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The linear behavior of thermal transport has been widely explored, both theoretically and experimentally.
On the other hand, the nonlinear thermal response has not been fully discussed. In light of the thermal vector
potential theory [Tatara, Phys. Rev. Lett. 114, 196601 (2015)], we develop a general formulation to calculate
the linear and nonlinear dynamic thermal responses. In the DC limit, we recover the well-known Mott relation
and the Wiedemann-Franz (WF) law at the linear order response, which link the thermoelectric conductivity η,
thermal conductivity κ , and electric conductivity σ together. To be specific, the linear Mott relation describes
the linear η is proportional to the first derivative of σ with respect to Fermi energy (for brevity we call the
first derivative, the others are similar); and the linear WF law shows the linear κ is proportional to the zero
derivative (i.e., the σ itself). We found there are higher-order Mott relations and WF laws which follow an
order-dependent relation. At the second order, the Mott relation indicates that the second order σ is proportional
to the zero derivative of the second order η; but the second WF law shows that the second σ is proportional to
the first derivative of κ . At the third order, the derivative order increases once. Although we only did explicit
calculations up to the third-order response, we can deduce that the nth-order electric conductivity is proportional
to the (n − 2)th derivative of the nth-order thermoelectric conductivity for the nonlinear Mott relation; and the
nth-order electric conductivity is proportional to the (n − 1)th derivative of the nth-order thermal conductivity
for the nonlinear WF law. Since the second-order Hall effect has been studied in experiment, our theory may be
tested by measuring the second-order Mott and WF as well. Our theory is presented explicitly for fermions, and
it can also be applied to bosons. As an example, we calculate the second-order thermal conductivity of magnons
in a strained collinear antiferromagnet on a honeycomb, in which the linear response disappears.
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I. INTRODUCTION

The interaction of temperature gradient with matter encom-
passes a wide range of phenomena, including the conversion
of heat and electricity or spins, which is essential for the
engineering of thermoelectric and other energy-conversion
applications. Significant efforts have been devoted to under-
standing the thermal response in various materials, but most
of them are devoted to linear order. In analogy with the
anomalous Hall effect, Berry curvature plays a significant role
in thermoelectric transport, known as the anomalous Nernst
effect (ANE) [1–4]. Owing to the Onsager’s reciprocal rela-
tions, the Hall conductivity or Nernst coefficient have to be
vanishing in a time-reversal invariant system [5–7]. However,
with increasing interests on nonlinear properties of topolog-
ical materials, the nonlinear responses could appear in the
presence of time-reversal symmetry but with broken inversion
symmetry. Recently, the nonlinear anomalous Nernst effect
has been predicted in transition-metal dichalcogenides [8–10].
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These nonlinear thermal responses appear with distinctive
behaviors and have become promising tools for understanding
novel materials with low crystalline symmetry in experiments.

Most transport theories of thermally driven lattice systems
are mostly phenomenological and numerical. This is because
temperature gradients are macroscopic quantities after sta-
tistical averaging, and thus it is impossible to integrate into
the Hamiltonian in a straightforward way. However, Luttinger
provided a solution in 1964 [11]. To describe the effect of
temperature gradient, he introduced a fictitious scalar field �,
which is called the “gravitational” potential, that couples to
energy density h(r). The Luttinger’s Hamiltonian is

HL =
∫

d3r h(r)�(r). (1)

The Hamiltonian of the system is then given as H� =∫
d3r h� (r), with the modified energy density h� (r) = [1 +

�(r)]h(r). By the constriction of Einstein relation, the po-
tential satisfies ∇� = ∇T/T . In this way the dynamical
response of the system to the varying field � would be
equivalent to the response to a temperature gradient assuming
that the latter is slowly varying. Hence, the thermal transport
coefficient can be directly calculated by linear response theory
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with Kubo formula. In the following we call this original
proposal thermal scalar potential (TSP) method.

In the half century since the proposal of the original idea,
Luttinger’s method has found several applications in the cal-
culation of the linear thermoelectric response. Nonetheless,
a general nonlinear thermoelectric response theory is still
lacking. Another point is that the external field may cause the
electron to excite to another band or to move to a nearby k
point on the same band. Hence, it needs a unified treatment
of the two drift effects due to an external field in crystalline
systems. This problem is handled in nonlinear optical re-
sponse calculations, both in length gauge [12–16] and velocity
gauge [17,18]. Motivated by these developments, we devote to
developing a quantum theory for thermal response including
generally the linear and nonlinear responses.

However, it is proved that a direct application of the cou-
pling Hamiltonian (1) often leads to unphysical divergent
results as T → 0. It is shown that the divergence can be
eliminated by introducing the vector potential representation
[19]. By imposing the continuity equation for energy density
ε and energy current density jε, the Luttinger Hamiltonian (1)
can be transformed into vector potential form

HL =
∫

d3r jε(r, t ) · AT (t ), (2)

in which jε is the energy current density and AT is the thermal
vector potential, which satisfies

∂t AT (r, t ) = ∇�(r, t ) = ∇T (t )

T
. (3)

The Hamiltonian (2) is equivalent to Luttinger’s Hamiltonian.
The derivation of Eq. (2) in Ref. [19] is under the assumption
that the temperature gradient is static. In order to make it uni-
versally significant, we adopt a time-dependent temperature
gradient, and the vector potential Hamiltonian (2) is still valid.
For a comparison, we call the introduction of the vector poten-
tial representation as thermal vector potential (TVP) method.

For the case of electromagnetic vector potential A, the
charge conservation is guaranteed by the U(1) gauge in-
variance. However, for TVP AT , there is no such a gauge
symmetry. In velocity gauge, the minimal coupling free-
electron Hamiltonian including the thermal vector potential
is given by [19]

ĤAT = h̄2

2m

∑
k

(k − εkAT )2ĉ†
kĉk. (4)

For a general multiband Hamiltonian, the minimal coupling
Hamiltonian is generalized to

ĤAT = Ĥ0(k − Ĥ0AT ). (5)

The many-body crystalline Hamiltonian reads as

Ĥ0 =
∑
p,k

εpkĉ†
pkĉpk, (6)

where the latin index p is the band index.
In this work, we explicitly derive the dynamical thermal-

thermal and thermoelectirc response coefficients by devel-
oping a theory based on TVP, and consider their DC limit.
The frequency dependence of thermal-thermal response is

receiving more and more attention in recent years, as a crucial
issue especially for the thermal design of microprocessors in
which the clock frequencies work in GHz. It is crucial to
cool the Joule heat in such system [20]. Shastry [21,22] and
others [23,24] explored the linear dynamical thermal conduc-
tivity and thermoelectric response mediated by electrons and
phonons via the TVP method, while the nonlinear counterpart
has been given less attention, which should play an important
role when the linear part disappears due to symmetry. We ap-
ply a canonical perturbation theory, both in velocity gauge and
length gauge, to deal with the thermal nonlinear response with
quantum effect fully considered. In this method the nonlinear
thermal response fundamentally involves interband processes
which are difficult to model semiclassically.

The paper is organized as follows: In Sec. II we introduce
the perturbation expansion Hamiltonian in velocity gauge and
derive the nonlinear thermal response, including nonlinear
Nernst conductivity and nonlinear thermal conductivity. In
Sec. III we present the formula given by length gauge and
compare the semiclassical results in static limit. As an ex-
ample of application, we present a calculation of nonlinear
magnon Hall effect in a collinear antiferromagnetic system in
Sec. IV. The last section is dedicated to a summary of our
results.

II. PERTURBATION EXPANSION:
DIAGRAMMATIC APPROACH

In analogy with the relation between electric field and elec-
tromagnetic vector potential, we can define the corresponding
“thermal field” (ET ) to thermal vector potential AT as

ET = −∂AT

∂t
= −∇T (t )

T
, (7)

and their Fourier transformation

ET (ω) = iωAT (ω). (8)

The spatial variation of the temperature gradient is assumed
to be much larger than the material, so that the thermal field
has no spatial dependence. The particle current is expanded in
powers of the thermal field

〈
Ĵα

N

〉
(ω) =

∫
dω1Lαβ

12 (ω; ω1)Eβ
T δω1,ω

+
∫

dω1dω2Lαβγ

12 (ω; ω1, ω2)Eβ
T Eγ

T δω1+ω2,ω

+ · · · . (9)

The greek indices μ, α, β, · · · ∈ {x, y, z} are the space in-
dices, and Lμα1...αn

12 (ω; ω1 . . . ωn) is defined as the nth-order
thermoelectric conductivity tensor. The frequency before the
semicolon in the response thermoelectric conductivity tensor
Lμα1...αn

12 (ω; ω1 . . . ωn) represents the frequency of the output
response, and the frequencies after the semicolon represent
the frequencies of the input forces.

Before expanding the minimal coupling Hamiltonian (5)
in Taylor series, one should deal with the k-space derivatives
carefully. The important fact is that the Hamiltonian operator
is differentiated first and then its matrix elements are calcu-
lated. Owing to this covariance k derivative of operator Ô(k)
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is [18,25]

D̂k[Ô(k)]pq ≡ [∇kÔ(k)]pq = ∇kO(k)pq − i[Ak, Ô(k)]pq.

(10)

Here the covariant derivative operator is defined by D̂μ. In
Eq. (10) Ak is the Berry connection, and its component in α

direction is Aα
pq(k) = i〈upk| ∂

∂kα |uqk〉.
The partition function with thermal field is written as the

path integral

Z =
∫

d[c̄, c]exp

(
−i

∫
dt KAT

)
, (11)

in which KAT = HAT − μN = K̂0(k − K̂0AT ), with K0 =∑
p,k ε̃pkĉ†

pkĉpk, and ε̃p = εp − μ is the energy measured from
the Fermi energy.

Different from the direct expansion of Hamiltonian in
series of electromagnetic vector potential in calculating the
nonlinear electric conductivity, the Hermiticity should be en-
sured in expanding K̂AT in series of thermal vector potential
AT . For example, the first-order perturbation of K̂AT is

K̂AT ≈ K̂0 − 1
2 Aα

T [K̂0, D̂α[K̂0]]+, (12)

where the sum over space index α is implicit, and [. . . ]+ is the
anticommutation operation. To distinguish from the normal
bracket, we use [. . . ]− to denote the commutation operation in
the following. The grand-canonical ensemble energy operator
KAT can be expanded by Taylor series in terms of thermal
vector potential

K̂AT = K̂0 +
∞∑

n=1

(−1)n

n!

n∏
k=1

1

2
Aα1

T

[
K̂0, D̂α1

[
1

2
Aα2

T

[
K̂0, . . . ,

D̂α2

[
1

2
Aαk

T [K̂0, D̂αk [K̂0]]+

]]
+

]]
+
. (13)

Equation (10) can be used to write the velocity operator of the
unperturbed system as

v̂ = D̂[K̂0]. (14)

The higher-order direct derivatives of the unperturbed Hamil-
tonian are written as

ĥα1...αn = D̂α1 . . . D̂αn [K̂0]. (15)

We introduce the superoperator Dα which is defined as the
Hermitian derivative

D̂α[Ô] = 1
2 [K̂0, D̂α[Ô]]+. (16)

It should be noted that the Hermitian derivative superoperators
defined in Eq. (16) carry an additional dimension [energy]1

than that of the direct derivative. Hence, the Hermitian deriva-
tive of the unperturbed K0 is defined as

K̂α1...αn = D̂α1 . . . D̂αn [K̂0]. (17)

Again, the dimension of nth-order Hermitian derivative of the
unperturbed Hamiltonian is n-power higher than that of the
nth-order direct derivative of the unperturbed Hamiltonian.

