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Phonon-induced modification of quantum criticality
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We study the effect of acoustic phonons on the quantum phase transition in the O(N) model. We develop a
renormalization group (RG) analysis near (3+1) space-time dimensions and derive the RG equations using an ε

expansion. Our results indicate that when the number of flavors of the underlying O(N) model exceeds a critical
number Nc = 4, the quantum transition remains second-order of the Wilson-Fisher type while, for N � 4, it is a
weakly first-order transition. We characterize this weakly first-order transition by a length scale ξ ∗, below which
the behavior appears to be critical. At finite temperatures for N � 4, a tricritical point separates the weakly
first-order and second-order transitions.
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I. INTRODUCTION

The fate of the second-order quantum phase transition in
the presence of lattice vibrations is an intriguing question
which still remains to be completely understood. The tran-
sition between ordered and disordered phases in magnets,
superfluids, charge density waves, etc., are typically studied
within lattice models which assume the lattice to be static,
both in the classical and quantum cases [1]. However, acoustic
phonons are ubiquitous in realistic solid state systems, and
their gaplessness gives reason to expect fundamental changes
of the standard critical behavior.

The effect of phonons in classical phase transitions has
been studied extensively and it was a topic of controversy
for many years [2–11]. Using a simplified continuum model
for the elastic lattice, Larkin and Pikin derived a criterion by
which the second-order transition becomes first-order when-
ever the magnetic specific heat becomes large [5]. Intuitively,
this results from the tendency of the system to gain en-
ergy by making distortions in the lattice. The Larkin-Pikin
criterion has been used extensively in the literature in the
study of different models [6–8]. This picture was revisited by
Aharony [10], who showed through a renormalization group
(RG) analysis in d = 4 − ε space dimensions that, contrary to
the Larkin-Pikin criterion, the transition may remain second-
order provided the phonon coupling is weak enough.

More recently, the focus has shifted to understanding the
role of phonons in quantum phase transitions [12–16]. This is
motivated by experiments on new platforms, such as interact-
ing atoms, ions, and dipoles in a trap, which open possibilities
to study quantum phase transitions in systems with soft lat-
tices. On the solid state front, experiments on ferroelectric
materials [17–21] further motivate this study. We note that
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a prominent effect of the coupling to phonons is the explicit
breaking of Lorentz invariance, which is often present in the
effective field theory of the quantum O(N) model. Lorentz
violating terms of certain types have been shown to alter the
critical behavior [22].

A number of theoretical analyses have looked at the quan-
tum O(N) model coupled to phonons in D = 1 + 1 space-time
dimensions. An RG analysis was performed on a quantum
wire [12], where it was shown that the transition could be
second-order or first-order depending on the ratio of the
spin-wave and phonon velocities. This analysis was extended
in Ref. [14] and supplemented by a numerical verification
using density matrix (RG) calculations [14]. Under specific
conditions, the 1+1 dimensional problem has been shown to

FIG. 1. (a) The nature of the quantum phase transition of the
O(N) model in presence of acoustic phonons is shown in the N − D
plane, where N is the number of flavors of the O(N) spins and D is the
space-time dimensions. We find a second-order transition (governed
by Wilson-Fisher fixed point) for N > 4. The transition turns weakly
first-order for N � 4. The quantum phase transition in D = 1 + 1 has
been studied previously [12,14] (shown by a red point in the phase
diagram). (b) We characterize the weakly first-order transition for
1 < N � 4 by a length scale ξ ∗, which can be related to a tempera-
ture scale T ∗, below which the transition becomes first-order.
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support emergent supersymmetric quantum criticality [13,16].
However, understanding the effect of phonons on quantum
critically in higher dimensions remains a challenge.

Recently, the Larkin-Pikin criterion for magnetic tran-
sitions was generalized by including the quantum fluctua-
tions [15]. There, it was shown that the universality of the
Wilson-Fisher fixed point remains robust in D = 3 + 1, where
the spin-phonon coupling term is argued to be marginally ir-
relevant. Below three space dimensions, however, such benign
behavior of the coupling to phonons is no longer guaranteed.

In the present work, we show that phonons can indeed
have a strong effects on quantum criticality below D = 3 + 1
dimensions. To this end we study the quantum O(N) model
weakly coupled to acoustic phonons by performing an RG
analysis near (3+1) dimensions, utilizing an ε expansion.
Integrating out the phonons in our model leads to a nonlocal
interaction in the effective action for the O(N) order parameter
field, which we analyze in detail. Our main finding is the
presence of a critical number of flavors, Nc = 4: when the
number of flavors N exceeds this value, the transition remains
second-order governed by the standard Wilson-Fisher fixed
point, while it turns weakly first-order below this critical
number [Fig. 1(a)]. We characterize this weakly first-order
transition by a length scale ξ ∗, which diverges exponentially
as ε approaches zero or the coupling to phonons becomes
progressively smaller. This length scale can be heuristically
related to the temperature scale T ∗ of a tricritical point, below
which the transition turns from second-order to weakly first-
order [Fig. 1(b)]. For the Ising model, N = 1, the divergent
specific heat of the rigid-lattice model has been shown to lead
to a thermal transition that is at least weekly first order [6].
Hence, the tricritical point in Fig. 1(b) is predicted to occur
for 1 < N � 4.

The rest of the paper is organized as follows: In Sec. II
we introduce the coupled spin-phonon model, and derive an
effective action for the spins resulting from integration over
the phonons. In Sec. III we present the RG analysis of the
effective action in D = 3 + 1 − ε dimensions, and derive the
RG equations. In Sec. IV we show the solutions of the RG
equations and discuss the results. Finally, in Sec. V we in-
clude a brief overview of our key results and concluding
remarks.

