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We discuss the implications of a small indium content (3%) in a GaAs epilayer on the electron and nuclear
spin relaxation due to enhanced quadrupolar effects induced by the strain. Using the weakly perturbative spin
noise spectroscopy, we study the electron spin relaxation dynamics without explicit excitation. The observed
temperature dependence indicates the presence of localized states, which have an increased interaction with the
surrounding nuclear spins. Time-resolved spin noise spectroscopy is then applied to study the relaxation dy-
namics of the optically pumped nuclear spin system. It shows a multi-exponential decay with time components,
ranging from several seconds to hundreds of seconds. Further, we provide a measurement of the local magnetic
field acting between the nuclear spins and discover a strong contribution of quadrupole effects. Finally, we apply
the nuclear spin diffusion model, that allows us to estimate the concentration of the localized carrier states and
to determine the nuclear spin diffusion constant characteristic for this system.
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I. INTRODUCTION

Silicon dopants (Si) are known to provide shallow donors
in gallium arsenide (GaAs) [1]. Depending on the crystal
quality and the concentration of such impurities in n-doped
GaAs (GaAs:Si), the electrons can show extremely long times
of spin relaxation [2–9] limited by the Dyakonov-Perel mech-
anism [10,11] or spin-spin exchange interactions [12], and
even experience weak localization [13] at high and moderate
concentrations of dopants. At relatively small doping density,
nD � 1015 cm−3, well below the metal-insulator transition
(MIT) [14], at which the motion-assisted and spin-exchange
relaxation mechanisms are suppressed, the hyperfine interac-
tion of a localized-electron spin with the surrounding spins
of lattice nuclei provides the dominant mechanism of spin
relaxation [15]. In addition, since each electron is localized on
a shallow impurity, the regime of short correlation time is real-
ized even at liquid-helium temperature [16]. On the contrary,
in singly charged quantum dots (QDs), where each electron
is strongly localized due to the spatial confinement and the
reduced band gap of indium gallium arsenide (InGaAs), the
correlation time is long [17]. In this case, the precession of
an electron spin around the randomly oriented field of nuclear
spin fluctuations results in a fast dephasing of the electron spin
orientation, during a nanosecond timescale, followed by a to-
tal loss of the spin coherence during a microsecond timescale
[18,19].

Research on spin systems in the context of quantum
information processing and data storage is guided by the
need for a technical implementation of a largely isolated

nuclear spin system with well controlled nuclear state and
reduced fluctuations. Such a control can be achieved when the
phase transition to a spin-ordered state is realized [20–23].
However, nuclear spin ordering has not yet been observed
since it requires extremely small nuclear spin temperatures
∼0.1 μK [24]. Recent achievements in nuclear spin cool-
ing in GaAs:Si have shown values at least an order of
magnitude larger than the theoretical estimations demand
[25–28]. On the other hand, the nuclear spin relaxation times
observed in InGaAs/GaAs QDs were found to be longer
than in lattice-matched AlGaAs/GaAs QDs due to enhanced
quadrupole interactions, suppressing the nuclear spin fluctua-
tions [29–31]. Generally, the nuclear spin system of InGaAs is
more complex than that of GaAs due to the additional indium
content. Strong quadrupole effects are observed even in highly
annealed QD ensembles [32,33] for which the concentration
of indium is reduced.

In this paper, we study both the electron and nuclear
spin dynamics in an epilayer of InGaAs. The doping by Si
provides centers of electron localization similar to GaAs:Si.
In addition, due to the admixture of the indium, the band
gap of epilayer material is shifted to the transparency re-
gion of the GaAs substrate. For studying the electron-nuclear
spin dynamics, this allows us to implement the spin noise
spectroscopy [34] which is an especially powerful method
for characterizing spin systems (almost) nonperturbatively
[35,36]. As we will show below, the electron spin dynam-
ics reveals the behavior of well localized centers, similar
to ensembles of singly charged QDs, even at moderate Si
doping. At the same time, the dynamics of the nuclear spin
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FIG. 1. (a) Temperature dependencies of the low-field resistivity
(solid line) and the Hall carrier density (points) with the dashed
line as guide to the eye. Inset shows the schematic of the trans-
port experiment. (b) Magnetoresistance curves measured at different
temperatures.

polarization is similar to GaAs:Si but characterized by com-
plex relaxation processes assisted by the strong quadrupole
interaction.

II. SAMPLE AND SETUP

We use a d = 10 μm thick InGaAs epilayer with 3% of
indium content grown by molecular beam epitaxy on a GaAs
substrate. As the comparatively large indium atoms (atomic
number: Z = 49, nuclear spin: I = 9/2) replace smaller gal-
lium atoms (Z = 31, I = 3/2), the band structure is gently
tuned. The sample was doped homogeneously by Si atoms
with a density of nD = 3.1 × 1016 cm−3, measured by a 4-
point method at temperature T = 77 K in a magnetic field
B = 0.5 T. This concentration was found to maximize the
electron spin relaxation time compared to similar samples
with smaller doping concentrations [37].

As the carrier concentration plays an important role for
further considerations, we performed additional transport
measurements in the van der Pauw geometry. Simultaneous
measurements of the Hall effect and resistivity were per-
formed using two lock-ins with different frequencies (73 and
162 Hz, respectively) for a transport current J = 1 μA, as
shown in the insert of Fig. 1(a). The lock-in amplifiers were
checked to avoid interference effects and the transport cur-
rent was proven to not overheat the system at the lowest
temperature. We could vary the temperature from T = 2 to
300 K and apply a magnetic field up to 8 T. The magnetic
field perpendicular to the wafer plane was swept from pos-
itive to negative values and the longitudinal resistance Rxx

and the Hall resistance Rxy data were symmetrized and an-
tisymmetrized, correspondingly, to compensate for imperfect
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FIG. 2. (a) Schematic of the setup used to detect spin noise
spectra by measuring FR with the probe beam and to polarize the
spin system with the pump beam. Sh is the shutter used to switch on
and off the pump, and NPBS is a nonpolarizing beam splitter, used to
combine the linearly polarized probe and circularly polarized pump.
(b) Normalized photoluminescence (PL) (blue line), Faraday rotation
(red line), and absorption (black line) spectra of the InGaAs epilayer.
Vertical dashed line is the position of the probe laser.

contact alignment leading to the mutual admixture of Rxx and
Rxy.

The temperature dependence of the sheet resistivity, ρxx,
measured for B = 0 T and the carrier concentration extracted
from the Hall effect via Vxy = JB/(qenHalld ) are shown in
Fig. 1(a). As one can see from the figure, the resistivity drops
and saturates with increasing sample temperature while the
concentration of conducting electrons exhibits a minimum at
temperature T � 50 K.

To further investigate the carrier mobility, we have per-
formed measurements of the magnetoresistance, MR, and the
Hall resistivity. The extracted MR in low magnetic fields was
measured at several temperatures, as shown in Fig. 1(b). The
temperature and magnetic-field dependencies of the resistivity
are typical for GaAs-based semiconductors with a doping
level above the MIT [38–40], in particular, with respect to the
low-T resistivity upturn, the weak-localization-caused nega-
tive MR at low T , and the positive MR at higher temperatures.
The low-T value of the resistance (∼40 �) and the Hall slope
(16�/T) imply that only a d = 10 μm thick epilayer con-
tributes to the conductivity, at least at low temperatures. The
Hall carrier density saturates at the level of n0 = 3.9 × 1016

cm−3, slightly larger than the one measured previously for a
larger T (3.1 × 1016 cm−3) [37].