Through Fourier transformation, the expanded KAT is sim-
plified as

K̂AT = K̂0 +
∞∑

n=1

1

n!

n∏
k=1

∫
dωkeiωkt −i

h̄ωk
Eαk

T (ωk )K̂α1...αk .

(18)

Very recently, a diagrammatic approach has been developed
to calculate the optical conductance in velocity gauge [18,26].
We generalize it in calculating the dynamical thermal re-
sponse: the propagation of the temperature gradient is defined
as a quasiparticle “thermalon.” With the aid of TVP concept,
the linear and nonlinear thermoelectric responses can be de-
rived and the mutual relation between heat and charge can be
studied at nonlinear level revealing deeper physics beyond the
linear response.

The local particle current operator is defined as ĴN ≡ v̂T ,
here v̂T is the velocity operator in the perturbed system de-
pending on the thermal field

υ̂α
T (t ) =D̂α[K̂AT ]

=
∞∑

n=1

1

n!

n∏
k=1

∫
dωkeiωkt −i

h̄ωk
Eαk

T (ωk )D̂α[K̂α1...αk ].

(19)
The local heat current operator is defined as ĴQ = ĴE − μĴN ,
with μ the chemical potential. An exact from of the energy
current operator ĴE can be derived from the conservation
equation using Luttinger’s Hamiltonian [27]

∂ ĥ� (r)

∂t
= 1

ih̄
[ĥ� (r), Ĥ� ] = −∇ · ĴE (r). (20)

Using H� = HAT , the result is (for the derivation in detail see
Appendix A)

Ĵα
Q = 1

2

(
v̂α

T K̂AT + K̂AT v̂α
T

)− ih̄

8

∑
γ

∇γ

(
v̂α

T v̂
γ
T − v̂α

T v̂
γ
T

)
. (21)

It has been proved that the last term cancels when calculat-
ing the Kubo formula. In this case the heat current operator
converts to the usual anticommutator representation ĴQ =
1
2 [K̂AT , v̂T ]+. It is worth noting that the heat current operator
defined through the conservation equation is compatible with
the definition via the thermodynamics of the entropy flux (see
Appendix A). An important issue in thermally driven current
transport is the magnetization effect. Owing to the orbital
motion of Bloch electrons, the magnetization current should
be subtracted from the local current [1,27,28]

Jtr
N (E ) = JN (E ) − ∇ × MN (E )(r), (22)

in which Jtr
N (E ) is the electric (energy) current for transport,

JN (E ) is the local charge (energy) current, and MN (E )(r) is
the particle (energy) magnetization density. The transport heat
current is evaluated as

Jtr
Q = Jtr

E − μJtr
N . (23)

Alternatively, the heat magnetization can be introduced
through the relation [29–31]

MQ(r) ≡ ME (r) − μMN (r). (24)
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The transport heat current is given as

Jtr
Q = JQ − ∇ × MQ(r), (25)

in which the local heat current is given as

JQ = JE − μJN . (26)

Combining Eqs. (22), (24), and (26), one can verify that the
two definitions of transport heat current, Eqs. (23) and (25),
are equivalent:

Jtr
Q = JQ − ∇ × MQ

= JE − μJN − ∇ × (ME − μMN )

= (JE − ∇ × ME ) − μ(JN − ∇ × ME )

= Jtr
E − μJtr

N . (27)

Similar derivation can be found in [32]. In the rest of this
paper, the transport heat current is calculated through Eq. (25).
The density matrix is written as

ρ̂ ≈ ρ̂leq + ρ̂1, (28)

where ρ̂leq is the local equilibrium density matrix char-
acterized by the local chemical potential μ(r) and local
temperature T (r),

ρ̂leq = 1

Z
exp

[
−

∫
dr

ĥ(r) − μ(r)n̂(r)

kBT (r)

]
, (29)

and ρ1 is the linear response correction to the local equilib-
rium density matrix. Therefore, the local current is contributed
by two parts

JN (Q) = JKubo
N (Q) + Jleq

N (Q), (30)

where JKubo
N (Q) is the direct response current, which is the direct

conjugate variable of magnetic vector potential A (which will
be noted as AB in the following for clarity) and TVP AT .
Jleq

N (Q) is the local equilibrium current, which comes from
the inhomogeneous local chemical potential and temperature
field. The local equilibrium current satisfies [29]

Jleq
N = ∇ × MN (r) − MN (r) × ET , (31)

Jleq
Q = ∇ × MQ(r) − MN (r) × E − 2MQ(r) × ET . (32)

The expressions for the local equilibrium current (31) and (32)
convert to the bulk magnetization current when considering
a finite system [27]. Noting that for transport current, the
magnetization current should be subtracted [see Eq. (22)].
For electric-electric response, the local equilibrium current
exactly cancels the magnetization current, and the transport is
uniquely determined by Kubo formula. However, for electric-
thermal, thermoelectric, and thermal-thermal responses, the
terms proportional to external fields do not cancel the mag-
netization, which leave as the correction to Kubo formula.
Hence, the transport currents become

Jtr
N = JKubo

N − MN (r) × ET , (33)

Jtr
Q = JKubo

Q − MN (r) × E − 2MQ(r) × ET . (34)

The expectation values of Kubo response currents JKubo
c(h) are

JKubo
N (Q) = 1

Z
δZ[AB(T )]

δAB(T )
, (35)

with the path-integral form

〈
Ĵ

Kubo
N (Q)(t )

〉 = 1

Z Tr
[
T ĴN (Q)(t )e−i

∫
dt ′KAB(T ) (t ′ )]

= 1

Z

∫
d[c̄, c]JN (Q)(t )exp

[
−i

∫
dt ′KAB(T ) (t

′)
]
,

(36)

where d[c̄, c] denotes the functional measure with c̄, c the
Grassmann variables constructing the Hamiltonian.

The zero-field expectation values of the particle magneti-
zation and heat magnetization are

MN (Q) = − lim
BB(T )→0

δ�[BB(T )]

δBB(T )
, (37)

where � = F − T S is the grand thermodynamic potential, the
Landau free energy can be written as F = − 1

β
log(Z ). It is

convenient to introduce the auxiliary particle (heat) magneti-
zation

M̃N (Q) = − lim
BB(T )→0

δF [BB(T )]

δBB(T )
(38)

which can be alternatively written in a TVP form by taking
the long-wavelength limit [29,31,33]

M̃N (Q) = lim
l→0

∇l × δF [AB(T )]

δAB(T ),l
. (39)

M̃N and M̃N in path-integral formalism are written as

〈M̃N (t )〉 = β

2i
∇l × 1

Z

∫
d[c̄, c]KAT ,−l (t )D[K0,l ]

× exp

[
−i

∫
dt ′KAT (t ′)

]
, (40)

〈M̃Q(t )〉 = β

2i
∇l × 1

Z

∫
d[c̄, c]KAT ,−l (t )D[K0,l ]

× exp

[
−i

∫
dt ′KAT (t ′)

]
. (41)

By use of the Maxwell relation ∂S/∂B = ∂M/∂T, the particle
(heat) magnetization satisfies [29,31,33]

∂ (βMN )

∂β
= M̃N , (42)

∂ (βMQ − βδMQ)

∂β
= M̃Q. (43)

With the notation J1(2) ≡ Jc(h), E1 ≡ E , E2 ≡ ET , and
M1(2) ≡ MN (Q), we introduce the set of transport equations
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at nth order [
J (n),α

1 (ω)

J (n),α
2 (ω)

]
=

[
Ltr,(n)

11 Ltr,(n)
12

Ltr,(n)
21 Ltr,(n)

22

][∏n
k=1 Eαk

1 (ωk )∏n
k=1 Eαk

2 (ωk )

]
, (44)

with the response functions

Ltr,(n)
i j =

[
n∏

k=1

∫
dωk

][
LKubo,αα1...αn

i j (ω; ω1 . . . ωn) − εαα1γCi jM
γα2...αn
i j (ω; ω1 . . . ωn)

]
δω,ω1+···+ωn , (45)

where C11 = 0, C12 = C21 = 1/β, C22 = 2/β and εαβγ is the Levi-Civita symbol. The Kubo responses LKubo
i j are given by

LKubo,αα1...αn
i j (ω; ω1 . . . ωk ) =

∫
dt

2π
eiωt

n∏
k=1

∫
dtk
2π

eiωktk
δ

δEαk
j (ωk )

〈
Ĵα

i (t )
〉∣∣∣∣

E
αk
j (ωk )=0

, (46)

and we define the magnetization response Mi j :

Mγα2...αn
i j (ω; ω1 . . . ωk ) =

∫
dt

2π
eiωt

n∏
k=1

∫
dtk
2π

eiωktk
δ

δEαk
j (ωk )

〈
M̂γ

i (t )Eα1
j (t )

〉∣∣∣∣
E

αk
j (ωk )=0

. (47)

Based on the form of Eqs. (36) and (40), the Kubo contri-
bution of the charge current is dually expanded in powers of
TVP, given that the velocity operator and the exponent depend
on TVP, while the magnetization is singly expanded. Hence,
the nth-order response is computed by drawing all connected
diagrams. One should pay attention to drawing the diagrams
that the outgoing vertex which corresponds to the expansion
of v and incoming vertex which corresponds to the expansion
of action should be distinguished.

Thus, the nth-order thermoelectric response is calculated
using the following rules:

(1) For the Kubo contribution LKubo
12 , draw all the con-

nected diagrams including n incoming thermalon lines
connected by incoming vertexes (symbolled as •) and an
outgoing photon line connected by one outgoing vertex (sym-
bolled as ◦). All the inner lines are composed of electron
propagators.

For the magnetization M12, a subtle point is that two types
of incoming vertices should be distinguished. One of which
(symbolled as �) connects a thermalon line with the momen-
tum l , the other is the one identical to that of LKubo

12 . The
outgoing vertex (symbolled as �) connects only one photon
line with the momentum −l .

