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Signature of parity anomaly in the measurement of optical Hall conductivity
in quantum anomalous Hall systems
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Parity anomaly is a quantum mechanical effect that the parity symmetry in a two-dimensional classical action
is failed to be restored in any regularization of the full quantum theory and is characterized by a half-quantized
Hall conductivity. Here we propose a scheme to explore the experimental signature from parity anomaly in the
measurement of optical Hall conductivity, in which the optical Hall conductivity is nearly half-quantized for
a proper range of frequency. The behaviors of optical Hall conductivity are studied for several models, which
reveal the appearance of half-quantized Hall conductivity in low- or high-frequency regimes. The optical Hall
conductivity can be extracted from the measurement of Kerr and Faraday rotations and the absorption rate of the
circularly polarized light. This proposal provides a practical method to explore the signature of parity anomaly
in topological quantum materials.
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I. INTRODUCTION

Parity anomaly describes the fact that a single massless
Dirac fermion in 2 + 1 dimensions undergoes a spontaneous
symmetry breaking when it is coupled to the U(1) gauge
field [1–3]. This anomalous effect is physically manifested as
the half-quantized Hall conductivity in the external electro-
magnetic field. Several condensed matter systems have been
proposed to simulate parity anomaly on a lattice, such as a
monolayer graphite [4,5] and PbTe-type narrow-gap semi-
conductor with an antiphase boundary [6]. In addition, the
massive Dirac fermions break the time-reversal symmetry and
parity symmetry explicitly. At the half-filling, the finite Dirac
mass also leads to a half-quantized Hall conductivity [5,7–9].
Combined with the parity anomaly, the massive Dirac fermion
exhibits an integer-quantized Hall conductivity, which leads
to the quantum anomalous Hall effect in condensed matter
systems [10–14].

As the contribution from the parity anomaly and Dirac
mass are mixed together, it is difficult to distinguish the two
mechanisms from the total Hall conductivity in the dc limit.
In 1988, Haldane proposed that the half-quantized Hall con-
ductivity from the parity anomaly could be realized if an
unpaired Dirac fermion appears at a critical transition point
between a normal insulator and a Chern insulator phase [5].
In recent, another attempt was reported in the semimagnetic
topological insulator thin film, where only the top surface
state was gapped by the magnetic doping, and a nearly half-
quantized Hall conductivity was observed [15]. Nevertheless,
it is known that a single symmetry-protected Dirac fermion
does not exist on a two-dimensional lattice [16]. Hence, it
is desired to explore a new method to figure out the half-
quantized Hall conductivity from the parity anomaly from a
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system where a single gapless Dirac point cannot be realized.
Fortunately, the physical origins of two half-quantized Hall
conductivities of the massive Dirac cone are different, one is
attributed by the low-energy fermions around the Dirac cone
and the high-energy regulator part respectively. Thus they can
be distinguished at different energy scales by optical Hall
conductivity.

Recently, Tse and MacDonald proposed that Hall conduc-
tivity at finite frequencies can be detected using the magneto-
optical technique. This is mainly reflected in that the Kerr and
Faraday angles can be experimentally implemented to detect
the optical Hall conductivity of the system [18]. However, this
series of work has mainly focused on the low-energy region
of the Dirac cone, and the contribution of quantum anomalies
from the high-energy region has yet to be explored [17–25].
Meanwhile, the magneto-optical effect is naturally suited for
exploring response patterns in the high-energy region, which
provides us a possible way to detect the signature of parity
anomalies.