Figure 2(a) schematically shows the setup for the studies
of Faraday rotation (FR), spin noise spectroscopy (SNS), and
time-resolved SNS with optical pumping. The average elec-
tron spin polarization along the z direction (optical axis) is
detected through the FR measured by a linearly polarized
continuous wave (CW) laser, referred to as the probe laser.
We fix the probe laser wavelength at λpr = 852.63 nm, which
is 4.63 nm above the maximum of the photoluminescence
signal of the InGaAs sample [λPL,max(6 K) = 848 nm], and
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hence, propagates with reduced absorption through the sample
at the local maximum of the Faraday rotation (see below), as
illustrated in Fig. 2(b). Furthermore, the sample was polished
from the back side to allow for transmission measurements
and covered by an antireflection coating from both sides to
reduce the etalon effects of the laser. Still, some residual effect
was observed in the Faraday rotation measurements; see the
oscillating red line in Fig. 2(b).

Behind the sample, the induced FR of the probe beam is de-
tected using a half-wave plate followed by a Wollaston prism
and a balanced photoreceiver. The differential signal is dig-
itized and fast Fourier transformed by a field-programmable
gate array, calculating the power spectral density (PSD) of the
measured signal [41]. The bandwidth of the diodes determines
the covered spectral range and is limited to 100 MHz in our
case (Femto HCA-S).

To extract the carrier spin noise from the background elec-
tronic and shot noise, the measured power spectrum Smeas( f )
is subtracted and divided by a reference signal Sref( f ), which
is recorded at a different external magnetic field (Bx =
14 mT). The resulting spin noise is expressed in shot noise
units (SNU) as PSD(SNU) = Smeas( f )/Sref( f ) − 1.

An additional circularly polarized CW pump laser at
λpu = 785 nm is used to create a non-zero electron spin po-
larization. We apply it in order to measure the luminescence
and conventional Faraday rotation spectra, shown in Fig. 2(b)
[42]. Due to the high energy excitation (above the band gap),
the pump-laser beam is absorbed by the sample and does not
pass to the detection channel. This allows us to use a collinear
scheme, in which pump and probe take the same optical path.

If not stated differently, the powers of the laser beams are
Ppr = 1 mW for the probe and Ppu = 0.3 mW for the pump.
Both beams are tightly focused onto the sample surface with
spot diameters of Dpr ≈ 13 μm and Dpu ≈ 40 μm. The pump
beam can be blocked by a remotely controlled shutter with a
switching time resolution of ∼10 ms.

The InGaAs epilayer is mounted in the center of two pairs
of electromagnetic coils generating corresponding magnetic
fields, Bx and Bz; see Fig. 2(a). The sample is placed into a
helium flow cryostat at a temperature of T = 6 K.

III. ELECTRON SPIN DYNAMICS

To characterize the electron spin relaxation dynamics, we
first perform FR measurements. To avoid effects of nuclear
spin polarization, the measurements are done using polar-
ization modulation of the pump light by the electro-optic
modulator switched between σ+ and σ− light polarization at
frequency fEOM = 200 kHz. The FR of the probe beam is de-
tected by a lock-in technique at the frequency of modulation.
Application of the longitudinal Bz field recovers the electron
spin polarization while the transverse field Bx erases it, as
shown in Figs. 3(a) and 3(b). Note that the widths of the polar-
ization recovery curve (PRC) [Fig. 3(a)] and the Hanle curve
[Fig. 3(b)] differ by more than three orders of magnitude.
Interestingly, such a behavior is common for semi-insulating
samples of GaAs:Si [16]. From the data set, we extract the
half-width at half-minimum of the PRC, Bc = 276 ± 15 mT,
corresponding to a correlation time τc = 75 ± 5 ps. We addi-
tionally point out that the insert in Fig. 3(a) demonstrates a
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FIG. 3. (a) Spin polarization recovery in longitudinal mag-
netic field (points) and its fit by θF (Bz ) = θ∞/{1 + (τ/τc )[1 +
(Bz/Bc )2]−1} (red line). Inset is a close-up for the structure around
zero field with a half-width at half-minimum B1/2 = 54 μT. Red line
is a Lorentzian fit. (b) The Hanle depolarization curve (circles) and its
fit by a bi-Lorentzian function (red line). Shaded curves show the de-
composition with two characteristic spin relaxation times. (c) Pump
power dependence for both extracted components. Gray-colored data
are not following a linear dependence due to saturation effects and
are not considered. Black lines are linear fits.

narrow dip structure, which is a result of competition between
nuclear spin cooling and nuclear spin warm-up in the oscillat-
ing Knight field of the electrons [16].

Furthermore, the Hanle curve is best fitted using two
Lorentzians. Their half-width at half-maximum at corre-
sponding laser powers is B(narrow)

HWHM = 0.07 mT and B(wide)
HWHM =

0.3 mT; see Fig. 3(b). The presence of two components in-
dicates the presence of two sets of electrons, contributing to
this relaxation with the lifetimes of T (narrow)

s = 286 ns and
T (wide)

s = 67 ns. Here we used

Ts = h̄

geμBBHWHM
, (1)

with |ge| = 0.568 being the electron g factor (its value is taken
from the spin noise measurements in magnetic field at the
same sample position; see below), h̄ is the reduced Planck
constant, and μB the Bohr magneton. In general, the spin
lifetime Ts can be defined as 1/Ts = 1/τs + G/n0 [36,43].
Here, G is the generation rate of carriers that is dependent on
the power of the optical excitation, n0 is the carrier concen-
tration, and τs the intrinsic longitudinal spin relaxation time.
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FIG. 4. (a) Example of a spin noise spectrum measured for
Bx = 3 mT and Ppr = 1 mW. The power spectral density (PSD) is
expressed in shot noise units. Red solid line is a fit by a single
Lorentzian function. Inset shows the dependence of the spin noise
peak on Bx . Red line is a fit by Eq. (2) with |ge| = 0.568 ± 0.001.
(b) Spin noise spectra measured at Ppr = 1 mW and Bx = 0 mT.
The data are fitted by a bi-Lorentzian function (red line). Shaded
curves show the two fit components, narrow (blue) and wide (green),
correspondingly. Inset shows the half-width at half-maximum (�e)
for each component versus probe power. Black curves show
linear fits.

Therefore, by extrapolation to zero pump power, it is possible
to extract the τs. Figure 3(c) demonstrates such an experiment
with τ (narrow)

s = 610 ± 10 ns for the narrow component. The
broad component disappears below Ppu = 0.02 mW and ex-
trapolates to the value of τ (wide)

s = 120 ± 10 ns.
Next, to avoid unnecessary spin polarization of carriers

by pumping, we use SNS. Here, the probe beam detects
fluctuations of the electron spin polarization in its ground
state without optical pumping of the spin system [34,44].
In the usual case, the spontaneously appearing spin excita-
tions decay exponentially in time and are, therefore, observed
as a single Lorentzian peak in the spin noise power spec-
trum [45,46], see Fig. 4(a), measured at Bx = 3 mT and
Ppr = 1 mW. Following the dependence of the peak position
( fL) versus the external transverse magnetic field Bx, one can
determine the Larmor g factor ge. The inset in Fig. 4(a) shows
this dependence, characterized by the Larmor frequency
ωL = 2π fL. The red solid line is a fit by the equation

fL = geμBBx/h, (2)

with the Planck constant h.
The B-linear fit yields |ge| = 0.568 ± 0.001. The electron

g factor in InGaAs is expected to be slightly lower than in bulk

GaAs with ge, GaAs ≈ −0.44 [36], as the additional indium
content contributes with ge, InAs = −15 [47,48] (one measures
here the absolute value, but a negative sign is expected).
Further investigations of the InGaAs sample indicate a spatial
inhomogeneity of the electron g factor across the sample,
varying between −0.53 and −0.6, which can be related to a
gradient of indium content in the epilayer.

