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To realize novel topological phases and to pursue potential applications in low-energy consumption spintron-
ics, the study of magnetic topological materials is of great interest. Starting from the theory of nonmagnetic
topological quantum chemistry [Bradlyn et al., Nature 547, 298 (2017)], we have obtained irreducible
(co)representations and compatibility relations (CRs) in momentum space, and we constructed a complete
list of magnetic band (co)representations (MBRs) in real space for other magnetic space groups (MSGs)
with antiunitary symmetries (i.e.,type-III and type-IV MSGs). The results are consistent with the magnetic
topological quantum chemistry [Elcoro et al., Nat. Commun. 12, 5965 (2021)]. Using the CRs and MBRs,
we reproduce the symmetry-based classifications for MSGs, and we obtain a set of Fu-Kane-like formulas of
symmetry indicators (SIs) in both spinless (bosonic) and spinful (fermionic) systems, which are implemented in
an automatic code—TOPMAT—to diagnose topological magnetic materials. The magnetic topological materials,
whose occupied states cannot be decomposed into a sum of MBRs, are consistent with nonzero SIs. Lastly,
using our online code, we have performed spin-polarized calculations for magnetic compounds in the materials
database, and we find many magnetic topological candidates.
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I. INTRODUCTION

In the past few decades, the topological phases of mat-
ter have attracted a great deal of interest in the field of
condensed-matter physics. New phenomena such as the inte-
ger and fractional quantum Hall effects [1–3], time-reversal
invariant two- and three-dimensional topological insulators
(TIs) [4–8], topological crystalline insulators (TCIs) [9–14],
and topological semimetals [15–20] have been discovered.
The topologically nontrivial materials exhibit robust transport
properties such as the quantized Hall and magnetoelectric
effects, surface states, and Fermi arcs. Theoretical works
reveal that the topology of noninteracting electrons in three-
dimensional (3D) crystals relies on the structure of Bloch
states as a function of momentum. Most recently, the sym-
metry eigenvalues or irreducible representations (irreps) of
all 230 space groups were used to characterize topological
materials through the theories of symmetry-based indica-
tors [21–24] and topological quantum chemistry (TQC)
[25]. As a result, high-throughput screening for topologi-
cal materials has been performed in nonmagnetic materials
[26–28].

Previous studies [21,23,25,29] have concentrated on non-
magnetic space groups, which are known as 230 type-II
magnetic space groups (MSGs) with time reversal (T ). In fact,
there are 1651 MSGs, each of which generally contains a uni-
tary part and an antiunitary part (M ≡ G + AG, where M is a
MSG, G is its unitary part, and A is an antiunitary symmetry).
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These MSGs can also be categorized into four classes: 230
ordinary crystallographic space groups without any antiuni-
tary symmetry (type I with A = ∅), 230 type-II (with A = T ),
674 type-III, and 517 type-IV groups (with A = T R). In the
type-IV group, R is a pure translation, and other cases belong
to the type-III group. In the nonmagnetic TQC work, the irreps
and compatibility relations (CRs) in momentum space and
the (elementary) band representations (BRs) are enumerated
for type-I and type-II MSGs. To extend the TQC theory to
all MSGs, the enumerations of irreducible corepresentations
(coirreps), CRs and MBRs, for the type-III and type-IV MSGs
are needed. Even though the symmetry-based classifications
of all MSGs were finished in Ref. [30], they do not give the
physical meaning of the symmetry indicators (SIs). Recently,
the authors of Refs. [31,32] developed magnetic topological
quantum chemistry (MTQC) and obtained physically mean-
ingful SIs for MSGs. They released the full set of MTQC,
including the corepresentations, their compatibility relations,
and the magnetic band corepresentations accordingly [32].
On the other hand, the mappings from SIs to topological
invariants in MSGs have also been investigated in Refs.
[33–35].

In this work, starting from the CRs and BRs of the
nonmagnetic TQC, we have reconstructed MBRs and the Fu-
Kane-like formulas of SIs for MSGs. Although they were
obtained in the MTQC during the long preparation of this
work, it is important to have independent works to generate
them and apply them in the DFT calculations due to the
complexity of the problem. Therefore, we have developed an
automatic code—TOPMAT [36]—to diagnose magnetic topo-
logical materials, and we performed a theoretical search for
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topological magnetic materials. In Sec. II, we review non-
magnetic TQC theory in type-I (and type-II with T ) MSGs,
and then we derive coirreps, CRs, and MBRs of type-
III and type-IV MSGs. In Sec. III, we reproduce the
symmetry-based classifications for MSGs, and we obtain the
Fu-Kane-like formulas of SIs by Smith decomposition. An
online code—TOPMAT—is developed to compute them for
any (non)magnetic material with the input “tqc.data” (from
IRVSP) [37]. Finally, in Sec. IV, based on spin-polarized den-
sity functional theory (DFT) calculations, we have performed
a theoretical search for topological magnetic compounds in
the materials database by using our homemade codes. Some
good candidates are presented.