In this paper, we propose a method to detect the signa-
ture of parity anomaly in a condensed matter system and
to distinguish different origins of the anomalous quantum
Hall effect. We first calculate the optical Hall conductiv-
ity of the Wilson fermions and massive Dirac fermions
analytically and get the expression of half-quantized Hall
conductivity by making Taylors expansion at the proper
frequency. Besides, we calculate the Hall conductivity of dif-
ferent lattice models, including the Bernevig-Hughes-Zhang
(BHZ) model, the Haldane model, and the magnetically
doped topological insulator thin films. Finally, we discuss
how this phenomenon can be implemented experimentally
and the effect that temperature and disorder can have on
this, and we propose that the character of this optical Hall
conductivity can be measured by several magneto-optical
effects.
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II. MODEL HAMILTONIAN

We begin with the two-dimensional Wilson fermion model
[26,27]

H = vh̄(kxσx + kyσy) + (mv2 − bh̄2k2)σz, (1)

where v is the effective velocity, ki with i = x, y are wave
vectors, k2 = k2

x + k2
y , and σi with i = x, y, z are the Pauli

matrices. 2mv2 is the band gap at k = 0, bh̄2k2 is the dy-
namical mass regulator. In the dc limit, when the chemical
potential is located with the band gap, i.e., at half filling, the
Hall conductivity of the system is

σxy = 1
2

e2

h [sgn(m) + sgn(b)] (2)

[28–30]. Either the band gap mv2 and the regulator bh̄2k2

contribute 1
2

e2

h to the Hall conductivity, which only depends on
the signs, not value of the two mass terms. When m and b have
the same sign, i.e., bm > 0, the Hall conductivity is quantized
to be one in the unit of e2/h, and the system is is topologi-
cally nontrivial. When m and b have the opposite signs, i.e.,
bm < 0, the Hall conductivity is equal to zero, and the system
is is topologically nontrivial. In the absence of the regulating
term bh̄2k2, the Hall conductivity is σxy = 1

2
e2

h sgn(m), which
contradicts the Thouless-Kohmoto-Nightingale-Nijs (TKNN)
quantization rule in a gapped system [31]. This means it
cannot exist on a two-dimensional lattice. The presence of the
regulator bh̄2k2 which provides another half-quantized Hall
conductivity as 1

2
e2

h sgn(b), is essential to avoid the contradic-
tion. When m = 0, and the band gap closes, the half-quantized
Hall conductivity from the regulator bh̄2k2 can exist alone
[32,33]. In the case the parity is broken by the presence of
he regulator bh̄2k2. However, when b → 0, the parity sym-
metry is restored, and the Hall conductivity is still equal
to 1

2
e2

h sgn(b), not zero as expected in the parity symmetry.
This is the so-called the parity anomaly in the lattice gauge
theory [26].

In the dc case, the Hall conductivity is equal to one or
zero. We cannot distinguish the contribution from the he band
gap mv2 and the regulator bh̄2k2. As the two terms domi-
nate the low-energy region (k → 0) and high-energy regime
(k → +∞) separately, the two parts will respond disparately
to an incident electromagnetic field with a finite-frequency.
Thus the optical Hall conductivity may provide a possible way
to distinguish the contribution at different energetic scales.

III. OPTICAL HALL CONDUCTIVITY

In this section, we will present the optical Hall conductivity
at a finite frequency. In general, the optical Hall conductivity
σxy(ω) at finite-frequency ω can be evaluated from the Kubo
formula

σxy(ω) = ie2h̄
∫

d2k

(2π )2

×
∑
m,n

vx
mnv

y
nm

εm − εn − h̄ω + iδ

f (εm) − f (εn)

εn − εm
, (3)

where εn is the energy eigenvalue of state |n〉, va
mn(k) =

1
h̄ 〈m| ∂H

∂ka
|n〉 are the matrix elements of the velocity opera-

FIG. 1. The comparison of optical Hall conductivity between
massive Dirac fermions and Wilson fermions. The blue and yellow
lines are Wilson fermions that are topologically nontrivial and trivial,
respectively. The green line is the massive Dirac fermion. The region
sandwiched between two dashed lines is the half-quantization region
from the parity anomaly. Here mv2 = 0.05 eV (green and blue line),
−0.05 eV (yellow line), vh̄ = 0.5 eV Å, and bh̄2 = 0.2 eV Å2.

tors at a = x, y direction, and f (ε) = 1/(1 + exp( ε−μ

kBT )) is
the Fermi-Dirac distribution function with μ the chemical
potential at finite temperature T . kB is the Boltzmann constant.
δ is the infinitesimal regulator. After some calculations, the
real part of the optical Hall conductivity at zero tempera-
ture (kBT = 0) and μ = 0 can be analytically found as (see
Appendix for details)