To compare the SNS with the preceding Hanle measure-
ments, we measure the probe power dependence of the SNS
at Bx = 0 mT. Figure 4(b) demonstrates the observed peak
centered at zero frequency which is best fitted with two
Lorentzians, the sum of which is shown by the red curve.
The HWHM of each peak, �e, is inversely proportional to the
electron spin lifetime Ts according to

Ts = 1

2π�e
. (3)

In the optical SNS, the spin lifetime (or the peak width) is also
affected by the nonzero probe power, in a similar way to that in
the Hanle effect. Experimentally, one can access the intrinsic
spin relaxation time by a power-dependent measurement with
extrapolation to zero probe power, as presented in the inset
of the Fig. 4(b). The intrinsic widths correspond to τ (wide)

s =
80 ± 7 ns and τ (narrow)

s = 500 ± 100 ns. These values compare
well with the ones measured using the Hanle effect. The
bigger error values are related to the limited sensitivity of
the spin noise setup at lower probe power. The power range
can be potentially extended to much smaller values using the
homodyne detection demonstrated in Ref. [49].

The electron spin lifetime of GaAs is well studied for
various doping densities [4,8,9]. It depends strongly on the
doping concentration and has a maximum right below the
Mott-insulator transition (MIT) with τs ≈ 800 ns for nD =
6.6 × 1015 cm−3 [9]. At doping densities around nD = 4.4 ×
1016 cm−3, close to the doping of the studied InGaAs epilayer,
the relaxation time is found to be one order of magnitude
shorter. The spin relaxation time in InGaAs could be further
enhanced by optimizing the doping concentration.

In the absence of externally applied magnetic fields (Bx =
0 mT), the spin noise signal consists of a peak centered at
frequency 0 MHz, which describes the spin relaxation along
the z axis; see Fig. 4(b). This observation suggests that the
spin noise is produced by electrons, which are either weakly
affected by the surrounding nuclear spins due to motional nar-
rowing, or the nuclear spin fluctuations cannot be considered
as frozen and have a short nuclear spin correlation time (τc)
[18,46,50,51]. Such a nuclear spin dynamics could be driven
by the Knight field of the electrons, or by the interaction of the
nuclei quadrupole moments with strain and random electric
fields in the structure [52].

In the case of a strong coupling to the nuclei or of long
τc, one would expect to observe an additional peak at nonzero
frequency, which would be related to the spin precession in
the effective magnetic field produced by the random “frozen”
nuclear spin fluctuations with components orthogonal to the z
axis.

A corresponding observation was reported in Ref. [53],
which discusses spin noise studies of a 10 μm GaAs:Si epi-
layer with a low donor concentration of nD ≈ 1 × 1014 cm−3.
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This represents a situation with a long correlation time, lead-
ing to a two-peak structure at zero external magnetic field.

On the opposite side, at higher donor concentrations [nD ≈
(1–7) × 1016 cm−3], the spin noise is primarily produced by
the free electrons fluctuating at the edge of the Fermi sea
and no two-peak structure is observed at Bx = 0 mT; see
Ref. [36]. This is additionally supported by measurements of
the temperature dependence demonstrating a linear increase
of the integral spin noise power with temperature.

Our observations demonstrate that the spin noise peak mea-
sured at magnetic fields above 1 mT can be fitted well with a
single Lorentzian; see Fig. 4(a). This observation still needs
further investigations, but will be used here to simplify the
measurement evaluation. To gain more insight into the degree
of localization of the electrons we conduct a temperature-
dependent measurement of the spin noise spectra for our
sample. Figure 5 demonstrates the variation of the �e of the
peak measured at Bx = 4 mT. The peak width is constant up to
the temperature of ∼10 K and continuously increases above.
The inset to the figure additionally demonstrates that the inte-
gral noise power remains about constant up to T = 20 K and
drops fast with further increase of the temperature. To describe
it qualitatively, we use the Arrhenius equation,

�(T ) = �g + �exc exp

(
− Ea

kBT

)
, (4)

with the activation energy, Ea, the relaxation rate 2π�g =
15.9 ± 0.1 μs−1 of the ground state, and the relaxation rate
2π�exc = 207 ± 13 μs−1 that characterizes the strength of
carrier-phonon interaction [54,55]. The measurement implies
that the spin noise signal is produced by residual electrons
that are localized at 6 K, as the detected activation energy
Ea = 4.7 ± 0.2 meV corresponds to a much higher temper-
ature of about Ea/kB ≈ 55 K. This activation energy agrees
with typical values for GaAs:Si, where electrons are localized
at donor centers [56].

We note here that the localized states, most probably, orig-
inate from pairs of closely situated donors screened by the
degenerate electron gas [57]. The bound-carrier density is,
at least, an order of magnitude smaller than n0. An estima-
tion yields [57] Nb = (4/3)π�3n2

0 exp[−(4/3)π�3n0] where
� = (1/2)[πa3

B/(3n0)]1/6 is the screening length and aB =
h̄/

√
2meffEa = 11 nm is the Bohr radius calculated using the

effective mass meff = 0.067m0 (m0 being the free electron
mass in vacuum) and the activation energy Ea = 4.7 meV,
which is close to the standard Bohr radius for GaAs:Si [58].
This gives Nb � 4.2 × 1015 cm−3 for n0 = 3.9 × 1016 cm−3,
measured at low T .

IV. NUCLEAR SPIN DYNAMICS

A. Decay of nuclear polarization

In the previous section, we have discussed the effect of
the unpolarized nuclear spin bath on the localized electron
spins. This can also be seen oppositely: the electron Larmor
frequency can be used as a sensor for the effective magnetic
fields in the localization area of the electron. Here, we use this
sensor to study the relaxation dynamics of the polarized nu-
clear spins back to thermal equilibrium by the time-resolved
version of SNS, as proposed by Ref. [59]. Again, the electron
Larmor frequency is tested using SNS with a time resolution
of ∼1 s. This is chosen as a compromise between the required
accumulation time for reliable peak detection and the shortest
timescale of the observed nuclear spin polarization decay.

We use the same technique as presented in Ref. [60]. The
measurement starts with dynamic nuclear spin polarization
by optically polarized electron spins, produced by the cir-
cularly polarized pump. Depending on the relative direction
of the applied longitudinal magnetic field and the helicity
of the circular polarization of the pump, one can determine
the relative orientation of the nuclear spins and the electron
spin polarization, or the nuclear spin temperature �N [58]. In
our experiments we used Bz = 10 mT, Bx = 0 mT. After the
pumping period, the pump beam was blocked by a shutter,
Bz was set to zero, and Bx = 4 mT was applied to detect the
Larmor frequency with the probe laser. If the switching of
the magnetic field happens adiabatically, the created nuclear
polarization follows the direction of the external field [61]. At
the same moment, the detection period was started.