II. COUPLED SPIN-PHONON MODEL

We consider a soft O(N) quantum spin model in d space
dimensions, with Euclidean action

S =
∫

dτ

[∑
i

{
(∂τ �φi )

2 + r �φ2
i + U0

N

( �φ2
i

)2
}

−
∑
〈i j〉

J (Ri j ) �φi · �φ j

]
, (1)

where i and j are sites of the lattice, and we use arrows
to indicate vectors in the internal O(N) space and boldface
letters to indicate vectors in real space. Here, J is the magnetic
exchange between spins, which we assume to be dependent
on the separation Ri j = Ri − R j between nearest neighbors
〈i j〉. We also assume relativistic invariance (no first-order time
derivatives) in the spin sector, as would be present, e.g., in
Heisenberg ferromagnets or in non-particle-hole symmetric
superfluids. For instance, Eq. (1) can describe Heisenberg
antiferromagnets on bipartite lattices, with the field �φ repre-
senting the Néel vector.

We now introduce phonons by allowing the lattice to be
dynamical. Then, the position at site i can be written in terms
of the displacement ui from the equilibrium position R(0)

i as
Ri = R(0)

i + ui. This gives rise to a quantum O(N) model
coupled to gapless phonons, in the form of the Wagner-Swift
Hamiltonian [9,10]. The corresponding Euclidean action is
given by

S = Ss + Sp + Ssp, (2)

Ss =
∫

dτ

[∑
i

{
(∂τ �φi )

2+r �φ2
i +

U0

N

( �φ2
i

)2
}
−J0

∑
〈i j〉

�φi · �φ j

]
,

(3)

Sp =
∫

dτ

[
M

2

∑
i

(∂τ ui )
2 + 1

2

∑
〈i j〉

κab
i j ua

i ub
j

]
, (4)

Ssp =
∫

dτ

[∑
i

�a
i ua

i

]
, (5)

where J0 = J (R(0)
i j ) is independent of the bond 〈i j〉. In what

follows, we adopt units where J0 = 1. Sp is the action of the
harmonic phonons [Eq. (4)], where M is the mass of the atoms
and κab

i j = κab(R(0)
i j ) is the elastic tensor of the lattice. Here,

we have expanded the spin-lattice interaction to first-order in
the displacements ui. Therefore,

�a
i = −

∑
〈 jl〉

∂J (R jl )

∂Ra
i

∣∣∣∣
R(0)

jl

�φ j · �φl . (6)

A sum over repeated indices is implicit throughout the paper.
It is useful to write the action in Fourier space. To do so,

we assume J (Ri j ) = J (|Ri j |) and define

g = ∂J (Ri j )

∂|Ri j |
∣∣∣∣
R(0)

i j

, (7)

which is independent of the bond 〈i j〉 and plays the role of the
spin-phonon coupling constant. Then, the Fourier transform
of �a

i (τ ) becomes

�a(q, ω) = −g
∑
〈i j〉

eiq·R(0)
i (1 − e−iq·R(0)

i j )
Ra (0)

i j∣∣R(0)
i j

∣∣ �φi · �φ j = g

2

∫
dω′

2π

∑
k,μ

μa(e−i(q−k)·μ − eik·μ) �φ(k, ω′) · �φ(q − k, ω − ω′), (8)
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where �φ(k, ω) are the Fourier components of �φi(τ ), and μ is a shift by one lattice site in different directions. Let us take an
example of the square lattice, for which μ ∈ {±x̂,±ŷ} in units where the lattice spacing is one. Then

�a(q, ω) = −g
∫

dω′

2π

∑
k

i(sin(qa − ka) + sin ka) �φ(k, ω′) · �φ(q − k, ω − ω′), (9)

which in the small k and q limit reduces to the following form:

�a(q, ω) = −igqa

∫
dω′

2π

∑
k

�φ(k, ω′) · �φ(q − k, ω − ω′). (10)

Note that the O(N) fields couple to the phonons only via the spatial derivatives, which appear in Eq. (10) as a spatial momentum
factor qa. This will lead to Lorentz symmetry breaking in the resulting effective quantum spin model.

Since we are considering a quadratic theory for the phonons, we can integrate them out to get an effective action for the spins.
This will come at the cost of making the effective spin interaction nonlocal. The effective action for the spins is Seff

s = Ss + δSs,
where

Ss =
∫

dω

2π

∑
k

(r + ω2 + v2k2) �φ(k, ω) · �φ(−k,−ω) + U0

N

∫
dω

2π

∑
q

∣∣∣∣∣
∫

dω′

2π

∑
k

�φ(k, ω′) · �φ(q − k, ω − ω′)

∣∣∣∣∣
2

, (11)

and

δSs =
∫

dω

2π

∑
q

∑
ab

�a(q, ω)�b(−q,−ω)

[Mω2δab + κab(q)]
≈ −

∫
dω

2π

∑
q

g2q2

M(ω2 + c2q2)

∣∣∣∣∣
∫

dω′

2π

∑
k

�φ(k, ω′) · �φ(q − k, ω − ω′)

∣∣∣∣∣
2

, (12)

where the last step was obtained assuming the elastic tensor κab(q) = Mc2qaqb + Mv2
T (q2δab − qaqb), with c and vT the

longitudinal and transverse phonon velocities, respectively. Note that the transverse phonons drop out of the above expression
and we end up with δSs written only in terms of the longitudinal phonon velocity c, which we assume to be isotropic in all spatial
directions. The partition function is therefore given by (up to an overall constant),

Z =
∫

Dφ e−S[φ] =
∫

Dφ exp

[
−1

2

∫
ω,k

(r + ω2 + v2k2) �φ(k, ω) · �φ(−k,−ω)

− 1

N

∫
ω,q

∫
ω1,k1

∫
ω2,k2

(
U0 + W

c2q2

ω2 + c2q2

)
φα (k1, ω1)φα (−k1− q,−ω1 − ω)φβ (k2+ q, ω2 + ω)φβ (−k2,−ω2)

]
, (13)

where W = − g2N
M < 0, and we have used the shorthand nota-

tions
∫
ω,k = ∫ ∞

−∞
dω
2π

∫
|k|<�

dd k
(2π )d and

Dφ =
∏
ω

∏
|k|<�

N∏
α=1

dφα (k, ω). (14)

All momentum integrals are bounded by a cut-off �, set by
the lattice spacing a, i.e., � ∼ 1

a . Notably, the resulting action
does not have Lorentz invariance, as is reflected in the non-
trivial (ω, q) dependence of the interaction term W [Eq. (13)].
Therefore, the cutoff only applies to the wave vector, and we
integrate over modes of all frequencies.