Reσxy(ω) = e2

h

1

8ξω̃

[
2(1 − 4bm) ln

∣∣∣∣ ω̃ + ξ

ω̃ − ξ

∣∣∣∣ +
∑
s=±

gs(ω)
]
,

(4)

where the dimensionless parameter ξ = √
1 − 4bm + ω̃2 and

the renormalized frequency ω̃ = bh̄ω/v2, and

gs(ω) = (1 − 4bm − sξ ) ln

×
∣∣∣ξ (1 − 2bm) − 2b|m|ω̃ − s(1 − 4bm)

ξ (1 − 2bm) + 2b|m|ω̃ − s(1 − 4bm)

∣∣∣.
In the dc limit by taking ω → 0, it recovers the Hall conduc-
tivity σxy(0) = 1

2
e2

h [sgn(m) + sgn(b)] as shown in Fig. 1. In

the case of m > 0 and b > 0, σxy(0) = ± e2

h and in the case
m < 0 and b > 0, σxy(0) = 0. The blue and yellow lines rep-
resent the two cases separately. With the frequency increasing,
the Hall conductivity deviates from the dc limit value and be-
comes divergent at h̄ω = mv2 due to the Rabi resonance. This
a strong indication of the existence of the band gap mv2 �= 0.
Near the region, the sign of the Hall conductivity depends on
the sign of m. As the frequency further increases above the
band gap h̄ω > mv2, the Hall conductivities converge to a
quasi-quantized plateau with a half-integer value 1

2 sgn(b) e2

h .

When the frequency is in the proper range, mv2 � h̄ω � v2

b ,
i.e., the dimensionless parameters ω̃, bm

ω̃
� 1, the real part of

σxy(ω) is approximately,

Reσxy(ω) ≈ e2

2h sgn(b)

[
1 + sgn(bm)

(
2bm

ω̃

)2]
. (5)
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The value of the plateau is independent of the magnitude and
sign of m, but is attributed by the sign of b, which can be re-
garded as a signature of parity anomaly. Reσxy(ω) will deviate
the value of plateau if the frequency continues increasing,

Reσxy(ω) ≈ e2

2h sgn(b)

[
1 − 2

3
ω̃2

]
. (6)

For comparison, we also plot Reσxy(ω) for the massive Dirac
fermions (m > 0 and b = 0). The value decreases to zero
quickly after the Rabi resonance, and there is no signature of
parity anomaly.

Besides the dynamical mass, the massive Dirac fermion
with mass m can also be regulated by another Dirac fermion
with a large Dirac mass M, which is the Pauli-Villars method
[34]. In the case, the real part of the optical Hall conductivity
can be found to be

Reσxy(ω) = 1

2

e2

h

(
mv2

h̄ω
ln

∣∣∣∣ h̄ω + 2|m|v2

h̄ω − 2|m|v2

∣∣∣∣
+ Mv2

h̄ω
ln

∣∣∣∣ h̄ω + 2|M|v2

h̄ω − 2|M|v2

∣∣∣∣
)

. (7)

In the dc limit of ω → 0, it is reduced to

Reσxy(ω → 0) = 1
2

e2

h [sgn(m) + sgn(M )]. (8)

Similar to the case of Wilson fermion, the zeroth-order of
Hall conductivity is half-quantized and merely depends on the
sign of the regulator M. Therefore the effect of the large mass
regulator M contributes a background of half-quantized Hall
conductivity and shifts the whole curve by 1

2
e2

h sgn(M ).
The optical Hall conductivity will be divergent when the

frequency ω approaches the band edges 2mv2 and 2Mv2.
When 2mv2 � h̄ω � 2Mv2, the real part of the optical Hall
conductivity can be expressed appropriately as following:

σxy ≈ sgn(M )

2

e2

h

[
1 + 1

12

(
h̄ω

Mv2

)2

+ 4sgn(mM )

(
mv2

h̄ω

)2
]
.

