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A method to produce synthetic dimensions in an optical cavity is presented. The system is obtained by
coupling two one-dimensional optical cavities by means of a moving mirror. Its translation generates a new
synthetic dimension resulting in a transmittance pattern that corresponds to the energy dispersion of electrons
in a two-dimensional lattice: in this case a strained triangular lattice. We elucidate the analogy between these
two systems by relating the distribution of transmittances of the optical cavity to the density of states of the
two-dimensional lattice and the Bragg diffraction modes to the Van Hove singularities. Our mapping makes
the coupled optical cavity a simulator for lattice Hamiltonians found in solid-state physics, providing an easier
alternative platform to access some of their properties, as for example, the electronic conductivity, which is
found here using the Boltzmann formula. Moreover, it is proved that the truly synthetic behavior appears only
when the two cavities have an irrational length ratio as modes resonant on one cavity are never resonant in the
other. Mathematically, wave phase differences act independently as they are given by a function that behaves as
a pseudorandom number generator. This provides an elegant way to study synthetic dimensions without the need
to move the central mirror, i.e., in a single, fixed geometry device. Thus, our work establishes a bridge between
the fields of optical cavities, synthetic dimensions, and two-dimensional materials.
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I. INTRODUCTION

Although a physical system is commonly described in
terms of its geometric dimensionality, during recent years
there has been a growing interest in exploring systems ex-
hibiting physics exclusively found in a space with a higher
dimensionality than the geometrical one [1–3]. Such concept
is known as synthetic dimension [3,4]. Quasicrystals are good
examples of an atomic system with synthetic dimensions as
their reciprocal space has a higher dimensionality than the
real one [5–7]. Other examples are the generation of extra
dimensions using magnetic fields or rotated two-dimensional
(2D) layers [8]. Yet, in these atomic systems it is difficult to
track down the effects of a higher dimension and it has also
been difficult to take advantage of them to build devices.

Conversely, in the field of photonics, such effort has been
very fruitful [3,9]. For example, photonics allows one to
explore the four-dimensional quantum Hall effect [10], flat-
band physics [11], topological insulators [12], topological
lasers [13], the control of the light spectrum in synthetic
space [14,15], and locally interacting [16] and squared
effective Hamiltonians [17]. Effects predicted to occur in qua-
sicrystals are also easier to observe [18,19]. A different path
to obtain synthetic dimensions and reveal topological invari-
ants is to exploit the time-driven physics of two-dimensional
(2D) systems [20–22]. Other ways to dynamically introduce
synthetic dimensions in optical systems rely on the use of ad-
ditional frequencies: electro-optic modulators or spatial light

modulators are used to couple longitudinal modes in ring
cavities and modes with orbital angular momentum, respec-
tively [23,24].

Such intriguing physics has been often proposed and
demonstrated in complex structures either composed by elab-
orated elementary building blocks or interconnected in a
highly nontrivial way. Despite their simplicity, planar 2D
cavities exhibit great potential because they enhance light-
matter interaction in relatively small volumes and are easy to
fabricate. For these reasons, they are often referred to as the
paradigmatic cavity in quantum electrodynamics. Recently,
they have been used in combination with active media such
as inorganic materials [25], quantum wells [26], 2D mate-
rials [27], and organic molecules [28], to realize analogies
of phenomena encountered in the ultracold atoms litera-
ture and believed to be exquisitely quantum. Examples of
this are quantum phase transitions of polaritons [29], super-
fluidity [30], quantum turbulence [31], and in general the
realization of quantum simulators [32]. Planar cavities have
been also useful to achieve low-threshold lasing emission [33]
and enhancing otherwise weak nonlinear interactions between
molecules [34,35]. In other interesting applications, planar
cavities have been exploited to boost the rate of certain
photoactivated reactions giving rise to the so-called polari-
ton chemistry [36,37]. All these applications rely on the
remarkable ability of 2D cavities to efficiently confine light
on submicron scales by means of the excitation of cavity
modes with large quality factors and different symmetry of the
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FIG. 1. Sketch of the coupled optical cavities. The thin slabs
represent three silver mirrors. a is the sum of the two cavity lengths
which are given in terms of p (0 < p � 1). Light of wave vector k
illuminates the cavity forming an angle of incidence θinc with respect
to the normal to the multilayer system.

associated electric field. Furthermore, it is simple to build a
network of several such cavities by leveraging their planar
geometry, which naturally allows for vertical stacking and
careful positioning of intermediate mirrors that function as
coupling elements.