The Larmor frequency determined from the peak position
in the noise spectra is proportional not only to the transverse
magnetic field, but also to the nuclear spin polarization pN

created by the optical pumping. It changes Eq. (2) to

fL(t ) = geμB[Bx + bmax pN (t )]/h. (5)

The nuclear spin polarization induces the Overhauser field
BN (t ) = bmax pN (t ) with a maximum value bmax. For InGaAs
with 3% of indium we estimate the maximal Overhauser field
of bmax = ∑

j I jA jχ jn j/geμB = 4.125 T, with I j being the
nuclear spin of the corresponding isotope, Aj the hyperfine
constant, χ j its abundance, and n j the respective fraction of
the nuclei in the material composition [18]. The electron g
factor is |ge| = 0.6; see below.

Figures 6(a) and 6(b) show color maps with the variation
of the noise spectra versus observation time after pumping
for five minutes with a pump power of Ppu = 0.3 mW. In
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combination with a right circularly polarized pump, the in-
duced Overhauser field points either in the direction opposite
to the magnetic field Bx, see Fig. 6(a), or in the same direction,
Fig. 6(b). The presented spin noise spectra are taken every
second with a probe power of Ppr = 1 mW. The time depen-
dence unveils the Overhauser field decay. When the decay is
completed, the Larmor frequency remains constant at fL =
33.69 MHz corresponding to the externally applied field Bx =
4 mT [62]. This implies a g factor ge = −0.6 which indicates a
different sample position compared to previous measurements
but is well within the range of g factors across the epilayer.
Furthermore, the spectra at short times demonstrate a broad-
ening of the noise peak due to the spatial inhomogeneity of
the Overhauser field distribution. In the discussion below we
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FIG. 7. (a) Overhauser-field decay time versus pumping power.
Varying pump powers between Ppu = 5 μW and Ppu = 5 mW lead to
different decay time constants of the Overhauser field. Pumping time
is fixed at 10 min. (b) Variation of the decay probability components
with pumping power. (c) Dependence of the decay times on the
pumping time for a fixed pump power Ppu = 0.3 mW. (d) Variation
of the decay probabilities with pumping time. Solid lines are expo-
nential fits to the data.

concentrate on the case with negative nuclear spin tempera-
ture; see Fig. 6(b).

The decay of nuclear polarization is related to the inter-
action with the electron spin system and to the dipole-dipole
interaction between the nuclear spins [58]. Additionally, in-
creased quadrupolar effects in the studied sample are expected
to influence the relaxation dynamics; see the next chapter
[26]. Depending on the dominating interactions, the decay
of the Overhauser field can be described in a simplified way
by using a sum of exponential functions with characteristic
decay times τi and the corresponding amplitudes ai. In the
studied InGaAs epilayer, we explicitly detected three different
relaxation times, referred to as τ1, τ2, and τ3, leading to

pN (t ) = a1e−t/τ1 + a2e−t/τ2 + a3e−t/τ3 . (6)

The need for three decay times is illustrated in Fig. 6(c). In this
measurement, the shortest detected time is τ1 = 7.3 ± 0.1 s,
the middle decay time is τ2 = 44 ± 1 s, and the longest one is
τ3 = 210 ± 2 s.

To get more insight into the relaxation dynamics we con-
ducted a series of measurements for varying pump power and
pump time. For the pump power dependence, Ppu was varied
from 5 μW to 5 mW. During 10 min of pumping with Ppu,
the longitudinal magnetic field Bz = 10 mT is applied. The
subsequent time-resolved spin noise spectroscopy measures
the polarization decay with the probe beam applied at the
transverse magnetic field Bx = 4 mT. The development of all
three decay times in Fig. 7(a) indicates a rise of times with
increasing pump beam power until it exceeds the power of
0.1 mW. Above this power, the nuclear spin polarization time
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saturates. Below Ppu = 0.1 mW, the decay times decrease
exponentially as shown by the solid line fits in Fig. 7(a).
Above the critical pump power, between 0.1 mW and 5 mW,
the decay times remain relatively stable with averaged values
of

τ1 = 7 ± 1 s, (7a)

τ2 = 38 ± 6 s, (7b)

τ3 = 210 ± 10 s. (7c)

Figure 7(b) shows the same exponential behavior and
the same critical pump power for the decay probabili-
ties. The normalized amplitude ãi = ai/(a1 + a2 + a3) refers
to the probability that the ith of the three decays occurs.

In principle, a reduction of the pumping time is expected to
affect the nuclear spin system in the same way as a decrease
of the pump power. To confirm this expectation, different
pumping times (10 s, 30 s, 1 min, 5 min, and 10 min) were
used for a time-resolved spin noise experiment with Ppu = 0.3
mW at Bx = 4 mT. Figures 7(c) and 7(d) demonstrate that the
qualitative trends of the decay times τi and the probabilities
ãi resemble the results of the pump-power dependence. The
pump time limit required for a saturated nuclear polarization is
between 1 min and 5 min. Above this pump time, at Ppu = 0.3
mW, the nuclear spin system is saturated. Together with the
pump power limit of 0.1 mW and optical pumping for 10 min,
the pump time limit is a useful result for further investigations
using time-resolved SNS with optical pumping on the satu-
rated nuclear spin systems.

We relate our measurements to similar studies on GaAs:Si
epilayers with comparable doping, for which only two expo-
nents were observed [57,60]. More specifically, the authors
of Ref. [60] found two decay times τ1 = 30 s and τ2 = 300 s
for the dielectric phase of GaAs doping (nD = 2 × 1015 cm−3)
and only one exponent τ = 150 s for the metallic phase (nD =
4 × 1016 cm−3). The setup was similar to the one used by
us, with pump times of 1 min to 5 min, at Bz = 12 mT, and,
most importantly, Bx = 4 mT, as the values of the decay times
can strongly depend on the chosen Bx [63]. For the dielectric
phase, the authors argued that the shorter time is associated
with the electron-assisted spin depolarization of nuclei close
to the donor centers and the longer time to spin diffusion
governed by dipole-dipole interaction between nuclei far away
from the donor centers, outside of the Bohr radius.

Applying this time designation to our data, we can suggest
that the τ3 component belongs to the nuclear spin diffusion
outside the Bohr radius of the electron. It should take a rather
long time and requires a rather strong pump power for it to be
observed. Further, the presented pump-power and pump-time
dependence of the Overhauser field’s depolarization support
the idea that the shortest time τ1 should arise from a different
decay mechanism than the longer decay times. Therefore,
we assign it to electron-assisted depolarization, requiring a
shorter pump time and weaker pump power for it to be present,
as the electron spin has a direct hyperfine coupling to the
nuclear spin bath. The additional nuclear spin decay time
(τ2) in the InGaAs epilayer has a similar behavior to τ3 and
might originate from depolarization through quadrupole ef-
fects that are strongly enhanced compared to GaAs due to the
indium content. To provide an experimental proof for such

an enhancement we determine the local field, induced by the
fluctuating nuclear spins.