(2) Integrate over the internal frequencies. The electron
propagator is the free-fermion Green’s function Gp(ω) =
1/(ω − εp + μ). The propagation of thermalon is treated clas-
sically, with the propagator being unity. For the Kubo term
LKubo

12 , the value of incoming vertex connecting n thermalon is∏n
k=1( i

h̄ωk
)Kα1...αn

pq , and the value of outgoing vertex connect-

ing n thermalon is
∏n

k=1( i
h̄ωk

)Dα1 [K]α2···αn
pq .

For the magnetization M12, the l-dependent incoming
vertex is 1

2 [
∏n

k=1( i
h̄ωk

)Kα1...αn
pq,k + ∏n

k=1( i
h̄ωk

)Kα1...αn
pq,k+l ]. The out-

going vertex is 1
2 (hα

pq,k + hα
pq,k+l ). Then calculate the curl with

respect to l in the long-wavelength limit l → 0, and integrate
the auxiliary magnetization with respect to β by use of the
relations (42) and (43) to obtain the magnetization.

(3) Multiply the symmetry factor by permuting αk and ωk .
The values of the vertices for the Kubo contribution are listed
in Table I and that for the magnetization are listed in Table II.

A. Linear thermoelectric response

The linear thermoelectric response is given by
LKubo,αβ

12 (ω; ω1) − εαβγ Mγ
N |ET =0. Following these rules,

LKubo,αβ

12 (ω; ω1) is found to be

LKubo,αβ

12 (ω; ω1) = i

h̄ω1

∑
p,q

∫
k

∫
dω′{Kβ

pqGq(ω′ + ω)

× hα
pqGp(ω′) + Dα[Kβ]ppGp(ω′)

}
. (48)

The integration is over the first Brillouin zone (FBZ), with∫
k = ∫

FBZ d3k/(2π )3. The corresponding diagrams are shown
in Fig. 1. This expansion closely resembles that of [18] but
has several differences due to the structure of the minimal
coupling thermally perturbed Hamiltonian (4). The first-order
Hermitian derivative is expanded as

K̂α = 1
2 (K̂0ĥα + ĥαK̂0) (49)

TABLE I. Values of vertices for the Kubo contribution of electric-electric, thermal-electric, electric-thermal, and thermal-thermal responses.

Incoming vertex • Outgoing vertex ◦
LKubo

11

∏n
k=1( ie

h̄ωk
)hα1 ...αn

pq e
∏n

k=1( i
h̄ωk

)hμα1 ...αn
pq

LKubo
12

∏n
k=1( i

h̄ωk
)Kα1 ...αn

pq e
∏n

k=1( i
h̄ωk

)Dμ[K]α1 ...αn
pq

LKubo
21

∏n
k=1( ie

h̄ωk
)hα1 ...αn

pq

∏n
k=1

∑n
a=0( i

h̄ωk
) 1

2 [Kα1 ...αa , en−ahμαa ···αn−a ]pq

LKubo
22

∏n
k=1( i

h̄ωk
)Kα1 ...αn

pq

∏n
k=1

∑n
a=0( i

h̄ωk
) 1

2 [Kα1 ...αa ,Kμαa ...αn−a ]pq
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TABLE II. Values of the momentum-dependent vertices for the particle and heat magnetization.

Incoming vertex � Outgoing vertex �
M11

1
2 [

∏n
k=1( i

h̄ωk
)hα1 ...αn

pq,k + ∏n
k=1( i

h̄ωk
)hα1 ...αn

pq,k+l ]
1
2 (hα

pq,k + hα
pq,k+l )

M12
1
2 [

∏n
k=1( i

h̄ωk
)‖α1 ...αn

pq,k + ∏n
k=1( i

h̄ωk
)Kα1 ...αn

pq,k+l ]
1
4 [(ε̃p,k + ε̃q,k )hα

pq,k + (ε̃p,k+l + ε̃q,k+l )hα
pq,k+l ]

M21
1
2 [

∏n
k=1( i

h̄ωk
)hα1 ...αn

pq,k + ∏n
k=1( i

h̄ωk
)hα1 ...αn

pq,k+l ]
1
2 (hα

pq,k + hα
pq,k+l )

M22
1
2 [

∏n
k=1( i

h̄ωk
)Kα1 ...αn

pq,k + ∏n
k=1( i

h̄ωk
)Kα1 ...αn

pq,k+l ]
1
4 [(ε̃p,k + ε̃q,k )hα

pq,k + (ε̃p,k+l + ε̃q,k+l )hα
pq,k+l ]

and

Dα[K̂β] = 1
2 Dα[K̂0Dβ[K̂0] + Dβ[K̂0]K̂0]

= 1
2 (ĥα ĥβ + K̂0ĥαβ + ĥαβK̂0 + ĥβ ĥα ). (50)

Noting that the K̂0 is a diagonal matrix, the Nernst coefficient
becomes [ααβ (ω; ω1) reduces to ααβ (ω) due to the conserva-
tion of energy]

LKubo,αβ

12 (ω) = i

h̄ω1

∑
p,q

∫
k

∫
dω′

{
1

2

[
ε̃phα

pqGq(ω′ + ω)

×hα
qpGp(ω′) + hβ

pqGq(ω′ + ω)ε̃qhα
qpGp(ω′)

]
+

(
ε̃phαβ

pp + 1

2
hα

pqhβ
qp + 1

2
hβ

pqhα
qp

)
Gp(ω′)

}
.

(51)

The ε̃ should be read as ε − μ for simplicity. According to
Eq. (10), the second-order covariant derivative of K̂0 is

hαβ
pq = Dα[hβ]pq = ∂βhα

pq − i[Aβ, hα]pq. (52)

Together with the relation Aα
pq = vα

pq/iεpq(p �= q) (originat-
ing from the relation vα

pq = ∂αεpδpq − i[Aα, H0]pq), the linear

LKubo,αβ
12 (ω; ω1) =

β, ω1 α, ω

ω′ + ω1, q

ω′, p

+

β, ω1

α, ω

ω′, p

M̃γ
12(ω; ω1) =

∂
∂lβ

( )lim
l→0

β, ω1, l α, ω,−l

ω′ + ω1, q,k + l

ω′, p,k

FIG. 1. Diagrammatic representation of LKubo,αβ

12 and M̃γ

12. The
dashed line connects to a current operator, and the wavy lines are
thermalons describing the couplings to thermal field. The momentum
of the electron propagators in LKubo,αβ

12 is suppressed.

thermoelectric response is given by

LKubo,αβ

12 (ω) = i

h̄ω1

∑
p,q

∫
k

[
ε̃p∂

β fpv
α
p + 1

2
(ε̃p + ε̃q)vβ

pq

× vα
qp

fpq

ω + εpq
− ε̃p

(
vβ

pqv
α
qp

εpq
− vα

pqv
β
qp

εqp

)
fp

+ 1

2

(
vβ

pqv
α
qp + vα

pqv
β
qp

)
fp

]
,

where fpq = fp − fq and εpq = εp − εq, and the sum over
band indices is only performed over the indices appearing in
each term. After some simple algebra, we obtain

LKubo,αβ

12 (ω) = i

h̄ω1

∑
p,q

∫
k

[
ε̃p∂

β fpv
α
p + 1

2
(ε̃p + ε̃q)

× vβ
pqv

α
qp

(
fpq

ω + εpq
− fpq

εpq

)]
, (53)

where the identity vα
pq = hα

pq is used. The first term corre-
sponds to the intraband contribution with normal derivative,
playing the role of the Drude weight in the dynamical ther-
moelectric response, and the later terms are the interband
contributions and as we demonstrate below, they manifest
themselves as the Berry curvature in the static state limit.

Now we give the derivation of Mγ

12. Referring to Eq. (40),
we first derive M̃γ

12 as

M̃γ

12 = i

4h̄

∑
p,q

∫
k

∫
dω′ ∂

i∂lβ

[
(ε̃p,k + ε̃q,k+l )

×Gp,k(ω′ + ω)
(
hα

pq,k + hα
pq,k+l

)
Gq,k+l (ω)

]
. (54)

Performing the frequency integral, it becomes

M̃γ

12 = i

4h̄

∑
p,q

∫
k

∫
dω′ ∂

i∂lβ

[
(ε̃p,k + ε̃q,k+l )

×(
vα

pq,k + vα
pq,k+l

) fp,k − fq,k+l

ω − (εp,k − εq,k+l )

]
. (55)

We first consider the interband contribution for p �= q. In the
long-wavelength limit l → 0, we have

M̃γ ,inter
12 = i

h̄

∑
p�=q

∫
k

1

2
(ε̃p + ε̃q)

vα
pqv

β
qp

(ω − εpq)εpq
fpq. (56)

The intraband contribution M̃γ ,intra
12 at l → 0 when p = q is

given by

M̃γ ,intra
12 = i

2h̄

∑
p,q

∫
k

[
−ε̃p

(
vα

pqv
β
qp − vβ

pqv
α
qp

)
(ω − εpq )εpq

∂ fp

∂εp

]
. (57)
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Therefore, we have

M̃γ

12 = i

2h̄

∑
p,q

∫
k

[
(ε̃p + ε̃q)

vα
pqv

β
qp

(ω − εpq)εpq
fpq

−ε̃p

(
vα

pqv
β
qp − vβ

pqv
α
qp

)
(ω − εpq)εpq

∂ fp

∂εp

]
. (58)

Integrating Eq. (58) with respect to β from Eq. (42), we obtain
(see Appendix C for detail)

Mγ

12 = i

h̄

∑
p,q

∫
k

{(
vα

pqv
β
qp − vβ

pqv
α
qp

)
(ω − εpq)εpq

×
[

1

2
(ε̃p − ε̃q) fp + 1

β
ln(1 + e−βεp )

]}
. (59)

In the DC limit, it becomes

Mγ

12 =
∑

p

∫
k

[
mγ

1,p fp + 1

β h̄
�γ

p ln(1 + e−βε̃p )

]
. (60)

The first term manifests itself as the particle magnetic mo-
ment, which is given as [1,34]

mγ
p = −1

h̄
εαβγ Im〈∂αup|(Ĥ0 − εp)|∂βup〉. (61)

In Refs. [1,34], the derivation of Eq. (61) starts from a
wave-packet hypothesis, however, its final expression does not
depend on the actual shape and size of the wave packet and
only depends on the Bloch functions. Therefore, the orbital
moment is an intrinsic property of the band. Alternatively,
integrating by part, the magnetization (60) can be given as

Mγ

12 =
∑

p

∫
k

[
mγ

p fp − 1

e2

∫
dε σ γ

p (ε) fp

]
, (62)

where σ
γ
p (ε) = e2

h̄

∫
[dk]�(ε − εk)�γ

p (k) is the p-band con-
tribution to the zero-temperature Hall conductivity with Fermi
energy ε. Combining Eqs. (53) and (59), we finally obtain the
dynamical linear thermoelectric response

Ltr,αβ

12 = i

h̄

∑
p,q

∫
k

[
1

ω
ε̃pv

β
p vα

p

∂ fp

∂εp
−

(
vα

pqv
β
qp − vβ

pqv
α
qp

)
(ω − εpq)εpq

×[ε̃p fp + kBT ln(1 + e−βε̃p )]

]
. (63)

In the DC limit,
∑

q(vβ
pqv

α
qp − vα

pqv
β
qp)/ε2

qp is recognized as the
Berry curvature. Hence, we have

Ltr,αβ

DC,12(ω) = 1

h̄

∑
p

∫
k

{
i

1

ω
ε̃pv

β
p vα

p

∂ fp

∂εp
+ εαβγ �γ

p

×[ε̃p fp + kBT ln(1 + e−βε̃p )]

}
. (64)

The first term corresponds to the Drude weight of energy
current transport, which diverges in the DC limit. This is
because the considered system is a clean one. In real materials
the electrons are scattered and have finite lifetime, where the

electrons are not accelerated everlastingly. The second term is
the topological contribution, which is represented by the Berry
curvature. It is seen that the fictitious divergence is eliminated
in the TVP method.

