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High-harmonic generation (HHG) in solids is a fundamental nonlinear phenomenon, which can be efficiently
controlled by modifying system parameters such as doping level and temperature. To correctly predict the de-
pendence of HHG on these parameters, consistent theoretical formulation of the light-matter coupling is crucial.
Recently, contributions to the current that are often missing in the HHG analysis based on the semiconductor
Bloch equations have been pointed out [Wilhelm et al., Phys. Rev. B 103, 125419 (2021)]. In this paper, by
systematically analyzing the doping and gap-size dependence of HHG in gapped graphene, we discuss the
practical impact of such terms. In particular, we focus on the role of the current J (2)

ra , which originates from
the change of the intraband dipole via interband transition. When the gap is small and the system is close to
half filling, intraband and interband currents mostly cancel, thus suppressing the HHG signal—an important
property that is broken when neglecting J (2)

ra . Furthermore, without J (2)
ra , the doping and gap-size dependence of

HHG becomes qualitatively different from the full evaluation. Our results demonstrate the importance of the
consistent expression of the current to study the parameter dependence of HHG for the small gap systems.

DOI: 10.1103/PhysRevB.106.035204

I. INTRODUCTION

Recent development of laser technology in the terahertz
and infrared regime enables the study of various nonlinear
phenomena in condensed matter originating from strong light-
matter coupling [1]. Important examples include dielectric
breakdown [2] and Bloch oscillations [3] as well as Floquet
engineering [4,5]. The high-harmonic generation (HHG) is
also a fundamental example of such nonlinear phenomena
[6–8]. While HHG was originally observed and studied in
gas systems [9], its scope has been recently extended to con-
densed matter, in particular, semiconductors and semimetals
[3,10–24]. One important aspect of condensed matter is the
sensitivity of material properties against system parameters
such as doping level and temperature. This feature opens
the interesting possibility of controlling HHG in condensed
matter using active degrees of freedom [25–28]. For example,
strong doping dependence of the HHG spectrum has been
reported in carbon nanotubes, where the doping level is con-
trolled by gating [26].

To explore the intriguing possibility of controlling HHG,
a consistent understanding of the origin of HHG is essen-
tial. There are several approaches to theoretically study HHG
in solids [29–48]. One major strategy is the time-dependent
density functional theory (TDDFT) [29–32,39,44]. In prin-
ciple, TDDFT can provide an ab initio way to study HHG.
However, its accuracy is limited by the inevitable approxi-
mations to the exchange-correlation functional and relaxation
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effects. Another major approach complementary to TDDFT is
to study model systems with several bands around the Fermi
level applying the semiconductor Bloch equations (SBEs)
[33–36,38,40,41,43,45,46]. The SBEs are formulated based
on the single-particle density matrix (SPDM) and allow us
to disentangle contributions to HHG and easily introduce
the relaxation and dephasing effects, at least phenomenologi-
cally. These approaches revealed that many features of HHG
in semiconductors and semimetals can be explained as the
dynamics of independent electrons (independent particle pic-
ture). Furthermore, it has been pointed out that there are two
major contributions to HHG in semiconductors: the intraband
and interband currents. The former essentially represents the
intraband acceleration of electrons (holes) in the conduction
(valence) band, while the latter represents the change of the
interband polarization. The dominant contribution depends on
systems, excitation conditions, and the order of harmonics,
and the two contributions may cancel each other in some occa-
sions. Still, the separation of contributions is helpful to obtain
the physical picture of the HHG mechanism in solids. For
example, HHG from the interband current can be understood
by the so-called three step model [30,35,36].

Despite the success, there still remains ambiguity in the
treatment based on the SBEs originating from the choice of
gauges of the light and bases for electronic states [49,50].
Different works in the literature often use different represen-
tations and different classification of contributions, and thus
consistency between these studies is not fully clear. Recently,
Wilhelm et al. rederived the SBEs and clarified the relation
between different representations [49]. They point out the
existence of two types of currents that are often neglected in
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the HHG analyses based on the SBEs: (i) The contribution to
the current originating from the change of the intraband dipole
via interband transition. We call it J (2)

ra in this paper. This
term contributes to the intraband current, when the intraband
current is defined as the derivative of the intraband dipole
moment. (ii) The contribution originating from the dephasing
term phenomenologically introduced to the SBEs. In Ref.
[49], the authors demonstrate the importance of these contri-
butions using the massless Dirac model with a fast dephasing
time. Still, to fully understand the role of these often-neglected
terms and their practical impact, further systematic analyses
are necessary.

In this paper, we study the doping and gap-size dependence
of HHG in gapped graphene and reveal the role of often-
neglected contributions, in particular, the role of J (2)

ra . We show
that when the gap is small and the system is close to half
filling, the cancellation between the intraband and interband
currents is severe and the inclusion of the contribution of
J (2)

ra to HHG becomes important. On the other hand, when
the gap becomes large compared to the excitation frequency,
the contribution from the interband current becomes dominant
and the effect of J (2)

ra becomes relatively marginal. We demon-
strate that, without J (2)

ra , the massless or nondoped system is
predicted to be favorable for the large HHG intensity while, in
the full evaluation, the HHG intensity shows nonmonotonic
behavior against the gap size and the doping level. Our results
demonstrate the importance of the consistent expression of
the current to correctly predict the parameter dependence of
HHG for the small gap systems. These insights should be
also relevant for HHG from the surface states of topological
insulators [24,51,52].

This paper is organized as follows. In Sec. II, focusing
on the two-band model, we revisit the formulation of the
light-matter coupling and clarify the relation between differ-
ent representations. In Sec. III, we introduce the tight-binding
model for gapped graphene applying the general formulation
discussed in Sec. II. We also introduce the effective Dirac
models. In Sec. IV, we present the numerical results, examine
the doping and gap dependence of HHG, and discuss the role
of different components of the currents to HHG. The summary
is given in the last section.