B. Measurement of the local field

One of the ways to describe the local field of interact-
ing nuclear spins is to use the thermodynamics framework,
particularly the concept of spin temperature and adiabatic
demagnetization [61,64]. In that case, one introduces the spin
temperature of the nuclear spin system �N . The nuclear spin
polarization pN orients itself with external field B and can
be described by Curie’s law pN = γN BC/�N , with γN being
the nuclear gyromagnetic ratio and C the Curie constant. An
adiabatic decrease of B from Bi to B f would conserve the
pN , but would reduce the spin temperature by a factor of
B f /Bi. The local field sets the limit for that factor at low
magnetic fields. The dipole-dipole interaction between nu-
clei determines the local field BL, so BL ≈ 0.2 mT for GaAs
[65,66]. For nuclear isotopes having quadrupole moments, the
local field can increase due to electrical fields or strain in
the structure, which can be induced by lattice deformations
[28,67]. Once the external field B ≈ BL, the nuclear polar-
ization is randomized, limiting the adiabatic spin cooling to
BL/Bi. However, once the external field is increased above
BL, the polarization recovers along the applied field direction.
Therefore, to determine the BL, it is required to measure the
polarization pN of the nuclear spin system as a function of an
external magnetic field Bx by slowly ramping it through zero.
For the nuclear spin polarization being optically prepared at
a temperature �Ni and Bi > BL, we can describe the pN as
[61,68]

pN (t ) = Bx(t )

3kB�N (t )
h̄〈γN (I + 1)〉,

�N (t )

�Ni
=

√
B2

x (t ) + B2
L√

B2
i + B2

L

, (8)

with I being the nuclear spin and the angled brackets showing
the averaging over the nuclear isotopes.

Further, we accommodate the experiments presented in
Refs. [26,67]. These references present a thorough description
of a method to determine the BL applied to an n-doped GaAs
epilayer, supported by the theoretical background. In our case,
the sample was illuminated for 15 minutes with the pump
beam of Ppu = 0.5 mW at Bz = 10 mT and Bx = −30 mT.
Then, the pump beam was blocked by a shutter, and the timer
of the experiment was started. We waited for about one minute
in darkness to allow for fast nuclear depolarization within the
Bohr radius of electrons [the timescale of τ1; see Fig. 6(c)]
and set the Bz to zero. After that, the spin noise (SN) spectra
are taken with one-second accumulation while stepping the Bx

from −30 to 30 mT with 1 mT steps. To extract the evolution
of the nuclear polarization pN , we determined the peak posi-
tion of the SN spectra at each magnetic field and subtracted
the electron Larmor frequency (geμBBx/h) without nuclear
polarization at the same field; compare with Eq. (5). The
value of the g factor |ge| = 0.54 was determined indepen-
dently at the same sample position without preceding nuclear
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FIG. 8. (a) and (b) Spin relaxation rates for the second and
third time components measured as a function of the external mag-
netic field. Blue dots are data and red lines are fits by Lorentzian
functions. (c) Overhauser field contribution to the frequency of the
SN peak position for the adiabatic demagnetization experiments.
Blue dots are the experimentally determined frequencies after the
subtraction of the electron Larmor frequency without nuclear contri-
bution. Red line is the fit using Eq. (A12), which gives the values
of BL and �Ni. Green dashed line is an example of a fit with
BL = 0.2 mT. Top x scale gives the time relative to the point of pump
blocking.

polarization. The blue points in Fig. 8(c) represent the ex-
tracted data. As discussed above, the nuclear polarization
should recover once the magnetic field increases above zero.
The observed asymmetry is related to the long accumulation
times so that the spin-lattice relaxation reduces the signal;
see the top x scale in Fig. 8(c) for the times after the pump
blocking. In the Appendix, we consider the situation when
remagnetization takes place together with spin-lattice relax-
ation. On the experimental side, it requires the knowledge
of the magnetic field dependence of the spin relaxation. To
establish that, we have done measurements similar to the one
presented in Fig. 6 for different fixed magnetic fields Bx.
Figures 8(a) and 8(b) represent the extracted values for the
rates of the second and third fitting components τ2 and τ3,
respectively. A Lorentzian function gives the best fit for these
rate dependencies on the external magnetic field. It allows us
to obtain the functional dependence of the relaxation rates on
Bx [63].

Finally, the red line in Fig. 8(c) represents a fit by Eq. (A12)
with two free fitting parameters: BL and �Ni. Best fit gives the
BL = 20 ± 1 mT and |�Ni| = 250 ± 10 μK. For comparison,
we show the curve for BL = 0.2 mT by the dashed green

line [69]. As one can see, the value of BL is two orders
of magnitude larger than that measured for n-doped GaAs
epilayers [26]. In Refs. [26,67], it is also demonstrated that
the quadrupole effects are responsible for an increase of BL,
leading to values of BL ≈ 2 mT.

Such significant values of BL in our sample indicate a
strong quadrupolar contribution to the local fields but also
raise a concern about the validity of the spin temperature
approach; compare with Ref. [70]. To test it, we have done
two additional experiments. At the optical pumping stage, Bx

was fixed now at +30 mT in addition to Bz = 10 mT. Then,
after the pump blocking and waiting for one minute, the field
is swept to Bx = −30 mT at a rate of (i) 320 mT/s or (ii) 6
mT/s. Once Bx = −30 mT is reached, the experiments and
data processing are done similarly. This resulted in values
of BL and �Ni that are identical within the error bounds to
the case without a sweep, Fig. 8(c). It indicates that the spin
temperature approach is still valid in our case.

C. Spin diffusion model

To advance our understanding of the nuclear spin re-
laxation, we additionally analyze the decay of the nuclear
polarization using the diffusion model, presented in Ref. [71].
To do that, we calculate the diffusion equation:

d pN (t, r)

dt
= D�pN (t, r) − pN (t, r)

[
T −1

1e (r) + T −1
1,K

]
+ G(t, r). (9)

Here, pN (t, r) is the nuclear spin polarization at dis-
tance r from the center measured at time t , T1e(r) =
T1e(0) exp(4r/aB) is the position-dependent nuclear spin re-
laxation time due to interaction with bounded electrons, T1,K

is the time characterizing the nuclear spin relaxation due to
interaction with the Fermi-edge electrons (the Korringa mech-
anism [63]), D is the nuclear spin diffusion constant, and
G(t, r) is the pumping rate. The nuclear spin relaxation rate
at the donor origin is defined by

1

T1e(0)
= �t�

2 2τc

1 + ω2τ 2
c

. (10)

Here, ω = geμBBx/h̄ is the magnetic field given in frequency
units, �t is the probability of occupation of the donor (for
simplicity, we take �t = 1), and τc is the correlation time mea-
suring the residing time of the electron at the donor interacting
with nuclear spins with the magnitude given by

� = Ahf

2h̄

v0

πa3
B

, (11)

where Ahf = 46 μeV is the electron-nuclear hyperfine con-
stant averaged over the atom species in a unit cell, and v0 =
(0.283)3 nm3 is the two-atom unit-cell volume.

Equation (9) has no simple analytical solution; there-
fore we treat it numerically by substituting pN (t, r) =
(1/r)PN (t, r) for numerical stability. The pumping rate is
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Fig. 6(c).

given by

G(t, r) = Pe
I + 1

S + 1

1

T1e(r)
[�(t ) − �(t − Tpump)], (12)

where S = 1/2 and I = 3/2 are the electron and nuclear spins,
Pe = 〈Sz〉/S is the electron spin polarization when pumping,
and the term in brackets represents the switch-on and switch-
off pumping at the moments t = 0 and t = Tpump, given by
theta functions. The calculation is performed in a region
R = n−1/3

D for a given donor concentration with first- and
second-type boundary conditions at r = 0 and r = R, respec-
tively. To perform a direct comparison of the calculations with
the experiment, the time evolution of the Overhauser field is
calculated:

BN (t ) = bn

∫ R

0
PN (t, r) exp (−2r/aB)r dr, (13)

where bn is a scaling factor. The results of the calculations for
the spin relaxation at times t − Tpump are shown in Fig. 9. As
one can see from the figure, the experimental data retracted
from Fig. 6(c) are reasonably well reproduced by the model-
ing, especially in the limit of short and long times.