The thermoelectric conductivity η is related to the ther-
moelectric response by ηαα1...αn = Ltr,αα1...αn

12 /T n. The linear
anomalous Nernst conductivity is given by ηαβ = Ltr,αβ

12 /T .
By introducing the entropy density Sp = − fp ln fp − (1 −
fp) ln(1 − fp) of p-band electrons and neglecting the Drude
term, the anomalous Nernst conductivity can be written as

ηαβ (ω) = ekB

h̄
εαβγ

∑
p

∫
k
�γ

p Sp. (65)

Referring to Eq. (65), the expression of anomalous Nernst
conductivity is consistent with the formula derived by wave-
packet theory in Ref. [1].

B. Linear thermal-thermal response

The rules of dynamical thermal conductivity are similar
to those of thermoelectric response, but with different vertex
functions. The value of outgoing vertex connecting n photon
is

∏n
k=1( i

h̄ωk
) 1

2 [hα1...αp, hαμαp...αn−p]pq, and for incoming vertex

it is
∏n

k=1( i
h̄ωk

)Kα1...αn
pq . Hence, the linear thermal-thermal re-

sponse is given by

LKubo,αβ

22 (ω)

= i

h̄ω1

∑
p,q

∫
k

∫
dω′Kβ

pqGq(ω′ + ω)Kα
qpGp(ω′)

+ e

h̄ω1

∑
p

∫
k

∫
dω′

(
Kαβ

pp + 1

2
[Kβ, hα]pp

)
Gp(ω′),

(66)

where the expansion of the second-order Hermitian derivative
Kμα is involved (see Appendix B). Integrating the Matsubara
frequencies, it yields

LKubo,αβ

22 (ω) = i

h̄ω1

∑
p,q

∫
k

[
ε̃2

p∂
β fpv

α
p + 1

4
(ε̃p + ε̃q)2

× vβ
pqv

α
qp

fpq

ω − εpq
+ 1

2
ε̃p

(
hα

pqhβ
qp + hβ

pqhα
qp

)
fp

+ 1

4
(ε̃p + ε̃q)

(
hα

pqhβ
qp + hβ

pqhα
qp

)
fp

− ε̃2
p

(
hβ

pqhα
qp

εpq
− hα

pqhβ
qp

εqp

)
fpq

]
, (67)

which can be written in a compact form

LKubo,αβ

22 (ω) = i

h̄ω

∑
p,q

∫
k

{
ε̃2

pv
α
p∂β fp + 1

4
(ε̃p + ε̃q)2

×vβ
pqv

α
qp fpq

(
1

ω − εpq
+ 1

εpq

)}
. (68)
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Now we give the derivation of Mγ

22. According to Eq. (41),
we have

M̃γ

22 = i

4h̄

∑
p,q

∫
k

∫
dω′ ∂

i∂lβ

[
(ε̃p,k + ε̃q,k+l )Gp,k(ω′ + ω)

× (
Kα

pq,k + Kα
pq,k+l

)
Gq,k+l (ω)

]
. (69)

Performing the frequency integral, it becomes

M̃γ

22 = i

4h̄

∑
p,q

∫
k

∫
dω′ ∂

i∂lβ

[
(ε̃p,k + ε̃q,k+l )

×(
ε̃p,kv

α
pq,k + vα

pq,k+l ε̃q,k+l
) fp,k − fq,k+l

ω − (εp,k − εq,k+l )

]
.

(70)

Following the same steps as in the previous section by collect-
ing both the intraband and interband contributions, we have

M̃γ

22 = − i

4h̄

∑
p,q

∫
k

[
2(ε̃p + ε̃q)2

vα
pqv

β
qp

(ω − εpq)εpq
fpq

+(
ε̃pε

2
pq − 4ε̃p

2εpq
)(

vα
pqv

β
qp − vβ

pqv
α
qp

)
(ω − εpq)εpq

∂ fp

∂εp

]
. (71)

Integrating Eq. (71) with respect to β [via Eq. (43)] from β to
∞, we obtain (see Appendix C for details)

Mγ

22 = − i

h̄

∑
p,q

∫
k

{(
vα

pqv
β
qp − vβ

pqv
α
qp

)
(ω − εpq)εpq

×
[

1

4
(ε̃p + ε̃q)2 fp +

∫ ∞

ε̃p

dλ λ2 ∂ fp(λ)

∂λ

]}
. (72)

By use of the identity
∫ ∞
ε̃p

dλ λ2 ∂ fp(λ)
∂λ

= − ∫ fp

0 (log 1+t
t )2dt =

c2( fp) and taking DC limit, we have

Mγ

22 = − 1

h̄

∑
p

∫
k

[
wγ

p fp + c2( fp)�γ
p

]
, (73)

where the weight function is c2( fp) = ( fp − 1) ln2( f −1
p −

1) + ln2 fp + 2Li2( fp), with Li2(x) being the polylogarithm
function. We introduce the notation

wγ
p = 1

h̄
εαβγ

∑
p

1

2
Im〈∂αup|(Ĥ0 + εp)2|∂βup〉. (74)

Combining Eqs. (72) and (68), we have

Ltr,αβ

22 (ω)

= i

h̄

∑
p,q

∫
k

[
1

ω
ε̃2

p∂
β fpv

α
p +

(
vα

pqv
β
qp − vβ

pqv
α
qp

)
(ω − εpq)εpq

c2( fp)

]
.

(75)

In the DC limit, it yields

Ltr,αβ

22 (ω) = 1

h̄

∑
p

∫
k

[
i

1

ω
ε̃2

p∂
β fpv

α
p − c2( fp)�γ

p

]
.

(76)

The first term is the Drude-type term in heat transport, the
second term is the Berry curvature contribution.

Now we present a study of correlations between the
thermal conductivity and electric conductivity. Including the
transverse transport, the Lorentz number should be general-
ized into a tensor form

καβ

σαβ
= LαβT, (77)

where Lαβ is defined as the Lorentz tensor. First, we consider
the longitudinal transport. Note that the Drude term in the
linear response of κ and σ corresponds to the contribution
of intraband elements. When α = β, the topological term
vanishes and only the Drude term survives. Hence, the lon-
gitudinal response is fully determined by the Drude term. We
write the longitudinal electric conductivity as

σ xx
L (ω; ω1) = e2

h̄

∑
p

∫
k

∂x fpv
x
p

ω
, (78)

which is written as

σ xx
L (ω; ω1) = e2

h̄ω

∑
p

∫
dεp

∫
k

∂ fp

∂εp

(
∂εp

∂kx

)2

δ(εp − εp,k).

(79)

The longitudinal thermal conductivity is given by

κxx
L (ω; ω1) = 1

T h̄ω

∑
p

∫
dεp

∫
k
ε2

p

∂ fp

∂εp

(
∂εp

∂kx

)2

×δ(εp − εp,k). (80)

We can make use of the low-temperature expansion

− ∂ fp

∂εp
= δ(εp − μ) + π2

6
(kBT )2 ∂2

∂ε2
p

δ(εp − μ)

+7π4

360
(kBT )4 ∂4

∂ε4
p

δ(εp − μ) + · · · . (81)

Inserting Eq. (81) into (80) and (79), the WF law in longitudi-
nal direction is obtained

κxx
L

σ xx
L

= LT, (82)

with L = 1
3 ( kBπ

e )2 = 2.44 × 10−8 W �/K2 is the well-known
Lorentz number [35].

For transverse transport, according to the expression (76),
the thermal conductivity can be rewritten as

κ
xy
T = − 1

e2T

∫
dε(ε − μ)2 ∂ f (ε)

∂ε
σ xy(ε), (83)

where σ xy(ε) = −e2

h̄

∑
p

∫
k θ (ε − εp,k)�xy(k) is the intrinsic

anomalous Hall conductivity at zero temperature with Fermi
energy ε. Given a similar low-temperature expansion, the WF
law for transverse transport is verified [36], with the off-
diagonal elements of the Lorentz tensor given by Lxy = L. We
conclude that the linear WF law reads as

καβ = LT σαβ, (84)
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LKubo,αβγ
12 (ω; ω1, ω2) =

β, ω1

γ, ω2

α, ω + α, ω

β, ω1

γ, ω2

+ β, ω1

α, ω

γ, ω2

+ β, ω1

α, ω

γ, ω2

M̃γβ
12 (ω; ω1, ω2) =

∂
∂lβ

( )l→0

β, ω1

γ, ω2, l

α, ω,−l + α, ω, −l

β, ω1

γ, ω2, l

FIG. 2. Diagrammatic representation of second-order thermo-
electric response, including the second-order Kubo contribution
LKubo,αβγ

12 and the local equilibrium contribution M̃γβ

12 .

which states that the linear thermal conductivity is pro-
portional to the linear electric conductivity both for the

longitudinal and transverse transport. In this work, we call
Eq. (84) as the linear WF law or the first-order WF law.