(9)

Thus in the presence of Pauli-Villars regulator, the finite-Hall
conductivity shows similar signature of parity anomaly as a
half-quantized plateau.

IV. LATTICE REALIZATION

The formulation of the lattice theory of Dirac fermion is
closely related to the Nielsen-Ninomiya no-go theorem [7].
Unlike the continuum model, the finite lattice spacing serves
as a natural UV regulator. The Wilson fermion in Eq. (1) can
be directly put on the lattice with no fermion doubling prob-
lem in the presence of the regulation term b(h̄k)2σz, which is
equivalent to spin-polarized Bernevig-Hughes-Zhang (BHZ)
model [35],

HBHZ(kx, ky) = v
h̄

a

∑
i=x,y

sin(kia)σi + mv2

{
1 − 2bm

(
h̄

mva

)2

×
[

2 −
∑
i=x,y

cos(kia)

]}
σz, (10)

FIG. 2. The Hall conductivity with finite-frequency of BHZ
model with different gaps. The different colors represent the different
mass gap of the model and the sign indicates the topologically trivial
or nontrivial. All samples have a plateau tending to 1/2 at the proper
frequency. The different line represent different mass show in the
legends with vh̄ = 0.5 eV Å, bh̄2 = 0.2 eV Å2, and a = 1 nm.

where a is the lattice constant. The Chern number of the
valence band of this model depends on the Dirac mass m and
the coefficient b,

C = 1

2
sgn(m)

{
2sgn

[
1 − 4bm

(
h̄

mva

)2]

− sgn

[
1 − 8bm

(
h̄

mva

)2]
− 1

}
. (11)

By numerically evaluating the Kubo formula in Eq. (3), we
obtain the optical Hall conductivity in Fig. 2 for three different
band gaps (mv2 = −0.1, 0.05, 0.1 eV) in Eq. (10). When
mv2 = 0.05eV and mv2 = 0.1eV, the Chern number is C = 1,
and the optical Hall conductivities begin with e2

h at ω = 0
and becomes divergent at h̄ω = 0.1 eV and h̄ω = 0.2 eV, re-
spectively. When mv2 = −0.1 eV,C = 0, and the optical Hall
conductivity begins with 0 at ω = 0 and become divergent at
h̄ω = 0.2 eV. In a large frequency regime mv2 � h̄ω � v2a2

b ,

all the three curves approach 1
2

e2

h (as indicated by the black
line), which is consistent with the results of continuum model
in Fig. 1. In experiments, the spin-polarized BHZ models can
be realized in several two-dimensional quantum anomalous
Hall effect materials, including monolayer magnetic material
1T − VSe2 [36], and 2D magnetic Van der Waals heterojunc-
tion of MnNF/MnNCl [37].

The first lattice model to realize parity anomaly was pro-
posed in the seminal paper by Haldane [5]. The Haldane
model can be implemented in a honeycomb lattice with the
nearest hopping t and the next to nearest imaginary hopping t ′
and an on-site potential M. In terms of the Pauli matrices, the
corresponding tight-binding model can be expressed as

H =
∑

i=x,y,z

diσi, (12)

where dx(k) = t
∑

i cos(k · ai ), dy(k) = t
∑

i sin(k · ai ),
dz(k) = 	 − 2t ′ ∑ sin(k · bi ), ai is the nearest vectors of
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FIG. 3. (a). The solid line is the optical Hall conductivity for the Haldane model, and the dashed lines are the optical Hall conductivity
for the massive Dirac model, where the gaps equal 	− = 0.1 eV and 	+ = 0.7 eV and hopping strength is chosen as t = 0.5 eV. (b). The
optical Hall conductivity for the magnetically doped topological insulator thin film of 8 quintuple layer with the Zeeman term g = 0.04 eV.
The orange solid line is the numerical result of optical Hall conductivity and the dashed line is twice of the analytical result of a massive Dirac
fermion. The parameters for the topological insulator are chosen as m0v

2 = 0.68 eV, vh̄ = 0.4 eV Å, and b0 h̄2 = 1.4 eV Å2, a = 1 nm.

