensity reaching I = 3.3×1013 W/cm2. Around t = −50
fs, the laser intensity is sufficiently high to generate charge
density up to 2.5×1021 cm−3 through ionization processes
[Figs. 4(b) and 4(e)]. The plasma is then sufficiently dense
to deflect the beam because of the wave-turning phenomenon
mentioned earlier, which prevents the formation of the central
lobe on the optical axis. The resonance peaks discussed in the
previous section are not clearly visible here for two reasons.
First, the electron-hole scattering rate is stronger than in the
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FIG. 4. (a) Intensity, (b) electron density, and (c) electron pressure from the simulation performed without integrating the transport term in
Eq. (1). (d) Intensity, (e) electron density, and (f) electron pressure from the simulation including the transport term.

previous section: while it was set to zero in the previous
section, it now varies in the range νeh = 0–3 fs−1. This implies
that the energy of the plasma waves is quickly converted
into thermal energy. Second, the distributions of density and
temperature evolve in time: the position of the critical density
shifts, which prevents an extremely localized excitation. We
also remark that the intensity profiles show almost no differ-
ence since transport effects mainly occur when the laser pulse
has left the numerical box.

We observe in both simulations that the electron pressures
exceed 1 GPa at t = −45 fs [see Figs. 4(c) and 4(f)]. The
pressure increase is due to the direct absorption of laser energy
during the scattering processes undergone by charge carriers
and is also due to the resonance absorption mentioned in the
previous section. The strong variations of pressure (�1 GPa)
over a small spatial scale (�100 nm) are responsible for the
main differences in the dynamics between the two simulations
after the pulse peak. In the simulation performed without the
transport term [Fig. 4(b)], the on-axis density continues to
increase because of the impact ionization process, and the
critical density is exceeded, in agreement with simulations in
Ref. [22] where the transport is neglected. Simultaneously,
the pressure decreases since impact ionization reduces the
temperature of the conduction band electrons.

In contrast, the simulation performed with transport in-
tegration shows a significant relaxation of the pressure and
density profiles [see Figs. 4(e) and 4(f)]. The final maximum
density (resp. pressure) is around 2 times (resp. 4 times) less
than the one obtained in the simulation without transport in-
tegration but is still close to the critical density, in agreement
with experimental results [61]. The transport induces the ex-
pansion of the electron-hole plasma and tends to weaken the
impact ionization effects.

Furthermore, we remark that the rate of collisions with
phonons influences the transport: when ν is increased, for
instance, from 0.01 to 0.05 fs−1, the transport effect is highly
damped. We also remark that, in contrast, electron-hole scat-
tering has a much lower impact on transport. Indeed, in the
case where electrons and holes have similar masses, their
mean velocities ue and uh are very close during the transport
period. In Eq. (9), most terms related to momentum transfer
involve the difference in these velocities, which implies the
collisional source term becomes almost negligible even if νeh

is relatively high.
The simulations done in this and the last section show

the importance of transport effects induced by the strong
gradients generated by tightly focused pulses. We observed at
moderate intensities (�1014 W/cm2) and at a subpicosecond
timescale transport over a few hundred nanometers, which is
not negligible for plasmas with submicrometer dimensions.

D. The role of the effective mass

In this section, we show the plasma density buildup in
situations with different effective masses of valence holes.
We keep the effective mass of the conduction electrons to
m∗

e = 0.4me [25]. We plot in Figs. 5(a)–5(c) the electron
density maps resulting from three different numerical sim-
ulations with different hole masses: (a) m∗

h = 0.4me (the
simulation in the previous section), (b) m∗

h = 2me, and (c)
m∗

h = 102×1836me (corresponding to molecular mass in sap-
phire), respectively. We also plot, for the same three cases
[Figs. 5(d)–5(f)], the temporal evolution of pressures and den-
sity of both species in x = y = z = 0 as a function of time.