II. FORMULATION: GENERAL STATEMENTS

In this section, we revisit the formulation of the light-
matter problem based on the SBEs and clarify the relation
between frequently-used representations to be self-contained.
We note that a general discussion is already given in
Refs. [49,50]. For simplicity, we focus on a specific problem,
i.e., the tight-binding model consisting of two well-localized
Wannier states per unit cell. Our setup is directly applicable to
graphene and hexagonal boron nitride (hBN). The extension
to mutiorbital cases is straightforward, which is relevant for
the transition-metal dichalcogenides such as WSe2 and MoS2

[53,54]. In the following, we use the dipole approximation
(neglecting the spatial dependence of the field). We also as-
sume 〈ψi|r̂|ψ j〉 = riδi j , where r̂ is the position operator and
|ψi〉 is a well-localized Wannier state centered at ri, namely,
the dipole matrix element between the different Wannier states
is zero. Because of this assumption, the light-matter coupling

FIG. 1. Summary of the relation between different representa-
tions discussed in this paper.

in the dipole gauge is equivalent to the Peierls substitution.
As our starting point, we employ the length gauge. In this
gauge, the Hamiltonian for the light-matter coupled problem
is expressed as

ĤL(t ) = −
∑
i �= j

thop,i j ĉ†
i ĉ j +

∑
i

Vin̂i − q
∑

i

E(t ) · rin̂i,

(1)

where ĉ†
i is the creation operator of an electron at the ith site,

corresponding to the Wannier state |ψi〉, and n̂i = ĉ†
i ĉi. thop,i j

is the transfer integral from the jth site to the ith site, Vi sets
the energy level, q is the charge of the electron, E(t ) is the
electric field, and ri is the position vector of the ith site. We
omit the spin index assuming the paramagnetic phase. The
Hamiltonian Eq. (1) is the low-energy tight-binding model,
which is obtained by the projection of the first-principles
Hamiltonian in the length gauge to the space spanned by the
specified Wannier states [55]. Another way to construct the
low-energy model is to start from the minimal coupling, i.e.,
projection from the velocity gauge. Although first-principles
Hamiltonians in the length gauge and the velocity gauge
are equivalent for finite systems (which can in principle be
infinitely big); they are not equivalent after the projection.
As discussed in Ref. [55], the main difference of the optical
response originates from the inequivalent treatment of the dia-
magnetic current. The high-energy response such as HHG is
expected to be less sensitive against the choice of the projected
models.

In the following, we will demonstrate how frequently used
representations are obtained via unitary transformations from
Eq. (1), see Fig. 1. In all representations, the Hamiltonian
[Ĥ (t )] is quadratic. To study the time evolution of the system,
we focus on SPDM:

ρi j (t ) = 〈ĉ†
j (t )ĉi(t )〉. (2)

Here, 〈· · · 〉 is the expectation value with the grand canonical
ensemble and ĉ†(t ) indicates the Heisenberg representation
of ĉ†. Introducing the matrix elements of the Hamiltonian as
hi j (t ) = 〈vac|ĉiĤ (t )ĉ†

j |vac〉, the time evolution of SPDM (the
von Neumann equation or the quantum master equation) is
expressed as

∂tρ(t ) = i[ρ(t ), h(t )] + ∂tρ(t )|corr. (3)
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Here, ρ(t )(h(t )) expresses the matrix with elements ρi j (t )
(hi j (t )). We set h̄ unity in this paper. The last term indi-
cates the contribution from the correlations originating from
electron-electron interactions, electron-phonon interactions,
and impurities, although these are absent in our Hamiltonian
Eq. (1). ∂tρ(t )|corr can be directly evaluated by explicitly
including these terms in the Hamiltonian and using the
diagrammatic expansions [56–59]. However, the direct micro-
scopic evaluation of ∂tρ(t )|corr is computationally expensive,
and instead the correlation effects are often taken into account
phenomenologically through the relaxation time approxima-
tion (see Sec. II D).

The intensity of HHG is evaluated from the current J (t )
induced by the external field as IHHG(ω) = |ωJ (ω)|2, where
J (ω) is the Fourier transform of J (t ). J (t ) can be directly
evaluated as the expectation value of the current operator Ĵ
or from the time derivative of the expectation value of the
polarization P̂ using ρ(t ). Both approaches yield the identical
result if the time evolution with respect to the Hamiltonian is
solved exactly.

A. Representation I: Dipole gauge expressed
with localized Wannier basis

Applying the unitary transformation ĉ†
i → eiqA(t )·ri ĉ†

i to the
Hamiltonian Eq. (1), we obtain the dipole gauge Hamiltonian
[55],

ĤD(t ) = −
∑
i �= j

thop,i je
iqA(t )·ri j ĉ†

i ĉ j +
∑

i

Vin̂i, (4)

where ri j = ri − r j and A(t ) is the vector potential. The latter
is related with the electric field as E(t ) = −∂t A(t ). In this
gauge, the light-matter coupling is taken into account through
the Peierls phase.

It is natural to express this Hamiltonian in the momentum
space representation applying the periodic boundary condition
to the Hamiltonian Eq. (4) and using the Bloch states defined
by the Wannier states as |ψk,α〉 = 1√

N

∑
i∈α eik·ri |ψi〉, namely,

we introduce the creation operators as ĉ†
kα

= 1√
N

∑
i∈α eik·ri ĉ†

i ,

where α = A,B indicates the sublattices. Here, N is the num-
ber of unit cells in the system. The resulting expression is

ĤD(t ) =
∑

k

[ĉ†
kA ĉ†

kB]h(k − qA(t ))

[
ĉkA

ĉkB

]
, (5)

where h(k) is obtained by the Fourier transformation of thop,i j

in terms of ri j . Note that h(k) is in general not diagonal. In the

following, we express k − qA(t ) as k(t ) and ψ̂
†
k = [ĉ†

kA, ĉ†
kB].

In this representation, the von Neumann equation for
SPDM, ρD

αβ,k(t ) = 〈ĉ†
kβ

(t )ĉkα (t )〉, is expressed as

∂tρ
D
k (t ) = i

[
ρD

k (t ), h(k(t ))
]
. (6)

The operator of the current of the a direction is defined as
Ĵa(t ) = −δHD(t )/δAa(t ). More explicitly, it is expressed as
Ĵa(t ) = ∑

k Ĵka(t ), with

Ĵka(t ) = qψ̂
†
k[∂ah(k(t ))]ψ̂k, (7)

where we defined ∂a = ∂/∂ka.

Since the expression of h(k) can be easily evaluated, this
representation is an obvious choice for the numerical imple-
mentation. However, for classifying different contributions to
HHG or when including phenomenological relaxation terms,
it is more convenient to choose the basis set that diagonal-
izes h(k) [60]. For the following change of representation,
we assume that the system is gapped [no degeneracy of the
eigenvalue of h(k) at each k].