honeycomb lattice that a1 = ( 1
2 ,

√
3

2 )a, a2 = ( 1
2 ,−

√
3

2 )a,
a2 = (−1, 0)a, and bi = εi jk (a j − ak ) with εi jk the
antisymmetric symbol. There are two Dirac cones at K
and K ′ valleys in the corner of the Brillouin zone, with the
band gaps 2	+ = 2	 + 6

√
3t ′ and 2	− = 2	 − 6

√
3t ′,

respectively. When one of the band gaps closes (e.g.,
	 = 3

√
3t ′), the low-energy theory is described by a

single massless Dirac fermion with the parity symmetry
(or time-reversal symmetry). The massive Dirac fermion at
the other valley plays the role of the large mass regulator and
gives a half-quantized contribution to the Hall conductivity,
σxy = 1

2
e2

h . Haldane thought that it is a realization of parity
anomaly on the lattice. As shown in Fig. 3(a), there are two
peaks in the optical Hall conductivity when h̄ω = 2	+ or
h̄ω = 2	−, and the conductivity drops to zero quickly when
h̄ω is larger than 2	+. However, when 2	− < h̄ω � 2	+,
the optical Hall conductivity is approximately half-quantized.
This condition can be realized by tuning the band gap
of two valleys in a Floquet system [38,39]. Hence, the
optical Hall conductivity can be used to distinguish the
contribution from the low-energy physics and the high-energy
physics (or the parity anomaly). The Haldane model can
be realized in ferromagnetic honeycomb materials with
no inversion symmetry [40,41]. Recently, some Moiré
materials are reported that spontaneous magnetization at a
proper filling have a similar valley polarized quantum Hall
behavior [42–44]. As the half-quantization of the optical Hall
conductivity does not require 	− = 0 exactly, it becomes
more feasible in experiments.

In addition to the Haldane model, the magnetically doped
topological insulator thin film, which is the first realization of
the quantum anomalous Hall system experimentally [11,12],
also yields two Dirac cones. Different from the Haldane
model, the two Dirac cones in topological insulators are sep-
arated in the real space and located on the top and bottom
surfaces, respectively. The magnetic doping will open band
gaps for the surface Dirac cones through the exchange inter-
action [45,46]. Then, each of the two Dirac cones contributes

a one-half Hall conductivity individually [33]. In the quantum
anomalous Hall insulator phase, the summation of two sur-
faces Dirac cones gives a quantized Hall conductivity. Here
we use the magnetically doped three dimensional topological
insulator model to perform the calculation,

H3D = ig(z)α1α2 + v
h̄

a

∑
i=x,y,z

sin(kia)αi

+ m0v
2

{
1 − b0

(
h̄

m0va

)2
[

3 −
∑

i=x,y,z

cos(kia)

]}
β,

(13)

where αi = τ1σi and β = τ3σ0 are the Dirac matrices, and a is
the lattice constant. v, b0 and m0 are material parameters for a
three-dimensional topological insulator. The term ig(z)α1α2 is
the position-dependent Zeeman energy along the z direction,
which breaks the time-reversal symmetry and generates the
Dirac mass in the surface states. When g(z) ≡ g is chosen
as a constant, the induced Dirac masses of top and bottom
surface states will have the same magnitude and opposite sign.
Besides, the two surface states have opposite helicity [30].
Then, in the dc limit, each of them contributes e2

2h sgn(g) to the
Hall conductivity, and the total Hall conductivity is quantized
as e2/h. When the frequency is nonzero, the system hosts the
inversion symmetry and the optical Hall conductivity from
the two massive surface states is still identical, as shown in
Fig. 3(b). The total optical Hall conductivity of the magnetic
topological insulator thin film can be regarded as twice of the
massive Dirac fermion without any regulator. It confirms the
fact that the quantized Hall conductivity in the magnetically
doped topological insulators is determined by two gapped
surface states. This mechanism would make the behavior of
optical Hall conductivity in magnetic topological insulators
different from the case of the Haldane model. The optical
Hall conductivity can be used to distinguish multiple physical
origins of quantum anomalous Hall effect in different systems.
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FIG. 4. (a) The experiment setup for the measurement of Kerr and Faraday angle. (b) The Kerr and Faraday angle of the BHZ model (blue
and cyan dashed lines) and the magnetic topological insulator film (red and cyan dashed lines). The parameters of the corresponding model
are the same as the one below the Figs. 2 and 3. The refractive index of the substrate is chosen as nr = 3.46 for InP.