However, this becomes only possible if the concentration
of donors is reduced by an order of magnitude, down to
nD = Nb = 4.2 × 1015 cm−3. A relatively small variation of
the diffusion constant D allows one to fit better the experimen-
tal dependence at long times. This provides an estimation of D
when nD is known. On the contrary, the calculations done for
a nominal concentration nD = n0 = 3.9 × 1016 cm−3 provide
a much faster Overhauser-field relaxation dynamics than the
one observed experimentally (see green curve in Fig. 9). Note
that, in principle, the quadrupole interaction could retard the
spin diffusion, which would result in a reduced D for fitting
the data. However, we find that a slightly higher value of

D is required to properly fit the experimental data at longer
times than the one at the initial relaxation stage (see blue
lines in Fig. 6). We also find a small relative sensitivity of
the model to a variation of τc at small times t . Furthermore,
in our modeling, ωτc 	 1 because the external field B and the
observed BN are small. In other words, the transition from the
short to the long correlation-time regime, where T1e is affected
most by ωτc [17], is not achieved.

V. CONCLUSION

To conclude, we have investigated the influence of the
indium contribution in the GaAs matrix on the donor-bounded
carrier and nuclear spin relaxation dynamics. Besides the
red shift of the band gap and donor emission energies we
observe an enhancement of the carrier localization for com-
parable doping concentrations of the GaAs:Si structures.
The dynamics of nuclear spin relaxation reveals a complex
three-exponential decay of the Overhauser field, which we
interpret as result of the enhanced quadrupole effects induced
by the indium. We provide experimental evidence for this
enhancement by measuring the local field, which exceeds
the quadrupole-free local field given by the dipole-dipole
interaction by two orders of magnitude. This value of the
local field puts the studied structure in the range between
the low-stressed GaAs epilayers with BL ≈ 2 mT, where the
spin temperature approach is valid, and highly stressed self-
assembled InGaAs QD structures with BL = 300 mT [70],
where the spin temperature approach breaks down. The
modeling of the nuclear spin polarization relaxation by the
diffusion model suggests that the donor concentration should
be reduced by an order of magnitude in order to match the
experimental results. The origin of this discrepancy is not
completely clear, but could be related to donor depletion
due to surface charges, weak carrier localization, and the
need to include the quadrupole interaction into the diffusion
model. Further studies including the optimization of the sili-
con doping as well as an extension of the diffusion model are
planned. Additionally, application of external stress to control
the quadrupole interaction could be an option to influence
the spin relaxation dynamics and, therefore, provide silicon-
doped InGaAs epilayers as an advantageous alternative to
GaAs:Si for low-temperature nuclear spin ordering and to
InGaAs QDs for reduced quadrupole effects.
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APPENDIX: REMAGNETIZATION WITH SPIN-LATTICE
RELAXATION

Equation (8) is usually obtained from thermodynamic
considerations, using entropy balance at equilibrium. That
approach does not allow one to take into account relaxation
processes. In order to generalize Eq. (8) for the case of slow
(as compared to spin-spin processes) spin-lattice relaxation,
we re-derive it from the condition of energy balance during a
change of the magnetic field. The rate of the energy change
of the spin system under the action of a changing external
magnetic field is

dE

dt
= ∂〈H〉

∂t
= −〈 
M〉∂ 
B

∂t
= −Tr(M̂2

B)βB
∂B

∂t
, (A1)

with β = (kB�N )−1, M̂B being the projection operator of the
total magnetic moment of the nuclei on the external field B.
This equality is true, since the external magnetic field is the
only parameter of the Hamiltonian of the spin system that
depends on time directly [72]. On the other hand, the energy
of the spin system is

E = 〈Ĥ〉 = −βTr(Ĥ2) = −β(TrĤ2
Z + TrĤ2

SS )

= −βTrM2
B(B2 + B2

L ), (A2)

with ĤZ = −MBB being the Hamiltonian of Zeeman inter-
action, ĤSS the Hamiltonian of spin-spin interactions, and

BL ≡
√

(TrM2
B)−1Tr(ĤSS ) is, by definition, the local field [64],

characterizing the strength of spin-spin interactions. Accord-
ingly, the total time derivative of the energy, considered as a
function of the inverse spin temperature β and the external
magnetic field B, is

dE

dt
= d

dt

{ − β(t )TrM2
B

[
B2

L + B2(t )
]}

= −TrM2
B

[[
B2

L + B2(t )
]dβ(t )

dt
+ 2β(t )B(t )

dB(t )

dt

]
.

(A3)

Setting Eqs. (A1) and (A3) to be equal, we obtain

[
B2

L + B2(t )
]dβ(t )

dt
+ β(t )B(t )

dB(t )

dt
= 0, (A4)

that gives a differential equation for β:

dβ(t )

dt
= −β(t )

B(t )

B2
L + B2(t )

dB(t )

dt
, (A5)

which, in order to account for spin-lattice relaxation, should
be complemented by a relaxation term of the form −(β −
βL )/T1, where βL = (kBT )−1 is the inverse temperature of
the lattice, and the spin-lattice relaxation time T1 depends,
in general, on the magnetic field [63]. In experiments with
optical cooling of nuclei in weak magnetic fields, the nu-
clear temperatures usually do not exceed a few millikelvins
(otherwise there is no noticeable nuclear magnetization),
and the lattice temperature is several kelvins. Therefore, we

can set βL equal to zero, and the equation for β takes a simple
form:

dβ(t )

dt
= −β(t )

B(t )

B2
L + B2(t )

dB(t )

dt
− β(t )

T1(B)
, (A6)

permitting an analytic solution. By dividing both sides of
Eq. (A6) by β it is brought to the form

dlnβ(t )

dt
= − d

dt
ln

√
B2

L + B2(t ) − 1

T1(B)
. (A7)

If at the time moment t = 0 the magnetic field was
equal to Bi, and the inverse spin temperature equal to βi,
solution of Eq. (A7) yields the following time dependence
of β:

β(t )

βi
=

√
B2

L + B2
i

B2
L + B2(t )

exp

(
−

∫ t

0
T −1

1 [B(t ′)dt ′]
)

. (A8)

In the absence of spin-lattice relaxation, Eq. (A8) gives an
expression for the inverse spin temperature under an adiabatic
change in the magnetic field, usually obtained from the con-
dition of entropy being constant in the adiabatic process [64].
In view of

〈MB〉 = Tr(ρN M̂B) ≈ βBTr
(
M̂2

B

)
, (A9)

with ρN being the density matrix for an ensemble of spins in
high-temperature approximation,

ρN = exp[−β(ĤSS + ĤZ )]

Tr{exp[−β(ĤSS + ĤZ )]}
≈ 1 − β(ĤSS + ĤZ ), (A10)

we obtain the expression for the magnetization:

〈MB(t )〉
〈MB(0)〉 = B(t )

Bi

√
B2

L + B2
i

B2
L + B2(t )

× exp

(
−

∫ t

0
T −1

1 [B(t ′)dt ′]
)

. (A11)

In our experiments, a multi-exponential relaxation is ob-
served, which is presumably related to spin diffusion in
presence of spatially inhomogeneous spin-lattice relaxation
due to hyperfine and quadrupole interactions [63]. The rig-
orous way to take these processes into account would be
complementing Eq. (A6) with a diffusion term and consider-
ing the spin temperature and T1 as functions of coordinates.
Here we used a simplified approach, assuming that the
contributions to the observed nuclear spin polarization, char-
acterized by the spin-lattice times τi and amplitudes ai, arise
from different spin populations. This way, we obtain the
following expression for the nuclear spin polarization under
adiabatic remagnetization:

pN (t )

pN (0)
= B(t )

Bi

√
B2

L + B2
i

B2
L + B2(t )

×
∑

i

ai exp

(
−

∫ t

0
τ−1

i [B(t ′)dt ′]
)

. (A12)

035202-10



UNVEILING THE ELECTRON-NUCLEAR SPIN DYNAMICS … PHYSICAL REVIEW B 106, 035202 (2022)

[1] M. R. Brozel and I. R. Grant, Growth of Gallium Arsenide,
in Bulk Crystal Growth of Electronic, Optical and Optoelec-
tronic Materials, edited by P. Capper (Wiley, Chichester, 2005),
Chap. 2, pp. 43–71.