B. Representation II: Dipole gauge expressed
with the Houston basis

Now we consider the representation using the instanta-
neous eigenstates of the time-dependent Hamiltonian Ĥk(t )(≡
ψ̂

†
kh(k(t ))ψ̂k), i.e., the Houston basis [37,49,50]. The rep-

resentation is obtained by the time-dependent unitary trans-
formation of Eq. (5) with Û†(t ) = ∏

k Û
†
k (t ), where Û†

k (t )
satisfies

Û†
k (t )

[
ĉkA

ĉkB

]
Ûk(t ) = U(k(t ))

[
ĉkA

ĉkB

]
. (8)

Here U(k)†h(k)U(k) = ε(k) and ε(k) = diag[ε0(k), ε1(k)] is
a diagonal matrix. We note that the choice of U(k) is not
unique and there exists a gauge freedom. After this trans-
formation, the meaning of ĉ†

kα
is changed and it represents

the instantaneous eigenstate of Ĥk(t ) in the original represen-
tation. To clarify the difference of the meaning, we express
ĉ†

kA (ĉ†
kB) as b̂†

k0 (b̂†
k1) after this transformation in the follow-

ing, and introduce ψ̂
′†
k = [b̂†

k0, b̂†
k1]. The resultant Hamiltonian

(ĤH
k (t ) = Û†

k (t )ĤD
k (t )Ûk(t ) + i(∂t Û†

k (t ))Ûk(t )) becomes

ĤH
k (t ) = ψ̂

′†
k ε(k(t ))ψ̂

′
k − q

∑
a

Ea(t )d̂a(k(t )), (9)

where d̂a(k(t )) = ψ̂
′†
k da(k(t ))ψ̂

′
k is the dipole moment for the

direction a, and da(k) = iU†(k)[∂aU(k)] is the (non-Abelian)
Berry connection, which plays the role of dipole matrix el-
ements. Note that the Hamiltonian in this representation is
now diagonalized at each k and time, at least in the adiabatic
limit (
 → 0 and E(t ) 
 0). After the transformation, the
expression of the current (Ĵ

′
k(t ) = Û†

k (t )Ĵk(t )Ûk(t )) becomes

Ĵ ′
ka(t ) = qψ̂

′†
k [∂aε(k(t ))]ψ̂

′
k − iqψ̂

′†
k [da(k(t )), ε(k(t ))]ψ̂

′
k.

(10)

The first term consists of the diagonal components of b̂†
knb̂km,

i.e., n = m, while the second term consists of the off-diagonal
components.

In the literature, the first and second terms are sometimes
referred to as the intraband and interband currents, respec-
tively [61–65]. However, they are different from the intraband
and interband currents defined in terms of the length gauge
[66,67] (see Sec. II C). For example, the first term only de-
pends on the dispersion of the band, while the intraband
current includes the anomalous velocity originating from the
topological nature of the wave functions.
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The corresponding von Neumann equation for ρH
mn,k(t ) =

〈b̂†
kn(t )b̂km(t )〉 becomes

∂tρ
H
k (t ) = i

[
ρH

k (t ), ε(k(t )) − q
∑

a

Ea(t )da(k(t ))

]
. (11)

Actually, this representation is closely related to representa-
tion III discussed in the following section.

C. Representation III : Length gauge expressed with band basis

Now we come back to the length gauge and express the
Hamiltonian Eq. (1) using the band basis:

[ĉ†
k0ĉ†

k1] = [ĉ†
kAĉ†

kB]U(k). (12)

In this representation, ĤL(t ) is expressed as

ĤL(t ) =
∑

k

[ĉ†
k0ĉ†

k1]ε(k)

[
ĉk0

ĉk1

]
− E(t ) · P̂. (13)

The important issue is the expression of P̂, which includes
the position operator [see Eq. (1)]. Note that the band basis
implicitly assumes the periodic boundary condition, while the
position operator is not well-defined in this condition. As
discussed in Refs. [66,68], in the thermodynamic limit, the
polarization operator can be interpreted as

P̂ = P̂ra + P̂er, (14a)

P̂ra = P̂
(I )
ra + P̂

(II )
ra

= q
∑

k

[ĉ†
k0ĉ†

k1]

[
d00(k) 0

0 d11(k)

][
ĉk0

ĉk1

]

+ q
∑
k,k′

∑
n

[i∇kδ(k − k′)]ĉ†
knĉk′n, (14b)

P̂er = q
∑

k

[ĉ†
k0ĉ†

k1]

[
0 d01(k)

d10(k) 0

][
ĉk0

ĉk1

]
. (14c)

Here, ε(k) and d(k) are the same as in representation II.
P̂ra is the intraband polarization, which is expressed with
diagonal components of ĉ†

nĉm. On the other hand, P̂er is the
interband polarization, which is expressed with off-diagonal
components of ĉ†

nĉm. The current corresponds to the change of
the polarization, Ĵ(t ) = −i[P̂, ĤL(t )]. One can consider two
types of currents originating from the intraband and interband
polarizations [66,67]:

Ĵra (t ) = −i[P̂ra (t ), ĤL(t )],

Ĵer (t ) = −i[P̂er (t ), ĤL(t )]. (15)

The explicit expression of the total current along the a axis is

Ĵa =
∑

k

[ĉ†
k0ĉ†

k1]∂aε(k)

[
ĉk0

ĉk1

]

− i
∑

k

[ĉ†
k0ĉ†

k1][da(k), ε(k)]

[
ĉk0

ĉk1

]
. (16)

The expression of the intraband current becomes Ĵra,a(t ) =
Ĵ (1)

ra,a(t ) + Ĵ (2)
ra,a(t ), where

Ĵ (1)
ra,a(t ) =

∑
k

∑
n

vn,a(k, t )ĉ†
knĉkn, (17)

Ĵ (2)
ra,a(t ) = −E(t )

∑
k,n �=m

rnm,a(k)ĉ†
knĉkm, (18)

with

vn,a(k, t ) = ∂aεn(k) − [E(t ) × (∇k × dnn(k))]a, (19)

rnm,a(k) = ∂adnm(k) − i(dnn,a(k) − dmm,a(k))dnm(k). (20)

Ĵ (1)
ra,a consists of the diagonal terms in terms of ĉ†

nĉm. ∇k ×
dnn(k) represents the Berry curvature and the second term
in Eq. (19) is the anomalous velocity. On the other hand,
Ĵ (2)

ra,a consists of the off-diagonal terms. Ĵ (2)
ra,a originates from

−i[P̂ra,−E(t ) · P̂er]. Physically, this indicates the change of
the intraband polarization by the interband excitation via
−E(t ) · P̂er. We note that this term corresponds to the shift
current [66,67,69,70].