C. Second-order thermoelectric response

Now we consider the second-order thermoelectric response
Lαβγ

12 . At second order it is composed of four types diagrams,
as shown in Fig. 2. By using of the Hermitian derivation
operator Kα1...αk defined in Sec. II, the Kubo contribution to
second-order thermoelectric response is given by

LKubo,αβγ

12 (ω; ω1, ω2)

= − 1

h̄2ω1ω2

∑
p,q,r

∫
k

∫
dω′{[Dα[Kβγ ]]ppGp(ω′)

+ 2Gp(ω′)Kβ
pqGq(ω′ + ω1)Dα[Kγ ]qp

+ Gp(ω′)Kβγ
pq Gq(ω′ + ω12)hα

qp

+ Gp(ω′)Kβ
pqGq(ω′ + ω1)Kγ

qrGr (ω′ + ω2)hα
r p

}
+ (β ↔ γ , ω1 ↔ ω2), (85)

where (β ↔ γ , ω1 ↔ ω2) denotes symmetrization under si-
multaneous swap of the indices (β, γ ) and the frequencies
(ω1, ω2). The energy conservation is constrained by ω =
ω12 = ω1 + ω2. It can be seen from Fig. 2 that for the Kubo
contribution, the first diagram describes a process where
thermalons interact sequentially. In contrast, the other three
diagrams contain vertices of order greater than one, which
is described by instantaneous processes with two or three
interaction events. Performing the integral over Matsubara
frequencies, we obtain

LKubo,αβγ

12 (ω; ω1, ω2) = − 1

h̄2ω1ω2

∑
p,q,r

∫
k

{
1

2
fp[Dα[Kβγ ]]pp

fpq

ω1 − εpq
Kβ

pqDα[Kγ ]qp + 1

2

fpq

ω1 + ω2 − εpq
Kβγ

pq hα
qp

+Kβ
pqKγ

qrhα
r p

(ω1 − εrq) fpq + (ω1 − εqp) frq

(ω1 − εqp)(ω2 − εrq)(ω1 + ω2 − εqp)

}
. (86)

To keep the shorthand notation, we leave the expansion of the vertices in Appendix B. The magnetization response is given by

M̃γ β

12 (ω; ω1, ω2) = i

4h̄

∑
p,q,r

∫
k

∫
dω′ ∂

i∂lβ

[
Gp,k(ω′)

(
Kγ

pq,k + Kγ

pq,k+l

)
Gq,k+l (ω

′ + ω1 + ω2)
(
hα

qp,k + hα
qp,k+l

)

+Gp,k(ω′)(ε̃p,k + ε̃q,k+l )Gq,k+l (ω
′ + ω1)

(
hα

qr,k + hα
qr,k+l

)
Gr,k(ω′ + ω1 + ω2)Kβ

r p,k

]
. (87)

After the integral over ω′, we derive

M̃γ β

12 (ω; ω1, ω2) = i

4h̄

∑
p,q,r

∫
k

∂

i∂lβ

[
1

2

(
Kγ

pq,k + Kγ

pq,k+l

)(
hα

qp,k + hα
qp,k+l

) fpq

ω1 + ω2 − εpq

+(ε̃p,k + ε̃q,k+l )
(
hα

qr,k + hα
qr,k+l

)
Kβ

qr,k

(ω1 − εrq ) fpq + (ω1 − εqp) frq

(ω1 − εqp)(ω2 − εrq)(ω1 + ω2 − εqp)

]
. (88)

Considering that the partial differential in M̃γ β

12 involves
many terms, an analytical treatment of M̃γ β

12 is rather te-
dious. Instead, it is more convenient to treat it numerically.

The same process applies to the second-order electric-
thermal response Ltr,αβγ

21 and thermal-thermal response
Ltr,αβγ

22 .
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Different methods are proposed to include finite relaxation
rates into nonlinear responses [37–39], both in length gauge
and velocity gauge. Referring to Eq. (86), which involves
the electron transfer processes between two or more bands
leading to different relaxation times, it is more accurate to
correct the covariant derivative by relaxation rate �mn for
excited states [40]

vα
pq = ∂αεpδpq − iεpqAα

pq −
∑

r

(
Aα

pr�rq − �prAα
rq

)
. (89)

In order to make a direct connection to the semiclassical
result, the simple replacement ω → ω + i� is adopted. Due
to the finite lifetime of electrons, the propagator is replaced by
1/(ω + i�), where � is the imaginary part of the self-energy
and τ = 1/� is the electron relaxation time.

The expansion of the vertices might appear pretty verbose,
but crucially it allows us a straightforward identification of the
physical processes. By taking ω → 0 the static limit response
can be directly implemented in numerics. However, a direct
conversion to the static-state results is rather laborious. As we
show in the following, it is much easier to do this in length
gauge.

III. STATIC-STATE RESULTS: LENGTH GAUGE

As discussed in Sec. II, the formalism given in velocity
gauge pertains to more apparent physical picture for the res-
onant structure of interband transition induced by the thermal
field. However, in most cases we focus on the analysis of
the steady-state response of temperature gradient and it is
easier to do it in length gauge. Both approaches yield identical
results in the clean limit. The wave functions between the two
gauges are related by a time-dependent unitary transformation
[38,40,41]. After taking many sum rules the results in velocity
gauge are transformed to those of length gauge.

Perturbed by the thermal field, the Hamiltonian in length
gauge is given as

ĤET = Ĥ0 + 1
2 (Ĥ0r̂ + r̂Ĥ0) · ET . (90)

In terms of the relation r̂ = iD̂ between the covariant deriva-
tive and the position operator, HET is rewritten as

ĤET = Ĥ0 + iD̂ · ET , (91)

where the definition D̂[O] = 1
2 [Ĥ0, D̂[O]]+ is used. We

adopt the reduced density matrix (RDM) equations-of-motion
approach [38] to calculate the nonlinear thermal response in
length gauge. The RDM in band space is given by the average
of the product of a creation and a destruction operator in Bloch
states

ρkpq(t ) ≡ 〈c†
pk(t )cqk(t )〉. (92)

The standard density-matrix formalism is performed by ex-
panding the RDM in powers of the thermal field in calculating
the nonlinear thermal response.

In analogy with the optical conductivity σ (ω) which de-
scribes the response of the transient charge current to a
time-dependent electric field E(t ), we can define the dynam-
ical Nernst (or thermal Hall) conductivity, as the response
of the transient charge (heat) current to a time-dependent
temperature gradient field ∇T (t ).

The expectation values of the Kubo contribution of the
charge (heat) current are given by

JKubo,α
N (Q) (t ) = Tr

[
Ĵα

N (Q)ρ(t )
]
, (93)

where α = x, y, z, Ĵα
c ≡ ev̂α , and Ĵα

h ≡ 1
2 [Ĥ0, v̂

α]+. For sim-
plicity we suppose that the system is only perturbed by the
thermal field. According to Eqs. (60) and (73), the particle
magnetization which can be expressed in form of the RDM

Mγ
N = Tr

[∫
k

mγ ρ − 1

e2

∫
dε σ γ (ε)ρ

]
, (94)

where the orbital magnetic moment and zero-temperature Hall
conductivity are generalized to the matrix form mγ

pq = mγ
pδpq,

σ
γ
pq = σ

γ
p δpq and similar for the heat magnetization

Mγ

Q = Tr

[∫
k
wγ ρ − 1

e2

∫
dε ε̃σ γ (ε)ρ

]
, (95)

with w
γ
pq = w

γ
p δpq and ε̃pq = ε̃pδpq.

The equation of motion of the RDM is given by

ih̄
∂ρkpq(t )

∂t
= Tr

[
ih̄

∂ρ(t )

∂t
c†

pkcqk

]

= 〈[c†
pk(t )cqk(t ), HET (t )]−〉. (96)

Substituting the Hamiltonian (90) into (96), and expanding
RDM in powers of the external field ρ = ∑

n ρ (n), the equa-
tion of motion can be solved recursively(

ih̄
∂

∂t
− εkpq

)
ρ

(n)
kpq(t ) = ET · D̂[ρ (n−1)(t )]kpq. (97)

Therefore, the nth-order RDM can be expressed via the
zeroth-order RDM by iterating Eq. (97), and the zeroth-order
RDM is the Fermi-Dirac distribution function times the unit
matrix in band space ρ (0)

pq = fpδpq. To solve the equation, we
need to transform it into frequency space. The time deriva-
tive in the equations of motion is replaced by a frequency
factor that is collected into an energy denominator dkpq(ω) =
1/(ω − εkpq), and the iterative relation is given by

ρ
(n)
kpq(ω) = i

∫
dω′

2π
Eα1

T [d (ω) ◦ D̂α1 [ρ (n−1)(ω − ω′)]]kpq,

(98)

where ◦ is the Hadamard product (A ◦ B)pq = ApqBpq. The
nth-order RDM is

ρ (n)(ω)pq = (i)n

[
n∏

i=1

∫
dωiE

αi
T (ωi )

]
[d (ω) ◦ [Dα1 [d (ω − ω1) . . . [Dαk [d (ω − ωk ) · · · ◦ [Dαn [ρ (0)]]]]]]]δ(ω[n] − ω), (99)
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where ω[n] ≡ ∑n
i ωn. The nth-order components of the Kubo

particle (heat) current are written as

JKubo,(n),α
i (ω) =

∫
k

Tr
[
Ĵα

i ρ (n)(ω)
]
. (100)

For the nth-order current, the magnetization is expanded up to
the (n − 1)th order of thermal field, which is given by

M (n),γ
N (ω)

= Tr

[∫
k

mγ ρ (n−1)(ω) + 1

e

∫
dε σ γ (ε)ρ (n−1)(ω)

]
,

(101)

M (n),γ
Q (ω)

= Tr

[∫
k
wγ ρ (n−1)(ω) − 1

e2

∫
dε(ε−μ)σγ (ε)ρ (n−1)(ω)

]
.

(102)

The higher-order derivatives follow from an expansion of the
time evolution of the instantaneous eigenstates beyond linear
approximation. Recently, a quantum kinetic theory that incor-
porates with the disorder and the thermal vector potential has
been developed [42]. Incorporated with covariant derivatives,
the linear thermal transport coefficients are reproduced as
well. There are two differences between our approach and
that in Ref. [42]. First, the thermal vector potential is gen-
eralized to the multiband systems in terms of the Wigner
distribution function in Ref. [42], while in our approach the
generalization is made by introducing the coupling of the
Hermitian derivative and the thermal field in length gauge.
Second, the density matrix is disorder averaged by explic-
itly introducing the disorder potential in the Hamiltonian in
Ref. [42], while in our approach the effect of disorder is intro-
duced through the self-energy of the propagator. Considering
the presence of magnetic field, the quantum kinetic equa-
tion approach in Ref. [42] enables a systematic calculation of
magnetothermoelectric and magnetothermal conductivities of
systems with momentum-space Berry curvatures. Particularly,
in Ref. [42], it is discovered that in Weyl semimetals the Mott
relation is satisfied for the chiral-anomaly-induced magne-
tothermoelectric conductivity, and the WF law is violated for
the chiral-anomaly-induced magnetothermal conductivity. In
addition, it has been successfully applied to the topological
insulators in Ref. [43]. By contrast, as we will show in the
following, we aim to investigate the nonlinear thermal trans-
port in the absence of magnetic field and relations among the
nonlinear transport coefficients.