The W term provides a correction to the standard φ4-model
which is nonlocal in space time. In momentum space, this is
manifested by the dependence on transferred wave vector and
frequency of the effective interaction

Ueff (q, ω) = U0 + W
c2q2

ω2 + c2q2
. (15)

Its naive scaling dimension at the Gaussian fixed point
is the same as that of U0, i.e., D − 4 (D = d + 1 be-
ing the space-time dimension). Hence, the upper critical
space-time dimension is 4, which implies that we can per-
form a controlled expansion in ε = 4 − D (or, equivalently,

ε = 3 − d). However, the nonanalytical nature of Ueff (q, ω)
at (ω, q) = 0 (which exhibits a dependence on angle in the
{|q|, ω}-plane) forces a profound modification of the standard
analysis [23–25], as detailed in the next section.

III. RENORMALIZATION GROUP PROCEDURE

A. Spherical harmonics decomposition

In Euclidean space time, the interaction in Eq. (15) decays
as a power-law and depends on the angle relative to the time-
like direction. This angular dependence exhibits a quadrupolar
structure, parametrized by

sin2 θ = v2q2

ω2 + v2
q2, (16)

where v is the spin-wave velocity. To set the stage for a
systematic RG analysis, we therefore perform a multipole
expansion of Ueff in terms of spherical harmonics in D dimen-
sions:

Ueff (q, ω) =
∞∑

n=0

unYn(θ ). (17)

Recalling that we focus on D = 4 − ε where the interaction
parameters un near criticality are already of linear order in
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ε, we use here the four-dimensional spherical harmonics Yn

(see Appendix A for details). Note that although the spin-wave
velocity v flows under RG, the Gaussian part of the action [the
quadradic part of Eq. (13)] is Lorentz invariant with respect to
this velocity at every stage of the RG; hence it is natural to use
the spherical harmonics expansion in terms of sin θ as defined
in Eq. (16). This approach is similar in spirit to the use of
spherical harmonics in Ref. [11]. However, in our analysis the
anisotropy is in the space vs time directions, arising from the
Lorentz symmetry breaking.

When we perform the RG, we will find that higher even-
order multipoles are generated at every step, which have the
same naive scaling dimension. The coefficients un in Eq. (17)
will therefore be considered as an infinite set of running pa-
rameters. Their bare values are given by

u0 =
√

2π

(
U0 + c(c + 2v)

(c + v)2
W

)
(18)

for n = 0 and

un = −2
√

2cπcv2(c − v)n−1

(c + v)n+2
W (19)

for n � 1. They exhibit a systematic suppression by a velocity
mismatch factor for increasing n:

un+1

un
= c − v

c + v
. (20)

Note that for c > v, W < 0 and U0 > 0 imply that un > 0 for
all n. For c < v, un of even and odd n have alternating signs
for n � 1; however, the leading phonon-induced coupling u1

is always positive, as is u0.

B. Derivation of RG equations

We now perform an RG scaling transformation following
the ε expansion approach [23–25]. To this end we define a
momentum shell

�

b
< |k| < �, (21)

which corresponds to the high wave vector (short wave-
length) fluctuations. We will denote momenta in this shell
by k>, and momenta |k| < �/b by k<. We then divide the
integrals over the fields φα (k, ω) into fast and slow modes, φ>

and φ<, corresponding to modes with momenta k ∈ k> and
k ∈ k<, respectively. Integration over the fast modes yields
an effective action Seff [φ<] for the slow modes, given by

e−Seff [φ<] =
∫

Dφ>e−S[φ>,φ<], (22)

where Dφ> = ∏
ω

∏
k∈k>

∏N
α=1 dφα (k, ω). The interaction

Ueff in Eq. (15) gives rise to the Feynman rules shown in
Fig. 2(a). Let us first consider the renormalization of the terms
in the action that are quadratic in φ<. These come from the
Feynman diagrams shown in Figs. 2(b) and 2(c), which we
denote by I1 and I2. They are given by

I1 = 2
∫

ω,k>

Ueff (0, 0)

r + ω2 + v2k2
, (23)

I2(k, ω) = 4
1

N

∫
ω′,k′>

Ueff (k + k′, ω + ω′)
r + ω′2 + v2k′2 . (24)

FIG. 2. (a) Feynman diagram corresponding to the interaction
term in the action [Eq. (13)]. Here the wiggly lines represent the
effective interaction 1

N Ueff (q, ω) [Eq. (15) in the text]. The indices
α, β correspond to different flavors of the O(N )-field propagators.
(b), (c) Feynman diagrams responsible for the renormalization of the
terms quadratic in φ in the action [Eq. (13)]. There are two possible
diagrams, denoted I1 (b) and I2 (c). Note that I2 depends on the
transferred momentum and frequency (q, ω).

Note that I1 [Eq. (23)] involves the interaction exactly at
(q = 0, ω = 0). In our case, this is ill-defined, since Ueff (k, ω)
depends on the direction in which the origin is approached.
Hence, we replace it by the spherical average over all direc-
tions,

∫
4π sin2(θ )dθ Ueff (θ ) = 2π2u0.

To leading order in the ε expansion, we can set d = 3 while
evaluating I1 and I2 and we find

I1 = u0

4π2v3
(2v2�2 − r)

(
1 − 1

b

)
, (25)

I2(k, ω) = 1

2π2v3N

[
(2v2�2 − r)u0 + 2v2�2

∞∑
n=1

un

+1

3
(3ω2 − v2k2)u1

](
1 − 1

b

)
,

≡ I2(0, 0) + A(3ω2 − v2k2)

where A ≡ 1

N

u1

6π2v3

(
1 − 1

b

)
. (26)

Note that I2 is momentum and frequency dependent. The
expression in Eq. (26) was obtained by evaluating the integral
in Eq. (24) and then Taylor expanding it to order k2 and ω2.
Higher- order terms were discarded, since they are irrelevant
in the RG sense. Note that, despite the nonlocal nature of the
phonon-mediated interaction, the shell integration of short-
scale fluctuations leaves the kernel I2 local, i.e., analytic in
small k and ω, thus justifying the use of a Taylor series. In the
leading order in ε, the frequency and momentum dependence

FIG. 3. Feynman diagrams arising from the renormalization of
the quartic interaction terms in the action [Eq. (13)]. Panels (a), (b),
and (c) depict the three possible diagrams, denoted D1, D2, and D3

respectively. While evaluating them, we set all external momenta to
zero.
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in Eq. (26) is only associated with the interaction u1. This term
leads to renormalization of the spin-wave velocity v.