The interband current is expressed as

Ĵer,a = −i
∑

k

[ĉ†
k0ĉ†

k1][da(k), ε(k)]

[
ĉk0

ĉk1

]

− E(t )
∑
k,n,m

r̃nm,a(k)ĉ†
knĉkm, (21)

r̃nm,a

=
{−i(dnn̄,a(k)dn̄n(k) − dn̄n,a(k)dnn̄(k)) (n = m)
−∇kdnm,a(k)+idnm,a(k)(dnn(k) − dmm(k)) (n �= m).

(22)

Here n̄ = 1 − n. Note that our definition of the intraband and
interband currents are based on the types of the polarization
as Ref. [66]. On the other hand, the authors of Ref. [49] define
Ĵ (1)

ra,a as the intraband current and all remaining terms is the
interband contribution. We also note that Ĵer includes a term
−i[P̂er,−E(t ) · P̂ra](≡ Ĵ

(2)
er ), which resembles Ĵ

(2)
ra . Indeed, if

we focus on the linearly polarized filed and the current along
the field direction, we have Ĵ (2)

er = −Ĵ (2)
ra .

The corresponding von Neumann equation for ρLB
mn,k(t ) =

〈ĉ†
kn(t )ĉkm(t )〉 is

∂tρ
LB
k (t ) = i

[
ρLB

k (t ), hLB(k, t )
] − (E(t ) · ∇k)ρLB

k (t ) (23)

with hLB(k, t ) = ε(k) − ∑
a Ea(t )da(k). This form of SBE

has often been used for the analysis of HHG [35,36,38,41].
Furthermore, if we define ρ̃LB

k (t ) ≡ ρLB
k−qA(t )(t ), we have

∂t ρ̃
LB
k (t ) = i

[
ρ̃LB

k (t ), hLB(k − qA(t ), t )
]
. (24)

This equation is the same as Eq. (11) for the SPDM in rep-
resentation II. Since the initial SPDM is the same between
representation II and representation III, ρH

k (t ) = ρ̃LB
k (t ). This

also justifies the expression of the polarization Eqs. (14).
In the analysis of HHG based on the SBEs in the form of

Eq. (23), the intraband and interband currents are evaluated
separately [35,36,38,41]. For the intraband current, only the
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contribution from Ĵ (1)
ra,a is often taken into account, and it is

important to clarify the role of Ĵ (2)
ra,a. On the other hand, the

interband current is often evaluated through a derivative of the
expectation value of P̂er.

D. Phenomenological relaxation and dephasing

In real materials, relaxation and dephasing of excited
carriers occur due to the electron-electron interactions,
electron-phonon interactions, and disorders. These effects
are often taken into account via phenomenological terms in
the von Neumann equation. They are usually introduced for
the relaxation process of the occupation of the bands and the
dephasing process between the bands. In representation II, the
phenomenological von Neumann equation becomes

∂tρ
H
k (t ) = i

[
ρH

k (t ), ε(k(t )) −
∑

a

Ea(t )da(k(t ))

]

− ρH
diag,k(t ) − ρH

eq,k(t )

T1
− ρH

off,k(t )

T2
. (25)

Here, ρdiag indicates a matrix consisting of diagonal com-
ponents of ρ, while ρoff indicates a matrix consisting of
off-diagonal components of ρ. The second term represents the
relaxation process, where the occupation (the diagonal terms
of ρH) approaches the equilibrium value with a time scale T1.
The third term expresses the dephasing process, where the off-
diagonal components of ρH approaches zero (the equilibrium
value) with a timescale T2. The corresponding expression in
representation III is naturally obtained from Eq. (25). In rep-
resentation I, since ρDW

k (t ) = U(k(t ))ρH
k (t )U†(k(t )), Eq. (25)

corresponds to

∂tρ
DW
k (t ) = i

[
ρDW

k (t ), h(k(t ))
] − ρDW

k (t ) − ρDW
eq,k(t )

T1

+
(

1

T1
− 1

T2

)
U(k(t ))ρH

off,k(t )U
†(k(t )). (26)

Upon introducing phenomenological relaxation and de-
phasing terms, attention needs to be payed to the following
issue. The current obtained directly from evaluating the ex-
pression for Ĵ, i.e., 〈Ĵ〉, and from the derivative of the
expectation value of the polarization, i.e., ∂t 〈P̂〉, are not equiv-
alent any more (without the phenomenological terms they are
equivalent). We note that this discrepancy corresponds to the
current induced by the dephasing, which is pointed out in
Ref. [49] and is also often neglected in the HHG analysis
using SBE [35,36]. Therefore, when one uses small T1 and
T2, this subtlety of how to evaluate a certain quantity becomes
a practical problem.

E. Lessons

From the above section, one can identify the following
issues: (i) there is a often-neglected term J (2)

ra in analyses of
HHG based on representation III and (ii) the phenomeno-
logical damping term may bring some inconsistency between
different ways to evaluate the current [49,50]. In the follow-
ing, we focus on gapped graphene as an example and discuss

X

A

B

e1

e2 e3

Y

a1a2

FIG. 2. Tight-binding model on the two-dimensional honeycomb
lattice. Blue circles indicate the A sublattice, while red circles indi-
cate the B sublattice.

how these points are relevant for the doping and gap-size
dependence of the HHG spectrum.

III. GRAPHENE MODELS

In this section, we apply the general formulation discussed
in Sec. II to the tight-binding models for gapped graphene.
We note that the same model is also applicable for hBN. We
consider the two-dimensional honeycomb lattice as in Fig. 2.
We set the length of the bond to unity.

In equilibrium, the tight-binding model is expressed as

Ĥ = −thop

∑
〈i j〉

ĉ†
i ĉ j + m

∑
i

(−1)in̂i − μ
∑

i

n̂i. (27)

〈i j〉 indicates a pair of the neighboring sites (〈i j〉 �= 〈 ji〉).
thop is the transfer integral, m is the energy level difference
between the A and B sublattices, (−1)i = 1 for i ∈ A, (−1)i =
−1 for i ∈ B, and μ is the chemical potential.