In this work, we explore the use of geometry to introduce a
synthetic dimension in an optical system. This is composed of
two planar optical cavities of different lengths separated by a
mirror. The translation of the mirror couples the optical modes
of the individual cavities generating an extra dimension. We
show how it is possible to find the distribution of transmit-
tance, a higher dimensional Bragg law, and some analogies to
the energy dispersion of a 2D electronic system, thus drawing
an analogy between the fields of 2D materials and optical cav-
ities. As we will see, the truly synthetic dimension behavior
appears only for irrational ratios of the two cavity lengths. The
layout of this work is the following. In Sec. II we present the
the coupled cavities, find the transmittance of the multilayer,
and explore the distribution of transmittances. In Sec. III we
present the analogy with a 2D system. Section IV is devoted
to study irrational length ratios and, finally, the conclusions
are given in Sec. V.

II. COUPLED OPTICAL CAVITIES

Figure 1 sketches the proposed cavity. It is made by three
parallel silver mirrors and two nonabsorbing dielectrics. In
what follows we refer to each space between a pair of contigu-
ous mirrors as left and right cavity. Without loss of generality,
we consider both cavities as filled with air. In actual devices
this can be replaced by a polymer, for instance. The mir-
ror thickness is fixed and equal to d1, while the dielectric
thickness is defined by the position of the central mirror and
parametrized by the variable p bounded between 0 and 1. The
total cavity length is a. Light illuminates the double cavity
with an angle of incidence θinc and a wavelength λ. In order
to maximize the coupling between the two cavities we fix
d1 to a value at which the normal incidence reflectance of

the silver mirrors is 0.5. This corresponds to d1 = 13 nm for
λ = 535 nm. Although this is strictly true only in a range of
approximately 15◦ around the normal incidence, the higher
reflectance for larger angles of incidence does not affect our
conclusions. The mirrors are described by the experimental
permittivity of silver implying an absorption equal to 3% for
the incident wavelength. Crucially, we will show that these
semitransparent, low-absorbing mirrors effectively generate
an extended 2D lattice, whose unit cell consists of the coupled
one-dimensional (1D) right and left optical cavities. The inci-
dent wavelength, the mirror thickness, and material are chosen
to be close to current experimental possibilities.

The transmittance of the two coupled 1D cavities can be
obtained with a transfer matrix approach where each medium
and interface between them are represented by matrices [38].
We start by describing the left cavity medium (that we label
medium 0),

PL =
(

eiφL 0
0 e−iφL

)
(1)

with φL = k⊥,LdL, dL = (1 − p)a and k⊥,L = n0
ω
c cos θL is the

perpendicular component of the incident wave vector, k, in
the left cavity. ω = 2πc/λ is the angular frequency of the
incident light, c is the speed of light in vacuum, n0 is the cavity
complex refractive index, which in our case equals to 1, and
θL is the angle of incidence to the left cavity related to θinc

by Snell’s law. A similar description holds for the right cavity
using the same medium 0,

PR =
(

eiφR 0
0 e−iφR

)
, (2)

where φR = k⊥,RdR, k⊥,R = n0
ω
c cos θR and dR = pa. θR is the

angle of incidence to the right cavity and is related to θinc and
θL by Snell’s law.

The mirrors are labeled as medium 1. Inside them the light
propagation is described by

P1 =
(

eiφ1 0
0 e−iφ1

)
, (3)

where φ1 = k1,⊥d1, k1,⊥ = (ω/c)n1 cos θ1 =
√

(n1ω/c)2− k2
‖ ,

is the perpendicular component of the incident wave vector,
k. θ1 is the angle within the mirror, n1 is the silver complex
refractive index, and

k‖ = n0ω

c
sin θinc (4)

is the parallel component of the incident wave vector. Notice
that for the parallel component, we do not use a subindex to
differentiate the media as this component is conserved. The
multilayer system is assumed to be embedded in air, thus
the incident medium and the left and right cavities share the
refractive index, yielding θinc = θL = θR = θ0. It follows that

k⊥,L = k⊥,R ≡ κ,

where κ is thus defined as the perpendicular component of k
in medium 0. Next, we describe all the interfaces between the
media. For s polarization we define two matrices:

D0 =
(

1 1
n0cosθ0 −n0cosθ0

)
(5)
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and

D1 =
(

1 1
n1cosθ1 −n1cosθ1

)
. (6)

The incidence from medium 1 to 0 is described by

T10 = D−1
1 D0, (7)

while from 0 to 1 the corresponding matrix is

T01 = D−1
0 D1 = T −1

10 . (8)

In an explicit form, these matrices read as

T10 = 1

2

(
1 + n−1

e 1 − n−1
e

1 − n−1
e 1 + n−1

e

)
(9)

and

T01 = 1

2

(
1 + ne 1 − ne

1 − ne 1 + ne

)
= T −1

10 , (10)

where

ne ≡ n1

n0

cosθ1

cosθ0
.