Next, we will consider the renormalization of the quar-
tic interaction. This comes from three diagrams, shown in
Fig. 3, which we denote by D1, D2, and D3. Once again

accounting for the leading order in ε, we calculate D{1,2,3}
in three dimensions (d = 3). Additionally, we set all external
momenta to zero since any momentum dependence in Di’s
will be irrelevant, by power counting. Using these, we find
(see Appendix B for details)

D1 = 1

π2v3N

∞∑
l,m=0

ul um

l+m∑
n=|l−m|

Yn(θ )

(
1 − 1

b

)
, (27)

D2 = 4

π2v3N2
u0

∞∑
n=0

unYn(θ )

(
1 − 1

b

)
, (28)

D3 = 4

π2v3N2

∞∑
n=0

u2
n

(
1 − 1

b

)
. (29)

Note that while evaluating the diagrams, we have used the fact that the product of two spherical harmonics is also a linear
combination of spherical harmonics with the coefficients listed in Appendix A. Also note that while the result for D3 contains
only the zeroth harmonics Y0 [Eq. (29)], the diagrams D1 and D2 generate an infinite number of spherical harmonics [Eqs. (27)
and (28)]. However, since the higher harmonics are more rapidly oscillating, we work with up to the second harmonics Y2,
truncating for now the higher harmonics. Notably, we will show below that to leading order in the ε expansion, corrections
arising from these higher harmonics do not alter the critical behavior.

Now incorporating the contributions from the one-loop diagrams, we can write the partition function as

Z = N
∫

Dφ< exp

[
−1

2

∫
ω,k<

{r + ω2 + v2k2 + 2(I1 + I2(0, 0) + A(3ω2 − v2k2))}φ<α (k, ω)φ<α (−k,−ω)

− 1

N

∫
ω,q<

∫
ω1,k<

1

∫
ω2,k<

2

(
Ueff (q, ω) − N

2
(D1 + D2 + D3)

)
φ<α (k1, ω1)φ<α (−k1 − q,−ω1 − ω)φ<β

× (k2 + q, ω2 + ω)φ<β (−k2,−ω2)

]
. (30)

We then rescale (k, ω) according to

k = b−1k′ ω = b−1ω′ (31)

which ensures that the upper bound of k is restored back to �. We subsequently rescale the fields φ< according to

φ = b(d+3)/2(1 + 6A)−
1
2 φ′ (32)

in order to keep the coefficient of ω2 in Eq. (30) the same as in the original theory. Note that the factor A is proportional to u1

[Eq. (26)], which governs the correction to the scaling dimension arising from the spin-phonon coupling. We will discuss this in
detail in the Results section.

Using these rescalings in Eq. (30), and setting b = (1 + dl ), we obtain the RG equations to the leading order in ε as given in
Appendix C:

dr

dl
= 2r + 1

2

(
1 + 2

N

)
(2v2�2 − r)w0 + 2v2�2 − r

N
w1 + 2v2�2

N
w2, (33)

dv

dl
= − 1

N

2vw1

3
, (34)

dw0

dl
= εw0 − 1

2

(
1 + 8

N

)
w2

0 − 1

2

(
1 + 8

3N

)
w2

1 − 1

2

(
1 + 4

N

)
w2

2, (35)

dw1

dl
= εw1 −

(
1 + 2

N

)
w0w1 − 1

2

(
1 − 2

3N

)
w2

1 − 1

2
w2

2 −
(

1 − 1

N

)
w1w2, (36)

dw2

dl
= εw2 −

(
1 + 2

N

)
w0w2 − 1

2

(
1 + 2

3N

)
w2

1 − 1

2
w2

2 −
(

1 − 1

3N

)
w1w2. (37)

Here, the new variables wn are directly related to the interaction parameters un via a velocity-dependent rescaling:

wn ≡ un

π2v3
, (38)

which simplifies the form of the final equations.
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Note that the equations for the w’s do not depend on
the other two parameters, r and v, and hence close among
themselves. Therefore, we can separately study the RG equa-
tions for the w’s, but keep in mind that at every RG stage, the
solutions for the w’s impact the flow of r and v. In the above
RG equations, we truncated by eliminating the dependence
on w3,w4 and so on [Eqs. (33)–(37)]. However, one can show
that for all n � 1,

dwn

dl
= εwn −

(
1 + 2

N

)
w0wn + . . . , (39)

where . . . stands for terms that are bilinear in wl with
l � 1. Later we will argue that the truncation will not af-
fect our conclusions and we will discuss the relevance of
Eq. (39).

Recalling that the bare value of w1 is positive (since W <

0), Eq. (34) implies that the spin-wave velocity is initially
renormalized downwards. In practice, we find that w1 does
not change sign, hence this trend is maintained throughout
the flow, and is only stopped in cases where w1 flows to
zero.

IV. RESULTS

When W = 0, as is the case in the absence of phonons, all
harmonics, except for w0, vanish and the RG equations re-
duce to those of the standard O(N) model. The underlying
relativistic invariance then prevents wn with n � 1 from being
generated in the RG flow. Therefore the Wilson-Fisher (WF)
fixed point

v∗ = vin (initial value), (40)

r∗ = −
(

N + 2

N + 8

)
v2

in�
2ε, (41)

w∗
0 =

(
2N

N + 8

)
ε, (42)

w∗
n = 0 for n � 1, (43)

remains a fixed point of Eqs. (33)–(37), although its stability
can be affected by the phonon coupling. We note that the
renormalized velocity, v∗, is not universal at the fixed point.