A. Light-matter coupling in representation I

Assuming that the Wannier state is well localized at the
ith site, we apply the general formulation in Sec. II. The
Hamiltonian corresponding to Eq. (4) is

Ĥ (t ) = −thop

∑
〈i j〉

eiqA(t )·ri j ĉ†
i ĉ j + m

∑
i

(−1)in̂i − μ
∑

i

n̂i.

(28)

The corresponding current operator is Ĵ(t ) =
iqthop

∑
〈i j〉 ri jeiqA(t )·ri j ĉ†

i ĉ j .

The Hamiltonian corresponding to Eq. (5) is

Ĥ (t ) = −thop

∑
k

ψ̂
†
k

[
0 F (k − qA(t ))

F ∗(k − qA(t )) 0

]
ψ̂k

+
∑

k

ψ̂
†
k

[
m − μ 0

0 −m − μ

]
ψ̂k, (29)
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while the current is

Ĵ(t ) = thop

∑
a

iea

∑
k

ψ̂
†
k

[
0 −ei(k−qA)·ea

e−i(k−qA)·ea 0

]
ψ̂k.

(30)
Here, F (k) = eik·e1 + eik·e2 + eik·e3 and ei indicates vectors
from a site of the A sublattice to the neighboring sites (see
Fig. 2). We note that the mass term yields the band gap of 2m.

B. Effective Dirac models

The above tight-binding model hosts two Dirac points
in the Brillouin zone at K and K ′, where F (K ) = 0 and

F (K ′) = 0. One can focus on the dynamics of electrons around
the Dirac points; when the Fermi level is close to the Dirac
points (μ is not far from 0), the excitation frequency is small
compared to the bandwidth and the field is not too strong. The
dynamics of electrons can be described by the effective Dirac
models, which are obtained by expanding the tight-binding
model Eq. (29) around the Dirac points.

Around k 
 K (k 
 K ′), we introduce δk ≡ k − K (δk ≡
k − K ′), expand Eq. (29) in terms of δk(t ) ≡ δk − qA(t ) and
regard e−iK·e1 ĉ†

kB (e−iK ′ ·e1 ĉ†
kB) as new ĉ†

kB. Finally, we obtain
the effective Hamiltonian for each k,

Ĥ (K,K ′ )
k (t ) = ψ̂

†
k

[ −μ + m − 3thop

2 [±δkx(t ) + iδky(t )]
− 3thop

2 [±δkx(t ) − iδky(t )] −μ − m

]
ψ̂k, (31)

while the corresponding current operator becomes

ĵ(K,K ′ )
k = ∓3thop

2
ex ψ̂

†
k

[
0 1
1 0

]
ψ̂k − 3thop

2
ey ψ̂

†
k

[
0 i
−i 0

]
ψ̂k.

(32)

C. Implementation

Using the explicit form of the Hamiltonians shown in
Secs. III A and III B, we implement the code based on repre-
sentation I, i.e., Eq. (26), for the original tight-binding model
and its effective Dirac models. The different types of currents
defined in representation III are obtained by taking account
of the relation between these representations as discussed in
Sec. II C. A more detailed explanation on the implementation
is found in Appendix A.

IV. RESULTS

In this section, we show the results of the HHG spectra
of gapped graphene and discuss the issues raised in Sec. II E.
In the following, we set thop = 3 and the excitation frequency

 = 0.26. Since the hopping of the graphene is roughly 3 eV,
our energy unit corresponds to 1 eV. Under this correspon-
dence, the excitation frequency corresponds to 
 = 0.26 eV,
which is in the midinfrared regime, and our time unit ap-
proximately corresponds to 0.66 fs. This set of parameters is
motivated by experiments on graphene and carbon nanotubes
[18,26]. In addition, we set the bond length (0.246 × 1√

3
nm

for graphene) as our unit of length and set the charge q to
unity. With this choice, the field strength of 1 MV/cm corre-
sponds approximately to E0 = 0.014 in theory units.

We set the temperature as T = 0.03, which corresponds
to the room temperature. As for the dephasing time, we set
T2 = 30, which is almost 20 fs as is recently reported [71].
We set T1 = 150, which is much larger than T2 as in Ref. [60].
These timescales are reasonable to describe dephasing and re-
laxation originating from genuine many-body effects. We note
that these timescales are much longer than the time (T2 = 1
fs) used in Ref. [49]. Such short dephasing times of a few fs
have been often used in previous studies. As pointed out in
Refs. [44,72], it can be regarded as a crude way to mimic the

dephasing by the propagation of light and the inhomogeneity
of the field strength.

In the following, we mainly show the results obtained from
the analysis of the effective Dirac model since the expres-
sion of the dipole moment d is much simpler in this model
compared to the original graphene model (see Appendix B).
We have checked that the full HHG spectrum IHHG obtained
from the Dirac model and the original graphene model agrees
reasonably well for the excitation conditions considered here
(see Appendix C).

A. Linearly polarized light: Doping dependence

We consider the excitation with the linearly polarized light
along the X direction,

AX (t ) = E0



FG(t, t0, σ ) sin(
(t − t0)), (33)

where FG(t, t0, σ ) = exp[− (t−t0 )2

2σ 2 ]. We measure the HHG
spectra polarized along the X direction as IHHG = |ωJX (ω)|2.
Here, JX indicates the current along the X direction. We note
that due to the mirror symmetry along the X direction (Fig. 2),
only odd harmonics are present in the HHG signal (finite even
harmonics are due to the finite pulse used in the simulations).
Here, we focus on the system with vanishing gap (m → 0)
and study the doping dependence of HHG. In Figs. 3(a) and
3(b), we show how the HHG spectra change with modifying
the chemical potential. We also plot the intensity of the peaks
in the HHG spectra (Ipeaks) as a function of the chemical
potential in Figs. 3(c) and 3(d). Here, Ipeaks(n) for the nth

HHG peak is defined as Ipeaks(n) = ∫ (n+δ)