The total transfer matrix along the system is

M = [T01P1T10]PL[T01P1T10]PR[T01P1T10] (11)

or by using Eq. (7),

M = [
T −1

10 P1T10
]
PL

[
T −1

10 P1T10
]
PR

[
T −1

10 P1T10
]
. (12)

The terms inside brackets represent the complete description
of the mirrors and the interface with the cavities. Therefore,
we introduce a new matrix such that

M = PPLPPRP (13)

with

P = T −1
10 P1T10. (14)

The explicit form of such mirror matrix is

P = 1

4

(
4cosφ1 + i2n+

e senφ1 i2n−
e senφ1

i2n−
e senφ1 4 cos φ1 − i2n+

e senφ1

)

where we defined

n+
e =

(
ne + 1

ne

)
, n−

e =
(

ne − 1

ne

)
(15)

resulting in the following total transfer matrix

M = P
(

eiφL 0
0 e−iφL

)
P

(
eiφR 0
0 e−iφR

)
P . (16)

We next observe that φR = pκa and φL = (1 − p)κa,
where a = dL + dR. Therefore, M depends upon p and k
through κ and k1,⊥, so in what follows we explicitly write
M ≡ M(k, p). The transmittance is given by

T (k, p) = 1

|M11(k, p)|2 , (17)

and for this particular case, the matrix element M11 is given
by

M11(k, p) = P3
11eiκa + P2

12P22e−iκa

+ 2P11P2
12 cos (1 − 2p)κa, (18)

where Pi j are the elements of matrix P . Then,

T (k, p) = ∣∣P3
11

∣∣−2|eiκa + A(k)e−iκa

+ 2B(k) cos [(1 − 2p)κa]|−2 (19)

with

A(k) ≡ |A(k)|eiφA = (P22/P11)B(k), (20)

B(k) ≡ |B(k)|eiφB = (P12/P11)2. (21)

Explicitly, A(k) and B(k) can be written as

A(k) = −1 − ib−(k1,⊥)

1 + ib+(k1,⊥)
B(k), (22)

B(k) = −
(

b−(k1,⊥)

1 + ib+(k1,⊥)

)2

(23)

with

b±(k1,⊥) = n±
e

2
tan φ1 = n±

e

2
tan(k1,⊥d1). (24)

Finally, we arrive at the following expression for the s-
polarized transmittance valid for any kind of media:

T (k, p) = ∣∣P3
11

∣∣−2
(1 + |A(k)|2 + 4|B(k)|2 cos2[(1 − 2p)κa] + 2|A(k)| cos (2κa − φA)

+ 4|B(k)| cos (κa − φB) cos [(1 − 2p)κa] + 4|A(k)||B(k)| cos [(1 − 2p)κa] cos[κa + φB − φA])−1. (25)

In Fig. 2 we present the resulting s-polarized transmit-
tance as a function of the dimensionless variable k‖a and
p for a cavity length a = 6λ. Notice that here we plot the
transmittance as a function of the variable k‖ as usually done
in experiments. Direct numerical calculation using Eq. (11)
shows perfect agreement with Fig. 2. The most remarkable
feature is the presence of two families of high-transmittance
curves. To understand such pattern we observe from Eq. (16)
that inside the left or right cavity the maximal transmittance
is obtained whenever φL = πmL or φR = πmR with mL and

mR integers. Using the actual values of φL and φR we obtain
that pκa = πmR and (1 − p)κa = πmL. This results in two
expressions akin to the Bragg conditions,

2pa cos θ0 = mRλ, (26)

2(1 − p)a cos θ0 = mLλ. (27)

On the other hand, within each cavity, the minimal transmis-
sion is obtained for φL = πmL + π/2 or φR = πmR + π/2.
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FIG. 2. s-polarized transmittance as a function of p and k‖a for λ = 535 nm, with a = 6λ. To the right we indicate the color code associated
with the transmittance. The solid curves are obtained from the conditions φL = πmL and φR = πmR, while the dotted curves correspond to the
conditions φR = πmR + (π/2) and φL = πmL + (π/2). mL and mR are integers from 0 to 11.