[2] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313
(1998).

[3] R. I. Dzhioev, B. P. Zakharchenya, V. L. Korenev, and M. N.
Stepanova, Phys. Solid State 39, 1765 (1997).

[4] R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev,
B. Y. Meltser, M. N. Stepanova, B. P. Zakharchenya, D.
Gammon, and D. S. Katzer, Phys. Rev. B 66, 245204 (2002).

[5] J. S. Colton, T. A. Kennedy, A. S. Bracker, and D. Gammon,
Phys. Rev. B 69, 121307(R) (2004).

[6] K.-M. C. Fu, W. Yeo, S. Clark, C. Santori, C. Stanley, M. C.
Holland, and Y. Yamamoto, Phys. Rev. B 74, 121304(R) (2006).

[7] K. V. Kavokin, Semicond. Sci. Technol. 23, 114009 (2008).
[8] V. V. Belykh, K. V. Kavokin, D. R. Yakovlev, and M. Bayer,

Phys. Rev. B 96, 241201(R) (2017).
[9] J. G. Lonnemann, E. P. Rugeramigabo, M. Oestreich, and J.

Hübner, Phys. Rev. B 96, 045201 (2017).
[10] M. I. Dyakonov and V. I. Perel, Sov. Phys. Solid State 13, 3023

(1972).
[11] M. I. Dyakonov and V. I. Perel, Sov. Phys. JETP 33, 1053

(1971).
[12] K. V. Kavokin, Phys. Rev. B 64, 075305 (2001).
[13] V. V. Belykh, A. Yu. Kuntsevich, M. M. Glazov, K. V. Kavokin,

D. R. Yakovlev, and M. Bayer, Phys. Rev. X 8, 031021 (2018).
[14] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).
[15] R. I. Dzhioev, V. L. Korenev, I. A. Merkulov, B. P.

Zakharchenya, D. Gammon, Al. L. Efros, and D. S. Katzer,
Phys. Rev. Lett. 88, 256801 (2002).

[16] P. S. Sokolov, M. Yu. Petrov, K. V. Kavokin, A. S. Kurdyubov,
M. S. Kuznetsova, R. V. Cherbunin, S. Yu. Verbin, N. K.
Poletaev, D. R. Yakovlev, D. Suter, and M. Bayer, Phys. Rev. B
96, 205205 (2017).

[17] I. A. Merkulov, G. Alvarez, D. R. Yakovlev, and T. C.
Schulthess, Phys. Rev. B 81, 115107 (2010).

[18] I. A. Merkulov, Al. L. Efros, and M. Rosen, Phys. Rev. B 65,
205309 (2002).

[19] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88,
186802 (2002).

[20] I. A. Merkulov, Sov. Phys. JETP 55, 188 (1982).
[21] I. A. Merkulov, Phys. Solid State 40, 930 (1998).
[22] V. L. Korenev, Phys. Rev. Lett. 99, 256405 (2007).
[23] D. Scalbert, Phys. Rev. B 95, 245209 (2017).
[24] M. Vladimirova, D. Scalbert, M. S. Kuznetsova, and K. V.

Kavokin, Phys. Rev. B 103, 205207 (2021).
[25] V. K. Kalevich, V. D. Kulkov, and V. G. Fleisher, Sov. Phys.

JETP Lett. 35, 20 (1982).
[26] M. Vladimirova, S. Cronenberger, D. Scalbert, I. I. Ryzhov,

V. S. Zapasskii, G. G. Kozlov, A. Lemaître, and K. V. Kavokin,
Phys. Rev. B 97, 041301(R) (2018).

[27] M. Kotur, D. O. Tolmachev, V. M. Litvyak, K. V. Kavokin, D.
Suter, D. R. Yakovlev, and M. Bayer, Commun. Phys. 4, 193
(2021).

[28] V. M. Litvyak, R. V. Cherbunin, V. K. Kalevich, A. I. Lihachev,
A. V. Nashchekin, M. Vladimirova, and K. V. Kavokin, Phys.
Rev. B 104, 235201 (2021).

[29] R. I. Dzhioev and V. L. Korenev, Phys. Rev. Lett. 99, 037401
(2007).

[30] M. N. Makhonin, K. V. Kavokin, P. Senellart, A. Lemaître, A. J.
Ramsay, M. S. Skolnick, and A. I. Tartakovskii, Nat. Mater. 10,
844 (2011).

[31] E. A. Chekhovich, M. Hopkinson, M. S. Skolnick, and A. I.
Tartakovskii, Nat. Commun. 6, 6348 (2015).

[32] K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, M. Yu. Petrov, S. Yu.
Verbin, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer,
Phys. Rev. B 82, 081308(R) (2010).

[33] P. S. Sokolov, M. Yu. Petrov, T. Mehrtens, K. Müller-Caspary,
A. Rosenauer, D. Reuter, and A. D. Wieck, Phys. Rev. B 93,
045301 (2016).

[34] V. S. Zapasskii, Adv. Opt. Photon. 5, 131 (2013).
[35] M. Oestreich, M. Römer, R. J. Haug, and D. Hägele, Phys. Rev.

Lett. 95, 216603 (2005).
[36] S. A. Crooker, L. Cheng, and D. L. Smith, Phys. Rev. B 79,

035208 (2009).
[37] A. E. Evdokimov, M. S. Kuznetsova, M. Yu. Petrov, R. A.

Potekhin, Yu. P. Efimov, S. A. Eliseev, V. A. Lovtcius, and
P. Yu. Shapochkin, J. Phys.: Conf. Ser. 1199, 012002 (2019).

[38] J. F. Woods and C. Y. Chen, Phys. Rev. 135, A1462 (1964).
[39] L. Halbo and R. J. Sladek, Phys. Rev. 173, 794 (1968).
[40] B. Capoen, B. Biskupski, and A. Briggs, J. Phys.: Condens.

Matter 5, 2545 (1993).
[41] S. A. Crooker, J. Brandt, C. Sandfort, A. Greilich, D. R.

Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Phys. Rev.
Lett. 104, 036601 (2010).

[42] V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov,
D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Phys.
Rev. Lett. 110, 176601 (2013).

[43] F. Heisterkamp, E. A. Zhukov, A. Greilich, D. R. Yakovlev,
V. L. Korenev, A. Pawlis, and M. Bayer, Phys. Rev. B 91,
235432 (2015).

[44] G. M. Müller, M. Oestreich, M. Römer, and J. Hübner, Phys. E
43, 569 (2010).

[45] N. A. Sinitsyn and Yu. V. Pershin, Rep. Prog. Phys. 79, 106501
(2016).

[46] D. S. Smirnov, V. N. Mantsevich, and M. M. Glazov, Phys. Usp.
64, 923 (2021).