(n−δ)
 dωI (ω), and we

set δ = 0.5. When the field is relatively weak (
 1 MV/cm),
one can see the clear dependence of HHG on the chemical
potential, where the HHG intensity can change by an order
of magnitude. In particular, the intensity of the fifth and sev-
enth peaks increases with the doping from half filling, and
the fifth peak intensity shows nonmonotonic behavior. The
increase of the HHG intensity originates from the cancella-
tion between the intraband and interband current becoming
less severe upon doping, as discussed below. On the other
hand, when the field is relatively strong (
 5 MV/cm), the
effects of doping become marginal. This change in the doping
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(e)

(f)

FIG. 3. (a), (b) HHG spectra IHHG = |ωJX (ω)|2 of gapped graphene for indicated values of chemical potential and field strength. (c),
(d) The intensity of the peaks of the HHG spectra Ipeaks(n) as a function of chemical potential. (e), (f) The intensity of the fifth harmonic
peak of IHHG,k(ω) = |ωJk,X (ω)|2 for indicated values of field strength around the Dirac point [K = (Kx, Ky )]. The dashed circles indicate the
Fermi surface for μ = −0.4, while the dot-dashed lines indicate the edge of the Brillouin zone of the graphene. In all cases, we set thop = 3,
m = 0.001, T1 = 150, and T2 = 30. The parameters of the electric field are t0 = 280, σ = 40, and 
 = 0.26. These results are obtained from
the analysis of the Dirac models.

effects depending on the field strength can be understood by
considering which electrons contribute to HHG. In Figs. 3(e)
and 3(f), we show the intensity of the fifth harmonic peak of
IHHG,k(ω) = |ωJk,X (ω)|2. Behavior of the other harmonics is
qualitatively the same. The results suggest that for the weaker
field only the electrons around the Dirac points contribute to
HHG, while for the stronger field the electrons in a larger
range contribute to HHG. This naturally explains the weak
doping dependence of HHG for stronger fields, since the
contribution from electrons around the Dirac point becomes
less important. In addition, Figs. 3(e) and 3(f) show that the
contribution from electrons along the Dirac point is small.
This is natural since electrons along the Dirac point do not
change the velocity under the field and thus do not contribute
to HHG. Furthermore, the region of the strong contribution
is extended along the field direction but limited in the perpen-
dicular direction, suggesting that HHG mainly originates from
the electrons moving along the optimal band dispersion.

Now we study in detail the contributions from differ-
ent types of currents and discuss the importance of J (2)

ra .
In Figs. 4(a)–4(d), we show the contributions from differ-
ent types of currents; IHHG = |ωJX (ω)|2, Ier = |ωJer,X (ω)|2,
Ira = |ωJra,X (ω)|2, I (1)

ra = |ωJ (1)
ra,X (ω)|2. For the first harmonics

(ω 
 
), in all cases, the agreement between Ira and I (1)
ra is

good and the cancellation between Ier and Ira is marginal.
On the other hand, one needs to pay attention for the higher
harmonics. When the field is relatively weak (
 1MV/cm)
and μ = 0, Ier and Ira take very close values and the total
spectrum Itot becomes much smaller than the former two,
namely, the contributions from Jer and Jra cancel each other
out. This is also the case for stronger fields [see Figs. 4(b)
and 4(d)], although the cancellation is less pronounced than

in Fig. 4(a). For these cases, the correct evaluation of Jra is
important. On the other hand, for the doped system and for
relatively weak fields, the contribution from Jer is dominant
for the third, fifth, and seventh harmonics [see Fig. 4(c)]. In
this case, although the individual contributions Ier and Ira are
decreased away from half filling, the total HHG intensity can
be enhanced since the cancellation between them becomes
less severe. This explains the increased behavior of the peak
intensity of the fifth and seventh harmonics shown in Fig. 3(c).
As for the third harmonics, the cancellation is not as severe as
the higher harmonics even at half filling [see Fig. 4(a)], which
makes the doping dependence different.

When Jra (t ) is evaluated without J (2)
ra , the contribution to

HHG is underestimated [see I (1)
ra in Fig. 4]. Then the can-

cellation between Jer and Jra is underestimated and the HHG
intensity is overestimated in general. This can lead to qual-
itatively opposite predictions about the doping dependence
of HHG: when J (2)

ra is not included, the HHG intensity de-
creases with the doping when the field is relatively weak
[see Fig. 4(e)]. For stronger fields, the doping dependence
becomes marginal, but the HHG intensity is strongly overes-
timated [see Fig. 4(f)].

B. Linearly polarized light: Effects of the mass term

Now the question is when J (2)
ra becomes important. To

obtain insight into this question, we examine the gap-size
dependence of HHG at half filling (see Fig. 5). The results
indicate that when the gap is small or comparable to the
excitation frequency, contributions from the intraband and
interband currents are comparable and cancel each other. In
this regime, the accurate evaluation of the intraband current
is crucial to correctly predict the dependence of HHG on
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FIG. 4. (a)–(d) HHG spectra of gapped graphene for indicated values of chemical potential and field strength. We compare the contributions
from different types of currents; IHHG = |ωJX (ω)|2, Ier = |ωJer,X (ω)|2, Ira = |ωJra,X (ω)|2, I (1)

ra = |ωJ (1)
ra,X (ω)|2. (e), (f) The intensity of the peaks

of the HHG spectra I ′
peaks(n), which is evaluated from I ′

HHG(ω) = |ω(Jer,X (ω) + J (1)
ra,X (ω))|2 (i.e., without J (2)

ra ), are shown with open markers, as
a function of chemical potential. The filled markers indicate the results from IHHG(ω) shown in Figs. 3(e) and 3(f). In all cases, we use thop = 3,
m = 0.001, T1 = 150, and T2 = 30. The parameters of the electric field are t0 = 280, σ = 40, and 
 = 0.26. These results are obtained from
the analysis of the Dirac models.

system parameters. On the other hand, when the band gap
is sufficiently large compared to the excitation frequency, the
contribution from the interband current becomes dominant for
ω � 2m. Although there still remains a substantial difference
between the contributions from Jra and J (2)

ra , the difference
hardly affects the general structure of the HHG spectrum in
this regime [see Figs. 5(e) and 5(f)].