II. MTQC IN 1651 MSGs

In topologically trivial band structures, the Wannier func-
tions are exponentially localized and respect the crystal
symmetries. A set of bands arising from localized, symmetric
Wannier functions form a representation of the crystal sym-
metry group, and they are referred to as BR in TQC theory.
TQC theory contains two concrete aspects. (i) The CRs: based
on them, one can get the information of irreps at any k-points
in the entire Brillouin zone (BZ) from those at maximal high-
symmetry k-points (HSKPs) only, which makes it possible for
the high-throughput screening for topological materials. (ii)
A full list of (elementary) BRs: they are given by not only the
irreps in momentum space, but also by a specific set of orbitals
(i.e.,ρ@q) in real space. The materials, whose occupied states
cannot be expressed as a sum of BRs, are classified to be
topological. On the other hand, these BRs also indicate the or-
bital character in real space, i.e.,the average charge center and
site-symmetry character. Therefore, the application of TQC
has allowed for the discovery of both topologically nontrivial
materials with novel phenomena [26–28,31] and topologically
trivial unconventional materials (or obstructed atomic limits)
with interesting properties [38–41].

A. TQC in MSGs without antiunitary symmetry

The CRs in momentum space and the BRs in real
space are obtained and established for 230 type-I MSGs in
Refs. [25,42,43]. We briefly review space-group operators,
assuming the reader is a physicist familiar with group theory.
In 3D crystals, space-group operators, h ≡ {Rh|vh}, consist
of two parts: a rotation part Rh and a translation part vh.
The product of two operations is defined as {Rs|vs}{Rt |vt } =
{RsRt |Rsvt + vs}. The lattice translation {E |L} acting on a
Bloch state φk gives a phase factor of e−ik·L.

1. Compatibility relations in momentum space

We start by identifying the maximal k-vectors in the
first BZ [44,45]. The little group of k is defined as
LG(k) : {h|hk = k + B, h ∈ G} with B integer reciprocal-
lattice translations. In a 3D BZ, all adjacent ki points
connecting to the maximal k-vector k0 satisfy LG(ki ) ⊂
LG(k0). The group theory tells us that the irreducible repre-
sentation of LG(k0) is also a representation of LG(ki ), which
may be reducible or not. These relations are known as the CRs
[42].

2. Band representations in real space

For any position q in the unit cell of a crystal, the set
of symmetry operations s ∈ G that leave q fixed (absolutely,
not up to integer lattice translations L) is called the stabilizer
group, or the site-symmetry group Gq. By definition, a site-
symmetry group is isomorphic to a point group. Thus, we
assume that the local orbits |Wj (�r − q)〉 ( j = 1, . . . , m) are
transformed as a basis of the m-dimensional representation ρ

[i.e.,�ρ (s) is the m × m matrix representation of symmetry
operation s in irrep ρ].

The set of positions {qα = gαq | qα �= qβ + L}; g1 =
{E |000}; α, β = 1, . . . , n are classified by a Wyckoff position
of multiplicity n. Thus, one can find that there are m × n
orbitals |W α

j (�r − qα )〉 ≡ |gαWj (�r − q)〉 in a unit cell. Consid-
ering the duplicates due to the lattice translations, the space
group G is spanned by the set of all the orbitals (ρ@q). In
other words, they form a representation of G in real space.
After Fourier transforms, we can derive the corresponding
matrix representation of symmetry operation h (at any k) as
follows:

c†
k, jα : ak, jα (�r) = 1√

N

∑
L

eik·(qα+L)W α
j (�r − qα − L),

hc†
k, jα = e−i(hk)·Lβα

∑
j′

�
ρ

j′ j (s)c†
Rhk, j′β

with s = g−1
β {E | − Lβα}hgα. (1)

Here, β and Lβα are determined by hqα ≡ qβ + Lβα . Thus,
the matrix representations of G are given in Eq. (1) on
the basis of {|ak, jα (�r)〉, |ak2, jα (�r)〉, . . . , |akl , jα (�r)〉} with j =
1, . . . , m and α = 1, . . . , n. The set of symmetry-related
k-vectors {kγ = Rhγ

k | kγ �= kδ + B}; h1 = {E |000}; γ , δ =
1, . . . , l are classified by k-stars. The little group of LG(k)
is presented in the basis of {|ak, jα (�r)〉}. By assigning the
representations to the irreps of the k little group [43], one
can obtain a set of k-irreps of the BR ρ@q, especially at the
maximal k-vectors.