A. Linear thermoelectric and thermal-thermal response

First, we rederive the first-order thermoelectric response
coefficient, as a pedagogical demonstration of our method.
LKubo,αβ

12 is related to the first-order RDM, which is expanded
as

ρ (1)
pq = iEβ

T (ω)[d (ω) ◦ D̂β[ρ (0)]−]pq

= iEβ
T (ω)

[
ε̃p

ω
∂β fpδpq − i

ε̃p + ε̃q

2(εpq + ω)
Aβ

pq fpq

]
. (103)

The linear Kubo current is

JKubo,(1),α
N (ω) =

∫
k

Tr
[
Ĵα

Nρ (1)(ω)
]
, (104)

and the Kubo contribution of transport coefficient is found as
(Appendix D)

LKubo,αβ

12 (ω)

= i
∑
p,q

∫
k

[
ε̃p

ω
vα

p∂β fp − i
ε̃p + ε̃q

2(εpq + ω)
Aβ

pqv
α
qp fpq

]
. (105)

It is equivalent to the expression (53) derived by diagrammatic
approach in velocity gauge. Using Eq. (101), the first-order
particle magnetization density is written as

M (1),γ
N =

∑
p

∫
k

[
mγ

p fp + kBT �γ
p ln(1 + e−βε̃p )

]
. (106)

Considering the DC limit by taking ω → 0, we obtain the lin-
ear thermoelectric response for transport current by collecting
the Kubo contribution (105) and the magnetization correction
(106), which is given by

Ltr,αβ

DC,12(ω) = LKubo,αβ

12,DC (ω) − εαβγ Mγ
N . (107)

By separating all the terms with the Berry connection, the
transport coefficient can be written as

Ltr,αβ

DC,12(ω) = Lαβ

D,12(ω) + Lαβ

A,12(ω), (108)

in which the first term is the usual Drude term

Lαβ

D,12(ω) = i

h̄

∑
p

∫
k

1

ω
vα

pvβ
p

∂ fp

∂εp
, (109)

and the second term is the anomalous term contributed by the
Berry curvature

Lαβ

A,12(ω) = e

h̄

∑
p

∫
k
�γ

p [ε̃p fp + kBT ln(1 + e−βε̃p )]. (110)

Not surprisingly, Eqs. (109) and (110) recover Eq. (64) ob-
tained in length gauge.

In analogy, the linear thermal-thermal response Ltr,αβ

22 is
derived in a similar process. The linear Kubo heat current is

JKubo,(1),α
Q (ω) =

∫
k

Tr
[
Ĵα

Qρ (1)(ω)
]
, (111)

and the Kubo contribution to transport coefficient is given by

LKubo,αβ

22 (ω)

= i
∑
p,q

∫
k

[
1

ω
ε̃2

pv
α
p∂β fp − i

(ε̃p + ε̃q)2

4(εpq − ω)
Aα

pqv
μ
qp fpq

]
. (112)

The heat magnetization is

M (1),γ
Q =

∫
k

Tr{wγ ρ (0) − �γ c2[ρ (0)]}

=
∑

p

∫
k

[
wγ

p fp − �γ
p c2,p( fp)

]
. (113)
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Combining Eqs. (112) and (113) and taking the DC limit, we
obtain the response coefficient for transport thermal current

Ltr,αβ

22 (ω) = 1

h̄

∑
p

∫
k

[
i

1

ω
ε̃2

p∂
β fpv

α
p − c2( fp)�γ

p

]
, (114)

which recovers the expression Eq. (76).

B. Second-order thermoelectric conductivity and Mott relation

The Kubo contribution to the second-order thermoelectric
response coefficient is related to the second-order RDM

ρ (2) = −
∫

dω1

∫
dω2Eβ

T (ω1)E δ
T (ω2)d (ω)

◦Dβ[d (ω − ω1) ◦ Dδ[ρ (0)]]δ(ω[2] − ω). (115)

We aim to obtain the expression in the ω → 0 limit and then
compare with the semiclassical results. The Kubo contribution
of the second-order particle current is given by

JKubo,(2),α
N (ω) =

∫
k

Tr
[

jαNρ (2)
]
. (116)

Substituting Eq. (115) into Eq. (116), and using Eq. (46),
the second-order thermoelectric response is expanded as the
summation of four integral kernels

LKubo,αβδ

12 = e
∫

k
[�(2),βδ + �(2),β + �(2),δ + �(2)], (117)

where the superscripts α, β, and δ (α, β, δ = x, y, z) of �

denote the kα , kβ , and kδ Hermitian derivatives defined in
Eq. (16) and the superscript (2) denotes the second order. The
expressions for the integral kernels are obtained as (detailed
derivation is sketched in Appendix D)

�(2),βδ =
∑

p

vα
p

1

ω

1

ω − ω1
ε̃p∂

β (ε̃p∂
δ fp),

�(2),β =
∑
p,q

−i

2
vα

pq

1

ω − εqp
ε̃p∂

β

[
1

ω − ω1 − εqp

× (ε̃p + ε̃q)Aδ
qp fpq

]
,

�(2),δ =
∑
p,q

−i

2
vα

pq

1

(ω − εqp)

1

(ω − ω1)
Aβ

qp

×(
ε̃pε̃q∂

δ fpq + ε̃2
p∂

δ fp − ε̃2
q∂

δ fq
)
,

�(2) = −
∑
p,q,r

1

4
vα

pq

1

ω − εqp
(ε̃q + ε̃r )Aβ

qr

1

ω − ω1 − εr p

×(ε̃r + ε̃p)Aδ
r p( fr p − fqr ). (118)

Here �(2),βδ is the intraband contribution, which is the gener-
alized second-order Drude term. The others are the interband
contributions which contain the Berry connection.

Now we consider the static state. The dominating terms are
distinguished by the ω-dependent denominators of the integral
kernels. For �(2),βδ , it is proportional to 1/(ωω2) (consid-
ering ω2 = ω − ω1), which diverges at DC limit (as ω1, ω2

approaching zero). For �(2),δ , it is proportional to 1/ω2, which
also diverges at DC limit. While for �(2),β and �(2), there

is no divergent dominator and can be safely omitted. There-
fore, the dominating terms are from �(2),βδ and �(2),δ in the
DC limit, and the second-order thermoelectric conductivity is
given by

LKubo,αβδ

DC,12 (ω; ω1, ω2)

= −
∑
p,q

∫
k

[
1

ωω2
vα

p ε̃p∂
β (ε̃p∂

δ fp)

+ i

2ω2
εp(εp + εq)

vα
pqv

β
qp − vβ

pqv
α
qp

ε2
pq

∂δ fp

]
. (119)

By use of the identity (61), the DC second-order thermoelec-
tric response can be written into the following more suggestive
form:

LKubo,αβδ

DC,12 (ω; ω1, ω2)

= −
∑

p

∫
k

[
1

ωω2
vα

p ε̃p∂
β (ε̃p∂

δ fp)

+ i

ω2

(
ε̃pmγ

p + ε̃2
p�

γ
p

)
∂δ fp

]
. (120)

Now we derive the second-order particle magnetization den-
sity, which is related to the first-order RDM:

M (2),γ
N (ω) = Tr

[∫
k
ρ (1)(ω)mγ + 1

e

∫
dε σ γ (ε)ρ (1)(ω)

]
.

(121)

Referring to Eq. (103), the second term of ρ (1) is omitted be-
cause it is subleading in the DC limit. Hence, the second-order
thermoelectric magnetization response is given as

Mγ δ

12,DC(ω) = i
∑

p

∫
k

1

ω
ε̃pmγ

p∂δ fp

+i
1

e

∑
p

∫
dε

1

ω
ε̃pσ

γ (ε)∂δ fp(ε). (122)

Combining Eqs. (120) and (122), we obtain the second ther-
moelectric conductivity in the DC limit

Ltr,αβδ

12,DC(ω; ω1, ω2) = Lαβδ

12,D(ω; ω1, ω2) + Lαβδ

12,A(ω; ω1, ω2).

(123)

For the Drude term,

Lαβδ

12,D = −
∑

p

∫
k

1

ωω2
vα

p ε̃p∂
β (ε̃p∂

δ fp), (124)

and the anomalous term is given as

Lαβδ

12,A = iεαβγ
∑

p

∫
dεp

1

ω2
vδ

pσ
γ (εp)

[
2ε̃p

∂ fp

∂εp
+ ε̃2

p

∂2 fp

∂ε2
p

]
.

(125)

Noting that for the system with time-reversal symmetry, the
Drude term vanishes and only the anomalous term survives.

Next, we study how the thermoelectric conductivity is
related to the electric conductivity at the second order. The
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second-order electric-electric response is written as

J tr,(2),α
N (ω) =

∫
k

Tr
[

jαNρ (2)(ω)
]
. (126)

The second- order RDM with an electric field perturbation is
given as

ρ (2) = −
∫

dω1

∫
dω2Eβ (ω1)E δ (ω2)d (ω)

◦Dβ[d (ω − ω1) ◦ Dδ[ρ (0)]]δ(ω[2] − ω). (127)

Expanding ρ (1), the second-order electric-electric response
becomes [38]

Ltr,αβδ

11,DC(ω; ω1, ω2) = Lαβδ

11,D(ω; ω1, ω2) + Lαβδ

11,A(ω; ω1, ω2),

(128)

with

Lαβδ

11,D = −
∑

p

∫
k

1

ωω2
∂βvα

p∂δ fp, (129)

Lαβδ

11,A = −εαβγ
∑

p

∫
k

i
1

ω2
�γ

p∂δ fp. (130)

First, we focus on the anomalous term Lαβδ

11,A. Integrating by
part, it can be rewritten as

Lαβδ

11,A = − i

h̄2 εαβγ
∑

p

∫
dεp

1

ω2
Aδ (εp)σγ (εp), (131)

in which we define Aδ (εp) ≡ ∂ fp

∂εp

∂vδ (εp)
∂εp

+ ∂2 fp

∂ε2
p
vδ (εp). Using

the identity

∂ f0

∂εk

∂vα
k

∂kβ

+ ∂2 f0

∂ε2
k

vα
k v

β

k = v
β

k

∂ f0

∂εk

∂vα
k

∂εk
+ ∂2 f0

∂ε2
k

vα
k v

β

k , (132)

we have

v
β

k

∂vα
k

∂εk
= ∂vα

k

∂kβ

= ∂2εk

∂kα∂kβ

= 1

m∗
αβ

. (133)

Here m∗
αβ is the effective mass of the Bloch electrons. When

we consider a limit case that vk is independent of energy,
namely, ∂vk/∂ε = 0 which indicates a large effective mass.
The second-order anomalous Hall conductivity is approxi-
mated as

Lαβδ

11,A ≈ − i

h̄2 εαβγ
∑

p

∫
dεp

1

ω2

∂2 fp

∂ε2
p

vδ (εp)σγ (εp). (134)

By inserting the low-temperature expansion formula (81) into
(134) and (125), and considering that the electric conductiv-
ity σ

αβδ

DC and thermoelectric conductivity η
αβδ
A satisfy σ

αβδ
A =

Ltr,αβδ

A,11 and η
αβδ
A = Ltr,αβδ

12,A /T 2, we obtain

η
αβδ
A = 1

3

π2k2
B

e2
σ

αβδ
A = Lσ

αβδ
A . (135)

It indicates that when the dispersion is weakly dependent
on the velocity, the second-order thermoelectric conductivity
(the second-order Nernst coefficient) is proportional to the
second-order electric conductivity (the second-order particle
Hall conductivity) at low temperatures, which is different

from the Mott relation for the linear order. The linear Mott
relation tells us that the linear Nernst coefficient is propor-
tional to the derivative of linear Hall conductivity to the Fermi

energy, which is η
αβ
A = π2

3
k2

BT
e

∂σ
αβ
A (μ)
∂μ

[1]. This proportionality
between second Nernst and Hall conductivity results from that
the second-order thermoelectric conductivity has a power of
ε2/T 2, and the nonzero contribution of the low-temperature
Eq. (81) comes from the second order. Note that a simi-
lar result for the second-order Mott relation is derived in
Refs. [44,45] by use of the semiclassical Boltzmann equation.