The cancellation between the intraband and interband cur-
rents mainly originates from J (2)

ra,X and J (2)
er,X (= −J (2)

ra,X ). As
indicated in Figs. 4(a), 4(b) 5(a), and 5(b), when the gap
is smaller than or comparable to the excitation frequency,
these terms become the dominant components in the intraband
current and the interband current, respectively. Since J (2)

ra is
the modulation of the intraband polarization by the interband

FIG. 5. (a)–(f) HHG spectra of gapped graphene for indicated values of the gap (2m) and field strength. We compare contributions from
different types of currents: IHHG = |ωJX (ω)|2, Ier = |ωJer,X (ω)|2, Ira = |ωJra,X (ω)|2, I (1)

ra = |ωJ (1)
ra,X (ω)|2. In all cases, we use thop = 3, μ = 0,

T1 = 150, and T2 = 30. The parameters of the electric field are t0 = 280, σ = 40, and 
 = 0.26. These results are obtained from the analysis
of the Dirac models.
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Ipeaks Ipeaks

FIG. 6. The intensity of the peaks in the HHG spectra Ipeaks(n),
which is evaluated from IHHG(ω), and I ′

peaks, which is evaluated from

I ′
HHG(ω) = |ω(Jer,X (ω) + J (1)

ra,X (ω))|2 (i.e., without J (2)
ra ), as a function

of the mass term m. In all cases, we use thop = 3, μ = 0, T1 = 150,
and T2 = 30. The parameters of the electric field are t0 = 280, σ =
40, and 
 = 0.26. These results are obtained from the analysis of the
Dirac models.

transition, this term is expected to be large when the gap is
small and the photoexcitation between the bands is activated.
On the other hand, when the gap becomes larger, the con-
tribution of these terms should be suppressed since there is
no efficient transition by the photoexcitation, and these terms
should become less important.

To demonstrate the importance of the contribution of J (2)
ra ,

we show the gap-size dependence of the HHG peak in Fig. 6.
In the full evaluation, the peak intensity increases as the gap
is increased from zero. This can be understood by the fact
that cancellation between the intraband and interband currents
is relaxed. On the other hand, when J (2)

ra is not included,
the intensity of the fifth and seventh harmonics is severely
overestimated for small m and the intensity is monotonically
decreased. These results underpin the importance of the full
evaluation of the current for small-gap systems.

Next we discuss the potential inconsistency between the
different ways of evaluating the interband current (see Fig. 7).
Within the present choice of T1 and T2, there is no crucial
discrepancy between Ier, which is evaluated from 〈Ĵer〉, and
Ĩer, which is evaluated from 〈P̂er〉. We note that compared to
the previous study [49], which emphasizes the discrepancy
between Ĩer and Ier, we use much larger dephasing time. How-
ever, there is a clear difference between the full HHG spectra
IHHG and ĨHHG(= |ω(Jra (ω) − iωPer (ω))|2) when the field is

FIG. 7. HHG spectra of gapped graphene for indicated values
of the gap (2m) and field strength. We compare contributions from
different types of currents; IHHG = |ωJX (ω)|2, ĨHHG = |ω(Jra,X (ω) −
iωPer,X (ω))|2, Ier = |ωJer,X (ω)|2 and Ĩer = |ω2Per,X (ω)|2. In all cases,
we use thop = 3, μ = 0, T1 = 150, and T2 = 30. The parameters of
the electric field are t0 = 280, σ = 40, and 
 = 0.26. These results
are obtained from the analysis of the Dirac models.

relatively weak and the mass is small [see Fig. 7(a)]. This is
natural since in this regime the cancellation between Ier and Ira

is strong. On the other hand, in the rest of the cases, where the
cancellation is less severe, agreement between IHHG and ĨHHG

becomes reasonable.

C. Comments on circularly polarized light

Finally, we comment on cases where we excite the system
with the circularly polarized light:

AX (t ) = E0x



FG(t, t0, σ ) cos

(

(t − t0) − π

4

)
,

AY (t ) = E0y



FG(t, t0, σ ) cos

(

(t − t0) + π

4

)
. (34)

We analyzed the HHG spectrum for various values of the
ellipticity of the light. However, we do not show the detailed
results here, since the general tendency turns out to be es-
sentially the same as the cases with linearly polarized light.
First, when the gap is small, the doping dependence of the
HHG spectrum is smaller for cases with stronger laser fields,
as in the cases with linearly polarized light. This is because
the contributions from the electrons around the Dirac point
become less important for stronger fields as in the cases with
the linearly polarized field. Second, the influence of J (2)

ra also
follows the same trend as the cases with the linearly polarized
light. When the gap is small, the cancellation between the
contributions from Jra and Jer is strong and full evaluation of
Jra is important. On the other hand, when the gap becomes
large compared to the excitation frequency, the contribution
from Jer becomes dominant and the contribution from J (2)

ra
becomes less relevant. This feature can be explained from that
contributions from J (2)

ra and J (2)
er should become large when

the photoexcitation is activated for small gaps as in the cases
with the linearly polarized field. One of the important feature
characteristics of HHG in solids is the dependence on the
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ellipticity [18,60], namely, the HHG intensity can increase at
nonzero ellipticity. The discussion on the role of J (2)

ra suggests
that one needs to pay close attention when one evaluates the
ellipticity dependence of HHG for small gap systems like
graphene.

V. CONCLUSIONS

In this paper, we studied the doping and gap-size de-
pendence of HHG in gapped graphene under midinfrared
excitations and revealed the importance of a consistent repre-
sentation of the light-matter coupling. Focusing on two-band
systems, we explicitly revealed the relation between the fre-
quently used representations of the SBEs, which are based
on different gauges of the light and bases for electric states.
As shown in Ref. [49] for general cases, we pointed out
several issues that may cause inconsistency between different
representations. In particular, we focus on the impact of a
term in the intraband current J (2)

ra , which corresponds to the
change of the intraband dipole via the interband transition and
is often neglected in the HHG analysis. With a systematic
analysis of the doping and gap-size dependence of HHG in
gapped graphene, we showed that the contribution from J (2)

ra
is crucial when the gap is smaller than or comparable to
the excitation frequency and that the evaluation without J (2)

ra
can lead to qualitatively opposite behavior of the dependence
on parameters such as doping. On the other hand, when the
gap is large enough compared to the excitation frequency,
the effects of J (2)

ra are less important. The theoretical insight
into the relation between frequently used representations and
the importance of J (2)

ra should be valuable to systematically
understand how HHG changes with system parameters such
as doping level [26] and temperatures [27].