Thus, the maximal scattering is given by two families of
curves, which results in another set of conditions,

2pa cos θ0 = (mR + 1/2)λ, (28)

2(1 − p)a cos θ0 = (mL + 1/2)λ. (29)

Figure 2 presents, using continuous and dashed white
curves, the families of curves defined by Eqs. (26)–(29).
Clearly, these families reveal the basic shape of the pattern.
Observe how the pattern can be labeled with two indices
(mL, mR). This is reminiscent of a diffraction produced by a
2D lattice which requires two Miller indices to label Bragg
reflections. Such observation is the first hint to relate the
coupled cavity to a synthetic triangular lattice via the pattern
shown in Fig. 2. This analogy will be discussed in detail in the
following sections.

Close to the intersections of all diffracted orders, the high-
transmittance curves exhibit the typical splitting associated
with the strong coupling between the modes of the individual
cavities. This is induced by the condition on the semitrans-
parency of the mirrors and maximized by the chosen central
mirror thickness. To better understand the mode coupling and
the origin of the transmittance pattern, in Fig. 3 we calculate
the modes dispersion of the coupled cavity for a = 6λ and
p = 0.5. Here, the high-transmittance pairs of parabolas cor-
respond to the splittings observed in Fig. 2 for p = 0.5 and
for the energy of h̄2πc/λ. The mode dispersion of the cou-
pled cavity qualitatively resembles that of the cavity modes
sustained by each individual cavity, with an energy shift and a
modulation in transmittance intensity provided by the second
cavity. To understand this, we observe that for an individual
cavity filled with air, the photon energy is given by [39]

E (k‖) ≈ h̄c

√(mπ

a

)2
+ k2

‖ , (30)

where m is an integer. This relationship produces a set of
displaced parabolas for different m. Once a second cavity is
added, an energy shift and modulation in transmittance occur
simultaneously to all parabolas and for each value of p. The
plot of the transmittance pattern T (k, p) facilitates the analogy
to a 2D lattice which would otherwise be very difficult to spot
by only looking at the dispersion of the optical modes for
different p.

In electronic systems, diffraction is associated with singu-
larities in the density of states (DOS), known as Van Hove
singularities. In our case we need to adapt the idea of a DOS
and translate it into a distribution of transmittance, ρ(T ).

FIG. 3. s-polarized transmittance as a function of photon energy
and k‖ for a = 6λ and p = 0.5. To the right we indicate the color
code associated with the transmittance.
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FIG. 4. (a) Transmittance distribution, ρκa(T ), as a function of a and transmittance value calculated for θinc = 0 and for λ = 535 nm.
(b) and (c) are cuts of ρκa(T ) corresponding to the dashed lines in (a). The peaks are equivalent to Van Hove singularities.

Considering all the κa as possible states of the system for
a given cavity with fixed p and a,

ρp(T ) =
∫ ∞

0
δ(|M11(k, p)|2 − T )dk‖. (31)

Similarly, if we fix the frequency ω and the angle of incidence
is such a way that k is fixed, we obtain the transmittance
distribution over all possible coupled cavities for a given total
cavity length, a,

ρka(T ) =
∫ ∞

0
δ(|M11(k, p)|2 − T )d p. (32)

Finally, we can obtain the total density for all possible cavities,

ρ(T ) =
∫ 1

0

∫ ∞

0
δ(|M11(k, p)|2 − T )d p dk‖. (33)

Figure 4(a) presents ρκa(T ) as a function of a and trans-
mittance calculated at normal incidence. The sharp features
correspond to specific transmittance values highly encoun-
tered for each total cavity length. The number of peaks varies
between two and three depending on a and their values
span almost all transmittance axes. The pattern observed in
Fig. 4(a) repeats itself for larger and smaller values of a
providing a compact and complementary way to describe the
pattern shown in Fig. 2 which was obtained for a fixed a. This
periodicity is strictly related to the Bragg’s law [see Eqs. (26)–
(29)]. In the next section we will see how the transmittance
pattern is associated to a synthetic modulated 2D lattice.