In order to determine whether the WF fixed point is stable
to the addition of spin-phonon interactions, we linearize the
RG equations around the fixed point, and obtain (considering
up to w2)

d

dl

⎡
⎢⎢⎢⎣

δr
δv

δw0

δw1

δw2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 − N+2
N+8ε 4

(
N+2
N+8

)
v∗�2ε

(
1 + 2

N

)(
1 + N+2

2(N+8)ε
)
v∗2�2 2

N

(
1 + N+2

2(N+8)ε
)
v∗2�2 2v∗2�2

N

0 0 0 − 2v∗
3N 0

0 0 −ε 0 0
0 0 0 4−N

N+8ε 0

0 0 0 0 4−N
N+8ε

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

δr
δv

δw0

δw1

δw2

⎤
⎥⎥⎥⎦.

(44)

Since the matrix is upper-triangular, the eigenvalues are given
by the diagonal elements. In fact, based on Eq. (39) one
can see that the upper-triangular structure of the matrix is
preserved when all wns are kept and no truncation is done.
Then, the diagonal element corresponding to δwn takes the
value

4 − N

N + 8
ε (45)

for all n � 1. This demonstrates that N = 4 is special, and that
the WF fixed point is stable for N > 4 and unstable for N < 4.
We will next consider the cases N > 4 and N < 4 separately.

A. Case N > 4

For N > 4, the WF fixed point is stable. Since δwn decays
exponentially with l for all n � 1, wn is marginally irrelevant
and the WF fixed point is robust against small spin-phonon
coupling.

We furthermore argue that the critical exponents are iden-
tical to the standard O(N) model. To see this, note that the
matrix in Eq. (44) is upper triangular, and therefore its eigen-
values are given by its diagonals. In particular, the scaling
dimension of r, yr = 2 − N+2

N+8ε, yields the known value for the
correlation length exponent ν. Then, the remaining exponents

(β, γ , etc.), can be deduced from the scaling of the field φ

[Eq. (32)]. This differs from the WF by a factor dependent
on A which in turn is proportional to w1 [Eq. (26)]. Since
w∗

1 = 0, this reduces to the standard scaling of the O(N)
model.

B. Case N < 4

For N < 4, wn is relevant and hence starting from a small
initial positive value wnin it grows rapidly for all n � 1. Note
that all wn have a similar behavior, however in the following
discussion we will mainly focus on w1 since it corresponds
to the leading spin-phonon coupling. In order to search for a
fixed point that describes the new critical point, we solve the
RG equations and find that one of the fixed points is the WF
one as described in Eqs. (40)–(43). We find that, regardless
of the initial values of the parameters, the RG equations be-
come unstable, indicating a first-order transition. The source
of this instability is that, even for arbitrarily small initial value
w1in, w1 eventually grows rapidly and drives w0 to become
negative – see the last two terms in Eq. (35). Once w0 is
negative, the φ4 theory collapses.

Nevertheless, for w1in sufficiently close to w∗
1 = 0, the WF

fixed point still plays an important role. Then, w1 remains
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FIG. 4. The flow of w0, w1, and w2 are shown as a function of
RG time l , along with the Wilson-Fisher value of w0, i.e., w∗

0 for
N = 3. Starting from an initial value of w0in = 0.1, it first decays
exponentially and reaches a constant value. w1 on the other hand
starts from a small positive value (w1in = 0.01), then grows fast and
eventually pulls w0 to a negative value. w2 also starts from the same
initial value w2in = 0.01, but it turns to a negative value and diverges
near the instability. w0 spends a long time at its Wilson-Fisher value
showing a plateau. We define a characteristic scale l∗ where the
above described breakdown occurs (see text).

small for a long RG time l , during which its effect on other
parameters can be neglected. As a result, w0 flows towards
its WF value w∗

0 , and stays there for a long time, as shown
in Fig. 4. Eventually, when w1 grows sufficiently, it pulls w0

to negative values, at which point the RG equations become
unstable.

The fact that the system spends a long time near the fixed
point implies that the transition is weakly first-order. This fol-
lows since the value l∗ of the RG parameter l at the instability
is large, and therefore the characteristic scale ξ ∗ ∼ el∗ at the
instability is also large. The picture that then emerges is that,
as one approaches the phase transition between ordered and
disordered phases, the correlation length grows following the
standard WF exponent. However, close enough to the tran-
sition, the divergence in the correlation length is cut off by
the scale ξ ∗. Thus, ξ ∗ provides the characteristic correlation
length at the first-order transition.

Here we provide an estimate for the correlation length
ξ ∗. We note that the instability occurs when w1 grows and
becomes roughly equal to w∗

0 . We assume that starting from
a small initial value w1in, w1 grows exponentially (as in its
linear order)

w1 = w1ine
(4−N )
(N+8) εl , (46)

until the system reaches this instability. Using this, we obtain
the estimated correlation length

ξ ∗ = ael∗ ≈ a

[
2N

N + 8

ε

w1in

] (N+8)
(4−N )

1
ε

, (47)

where a is the lattice constant. We have checked that for small
ε and small w1in, this analytic estimate of the correlation
length is consistent with the length scale obtained from nu-
merics, at which the value of v sharply falls to zero, and w0

and w1 diverge.
The weakly first-order transition in the presence of spin-

phonon coupling can be characterized by this length-scale ξ ∗.
For system sizes up to this length scale the system exhibits
correlations and scaling consistent with the Wilson-Fisher
second-order transition. Beyond that scale, a weakly first-
order transition is manifested. From Eq. (47), we see that
ξ ∗ grows exponentially when either ε or the coupling to
phonons become smaller. Note that the picture remains qual-
itatively same when including higher harmonics in the RG
equations.

Although the quantum critical point is strictly defined at
zero temperature, in any physical realization there is a finite
temperature which is related to the finite size in the Euclidean
time direction. Therefore, there is a temperature scale T ∗
associated with this length scale, given by T ∗ ∼ h̄v

kBξ∗ . Above
this temperature, the quantum RG flow is cut off by the finite
size in the time direction while w1 is still small and w0 is still
positive. Then, the system is described by a thermal transition
in d = 3 − ε space dimensions, which for small enough w1

may result in a second-order transition [10]. T ∗ is therefore
the temperature of the tricritical point separating second-order
and weakly first-order transitions [see Fig. 1(b)].