[47] M. Oestreich and W. W. Rühle, Phys. Rev. Lett. 74, 2315
(1995).

[48] Yu. G. Sadofyev, A. Ramamoorthy, B. Naser, J. P. Bird,
S. R. Johnson, and Y.-H. Zhang, Appl. Phys. Lett. 81, 1833
(2002).

[49] M. Y. Petrov, A. N. Kamenskii, V. S. Zapasskii, M. Bayer, and
A. Greilich, Phys. Rev. B 97, 125202 (2018).

[50] M. M. Glazov and E. L. Ivchenko, Phys. Rev. B 86, 115308
(2012).

[51] M. M. Glazov, Phys. Rev. B 91, 195301 (2015).
[52] M. M. Glazov, Electron and Nuclear Spin Dynamics in Semicon-

ductor Nanostructures, Series on Semiconductor Science and
Technology (Oxford University Press, Oxford, 2018).

[53] F. Berski, J. Hübner, M. Oestreich, A. Ludwig, A. D. Wieck,
and M. Glazov, Phys. Rev. Lett. 115, 176601 (2015).

[54] M. Grundmann, The Physics of Semiconductors, 3rd ed.
(Springer, Berlin, 2016).

[55] A. Greilich, A. Pawlis, F. Liu, O. A. Yugov, D. R. Yakovlev,
K. Lischka, Y. Yamamoto, and M. Bayer, Phys. Rev. B 85,
121303(R) (2012).

[56] I. Bisotto, B. Jouault, A. Raymond, W. Zawadzki, and G.
Strasser, Phys. Status Solidi A 202, 614 (2005).

035202-11

https://doi.org/10.1103/PhysRevLett.80.4313
https://doi.org/10.1134/1.1130168
https://doi.org/10.1103/PhysRevB.66.245204
https://doi.org/10.1103/PhysRevB.69.121307
https://doi.org/10.1103/PhysRevB.74.121304
https://doi.org/10.1088/0268-1242/23/11/114009
https://doi.org/10.1103/PhysRevB.96.241201
https://doi.org/10.1103/PhysRevB.96.045201
https://doi.org/10.1103/PhysRevB.64.075305
https://doi.org/10.1103/PhysRevX.8.031021
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1103/PhysRevLett.88.256801
https://doi.org/10.1103/PhysRevB.96.205205
https://doi.org/10.1103/PhysRevB.81.115107
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevLett.88.186802
https://doi.org/10.1134/1.1130450
https://doi.org/10.1103/PhysRevLett.99.256405
https://doi.org/10.1103/PhysRevB.95.245209
https://doi.org/10.1103/PhysRevB.103.205207
https://doi.org/10.1103/PhysRevB.97.041301
https://doi.org/10.1038/s42005-021-00681-6
https://doi.org/10.1103/PhysRevB.104.235201
https://doi.org/10.1103/PhysRevLett.99.037401
https://doi.org/10.1038/nmat3102
https://doi.org/10.1038/ncomms7348
https://doi.org/10.1103/PhysRevB.82.081308
https://doi.org/10.1103/PhysRevB.93.045301
https://doi.org/10.1364/AOP.5.000131
https://doi.org/10.1103/PhysRevLett.95.216603
https://doi.org/10.1103/PhysRevB.79.035208
https://doi.org/10.1088/1742-6596/1199/1/012002
https://doi.org/10.1103/PhysRev.135.A1462
https://doi.org/10.1103/PhysRev.173.794
https://doi.org/10.1088/0953-8984/5/16/012
https://doi.org/10.1103/PhysRevLett.104.036601
https://doi.org/10.1103/PhysRevLett.110.176601
https://doi.org/10.1103/PhysRevB.91.235432
https://doi.org/10.1016/j.physe.2010.08.010
https://doi.org/10.1088/0034-4885/79/10/106501
https://doi.org/10.3367/UFNe.2020.10.038861
https://doi.org/10.1103/PhysRevLett.74.2315
https://doi.org/10.1063/1.1504882
https://doi.org/10.1103/PhysRevB.97.125202
https://doi.org/10.1103/PhysRevB.86.115308
https://doi.org/10.1103/PhysRevB.91.195301
https://doi.org/10.1103/PhysRevLett.115.176601
https://doi.org/10.1103/PhysRevB.85.121303
https://doi.org/10.1002/pssa.200460439


C. RITTMANN et al. PHYSICAL REVIEW B 106, 035202 (2022)

[57] R. Giri, S. Cronenberger, M. M. Glazov, K. V. Kavokin, A.
Lemaître, J. Bloch, M. Vladimirova, and D. Scalbert, Phys. Rev.
Lett. 111, 087603 (2013).

[58] F. Meier and B. P. Zakharchenya, Optical Orientation (North-
Holland, Amsterdam, 1984).

[59] D. S. Smirnov, Phys. Rev. B 91, 205301 (2015).
[60] I. I. Ryzhov, S. V. Poltavtsev, K. V. Kavokin, M. M. Glazov,

G. G. Kozlov, M. Vladimirova, D. Scalbert, S. Cronenberger,
A. V. Kavokin, A. Lemaître, J. Bloch, and V. S. Zapasskii, Appl.
Phys. Lett. 106, 242405 (2015).

[61] A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441
(1958).

[62] This frequency is determined by an additional measurement at
Bx = 4 mT without preceding nuclear polarization.

[63] M. Vladimirova, S. Cronenberger, D. Scalbert, M. Kotur,
R. I. Dzhioev, I. I. Ryzhov, G. G. Kozlov, V. S. Zapasskii,
A. Lemaître, and K. V. Kavokin, Phys. Rev. B 95, 125312
(2017).

[64] M. Goldman, Spin Temperature and Nuclear Magnetic Reso-
nance in Solids (Clarendon Press, Oxford, 1970).

[65] D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev.
B 15, 5780 (1977).

[66] M. I. Dyakonov, Spin Physics in Semiconductors, 2nd ed.,
Springer Series in Solid-State Sciences Vol. 157 (Springer,
Berlin, 2017).

[67] M. Vladimirova, S. Cronenberger, A. Colombier, D. Scalbert,
V. M. Litvyak, K. V. Kavokin, and A. Lemaître, Phys. Rev. B
105, 155305 (2022).

[68] V. K. Kalevich, K. V. Kavokin, and I. A. Merkulov, in Spin
Physics in Semiconductors, edited by M. I. Dyakonov (Springer,
Berlin, 2008), pp. 309–346.

[69] We have additionally done a fine step (step size of 0.02 mT)
magnetic field measurement close to zero field to test for the
presence of the narrow dip structure with BL ≈ 0.2 mT. No
appearance was observed.

[70] P. Maletinsky, M. Kroner, and A. Imamoglu, Nat. Phys. 5, 407
(2009).

[71] D. Paget, Phys. Rev. B 25, 4444 (1982).
[72] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd. ed.

(Pergamon Press, Oxford, 1969).

035202-12

https://doi.org/10.1103/PhysRevLett.111.087603
https://doi.org/10.1103/PhysRevB.91.205301
https://doi.org/10.1063/1.4922771
https://doi.org/10.1103/PhysRev.109.1441
https://doi.org/10.1103/PhysRevB.95.125312
https://doi.org/10.1103/PhysRevB.15.5780
https://doi.org/10.1103/PhysRevB.105.155305
https://doi.org/10.1038/nphys1273
https://doi.org/10.1103/PhysRevB.25.4444