In Fig. 5(a), we notice the significant transport already
discussed in the previous section, inducing a spatial expansion
of the plasma. In Fig. 5(b), we remark a significant reduction
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FIG. 5. (x − t ) distributions of electron densities for three different hole masses: (a) m∗
h = 0.4me, (b) m∗

h = 2me, and (c) m∗
h =

102×1836me. Pressures and densities, at x = y = z = 0, of electrons (solid green lines) and holes (dashed blue lines) for the same three
cases: (d) m∗

h = 0.4me, (e) m∗
h = 2me, and (f) m∗

h = 102×1836me.

in the transport compared to Fig. 5(a). The plasma expansion
is totally negligible in Fig. 5(c), as observed in the literature
for materials with m∗

h � m∗
e [21]. This transport reduction is

explained by the Coulomb attraction discussed in Sec. IV B.
In this last case, the electron pressure peaks at around

1.2 GPa, but the hole pressure is much lower [0.1 MPa;
Fig. 5(f)]. This corresponds to electron temperature around
2 eV and hole temperature around 0.1 meV [Ta = pa/(nakB)].
Since the mass ratio is around 106, the energy transfer from
the warm electron fluid is not significant at the femtosecond
timescale. Indeed, the timescale for the energy transfer from
electrons to holes is related to the rate in Eq. (9) ( 1

κνeh
≈

m∗
h

m∗
e

1
νeh

≈ 500 ps). In Fig. 5(e), we remark at t ≈ −50 fs that
the hole pressure is slightly below the electron pressure since
holes are slightly heavier than electrons. We also remark quick
thermalization occurring for −50 < t < 50 fs, leading to a
superimposition of the pressures curves for t > 50 fs.

Furthermore, we note in Figs. 5(d)–5(f) that the densities
of holes and electrons are superimposed due to the Coulomb
force, as discussed in Sec. IV B.

The hole mass also impacts the plasma buildup. Although
the transport is weak in both simulations in Figs. 5(b) and 5(c),
they exhibit different density profiles. The reason is that the
mass ratio significantly affects the cutoff frequency, the field
ionization, and impact ionization rates.

V. CONCLUSION

We developed a theoretical approach based on the two-
fluid plasma model in order to describe extremely localized

interaction (<1 µm) of ultrashort laser pulses within solids.
This model is well suited to describe transport effects, plasma
waves effects, and the dynamics of conduction electrons and
valence holes, as well as electron-hole scattering, photoion-
ization, impact ionization, and interactions between carriers
and phonons. Numerical results based on this model showed
the significance of these effects in laser-induced nanoplasmas
within dielectrics where valence holes are light. This model
can be refined in future works by including additional effects
such as the Kerr effect or the Raman effect. We also believe
that transport phenomena can shed new light on the ultrafast
dynamics of the thin layers of laser-produced electron-hole
plasmas at the surface of dielectrics, which allow measure-
ments of a number of transition cross sections [18,66,67]. We
anticipate that this approach will open new perspectives in the
understanding of the interaction of ultrashort laser pulses with
dielectrics and semiconductors.
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APPENDIX: KELDYSH PHOTOIONIZATION RATE

For completeness, we provide the expression for the
Keldysh photoionization rate in solids used here (in s−1 m−3)
[11,47]:

αPh = 2ω0

9π

(
ω0μ

h̄γ1

)3/2

Q(�, x)

× exp

[
−πE(x + 1)

K
(
γ 2

1

) − G
(
γ 2

1

)
G

(
γ 2

2

) ]
. (A1)

The symbol E(x) represents the integer part of the num-
ber x, h̄ is the reduced Planck constant, μ = m∗

e m∗
h

m∗
e +m∗

h
, � =

ω0
√

μUg/|qe|||E|| is the Keldysh parameter, and ||E|| is the
amplitude of laser field. Functions K and G are elliptical
integrals of the first and second kind, γ1 = �/

√
1 + �2, and

γ2 = γ1/�. The function Q(�, x) of Eq. (A1) is given by [47]

Q(�, x) =
√

π

2K
(
γ 2

2

) ∞∑
n=0

exp

[
−πn

K
(
γ 2

1

) − G
(
γ 2

1

)
G

(
γ 2

2

) ]

× �

(
π

2

√
2E(x + 1) − 2x + n

K
(
γ 2

2

)
G

(
γ 2

2

)
)

, (A2)

where �(z) = ∫ z
0 exp(y2 − z2)dy and x = Ũ/h̄ω0. Ũ is the

effective band gap of the material, given by

Ũ = 2Ug

πγ1
G

(
γ 2

2

)
. (A3)

We remark that the effective masses of electrons and holes
highly influence the photoionization rate. They can increase
by almost two orders of magnitude when the hole mass is
modified from m∗

h = 7.5me (heavy holes in sapphire [25]) to
m∗

h = 0.4me (light holes in sapphire [25]).
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