In our paper, we introduced the phenomenological
relaxation/dephasing terms and fixed their values. However,
in practice, these values may change with doping level [26] or
with temperatures due to the correlation effects [27,73–75].
Although recently the effects of correlations on HHG beyond
the phenomenological description have been attracting much
interest [75–90], deeper understanding is required for further
accurate understanding of the behavior of HHG. This is an
important future task.
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APPENDIX A: DETAIL OF THE IMPLEMENTATION

In this paper, we study the tight-binding model and the
Dirac models introduced in Secs. III A and III B using rep-
resentation I, i.e., Eq. (26). In the practical implementation
of Eq. (26), at each time step, we evaluate ρH

k (t ) using

U†(k(t ))ρDW
k (t )U(k(t )), extract the off-diagonal components,

and make an inverse transformation to evaluate the last term
of Eq. (26). We note that as far as h(k(t )) �∝ I (I is the identity
matrix), this operation does not depend on the choice of the
gauge of U(k(t )).

To directly compare the results of the tight-binding model
and the Dirac models (where a momentum cutoff |δk| < kc

has to be introduced), we evaluate observables by consider-
ing the difference from equilibrium δρk(t ) = ρk(t ) − ρeq,k(t ),
where k(t ) = k − qA(t ). Here, ρeq indicates the equilibrium
SPDM. The value of physical quantities such as the energy
and current depend on the choice of kc, but the deviation from
the equilibrium hardly depends on this choice. In practice,
for the direct comparison of the HHG spectrum between the
tight-binding model and the Dirac models, we evaluate the
current using δρk(t ), instead of ρk(t ), for the Dirac models at
K and K ′ and sum up these contributions (see Appendix. C).
We also evaluate the different types of currents from δρk(t ).
This procedure is justified by the fact that those currents are
zero when they are evaluated from ρeq,k(t ). Note that we need
to be careful when the system is a topological state where the
Chern number becomes nonzero and thus J (1)

ra [see Eq. (17)]
can be nonzero even for ρeq,k(t ).

APPENDIX B: EXPRESSION OF THE DIPOLE MOMENT
FOR THE DIRAC MODEL

For completeness, we show the expression of the dipole
moment and its relevant quantities for the Dirac models
Eq. (31). We express the Dirac Hamiltonian as

h(k) = B(k)

[
cos θk sin θkeiφk

sin θke−iφk − cos θk

]
, (B1)

with B(k) > 0. We consider the unitary matrix,

U (k) =
[

cos θk
2 ei

φk
2 − sin θk

2 ei
φk
2

sin θk
2 e−i

φk
2 cos θk

2 e−i
φk
2

]
, (B2)

which diagonalizes h(k) as U †(k)h(k)U (k) = diag[Bk,−Bk].
We consider the expression of the dipole moment for this
transformation.

To be more explicit for the Hamiltonian Eq. (31) expanded
around K, we have

Bk =
√

m2 + t2
hop,0

(
k2

x + k2
y

)
,

cos θk = m

Bk
, sin θk = |F̃ (k)|

Bk
,

φk = arg(−kx − iky), (B3)

where thop,0 ≡ 1.5thop and F̃ (k) = thop,0(kx + iky). By intro-

ducing κ =
√

k2
x + k2

y and γ = thop,0/m, the dipole moments

are expressed as

d00,x (k) = 1

2
√

1 + γ 2κ2

ky

κ2
, d00,y(k) = − 1

2
√

1 + γ 2κ2

kx

κ2
,

d11,x (k) = −d00,x (k), d11,y(k) = −d00,y(k),

d01,x (k) = −γ

2

1

κ
√

1 + γ 2κ2

[
ky + i

kx√
1 + γ 2κ2

]
,
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d01,y(k) = γ

2

1

κ
√

1 + γ 2κ2

[
kx − i

ky√
1 + γ 2κ2

]
,

d10,x(k) = d01,x(k)∗, d10,y(k) = d01,y(k)∗. (B4)

As for the Berry curvature �n(k) ≡ ∇k × dnn(k), we only
have the z component, which becomes


0,z(k) = γ 2

2(
√

1 + γ 2κ2)3
, 
0,z(k) = −
1,z(k). (B5)

For rnm,α (n �= m), we find

[r01,x]x = γ 3 kxky

κ (1 + γ 2κ2)
3
2

+ iγ 3 k2
x

κ (1 + γ 2κ2)2
,

[r01,x]y = γ 3

2

k2
y − k2

x

κ (1 + γ 2κ2)
3
2

+ iγ 3 kxky

κ (1 + γ 2κ2)2
,

[r01,y]x = γ 3

2

k2
y − k2

x

κ (1 + γ 2κ2)
3
2

+ iγ 3 kxky

κ (1 + γ 2κ2)2
= [r01,x]y,

[r01,y]y = −γ 3 kxky

κ (1 + γ 2κ2)
3
2

+ iγ 3
k2

y

κ (1 + γ 2κ2)2
,

[r10,x]x = [r01,x]∗x , [r10,x]y = [r01,x]∗y ,

[r10,y]x = [r01,y]∗x , [r10,y]y = [r01,y]∗y .

The Dirac Hamiltonian around K ′ (we denote the corre-
sponding quantities by a bar, e.g., φ̄k) is closely related to the
Hamiltonian expanded around K. One finds

θ̄k = θk, φ̄k = −φk + π, d̄nn,a(k) = −dnn,a(k),

d̄01,a(k) = −conj(d01,a(k)),


̄n,z(k) = −
n,z(k), r̄nm,a = −conj(rnm,a). (B6)

FIG. 8. Comparison of HHG spectra polarized along the X direc-
tion evaluated with the tight-binding model or with the Dirac model
for gapped graphene. In all cases, we use thop = 3, μ = 0, T1 = 150,
and T2 = 30. The parameters of the electric field are t0 = 280, σ =
40, and 
 = 0.26.

APPENDIX C: TIGHT-BINDING MODEL
VERSUS DIRAC MODEL

Here, we compare the HHG spectra polarized along the X
direction obtained by the analysis of the tight-binding model
Eq. (29) and that of the Dirac model Eq. (31) (see Fig. 8).
The HHG spectra from the tight-binding model and the Dirac
models match reasonably well for the excitation conditions
used in this paper. As we expected, agreement is better for the
weaker field since the relevant electron dynamics is limited
to the region around the Dirac point. For the stronger field,
agreement is better for the lower harmonics. This is also natu-
ral since the higher order harmonics involves the trajectory of
electrons farther away from the Dirac points.
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