Moreover, if g(z) is mainly localized at the top surface,
it is possible to open the gap of the top surface state only
while the bottom surface state remains gapless. It provides the
most direct way to realize the parity anomaly in experiments
[15,33]. However, it is challenge to preserve a single gapless
surface state. In such a case, parity anomaly can also be
detected by the optical Hall conductivity. When there is a
significant difference in the magnitude of the band gaps for
the two Dirac states, it will be similar to the Haldane model.
A half-quantized plateau can also occur if the frequency is
between the band gaps of the two Dirac cones.

V. EXPERIMENT IMPLEMENT

In experiment, the optical Hall conductivity can be ob-
tained by measuring the magneto-optical effect, which reflects
the information of Hall conductivity near the sample surface.

As shown in Fig. 4(a), we takes the sample on the substrate
with the refractive index nr > 1, and inject a light linearly
polarized in the x direction with frequency ω, the electric field
of the light is Ein = E0ei(ωt−kx)x̂. In terms of electric field of
transmission light Et and the reflection light as Er , the Kerr
and Faraday angles are defined by the tan θK = Ey

r /Ex
r and

tan θF = Ey
t /Ex

t , respectively. The two angles can be solved
by the Maxwell equation with proper boundary condition (see
Appendix B) as

tan θF = 2ασ̃xy

1 + nr + 2ασ̃xx
, (14)

tan θK = − 4ασ̃xy

n2
r − 1 + 4α

[
σ̃xx(nr + ασ̃xx ) + ασ̃ 2

xy

] , (15)

where the dimensionless σ̃xx = σxx
h
e2 and σ̃xy = σxy

h
e2 are the

dimensionless transverse conductivity and the Hall conductiv-
ity, respectively, and α ≈ 1/137 is the fine structure constant.
When σ̃xx and σ̃xy are much smaller than α−1 and the refractive
index of the substrate nr > 1, the two angles can be approx-
imated as θF = arctan 2α

1+nr
σ̃xy and θK = − arctan 4α

n2
r −1 σ̃xy,

respectively. In Fig. 4(b), we plot θF and −θK as functions of
ω for the magnetic topological insulator and BHZ model. We
consider the case that the wavelength of light is much larger
than the thickness of the sample i.e., d � λ and the insulating
subtract is InP with nr = 3.46 [15]. In this limit, the bottom
and top surfaces can be viewed as a whole. Therefore σxx and
σxy in Eqs. (14) and (15) denote the total longitudinal and
Hall conductivities from two surfaces, respectively. At zero
frequency, the chemical potential inside Dirac gap of both
surfaces, we have σxx = 0 and σxy = e2/h, the Faraday and
Kerr angles have universal values θF ≈ 3.28 × 10−3 rad and
θK ≈ −2.66 × 10−3 rad. At finite frequencies, the θF and θK

for the BHZ model display a plateau with half of the zero
frequency value for h̄ω � 2|m|v2. As indicated by the red
and cyan dashed lines in Fig. 4(b), the Kerr and Faraday
angles of magnetic topological insulator film drop to zero
after h̄ω � 2g, which display the same character as the Hall
conductivity in Fig. 3(b).

Furthermore, the optical Hall conductivity can be deduced
from the absorption rate of the circularly polarized light
�±(ω) [47]. The imaginary part of optical Hall conductiv-
ity can be related to the difference between the absorption
rate of the left-hand and the right-hand light as Imσxy(ω) =
h̄ω(�+ − �−)/(8AE2), where E is the intensity of light and
A is the area of the sample. From the Kramers-Kronig relation,
the real part of the optical Hall conductivity can be obtained as
Reσxy(ω) = 2

π
P

∫ ∞
0

ω′Imσxy (ω′ )dω′

ω′2−ω2 with P denoting the Cauchy
principal value, and the half-quantized plateau can be found at
finite frequency in the Reσxy.