III. SYNTHETIC DIMENSION IN A COUPLED CAVITY
AND ANALOGY WITH A 2D ELECTRONIC SYSTEM

In this section we discuss how to perform an analogy
with 2D electronic systems. To simplify the discussion, we
assume that the system absorbs very little energy as we deal
with very narrow mirrors. This provides a way to compare
with a usual conservative and stationary quantum mechanical
system. Such assumption can be relaxed at the price of having
a non-Hermitian Hamiltonian. Under the assumption of small
energy absorption we have that A(k) ≈ eib+(k1⊥ )B(k) from
where |A(k)| = |B(k)|. Also, T (k, p) can be considered as a
function of two independent variables, κa and p. To highlight
such fact we make the following coordinate transformation:

kx = κ, (34)

ky = (1 − 2p)κ. (35)

Observe that this transformation induces a deformation of the
domain, i.e., the square grid produced by lines of the type kx =
C or ky = C with C a constant, is mapped into hyperbolas.
After this coordinate transformation, Eq. (25) is written as

T (kx, ky) = ∣∣P3
11

∣∣−2
(1 + 2|A(kx )|[cos(2kxa − φA)

+ 2 cos(kxa − φB) cos(kya)]

+ |A(kx )|2[1 + 4 cos2(kya)

+ 4 cos(kya) cos(kxa + θB − θA)])−1, (36)
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FIG. 5. (a) Very thin mirror limit (d1 = 3 nm) exact s-polarized transmittance as a function of k‖a and p, calculated for λ = 535 nm using
Eq. (25). (b) s-polarized transmittance calculated using the approximation given by Eq. (38), and the coordinate transformation obtained by
inverting Eqs. (34) and (35) for the same mirror thickness as in (a). Dotted and continuous curves are as in Fig. 2. By comparing panel (a) with
(b) we see that the approximated transmittance matches well the exact calculation up to k‖a ≈ 20 as this requires A(kx ) to be constant. Thus the
analogy with a triangular lattice is restricted to a range of incidence angles and thin mirrors. Also notice the difference between panel (a) and
Fig. 2 due to the different mirror thickness. The thickness change broadens the transmittance features and slightly shifts them, making the
overlap between the diffraction pattern and the high-transmittance regions slightly different. It involves not only a different amount of optical
absorption but also an overall phase change in the waves propagating through the system.

where A(k) = A(kx ) and B(k) = B(kx ). In the limit of very
narrow mirrors, i.e., φ1 � 1, from Eqs. (20) and (21) we see
that A(kx ) � 1. Therefore, Eq. (36) can be written as

T (kx, ky) ≈ ∣∣P3
11

∣∣−2{1 − 2|A(kx )|[cos(2kxa − φA)

+ 2 cos (kxa − φB) cos (kya)]}. (37)

In the same limit, due to the lack of absorption in the
mirrors, we have that φA = 0, φB = 0, and by considering
P11 ≈ 1 we obtain

T (kx, ky ) ≈ 1 − 2|A(kx )|[cos (2kxa) + 2 cos (kxa) cos (kya)].
(38)

Figure 5(a) displays the s-polarized transmittance, calcu-
lated using Eq. (25), as a function of k‖a and p for the case
of very thin silver mirrors, i.e., d1 = 3 nm. Even though the
broadening induced by the nonoptimal coupling condition
between the left and right cavities masks the mode splitting,
by comparing Figs. 5(a) and 2 we notice that the transmittance
pattern is the same. This calculation is compared with the one
based on Eq. (38) [Fig. 5(b)] which is only valid in the case of
thin, nonabsorbing mirrors. Notice that in order to allow the
direct comparison with Fig. 5(a), in Fig. 5(b) we plot T as a
function of k‖a and p instead of kx and ky. This is done by
inverting the coordinate transformation, Eqs. (34) and (35).
We obtain an excellent qualitative agreement between the
calculations shown in (a) and (b). Both follow the diffracted
orders plotted in Fig. 2 and displayed with white continuous
and dotted curves. The only difference appreciated in (b) with
respect to (a) is that at the crossing points of the diffracted
orders the transmittance increases as k‖a grows instead of
decreasing. This is simply due to the approximations made
to obtain Eq. (38). We stress that, due to the approximations
and simplifications made in the algebraic derivation, the trans-
mittance calculated with Eq. (38) and shown in Fig. 5(b) is not

normalized. For this reason we do not report numeric values in
the color scale, but rather we focus on its qualitative pattern.

As is very well known, optical layered systems described
by transfer matrices are suitable to be interpreted as a chain
of atoms approximated by a tight-binding Hamiltonian [40].
Under this analogy, the left and right media cavities can be
associated to a certain type of atom while the mirror media to
another type. Then, if we consider p as a variable, the resulting
system can be considered as a 2D system. However, the sim-
plest way to arrive at such analogy is to compare Eq. (38) with
the energy dispersion resulting from a 2D electronic system,
instead of building the whole transfer matrix analogy.