Finally, we consider the situation where the number of
flavors is exactly 4 (N = 4). In this marginal case, we nu-
merically find that the transition is always weakly first-order,
no matter how weak w1in is. This is consistent with the
observation that, even for N > 4, the transition becomes first-
order whenever w1in exceeds some N-dependent threshold
value w1thr (N ). We find that, as N approaches four from
above, w1thr (N ) approaches zero, indicating that at N = 4
the second-order transition is first-order even for infinitesimal
phonon coupling.

C. Other fixed points

We now consider the other possible fixed points, which are
different from the Wilson-Fisher one. We find that additional
fixed points do exist, but they are unstable and therefore do
not play an important role in the RG, as explained below.

We first consider two RG equations Eqs. (35) and (36)
in the absence of w2. We can analytically solve these two
equations to obtain the fixed points:

w∗
0

(±) = N (196 + 156N + 45N2 ± √
5(2 − 3N )

√
9N2 − 12N − 76)ε

416 + 436N + 300N2 + 45N3
(48)

w∗
1

(±) = 2
ε − (

1 + 2
N

)
w∗

0
(±)(

1 − 2
3N

) . (49)
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Note that these two fixed points are real when the number of
flavors is larger than a critical number obtained by solving
the equation 9Ñ2

c − 12Ñc − 76 = 0, i.e., N > Ñc ≈ 3.64. We
numerically find that the fixed point FP(+) is unstable in both
directions for all N > Ñc. On the other hand, the fixed point
FP(−) starts from a positive value of w∗

1 at N = Ñc, coincides
with the WF fixed point at N = 4 (with w∗

1 = 0), and turns
negative thereafter. We also notice that this fixed point is
stable in both directions in the {w0,w1} plane in the range
Ñc < N < 4.

These results relate to the truncated model with two inter-
action parameters (w0 and w1), but adding extra parameters
could give rise to unstable directions. To test this, we add
the higher-order harmonic w2, and numerically find the new
fixed points [to Eqs. (35)–(37)] and study their stability. We
still find two fixed points. However, with the addition of the
third parameter w2, the value of Ñc decreases to 2.48, and
an unstable direction appears in the FP(−) fixed point. We
find no reason to expect that the conclusion might change by
adding higher-order harmonics, as this increases the potential
for more unstable directions. We therefore conclude that there
is no stable fixed point in the system apart from the WF fixed
point for N > 4.

D. Cubic anisotropy

One can also consider various generalizations to our anal-
ysis. For instance, consider the effect of adding a cubic
anisotropy term to the action [26–29],

Scubic = λ

N

∫
dτ

∑
i

∑
α

(
φα

i

)4
. (50)

This term breaks the O(N) symmetry to a discrete N-
dimensional hypercubic symmetry. One possible reason for
the appearance of this cubic anisotropy term might be crystal
field effects in magnets.

In Appendix D we repeat the RG analysis in this case.
We find that adding a cubic-anisotropy term in the action
changes the nature of the second-order transition for N > 4
from Wilson-Fisher to the standard (phononless) cubic univer-
sality class [26]. By contrast, for N � 4, the transition remains
weakly first order, due to the coupling to phonons.

V. SUMMARY AND OUTLOOK

In summary, using renormalization group analysis in 4 − ε

dimensions, we have studied the quantum phase transition
in the presence of acoustic phonons. We have shown that
when the number of flavors of the underlying O(N) model is
larger than a critical number Nc = 4, the transition remains a
standard second-order one. On the other hand when N < Nc,
the transition becomes weakly first order, characterized by a
large length scale ξ ∗ or, equivalently, by a small temperature
scale below which the transition changes from second-order
to first-order. We are currently in the process of verifying
these analytical predictions numerically, using Monte Carlo
simulations of O(N) models coupled to phonons.

In principle, anharmonic corrections to the phonons arising
from their coupling to the O(N) fields could lead to structural
instabilities of the lattice. Throughout our analysis, we did

not consider this possibility. This is justified provided that
the phonons are stiff enough and the coupling to phonons is
not too strong. However, it would be interesting to understand
situations where these assumptions may break down, e.g., for
systems near structural transitions [30,31] where the phonons
are softened and susceptible to nonlinear corrections arising
from coupling to the O(N) fluctuations. Indeed, when the cou-
pling to the phonons is strong enough, new phases involving
structural reorganization of the lattice can occur. For example,
in Ref. [32] this was demonstrated for an Ising model strongly
coupled to optical phonons. It would be interesting to under-
stand how this feedback can affect critical properties. Finally,
even more dramatic effects of the coupling to the lattice can
occur near melting transitions, where topological defects of
the lattice can have an important interplay with the magnetic
degrees of freedom [33,34].
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APPENDIX A: SPHERICAL HARMONICS
IN (3+1) DIMENSIONS

We introduce the even-order spherical harmonics in four
dimensions (D = d + 1 = 4), the first few of which are

Y0(θ ) = 1,

Y1(θ ) = −4 sin2 θ + 3,

Y2(θ ) = 16 sin4 θ − 20 sin2 θ + 5,

Y3(θ ) = −64 sin6 θ + 112 sin4 θ − 56 sin2 θ + 7,

... (A1)

where θ is the angle relative to the vertical ω axis in the
(v|q|, ω) plane,

sin2 θ = v2q2

ω2 + v2
q2. (A2)

These functions are found constructively: we choose Y0(θ ) =
1. Then, for n > 1, Yn is an even polynomial in sin θ of order
2n, whose coefficients are fixed by orthonormalizing it with
all Yl of lower order,

(Yl ,Yn) = δln. (A3)

Here, the inner product of two real functions f (θ ) and g(θ ) is
defined by

( f , g) ≡ 2

π

∫ π

0
sin2 θ dθ f (θ ) g(θ ). (A4)
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Note that our integration measure

d� = 2

π
sin2 θ dθ (A5)

differs from the standard integration measure for angular in-
tegrals in four dimensions, 4π sin2 θ , by an overall factor of
2π2. This choice is convenient as it simplifies many of the
expressions that follow.