Now we demonstrate that the second-order Mott relation
(135) applies to the Drude contribution. Integrating by part,
the Drude contribution of the second thermoelectric conduc-
tivity (124) can be rewritten as

Lαβδ

12,D = −
∑

p

∫
dεp

1

ωω2

[
2ε̃p

∂ fp

∂εp
+ ε̃2

p

∂2 fp

∂ε2
p

] ∫
k
vα

pvβ
p

×δ(εp − εp,k). (136)

Using Eq. (132) and considering the large effective mass limit,
the Drude contribution of the second electric conductivity is
given as

Lαβδ

11,D ≈ −
∑

p

∫
dεp

1

ωω2
ε̃2

p

∂2 fp

∂ε2
p

∫
k
vα

pvβ
p δ(εp − εp,k).

(137)

By use of the Sommerfeld expansion (81), the second-order
Mott relation (135) for the Drude term is directly testified.

C. Second-order thermal conductivity
and Wiedemann-Franz law

According to Eq. (100), the Kubo contribution to the
second-order heat current is given by

JKubo,(2),α
Q (ω) =

∫
k

Tr
[

ĵαQρ (2)
]
. (138)

By use of the expansion of the second RDM, the second-order
thermoelectric response is expressed in form of four integral
kernels

LKubo,αβδ

22 =
∫

k
[�(2),βδ + �(2),β + �(2),δ + �(2)], (139)

where �(2),βδ , �(2),β , �(2),δ , and �(2) are given by (see Ap-
pendix D for details)

�(2),βδ =
∑

p

vα
p

1

ω
ε̃2

p∂
β

[
1

ω − ω1
ε̃p∂

δ fp

]
,

�(2),β =
∑
p,q

−i
1

2
vα

pq(ε̃p + ε̃q)
1

ω
ε̃p∂

β

[
1

ω − ω1 − εqp

×(ε̃p + ε̃q)Aδ
qp fpq

]
,

�(2),δ =
∑
p,q

−i
1

4
(ε̃p + ε̃q)vα

pq

1

(ω − εqp)

1

(ω − ω1)

×Aβ
qp

(
ε̃pε̃q∂

δ fpq + ε̃2
p∂

δ fp − ε̃2
q∂

δ fq
)
,
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�(2) =
∑
p,q,r

−1

8
vα

pq(ε̃p + ε̃q)
1

ω − εqp
(ε̃q + ε̃r )Aβ

qr

× 1

ω − ω1 − εr p
(ε̃r + ε̃p)Aδ

r p( fr p − fqr ). (140)

It can be seen that the poles �(2),... are identical to that of
�(2),..., with the leading term contributed by �(2),βδ and �(2),δ .
Hence, the Kubo contribution in DC limit is found as

LKubo,αβδ

22,DC (ω; ω1, ω2)

= −
∑
p,q

∫
k

[
1

ωω2
vα

p ε̃2
p∂

β (ε̃p∂
δ fp) + i

1

4ω2
ε̃p(ε̃p + ε̃q)2

×vα
pqv

β
qp − vβ

pqv
α
qp

ε2
pq

∂δ fp

]
. (141)

By use of the quantity w
γ
p introduced in Eq. (74), it can be

rewritten as

LKubo,αβδ

22,DC (ω; ω1, ω2)

= −
∑
p,q

∫
k

[
1

ωω2
vα

p ε̃2
p∂

β (ε̃q∂
δ fp) + i

1

ω2
ε̃pw

γ
p ∂δ fp

]
.

(142)

The second-order heat magnetization is written as

M (2),γ
Q (ω) = Tr

[∫
k
wγ ρ (1)(ω) − 1

e2

∫
dε ε̃σ γ (ε)ρ (1)(ω)

]
.

(143)

Hence, we obtain the second-order thermal-thermal magneti-
zation response

Mγ δ

22,DC(ω) = i
∑

p

∫
k

1

ω
ε̃pw

γ
p ∂δ fp

−i
1

e2

∑
p

∫
dε

1

ω
ε̃2

pσ
γ (ε)∂δ fp(ε). (144)

From Eqs. (141) and (144), we obtain the second-order
thermal-thermal response

Ltr,αβδ

22,DC(ω; ω1, ω2) = Lαβδ

22,D(ω; ω1, ω2) + Lαβδ

22,A(ω; ω1, ω2)

(145)

with

Lαβδ

22,D = −
∑

p

∫
k

1

ωω2
vα

p ε̃2
p∂

β (ε̃p∂
δ fp), (146)

Lαβδ

22,A = iεαβγ
∑

p

∫
dεp

1

ω2
vδ

pσ
γ (εp)

[
2ε̃2

p

∂ fp

∂εp
+ ε̃3

p

∂2 fp

∂ε2
p

]
.

(147)

By use of the Sommerfeld expansion (81) and the identity

καβδ = Ltr,αβδ

22 /T 2, it yields

σαβδ = − e

2L

∂καβδ (μ)

∂μ
. (148)

We call Eq. (148) as the second-order WF law. We see that the
relation between the second-order thermal conductivity καβδ

and the second-order electric conductivity σαβδ (μ) does not
obey the linear WF law in Eq. (84), which is καβ = LT σαβ .
In the second-order response, the second-order electric con-
ductivity σαβδ is proportional to the first derivative of the
second-order thermal conductivity καβδ (μ) to the chemical
potential, rather than to καβδ (μ) itself.

D. Third-order thermal response

The Kubo contribution of the third-order electric current is
written as

JKubo,(3),α
N (ω) =

∫
k

Tr
[

jαNρ (3)
]
, (149)

where the third-order RDM is given by

ρ (3)(ω) = i3
∫

dω1

∫
dω2

∫
dω3Eα1

T (ω1)Eα2
T (ω2)Eα3

T (ω3)(d (ω) ◦ [Dβ[d (ω − ω1) ◦ [Dδ[d (ω − ω[2] ) ◦ [Dζ [ρ (0)]]]]]]), (150)

in which the expansion of the third-order RDM results in eight terms, hence, the third Kubo thermoelectric response can be
rewritten as (for details see Appendix E)

LKubo,αβδζ

12 (ω; ω1, ω2, ω3) =
∫

k
[�(3),βδζ + �(3),βδ + �(3),βζ + �(3),δζ + �(3),β + �(3),δ + �(3),ζ + �(3)]. (151)

The expressions of the �(3),...s are shown in Appendix E. The derivation of the third-order thermoelectric conductivity in the
DC limit can be done by calculating the poles of the denominator of �(3),.... The divergent terms are �(3),βδζ (with poles of 0,
ω1, and ω1 + ω2), �(3),βζ (with poles of ω1 + ω2), and �(3),αδζ (with poles of ω1 and ω1 + ω2). Reserving the leading terms of
O(ω−3) (�(3),βδζ ) and O(ω−2) (�(3),δζ ), we obtain the third-order thermoelectric conductivity in the DC limit as

LKubo,αβδζ

12,DC (ω; ω1, ω2, ω3) =
∑

p

∫
k

{
−i

1

ωω[2]ω3
vα

p ε̃p∂
β[ε̃p∂

δ (ε̃p∂
ζ fp)] − 1

2ω[2]ω3

vα
pqv

β
qp

ε2
pq

[
ε̃qε̃p∂

δ (ε̃p∂
ζ fp)

−ε̃qε̃p∂
δ (ε̃q∂

ζ fq) + ε̃2
p∂

δ (ε̃p∂
ζ fp) − ε̃2

q∂
δ (ε̃q∂

ζ fq)
]}

, (152)
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which can be written in a more compact form

LKubo,αβδζ

12,DC (ω; ω1, ω2, ω3) =
∑

p

∫
k

{
−i

1

ωω[2]ω3
vα

p ε̃p∂
β[ε̃p∂

δ (ε̃p∂
ζ fp)] − 1

ω[2]ω3

(
ε̃pmγ

p + ε̃2
p�

γ
p

)
∂δ (ε̃p∂

ζ fp)

}
. (153)

The third-order particle magnetization is given as

M (3),γ
N (ω) = Tr

[∫
k
ρ (2)(ω)mγ + 1

e

∫
dε σ γ (ε)ρ (2)(ω)

]
. (154)

Note that only the terms up to O(ω−2) are retained. By use of the expansion of ρ (2) (see Appendix E for details), the leading
term is proportional to �(2),βδ . Hence, we obtain the third-order thermoelectric magnetization response

Mγ δζ

12 (ω; ω1, ω2, ω3) =
∑

p

∫
k

1

ωω2
ε̃pmγ ∂δ (ε̃p∂

ζ fp) + 1

e

∫
dε

1

ωω2
ε̃pσ

γ
p (ε)∂δ (ε̃p∂

ζ fp). (155)

Combining Eqs. (155) and (153), we finally obtain the third-order thermoelectric response

Ltr,αβδζ

12,DC (ω; ω1, ω2, ω3) = Lαβδζ

12,D (ω; ω1, ω2, ω3) + Lαβδζ

12,A (ω; ω1, ω2, ω3) (156)

with

Lαβδζ

12,D (ω; ω1, ω2, ω3) =
∑

p

∫
k
−i

1

ωω[2]ω3
vα

p ε̃p∂
β[ε̃p∂

δ (ε̃p∂
ζ fp)], (157)

Lαβδζ

12,A (ω; ω1, ω2, ω3) = εαβγ
∑

p

∫
dεp

1

ωω2

[
6ε̃p

∂ fp

∂εp
+ 6ε̃2

p

∂2 fp

∂ε2
p

+ ε̃3
p

∂3 f

∂ε3
p

]
vδ (εp)vζ (εp)σγ (εp). (158)

Following the similar process, the Drude part and the
anomalous part of the third-order electric conductivity is given
as

Lαβδζ

11,D (ω; ω1, ω2, ω3) =
∑

p

∫
k

−i

ωω[2]ω3
vα

p∂β[∂δ (∂ζ fp)],

Lαβδζ

11,A (ω; ω1, ω2, ω3) = εαβγ
∑

p

∫
k

1

ω[2]ω3
�γ

p∂δ (∂ζ fp).