Following this approach, let us now draw explicitly the
analogy with an electronic 2D system by comparing Eq. (38)
with the energy dispersion that results from an electron in
a uniaxial strained triangular lattice using a tight-binding
Hamiltonian [41–43]. To do so, first consider the jth atom
position on a triangular lattice with a uniform strain along the
y direction,

r j = j1b1 + j2b2. (39)

Here b1 = b1(1, 0) and b2 = (b1 cos(2π/3), b2 sin(2π/3))
are the Bravais lattice vectors and j1, j2 integers. b1 is the sep-
aration between atoms in the x direction and b2 = (1 + ε)b1,
where ε is the strain in the y direction, assumed here to be
small (ε � 1). For the case of atoms with only one valence
orbital, the corresponding tight-binding Hamiltonian is

H = ε0| j〉〈 j| + t0
∑
(l, j)

|l〉〈 j|, (40)

where | j〉 is a Wannier orbital localized at site j, ε0 is the self-
energy, and t0 is the hopping parameter between first-neighbor
sites l and j. Using Bloch’s theorem in the Schrödinger equa-
tion H |�〉 = E |�〉, where E is the energy and � the wave
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FIG. 6. (a) s-polarized transmittance calculated for a mirror thickness d1 = 5 nm and transformed according to Eqs. (34) and (35).
(b) Transmittance distribution as a function of the transmittance value calculated in the interval kx = [9.3, 9.8]. The geometrical pattern of
the transmittance and its single-peak distribution show explicitly the analogy between the transmittance pattern of the 1D coupled optical
cavity and the energy of a modulated 2D triangular lattice. Two extra peaks for high transmittance are seen when compared with the electronic
case; these are due to the finite mirror thickness and can be removed either by reducing its thickness or by processing the optical data taking
into account a mirror correction factor A(kx ).

function, we have that

E | j〉 = ε0| j〉 + t0

6∑
n=1

eik·δn | j〉, (41)

where δn is the set of vectors that point from a site
to its first nearest neighbors, i.e., δ1,4 = ±b1(1, 0), δ2,5 =
±(−b1/2,

√
3b2/2), δ3,6 = ±(b1/2,

√
3b2/2). By using these

vectors in Eq. (41) we arrive at

E (k) = (ε0 − 3t0) − 2t0

[
cos(kxb1) + 2 cos

(
kxb1

2

)

× cos

(√
3kyb2

2

)]
. (42)

Compare this result with Eq. (38). If we set b1 = a/2 and b2 =
2a/

√
3, the arguments and phases of the cosines coincide.

Moreover, as in this regime |A(k)| ≈ |B(k)|, it is tempting to
identify,

t0 → A(kx ), ε0 = 1 + 3t0. (43)

This mathematical correspondence explains why the trans-
mittance pattern of the 1D coupled cavity sketched in Fig. 1
resembles the energy dispersion of a 2D strained triangular
lattice. The mode coupling induced by the moving mirror
generates an extra synthetic dimension allowing the 1D cav-
ity to simulate a tight-binding Hamiltonian built on a 2D
lattice. Similarly, the peaks observed in the transmittance
distribution in Figs. 4(b) and 4(c) are akin to the Van Hove
singularities typically found in atomic crystals. We stress that

such lattice symmetry is interesting in the context of 2D
materials [44–47]. Furthermore, applying strain to control the
electronic properties of such materials gave birth to a new
field of research called straintronics [43,48]. Summarizing, (i)
the moving mirror, parametrized by p, together with the semi-
transparency of the left and right mirrors, generate a synthetic
2D lattice; (ii) the crossing of the two families of diffracted
orders dictates the triangular lattice symmetry; and (iii) the
thickness of the central mirror determines the visibility of the
mode spitting at the crossing points.

The identification proposed in Eq. (43) is not entirely exact
as t0 is a constant and A(kx ) depends upon kx. To overcome this
problem, observe that Eq. (42) can be used with a given fixed
t0 only for a certain range of k as A(kx ) varies much slower
than the cosine factors, implying that the whole spectrum is
obtained by scaling Eq. (42) as k is changed. The coordinate
transformation from (kx, ky ) to (k‖, p) produces a pattern like
the one seen in Fig. 2, i.e., a hyperbolic deformed triangular
structure that repeats itself but scales down as k‖a → ∞.
Notice that such scaling is also modulated by the term |P3

11|−2

which provides an intensity modulation, but is not responsible
for the “reduction” of the hexagons size and deformation as
k‖a → ∞. A complementary way to understand the analogy
is to consider a space-dependent modulation of the tight-
binding parameter of the strained triangular lattice [49].