The functions Yn depend only on θ , the angle from the
timelike axis. In particular, they are SO(3)space invariant, i.e.,
they do not depend on the orientation in the three-dimensional
(3D), spacelike, directions. Thus, these functions are the four-
dimensional analogs of the azimutally symmetric (m = 0),
even order, spherical harmonics in 3D, Y�m, with � = 2n and
m = 0. There are also odd harmonics, involving odd powers
of sin θ , and harmonics that are not SO(3)space-invariant. How-
ever, since the bare action is even under parity, and since it is
SOspace invariant, these harmonics are not generated in the RG.

Using trigonometric identities, the functions above can be
rewritten in a simple form:

Y0(θ ) = 1,

Y1(θ ) = 1 + 2 cos(2θ ),

Y2(θ ) = 1 + 2 cos(2θ ) + 2 cos(4θ ),

...

Yn(θ ) = 1 + 2 cos(2θ ) + ... + 2 cos(2nθ ). (A6)

In this form, and writing the integration measure as d� =
1
π

(1 − cos(2θ )), it is straightforward to show that the func-
tions are an orthonormal set.

These functions can be used to expand any even,
SO(3)space-invariant, function. Note that the product of
two spherical harmonics Yl (θ )Ym(θ ) is itself another even,
SO(3)space-symmetric function. Therefore, it can be expanded
in terms of Yn(θ )s,

Yl (θ )Ym(θ ) =
∞∑

n=0

an;lmYn(θ ). (A7)

One can show that the coefficients an;lm are given by

an;lm =
{

1 for |l − m| � n � l + m
0 otherwise. (A8)

We now use these results to derive a number of relations
which will be useful when computing Feynman diagrams.
Expanding the interaction as a linear combination of the
spherical harmonics,

Ueff (q, ω) =
∞∑

n=0

unYn(θ ), (A9)

we obtain ∫
d�Ueff (q, ω) = u0, (A10)

∫
d� (Ueff (q, ω))2 =

∞∑
n=0

u2
n, (A11)

FIG. 5. (a) Cylindrical shell. We use an angle-dependent rescal-
ing transformation, pμ(�) = g(�)qμ, and choose the rescaling
function g(�) to deform the cylindrical shell to a spherical shell,
shown in (b). Since �q1

q1
= �q2

q2
, the resulting spherical shell has

constant thickness.

and

(Ueff (q, ω))2 =
∞∑

l,m=0

ulumYl (θ )Ym(θ )

=
∞∑

l,m=0

ulum

l+m∑
n=|l−m|

Yn(θ ). (A12)

We will use these results while evaluating the Feynman dia-
grams Di’s.

APPENDIX B: EVALUATION OF THE FEYNMAN
DIAGRAMS ARISING FROM THE RENORMALIZATION

OF THE INTERACTION

Renormalization of the quartic interaction term in the ac-
tion [Eq. (13)] comes from the diagrams D1, D2 and D3 shown
in Fig. 3. Here we provide the integrals involved in those
diagrams:

D1(k, ω) = 8

N
(Ueff (k, ω))2

∫
ω′,k′>

1

(r + ω′2 + v2k′2)2
,

(B1)

D2(k, ω) = 32

N2
Ueff (k, ω)

∫
ω′,k′>

Ueff (k′, ω′)
(r + ω′2 + v2k′2)2

, (B2)

D3 = 32

N2

∫
ω′,k′>

Ueff (k′, ω′)2

(r + ω′2 + v2k′2)2
. (B3)

In order to evaluate these integrals we set r = 0, since it
always contributes corrections ∼O( r

�2 )  1. We now intro-
duce the Euclidean four-vector qμ ≡ (ω′, vk′), and note that
Ueff (qμ) depends on the direction � of qμ, but not on its
magnitude, q. Then, one can see that all of the above integrals
take the following form:∫

cylinder

d4q f (�)

q4
= 2π2

∫
cylinder

d� f (�)
∫

dq q3

q4
(B4)

integrated over the cylindrical shell in Fig. 5(a). In particular,
the domain of the q integral depends on �.
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We next introduce a direction-dependent scaling factor,
g(�), and a rescaled variable pμ = g(�)qμ, such that the
cylindrical shell in qμ, Fig. 5(a), is deformed to a spherical
shell in pμ, Fig. 5(b). Note that the thickness of the cylindrical
shell, �q, is proportional to the distance of the shell to the
origin, q, such that if two different directions �1 and �2 are
compared

�q1

q1
= �q2

q2
. (B5)

This implies that the spherical shell in Fig. 5(b) has constant
thickness. Furthermore, since d p

p = g(�)dq
g(�)q = dq

q , the integral
in Eq. (B4) becomes∫

spher.shell
d� f (�)

∫
d p

p
. (B6)

In this form, the domain of integration is spherically symmet-
ric. In particular, the domain of the p integral is independent
of �, and can be evaluated directly

∫ �

�/b

d p

p
= log b ≈ 1 − 1

b
(B7)

where the final result is correct to linear order in b − 1 (which
equals dl). Now, to compute the angular integral

∫
d� f (�),

all the results derived in Appendix A, Eqs. (A10)–(A12),
can be used. Combining these results, we end up with the
final answers for D1,2,3 given in Eqs. (27)–(29) of the main
text.