B. TQC in MSGs with antiunitary symmetry

To construct BRs in MSGs with antiunitary symmetry
(AS), one needs to get the relations between coirreps in mo-
mentum space and AS-related orbitals in real space. To get an
appropriate description of a MSG M, one should start with its
unitary group G. Saying the eigenstates |φ j=1,...,m〉 transform
as an m-dimensional irrep ρ of G, one can take |φ j〉 and A|φ j〉
as the bases for the magnetic group M. Thus, these bases are
dubbed “corepresentations” of M, denoted as D below. To
analyze the reducibility of a corepresentation of a MSG, one
can apply the “Herring rule” [46–48],

1

|G|
∑

B∈AG

χρ (B2) =
⎧⎨
⎩

1 case (a),
−1 case (b),
0 case (c),

(2)

where χρ is the character of irrep ρ, and |G| is the number
of elements in G. The Herring rule classifies ρ into three
classes: ρ (a), ρ (b), and ρ (c). In case (a), the corepresentation
D is reducible, D = ρ

(a)
i ⊕ ρ

(a)
i , while in cases (b) and (c), D

is irreducible, resulting in the double degeneracy of ρ
(b)
i ρ

(b)
i
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and ρ
(c)
i ρ

(c)
j , respectively. Two related irreps of case (c) are

satisfied in the condition [χρ j (R) ≡ χ∗
ρi

(A−1RA)]. Thus, the
coirreps of the magnetic group M are labeled by the combined
irreps of unitary group G: ρ

(a)
i , ρ

(b)
i ρ

(b)
i , and ρ

(c)
i ρ

(c)
j .

1. Irreducible corepresentations in momentum space

First,we need to identify its unitary group G. After con-
sidering the Herring rule in Eq. (2), we can label all the
coirreps of M by the combined irreps of G. In this work,
all the coirreps for MSGs are solved. They are presented
explicitly in the Supplemental Material (SM) [49]. Thus,
from the CRs of type-I MSG obtained in the previous work
[25], the CRs for coirreps in type-III and type-IV MSG can
be conveniently worked out. To calculate the correspond-
ing coirreps in the DFT calculations, the unitary group of a
MSG is crucial, which can be obtained online [50] (see the
MSG tables in the SM [49]). With the program IRVSP and
its unitary group, one can get the coirreps for a magnetic
compound.

2. Magnetic band representations in real space

At a magnetic Wyckoff position q in a MSG [51], if its
site-symmetry group is antiunitary, we have to figure out the
degeneracy of the irreps of its unitary part by the Herring rule
in Eq. (2) (isomorphic to magnetic point groups). Otherwise,
we have to add other AS-related orbitals to form a MBR in real
space. Thus, we can get the MBRs for MSGs from the BRs of
type-I MSGs. After solving the matching of the orbitals in real
space, MBRs are obtained and presented explicitly in the SM
[49].

III. SYMMETRY-BASED INDICATORS OF MSGs

With the CRs and coirreps for all MSGs, a MBR can be
expressed as a vector, consisting of the numbers of differ-
ent coirreps at maximal HSKPs. They form a vector space
{BR} in which the linearly independent ones are regarded
as elementary (M)BRs. On the other hand, the coirreps of
band structures, satisfying the CRs, form another vector space

{CR}. These band structures can be classified by the quotient
group of {CR}

{BR} [21]. We derive the symmetry-based classi-
fications of MSGs by Smith decomposition [52,53], which
are consistent with Refs. [30–32]. The Fu-Kane-like formulas
of the SIs are obtained in the tables of the SM [49] and
computed by an online code (TOPMAT) for any magnetic
material.

The occupied bands of a material can also be expressed as
a vector. If it is a sum of BRs, it is consistent with the trivial
case with zero SIs. Otherwise, it is topological with nonzero
SIs. In fact, the BR decomposition approach is equivalent
to the SI description. Unlike the symmetry-based classifica-
tions for type-II MSG, the classifications of other MSGs may
yield a Weyl semimetal phase. For example, an odd-number
inversion-based z4 and an odd-number S4-based z2 indicate
a set of Weyl nodes at some generic momenta [54–56]. For
more information, one can find the physically meaningful SIs
for MSGs in Refs. [31–35].