To explicitly show the analogy of the 1D coupled cavity
with the moving mirror and the 2D triangular atomic lattice
we apply the transformation given in Eqs. (34) and (35) to the
transmittance calculated with Eq. (25). Figure 6(a) displays
the resulting s-polarized transmittance as a function of the
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transformed coordinates (kx, ky) for a cavity length a = 6λ

and for thin mirrors, d1 = 5 nm. The transformed transmit-
tance pattern is symmetric with respect to ky as expected
by the mirror symmetry of T (k‖a, p) with respect to p. We
see that the regular triangular pattern is recovered while the
modulation introduced by the term A(kx ) is maintained. For
this reason, and as already noticed above, the analogy with
the tight-binding model only holds for a certain range of kx.
By calculating the transmittance distribution integrating in the
range kx = [9.3, 9.8] we recover the typical single-peak den-
sity of states of a triangular lattice. This is shown in Fig. 6(b)
which further helps in clarifying the relation between the 1D
optical cavity and the 2D modulated lattice. By making the
term A(kx ) flatter the range of integration can be extended
while maintaining the single-peak transmittance distribution.
This condition can be met by designing a mirror with a less
pronounced angle-dependent reflectance.

The analogy with an electronic system allows one to ex-
tract some other physical quantities from the optical system.
Among these, the most important is the group velocity vg(k)
which can be used, for example, to find the electronic conduc-
tivity through the Boltzmann formula. If a stationary electric
field E is applied to an electronic system, the Boltzmann
equation for the current density at zero temperature and Fermi
energy EF is given by [50]

J = e2

(2π )2

∫
d2k[E · vg(k)]τ (k)vg(k)δ[E (k) − EF ], (44)

where τ (k) is the relaxation time, usually taken as a constant
τ fitted from experiment. It can also be calculated using an
integral equation [51]. For an electric field in the x direction
E = (Ex, 0), the conductivities are given by σxx = Jx/Ex and
σyx = Jy/Ex. Therefore, the main ingredients to calculate the
conductivity are the density of states near EF , which appears
through the integral and the delta function in Eq. (44), and the
group velocity, given by

vg(k) = (1/h̄)∇kE (k) = (1/h̄)∇kT (k), (45)

where the last step follows from the optical analogy, i.e.,
Eq. (38). Therefore, the gradient of the transmittance pattern
provides vg(k). Using Eq. (38) we can obtain its explicit form,

vg(k) ≈ 4|A(kx )|( sin (2kxa) + sin (kxa)

× cos (kya), cos (kxa) sin (kya)), (46)

where we neglected the term proportional to ∇k|A(kx )| as it
is very small in the integration region. The conductivities can
be obtained from the optical analogy just by considering the
Jacobian of the transformation given by Eqs. (34) and (35) and
that the Fermi energy, EF , is the photon energy corresponding
to the wavelength of the wave incident on the cavity,

σβx ≈ 2e2τ

(2π )2

∫∫
dκ d pvx

g(k)vβ
g (k)δ[T (k) − EF ], (47)

where vβ
g with β = x, y are the components of vg and it is

understood that k is evaluated through Eqs. (34) and (35).
Finally, it is interesting to observe that Van Hove singu-

larities arise whenever Bragg conditions hold as diffraction
implies standing waves and thus vg(k) = 0. Moreover, Van
Hove singularities encode topological information about the

Hamiltonian in the bulk system [50,52,53] and thus some
properties of topological boundary states can be inferred by
perturbing near such singularities [54]. The procedure can
be applied to the quantum Hall effect [53,54] or to strained
graphene nanoribbons [42]. Its use in optical analogies in the
present context will require either studying small variations of
p around such singularities [42] or a periodic adiabatic time
driving [55], achieved, for example, by moving the central
mirror.