VI. DISCUSSION AND SUMMARY

Besides the light frequency, disorder and temperature can
also be used to smear off the low-energy contribution in the
Hall conductivity and leave the parity anomaly contribution
from the high energy only [24]. Therefore we can expect
a similar half-quantized plateau in the Hall conductivity at
finite temperature or finite disorder. For the disordered sys-
tem, using the Born approximation, the disorder effect can be
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FIG. 5. The Hall conductivity of Wilson fermion as functions
of temperature (pink line) and disorder (cyan line), the temperature
kBT and the disorder � have been renormalized into the same di-
mensionless energy scale. The parameters are vh̄ = 0.5 eV Å, bh̄2 =
0.2 eV Å2, mv2 = 0.05 eV.

introduced phenomenologically by the quasi-particle self-
energy � in the Green function, i.e., Gr/a = (iωn − H ±
i�)−1. Thus the Hall conductivity in the presence of disorder
can be expressed as

σxy = e2h̄
∫

d2k

(2π )2

∑ Im
(
vx

mnv
y
nm

)
[ f (εm) − f (εn)]

(εm − εn)2 + �2
. (16)

Compared to the Kubo formula at finite-frequency, σxy can be
obtained by taking an Analytic continuation that replace the
frequency h̄ω with i�. When mv2 � � � v2

b , The asymptotic
behavior of Hall conductivity reads

Reσxy(�) = e2

2h sgn(b)

×
[

1 + 2

3

(
b�

v2

)2

− sgn(mb)

(
2mv2

�

)2
]
,

(17)

where the leading order is a half-quantized value 1
2 sgn(b).

In addition to disorder in the system, the temperature can
also lead to the half-quantized plateau when the temperature
kBT satisfies that mv2 � kBT � v2

b . The effect of the tem-
perature can be seen as averaging the Berry curvature of the
conduction band and valence band near the Fermi surface,
which can erase the contribution of the low-energy part, and
only the contribution from the high-energy part remains. This
also separates the parity anomaly part and allows the system
to show the half-quantized plateau. We plot the Hall conduc-
tivity as a function of temperature kBT and the self-energy �

in the same dimensionless energy scale in Fig. 5. The Hall
conductivity shows a similar nearly half-quantized feature as
the optical Hall conductivity in Fig. 1.

In quantum anomalous Hall systems, the quantized Hall
conductivity usually consists of two parts, one is the contri-
bution from massive Dirac cone and the other is the parity
anomaly contribution in the high-energy region. In this paper,
the finite-frequency method is introduced to separate these

two different sources of Hall conductivity. When the applied
frequency is in the proper interval, the Hall conductivity of the
system exhibits a half-quantized plateau, and this plateau is
considered a direct manifestation of the parity anomaly. Thus
in the condensed matter system, the half-quantized optical
Hall conductivity can be used as a marker to characterize the
parity anomaly.
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APPENDIX A: CALCULATION OF OPTICAL HALL
CONDUCTIVITY

For a general 2 × 2 matrix Hamiltonian in the form H =
d · σ with d = (dx, dy, dz ), the eigenenergy and eigenstates
can be found as

Eχ = χ

√
d2

x + d2
y + d2

z = χd, |φχ 〉 =
⎛
⎝ d̂x−id̂y√

2(1−χ d̂z )
1−d̂z√

2(1−χ d̂z )

⎞
⎠,

where χ = + is for the conduction band and χ = −1 is for
the valence band. d̂i with i = x, y, z are defined as d̂i = di/d .

In the eigenenergy basis, the matrix elements of the veloc-
ity operators are defined as

vx
χχ ′ = 1

h̄

∑
i=x,y,z

∂di

∂kx
〈φχ |σi|φχ ′ 〉,

v
y
χχ ′ = 1

h̄

∑
i=x,y,z

∂di

∂ky
〈φχ |σi|φχ ′ 〉.