APPENDIX C: DERIVATION OF THE RG EQUATIONS

In this Appendix, we provide the intermediate steps to obtain the RG equations given in the main text [Eqs. (33)–(37)]. We
apply the rescaling of (k, ω) [Eq. (31)] and the scalar field [Eq. (32)] in Eq. (30). Then, comparing the coefficients of different
parameters with those in Eq. (13), we obtain the following expressions for the renormalized parameters:

r′ = b2

1 + 6A
(r + 2I1 + 2I2(0, 0)), (C1)

v′2 =
(

1 − 2A

1 + 6A

)
v2, (C2)

u′
0 = b3−d

(1 + 6A)2

[
u0 − u1

v

dv

dl
dl − 1

2π2v3

{(
1 + 8

N

)
u2

0 +
(

1 + 4

N

)(
u2

1 + u2
2

)}(
1 − 1

b

)]
, (C3)

u′
1 = b3−d

(1 + 6A)2

[
u1 − u1 + 3u2

2v

dv

dl
dl − 1

2π2v3

{(
2 + 4

N

)
u0u1 + (u1 + u2)2

}(
1 − 1

b

)]
, (C4)

u′
2 = b3−d

(1 + 6A)2

[
u2 + u1 − u2

2v

dv

dl
dl − 1

2π2v3

{(
2 + 4

N

)
u0u2 + (u1 + u2)2

}(
1 − 1

b

)]
. (C5)

Note that the above renormalized parameters u′
n also include terms proportional to dv

dl . These arise due to the evolution of the
harmonics Yn as the spin-wave velocity changes with the RG flow, which is of the form[ ∞∑

n=0

unYn

]
l+dl

=
[ ∞∑

n=0

unYn

]
l

+
[ ∞∑

n=0

un
dYn

dv

]
l

dv

dl
dl, (C6)

and we use the identities dY0(θ )
dv

= 0 and dYn (θ )
dv

= 1
2v

[−(n + 1)Yn−1(θ ) − Yn(θ ) + nYn+1(θ )] (valid for n � 1) to evaluate the
second term. Finally, setting b = (1 + dl ) and using the functional forms of A, I1 and I2(0, 0) as given in Eqs. (25) and (26), lead
to the following RG equations:

dr

dl
= 2r +

(
1 + 2

N

)
(2v2�2 − r)u0

2π2v3
+ (2v2�2 − r)u1

Nπ2v3
+ 2�2

Nπ2v
u2, (C7)

dv

dl
= − 1

N

2u1

3π2

1

v2
, (C8)

du0

dl
= εu0 − 1

2π2v3

(
1 + 8

N

)
u2

0 − 1

N

2

π2v3
u0u1 − 1

2π2v3

(
1 + 8

3N

)
u2

1 − 1

2π2v3

(
1 + 4

N

)
u2

2, (C9)

du1

dl
= εu1 − 1

π2v3

(
1 + 2

N

)
u0u1 − 1

2π2v3

(
1 + 10

3N

)
u2

1 − 1

2π2v3
u2

2 − 1

π2v3

(
1 − 1

N

)
u1u2, (C10)

du2

dl
= εu2 − 1

π2v3

(
1 + 2

N

)
u0u2 − 1

2π2v3

(
1 + 2

3N

)
u2

1 − 1

2π2v3
u2

2 − 1

π2v3

(
1 + 5

3N

)
u1u2. (C11)

Now we define wn = un
π2v3 , which implies dwn

dl = 1
N

2u1un
π4v6 + 1

π2v3
dun
dl , and using these the above equations simplify to

Eqs. (33)–(37) in the main text.
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APPENDIX D: INCLUSION OF CUBIC ANISOTROPY

In this Appendix we discuss the effect of a single-site
term in the action [Eq. (3)] of the form λ

N

∫
dτ

∑
i

∑
α (φα

i )4,
which breaks the O(N) symmetry of the Hamiltonian [26] to
a “cubic” symmetry. The presence of such a term in the action
leads to additional contributions to the two-loop correction
terms [Eqs. (27) and (28)] as follows:

D(λ)
1 = (1 − 1/b)

π2v3N2

[
2λ

∞∑
n=0

unYn(θ ) + λ2δαβ

]
, (D1)

D(λ)
2 = 4(1 − 1/b)

π2v3N2

[
λ

∞∑
n=0

unYn(θ ) + (λu0 + λ2)δαβ

]
, (D2)

D(λ)
3 = 4(1 − 1/b)

π2v3N2
[2λu0 + λ2]δαβ. (D3)

In these expressions, δαβ indicates contributions where all
external lines in Fig. 3 have the same flavor. These terms
renormalize λ.

Including these corrections, the RG equations [Eqs. (35)–
(37)] are modified to the following set of equations, where we
now have an additional equation for λ:

dw0

dl
= εw0 − 1

2

(
1 + 8

N

)
w2

0 − 1

2

(
1 + 8

3N

)
w2

1

− 1

2

(
1 + 4

N

)
w2

2 − 3

N
w0λ, (D4)

dw1

dl
= εw1 −

(
1 + 2

N

)
w0w1 − 1

2

(
1 − 2

3N

)
w2

1 − 1

2
w2

2

−
(

1 − 1

N

)
w1w2 − 3

N
w1λ, (D5)

dw2

dl
= εw2 −

(
1 + 2

N

)
w0w2 − 1

2

(
1 + 2

3N

)
w2

1

− 1

2
w2

2 −
(

1 − 1

3N

)
w1w2 − 3

N
w2λ, (D6)

dλ

dl
= ελ − 6

N
w0λ + 2

N
w1λ − 9

2N
λ2. (D7)

Note that in the above equations, λ has been rescaled to
include the 1/(π2v3) factor. By setting the r.h.s of the above
equations to zero we find several fixed points which we will
discuss below:

(1) Ising fixed point: The Ising fixed point is given by λ∗ =
2N
9 ε and w∗

n = 0 for all n � 0. This fixed point is unstable for
all N > 1.

(2) Wilson-Fisher fixed point: The Wilson-Fisher fixed
point as discussed in Eqs. (42) and (43) still remains a fixed
point of the system with λ∗ =. For N > 4 this fixed point is
unstable to any finite λ, as in the phonon-less case [26].

(3) Cubic fixed point: There is a new cubic fixed point,
given by w∗

0 = 2ε
3 , λ∗ = 2(N−4)ε

3 , and w∗
n = 0 for all n � 1. By

performing a stability analysis near the fixed point, we find
that this fixed point is stable for all N > 4, again as in the
phononless case [26].

(4) Other unstable fixed points: In addition to the fixed
points (with λ∗ = 0) discussed in Sec. IV C, we find two new
fixed points (with λ∗ �= 0). However, we find numerically that
they are unstable.

In summary, adding a cubic-anisotropy term in the action
changes the nature of the second-order transition for N > 4
from Wilson-Fisher to the cubic universality class. By con-
trast, for N � 4, the transition remains weakly first order, due
to the coupling to phonons.
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