IV. TRULY SYNTHETIC DIMENSION: IRRATIONAL
CAVITY LENGTH RATIOS

Up to this point, we have considered generating a syn-
thetic dimension by a moving mirror. This connection with
synthetic dimensions seems a bit stretched because we have
two continuous parameters, p and k, which are connected
then with two dimensions kx and ky in the electron system.
In other words, we considered p as a variable that can be
tuned freely. There are two ways to experimentally study such
a system: fabricating many different devices or wedging the
middle mirror allowing for a continuous variation of p in a
single device. The former one is unpractical for real world
application, while the latter one involves a large single device
with nonparallel interfaces that may disturb the diffraction
coupling mechanism. In spite of the practical details, none of
these alternatives contain a truly synthetic dimension. Below
we will show that for a fixed p, provided that p is chosen to be
an irrational number, the system contains a synthetic dimen-
sion. To do so, notice that any number x can be decomposed
as x = �x� + {x} where �x� is the bigger integer lower than x
(floor function) and {x} its fractional part (sawtooth function).
Using such decomposition, the cosine terms containing p in
Eq. (25) can be written

cos [(1 − 2p)κa] = cos

(
2π

{
(1 − 2p)κa

2π

})
. (48)

For any irrational p, the number 1 − 2p is also an irrational.
In such case, the function {(1 − 2p)κa} behaves as a pseudo-
random number generator [5] and thus is almost independent
on κa. Therefore, we can replace the factor {(1 − 2p)κa/2π}
by

2π

{
(1 − 2p)κa

2π

}
≡ kya, (49)

where we defined a new wave vector ky. Now kx and ky

are almost independent variables for a fixed p. As explained
before, this is a consequence of the decoupling of wave phases
at irrational values of p. A more intuitive way to understand
the phenomena is to think on the fact that resonant modes
in one cavity are never resonant in the other as this will
require a rational ratio between wave lengths. Therefore, we
achieved a way to reach the 2D system for a fixed parameter
p. Notice that in our proposed system the synthetic dimension
is continuous as we can obtain E (k) for any arbitrary vector
k in 2D, as the components kx and ky are arbitrary. This is
different from other optical systems in which discreteness is
crucial in the sense that in a continuous three-dimensional
space one can create a four-dimensional system but the latter
must be discrete and not continuous [56]. Here, the continuous
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sampling of one variable (kx) leads to an independent, almost
random, sampling of the other variable (ky) for irrational fixed
p. This is simple to understand if we think that points in a
cartesian plane of the form (x, y) with y = f (x) = {xp}, for
irrational p, will fill in a uniform and dense way a unitary
square when x is continuously varied from zero to one [5].

Of course, in practice there is not infinite precision for
fabricating the system and thus reach a truly irrational p.
In spite of this, there are certain p values which are better
than others. In particular, the approximants of the inverse
golden mean cavity with p = (

√
5 − 1)/2, given by the

ratio of two successive Fibonacci numbers, is the best ex-
perimental choice. This is because the continued fraction
expansion of the golden mean is the slowest convergent
one among all p, making it the “most irrational” number.
Using quasi-irrational cavity length ratios helps in bringing
the concept of synthetic dimensions in 1D optical cavi-
ties closer to experimental possibilities, making the device
compact and avoiding working with a set of different 1D
cavities.

V. CONCLUSIONS

In this work we proposed a geometric method to generate
synthetic dimensions. In particular we considered two optical
cavities separated by a semitransparent moving mirror. We
calculated the transmittance as a function of two variables: the
in-plane momentum and the position of the coupling mirror.
We proved that this transmittance pattern can be described
by Bragg diffraction using two indices, indicating that the
second variable acts as an effective momentum and adds a
synthetic dimension to the system. We demonstrate the optical

transmittance pattern corresponds to an isoenergetic plane of
the dispersion of an electron in a 2D strained triangular lattice
calculated with a tight-binding model. As a consequence, the
transmittance distribution can be associated with the density
of states of such lattice and, as such, it presents the equivalent
of Van Hove singularities. This analogy makes the 1D optical
cavity an efficient simulator for complex 2D Hamiltonians,
bringing together two seemingly unrelated research fields.

Finally, we showed that the truly synthetic dimension in
planar cavities appears by using the golden ratio between the
two internal characteristic lengths. In this case, the reflected
and transmitted electromagnetic waves have phases that be-
have as almost independent variables decoupling the modes of
each cavity. Such decomposition for a fixed irrational cavity
effectively nests two dimensions into one. Our study opens
the door to use this simple principle to design and build
synthetic dimensions in a systematic way. Compact devices
made by coupled 1D optical cavities may be beneficial for
bringing the concept of synthetic dimensions closer to real
world applications.

Note added. Recently, we became aware of a work that
studied topological boundary effects using synthetic fre-
quency dimensions. The device is made of two ring cavities
of different lengths that interact through an electro-optic mod-
ulator [57]. The advantage of our design is that it naturally
includes such boundary as p is bounded between 0 and 1.
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