After a straightforward calculation, one can obtain the imagi-
nary part of the velocity product as

Im
(
vx

χχ̄v
y
χ̄χ

) = χ d2

h̄2 d̂ · (∂xd̂ × ∂yd̂).

For the BHZ model, d = (vh̄kx, vh̄ky, mv2 − bk2 h̄2) and

d =
√

v2h̄2k2 + (mv2 − bk2 h̄2)2, we have Imvx
χχ̄v

y
χ̄χ =

χ v2

d (mv2 + bh̄2k2). As a result, the real part of the optical
Hall conductivity at zero temperature in Eq. (3) is given by

Reσxy(ω) = e2

h

1

8ξω̃

∑
s

(1 − 4bm + sξ )

× arcoth

⎛
⎝ 2 bh̄k

v
ω̃

√
1 + (

mv
h̄k − bh̄k

v

)2

s(1 − 4bm) + ξ
(
1 − 2bm + 2

(
bh̄k
v

)2)
⎞
⎠

∣∣∣∣∣∣
+∞

0

.

(A1)

Here ξ and ω̃ is as the same definition as in the main text.
Using the analytical continuation arcoth(x) = 1

2 [ln x+1
x −

ln x−1
x ], we obtain Eq. (4) in Sec. III.
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APPENDIX B: KERR AND FARADAY ANGLE

For the structure in the Sec. V, Faraday’s law of induction
tells

∇ × E = −μ0
∂H
∂t

.

Here we assume that the thickness of the sample d is much
smaller than the wave-length of the light such that the sample
can be regarded as a two-dimensional system and the bound-
ary condition can be written as following

E = E0 − Er + Et ;

H = H0 − Hr + Ht ;

ẑ × E = 0;

ẑ × H = 4π j.

Here E0 = E0eiωt−kzx̂ is the incidentl light, Er, Hr is the re-
flection light and Et , Ht is the transmission light. Using the

Maxwell equations, we have Hi = −
√

εi
μi

iτyEi for i = 0, t and

Hr =
√

εr
μr

iτyEr . The current only depends on the transmis-

sion electric field as j = σ (ω)Et .
The boundary condition for the electric field can be

written as

−Er,x + Et,x − E0,x = 0; −
√

ε0

μ0
Er,y −

√
εt

μt
Et,y +

√
ε0

μ0
E0,y

= 4π (σyyEt,y − Et,xσxy);

−Er,y + Et,y − E0,y = 0;
√

ε0

μ0
Er,x +

√
εt

μt
Et,x −

√
εt

μt
E0,x

= −4π (σxxEt,x + Et,yσxy).

Set E0,y = 0 and E0,x = E0. We suppose that the system has
the symmetry that σxx = σyy and σyx = −σxy. In this way, we
can find that

Et,x =
2E0

√
ε0
μ0

(
4πσxx +

√
εt
μt

+
√

ε0
μ0

)
(

4πσxx +
√

εt
μt

+
√

ε0
μ0

)2
+ 16π2σ 2

xy

;

Et,y =
8πE0

√
ε0
μ0

σxy(
4πσxx +

√
εt
μt

+
√

ε0
μ0

)2
+ 16π2σ 2

xy

;

Er,x =
−E0

((
4πσxx +

√
εt
μt

)2
+ 16π2σ 2

xy − ε0
μ0

)
(

4πσxx +
√

εt
μt

+
√

ε0
μ0

)2
+ 16π2σ 2

xy

;

Er,y =
8πE0

√
ε0
μ0

σxy(
4πσxx +

√
εt
μt

+
√

ε0
μ0

)2
+ 16π2σ 2

xy

.

The Faraday angle θF and Kerr angle θK are

tan θF = Et,y

Et,x
= 4πσxy√

ε0
μ0

+
√

εt
μt

+ 4πσxx

and

tan θK = −Er,y

Er,x
= −

8π
√

ε0
μ0

σxy(
4πσxx +

√
εt
μt

)2
+ 16π2σ 2

xy − ε0
μ0

.

Using the fine structure constant α = 2πe2

h

√
μ0

ε0
, we obtain the

Eqs. (14) and (15) in the Sec. V.
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