IV. SEARCHING FOR MAGNETIC
TOPOLOGICAL MATERIALS

To search for magnetic topological materials, we have
performed spin-polarized DFT calculations with Hubbard-U
calculations (i.e., U = 3 and 7 eV for d and f electrons, re-
spectively). To investigate different magnetic configurations,
noncollinear magnetism and spin-orbit coupling are consid-
ered in our calculations. We propose an automatic process to
search for topological magnetic materials. It is implemented
in MAGTOP [36], and it is user-friendly for the DFT re-
searchers. The searching process can be easily reproduced
online by others for any magnetic material.

A. An automatic process to search for topological materials

(i) We generate POSCAR (SG #A) of a crystallographic
structure with magnetic atoms from the materials database.
Then, we run PHONOPY to standardize the structure and gen-
erate PPOSCAR.

TABLE I. The table of magnetic topological candidates shows the ICSD number, magnetic space group and type, the converged energy,
and the nonzero SIs.

No. ICSD No. MSG (OG) Type Energy (eV/atom) SIs

44084 SG223 V3As 1608 III −5.9877 z2 = 1
58096 SG223 V3Sb 1608 III −5.7167 z2 = 1
428795 SG164 EuMg2Bi2 1319 III −4.9684 z2 = 0, z12 = 9

1321 IV −4.9687 z2 = 1
67671 SG194 InMnO3 1497 III −6.5824 z3 = 2

1501 III −6.5832 z3 = 0, z6 = 4
260109 SG194 EuIn2As2 1499 III −5.5771 z2 = 1

1501 III −5.5768 z3 = 2, z6 = 3
97965 SG148 La2CuRuO6 1247 I −6.9781 z2 = 1, z4 = 3
104953 SG221 Mn3Pt 1600 IV −7.1117 z4 = 1
20449 SG11 YClO2 65 IV −5.9291 z2 = 1
20492 SG11 GdClO2 65 IV −8.2142 z2 = 1
76845 SG221 Mn3GaC 1600 IV −6.5658 z4 = 2
76070 SG221 Mn3ZnN 1600 IV −6.2377 z4 = 2
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FIG. 1. Band structures of magnetic topological candidates: (a) MSG1319 EuMg2Bi2, (b) MSG1321 EuMg2Bi2, (c) MSG1497 InMnO3,
(d) MSG1501 InMnO3, (e) MSG1499 EuIn2As2, (f) MSG1501 EuIn2As2, (g) MSG1247 La2CuRuO6, (h) MSG1600 Mn3Pt, (i) MSG1608
V3As, and (j) MSG1608 V3Sb.

(ii) The MSGs in the Opechowski-Guccione (OG) setting
[50] (A.1.X ,A.2.X, . . . ) for different magnetic configurations
can be generated by our code. The unitary-part group (SG #B)
and the magnetic configuration in a MSG are given explicitly
by TOPMAT. For compounds with local magnetic moments
on magnetic atoms (neglecting type-II MSGs), we perform
the DFT calculations to obtain the total energies and Bloch
states on maximal HSKPs. By comparing their total energies
(per atom), one can tell the ground-state configuration and
metastable configurations.

(iii) By using IRVSP (irvsp -sg #B), we compute the
(co)irreps for occupied bands and generate tqc.data. Then,
we use the online code TOPMAT to solve the CRs and compute
the SIs. One can find the Fu-Kane-like SIs in the MSG tables
of the SM [49]. If the band structure does not satisfy CRs, it
is a symmetry-protected magnetic metal with crossing points

near the EF . Otherwise, it could be a topological magnetic
insulator if it has nonzero SIs.

B. Magnetic topological candidates

Based on the DFT calculations, we find some magnetic
topological candidates in Table I with nonzero SIs. Their band
structures are shown in Figs. 1 and 2. To understand detailed
nontrivial topology, such as an antiferromagnetic topological
insulator (AFM TI), an axionic insulator, and a magnetic
topological crystalline insulator (MTCI), one needs to do extra
work, such as the Wannier charge centers of 1D Wilson loops.
In the following, we have investigated GdClO2 and Mn3ZnN
compounds in detail. Their crystal structures and magnetic
configurations are generated by the workflow described in
Sec. IV A.
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FIG. 2. Crystal structures and magnetic configurations (denoted by red arrows) of (a) GdClO2 and (e) Mn3ZnN. Band structures of
magnetic topological candidates: (b) MSG65 YClO2, (c) MSG65 GdClO2, (f) MSG1600 Mn3GaC, (g) MSG1600 Mn3ZnN. (d) WCCs of
the k1k2 plane in MSG65 GdClO2. (h) WCCs of the kxky plane in MSG1600 Mn3ZnN.
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The SI of MSG65 type-IV GdClO2 is computed to be
z2 = 1, indicating nontrivial nature. Its magnetic band struc-
ture is presented in Fig. 2(c). In the configuration of MSG
65 (P2c21/m′), the AS operator is {T |00 1

2 }. Thus, the k1k2

2D plane has a time-reversal Z2 classification. Note that
all energy bands are doubly degenerate in the bulk due
to the presence of inversion symmetry {I|000} with the
relation [{T |00 1

2 }{I|000}]2 = −1. The Wannier charge cen-
ters (WCCs) on k1-directed Wilson loops are computed
and plotted as a function of k2 in Fig. 2(d). At 
 (k2 =
0) and Y (k2 = π ), all the WCCs are twofold, and they
switch partners during the revolution, indicating z2 = 1 with
nontrivial Z2 topology. Thus, MSG65 type-IV GdClO2 be-
longs to the AFM TI phase. On the {T |00 1

2 }-preserving
(100)-surface, the topological gapless surface states are
expected.

The SI of MSG1600 type-IV Mn3ZnN is computed to be
z4 = 2. Its insulating band structure is shown in Fig. 2(g). In
the magnetic configuration of MSG 1600 (PF m3̄m′), an AS
operator is {T |00 1

2 } [with respect to the (cubic) conventional
cell of MSG structure]. A mirror symmetry {mz|000} is pre-
served in the kxky plane, on which the mirror Chern number
is well-defined. The WCCs of kx-directed Wilson loops in
the kz = 0 plane are obtained in Fig. 2(h). The crossings and
circles denote different mz eigenvalues. The evolutions of the

WCCs indicate that mirror Chern numbers are C±
mz

= ±2.
Thus, we conclude that MSG1600 Mn3ZnN belongs to the
MTCI phase.

V. CONCLUSIONS

From the nonmagnetic TQC, we have constructed the CRs
and MBRs for type-III and type-IV MSGs, which are con-
sistent with the MTQC. Then we obtained the Fu-Kane-like
formulas of SIs for MSGs directly by Smith decomposi-
tion. Next, we proposed an automatic process to search for
magnetic topological materials, which is implemented in the
online code TOPMAT to check CRs and compute SIs with the
help of IRVSP. In the end, based on the DFT calculations, we
found many magnetic topological candidates.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 11974395 and No.
12188101), the Strategic Priority Research Program of Chi-
nese Academy of Sciences (Grant No. XDB33000000), the
China Postdoctoral Science Foundation funded project (Grant
No. 2021M703461), and the Center for Materials Genome.

[1] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[3] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 (1982).
[4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[5] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[6] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[7] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,

D. Grauer, Y. S. Hor, R. J. Cava et al., Nat. Phys. 5, 398 (2009).
[8] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.

Zhang, Nat. Phys. 5, 438 (2009).
[9] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

[10] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat.
Commun. 3, 982 (2012).

[11] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig,
Nature (London) 532, 189 (2016).

[12] J. Ma et al., Sci. Adv. 3, e1602415 (2017).
[13] B. J. Wieder, B. Bradlyn, Z. Wang, J. Cano, Y. Kim, H.-S. D.

Kim, A. M. Rappe, C. L. Kane, and B. A. Bernevig, Science
361, 246 (2018).

[14] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, eaat0346
(2018).

[15] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.
Rev. B 83, 205101 (2011).

[16] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.
107, 186806 (2011).

[17] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B
88, 125427 (2013).

[18] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys.
Rev. X 5, 011029 (2015).

[19] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Science
349, 613 (2015).

[20] B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao,
G. Chen, C. Matt, F. Bisti et al., Nat. Phys. 11, 724 (2015).

[21] H. C. Po, A. Vishwanath, and H. Watanabe, Nat. Commun. 8,
50 (2017).

[22] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe, Phys.
Rev. X 8, 031070 (2018).

[23] Z. Song, T. Zhang, Z. Fang, and C. Fang, Nat. Commun. 9, 3530
(2018).

[24] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J.
Slager, Phys. Rev. X 7, 041069 (2017).

[25] B. Bradlyn, L. Elcoro, J. Cano, M. Vergniory, Z. Wang, C.
Felser, M. Aroyo, and B. A. Bernevig, Nature (London) 547,
298 (2017).

[26] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Nature (London)
566, 486 (2019).

[27] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng,
and C. Fang, Nature (London) 566, 475 (2019).

[28] M. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig,
and Z. Wang, Nature (London) 566, 480 (2019).

[29] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, Nat. Phys.
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