(159)

In the limit of large effective mass, the anomalous part is
approximated as

Lαβδζ

11,A (ω; ω1, ω2, ω3)

≈ −εαβγ
∑

p

∫
dεp

1

ω[2]ω3

∂3 fp

∂ε3
p

vδ
pv

ξ
pσ

β (εp). (160)

By use of the Sommerfeld expansion (81) and considering that
σαβδζ = Ltr,αβδζ

DC,11 , ηαβδζ = Ltr,αβδζ

DC,12 /T 3, we obtain

σαβδξ = e

9T L

∂ηαβδξ (μ)

∂μ
. (161)

After a similar derivation for the third-order thermal conduc-
tivity (see Appendix F), we obtain

σαβδξ = e2

42T L

∂2καβδξ (μ)

∂μ2
. (162)

Interestingly, it is found that at third order the electric conduc-
tivity is proportional to the first derivative of the third-order
thermoelectric conductivity. Analogously, the third-order
electric conductivity is proportional to the second derivative
of the third-order thermal conductivity.

According to the expression of the thermally expanded
Hamiltonian (13), it is seen that expanding one more order
of ET is accompanied by one more order of the band energy.
Given the fact that the order of band energy in response
functions determines the leading terms in low-temperature
expansion, hence we reach the conclusion that for the non-
linear Mott relation, the nth-order electric conductivity is
proportional to the (n − 2)th-order derivative of the nth-order
thermoelectric conductivity with respect to the chemical po-
tential. For the nonlinear WF law, the nth-order electric
conductivity is proportional to the (n − 1)th derivative of the
nth-order thermal conductivity with respect to the chemical
potential (see Table III). Here, by invoking the semiclassical
Boltzmann equation, the above transport coefficients are fur-
ther testified (see Appendix G).

IV. NONLINEAR THERMAL RESPONSE OF MAGNONS

Based on the analytical formula of nonlinear thermal con-
ductivity, we attempt to find a system in which the nonlinear
response dominates over the linear effect. Note that although
we start from a fermionic Hamiltonian to derive the thermal
response, the formulas are general and can be directly ex-
tended to bosonic or other systems.

We consider the magnon transport driven by temperature
gradient in a collinear antiferromagnet on a honeycomb lat-
tice. The Hamiltonian is

H = J
∑
〈i j〉

Si · S j + gJμB

∑
i

Si · B + K
∑

i

S2
iz, (163)

where J > 0 is the nearest-neighbor antiferromagnetic ex-
change interaction. The second term is the Zeeman coupling
to the external magnetic field applied parallel to the magnetic
ordering direction, in which gJ is the Lande’s g factor and μB
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TABLE III. The high order of thermal to electric conductivity, and thermal to thermal conductivity, i.e.. the higher-order Mott relation and
values of WF law are summarized up to the third order. L = 1

3 ( kBπ

e )2 = 2.44 × 10−8 W�/K2 is the well-known first-order Lorentz number.

Order Thermal-electric (Mott) Thermal-thermal (Wiedemann-Franz)

First σαβ = 1
eLT

∫ μ

−∞ dεηαβ (ε) σαβ = 1
LT καβ

Second σαβδ = 1
L ηαβδ σ αβδ = − e

2L
∂καβδ (μ)

∂μ

Third σαβδζ = e
9T L

∂ηαβδζ (μ)
∂μ

σ αβδζ = e2

42T L
∂2καβδζ (μ)

∂μ2

is the Bohr magneton. The third term (K < 0) is the easy-axis
anisotropy which ensures the Néel vector in the z direction.

As the ground state of Eq. (163) is a fully aligned an-
tiferromagnetic order, we describe the underlying magnetic
excitations by the Holstein-Primakoff transformation

S+
iA ≈

√
2Sai, S−

iA ≈
√

2Sa†
i , Sz

iA = S − a†
i ai, (164)

S+
iB ≈

√
2Sb†

i , S−
iB ≈

√
2Sbi, Sz

iB = b†
i bi − S. (165)

Performing a Fourier transformation, the bosonic
Bogoliubov–de Gennes (BdG) Hamiltonian defined in
the 2 × 2 form with a vector �k = (ak, b†

k)T as

H0(k) = S

[
3J − K + gJμBB γ ∗(k)

γ (k) 3J − K − gJμBB

]
. (166)

We define γ (k) = ∑
i eik·δi , δ1 = (0, 1)l , δ2 = (

√
3

2 ,− 1
2 )l , and

δ2 = (−
√

3
2 ,− 1

2 )l are the vectors connecting the nearest
neighbors. For simplicity, we set l = 1√

3
.

As the next step, the Bogoliubov transformation ck =
ukak − vkb†

k and dk = ukbk − vka†
k is used to diagonalize

H0(k). We need to solve the eigenvalue equation

H0(k)t±(k) = σzε±(k)t±(k),

H0(k)t±(k)σz = ε±(k)t±(k). (167)

We only keep the particle branch (positive excitation), and
the dispersions of the two branch magnons of the unstrained
Hamiltonian are given by

εp=↑,↓ = S
√

(3J − K )2 − |Jγ (k)|2 ± gJμBB, (168)

in which ↑ (↓) denotes z-direction spin angular momentum
carried by the magnons. In the absence of Dzyaloshinskii-
Moriya interaction (DMI), the two branches of magnons are
degenerate. The linear spin Nernst coefficient of magnons is
given by

ηαβ =
∑

p=↑,↓

ekB

h̄
εαβγ

∫
k

S(gp)�γ
p . (169)

Distinguished from that of electrons, here gp is the Bose-
Einstein distribution and S(gp) = gp ln gp − (1 + gp) ln(1 +
gp) is the entropy density of p-band magnons. The thermal
Hall conductivity is given as [46,47]

καβ = −
∑

p=↑,↓

k2
BT

h̄
εαβγ

∫
k

c2(gp)�γ
p , (170)

where the bosonic c2 function is c2(gp) = (1 +
gp)(ln 1+gp

gp
)2 − (ln gp)2 − 2 Li2(−gp) [46].

In the absence of DMI, it is demonstrated in Ref. [48] the
quadratic order expanded Hamiltonian of Eq. (163) is invari-
ant under combined symmetry of time reversal (T ) and a 180◦
rotation around the x axis in the spin space (cx). Under T cx,
εp(k) = εp(−k) and �p(k) = −�p(−k), hence, the integrand
in Eq. (169) is odd and indicates a zero linear spin Nernst
coefficient (i.e., η

αβ

DC = 0). We shall emphasize that the spin
Nernst effect of magnon does not exist at any order if there is
no DMI. If the DMI is introduced, it breaks T cx symmetry
and changes the dispersion, leaving a nonzero linear spin
Nernst coefficient as the leading order [48]. Since we focus
on zero DMI case, we will not discuss the spin Nernst effect
of magnon in the following.

For the magnon thermal Hall effect (MTHE), things are
different. Although the linear MTHE disappears for both zero
and nonzero DMI (the two branches of magnons with opposite
spin angular momentum flow in opposite transverse direc-
tions), the second-order nonlinear MTHE should exist (even
for zero DMI) giving rise to a leading-order contribution to
the MTHE. Assuming that the temperature gradient is applied
along the y direction, according to Eq. (G28) the second-order
magnon thermal Hall conductivity is

κxyy ∼= τ

T 2

∑
p

∫
k
ε3

p∂
ygp�

z
p(k). (171)

In deriving Eq. (171), the relaxation-time approximation for
steady state limω→0 −i/(ω + i�) ∼= τ is indicated and the
negligible external magnetic field is adopted. It should be
noted that κ

xyy
DC becomes zero when T approaches zero [49].

It has been shown that the largest symmetry of a two-
dimensional (2D) crystal that allows for nonvanishing Berry
curvature dipole is a mirror symmetry [7]. The mirror sym-
metry My is perpendicular to the mirror line, and the mirror
symmetry My requires �z

p(kx, ky) = −�z
p(kx,−ky ). Together

with T cx, we get �z
p(kx, ky) = �z

p(−kx, ky). The mirror sym-
metry My leads to εp(kx, ky) = εp(kx,−ky ), When combining
T cx and My, it requires εp(kx, ky) = εp(−kx, ky). Therefore,
the partial derivative of Bose function distribution ∂xgp and
∂ygp is both an odd function.

To reduce the c3v space-group symmetry of Hamiltonian
(163) to the single mirror symmetry My, we apply a uniaxial
tensile strain along the y direction. Hence, only the interaction
along the y axis changes, without lattice deformation. Hence,
antiferromagnetic coupling on the d1 bonds is changed to
J (1 + δ), and the correction to the Hamiltonian is

Hs(k) =
[

δJ δJ exp(ik · δ1)
δJ exp(−ik · δ1) δJ

]
. (172)
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FIG. 3. (a), (b) Berry curvature �z
↑(k) of the spin-up magnon

mode without strain δJ = 0 (a) and with uniform uniaxial strain
δJ = 0.5 (b). The gray circles denote the locations of maximum
value for the unstrained �z

↑(k), which correspond to K and K ′.
The yellow circle denotes locations of maximum value for strained
�z

↑(k). (c), (d) ∂g↑/∂ky without strain δJ = 0 in (c) and with strain
δJ = 0.5 in (d). The gray (yellow) circles denote the locations of
maximum value for the unstrained (strained) ∂g↑/∂ky. Parameters
are J = 2, K = −0.2, kBT = 0.5, and gJμBB = 0.01. Numbers are
in units of meV.

The total Hamiltonian is H = H0 + Hs, and the magnon dis-
persion is given by

εp=↑,↓ = S
√

(3J + δJ − K )2 − |Jγ (k) + δJeik·δ1 |2
±gJμBB. (173)

Figure 3 shows the unstrained (strained) Berry curvature
of spin-up magnon and the associated ∂g↑/∂ky distribution.
Considering that the integral in Eq. (171) is mostly contributed
from the region around K and K ′. In the absence of strain
[see Fig. 3(a)], the maximum values of Berry curvature �z

↑(k)
locate at K and K ′. Meanwhile, the zero points of ∂g↑/∂ky also
locate at K and K ′ [see Fig. 3(c)], resulting in the cancellation
of the integral around each K and K ′ and zero κxyy. However,
when applying the uniaxial strain along the y direction, the
maximum values of Berry curvature �z

↑(k) are shifted from
the original K (K ′) towards −kx (kx) direction [see Fig. 3(b)].
The zero points of ∂g↑/∂ky are also shifted from the original K
(K ′) towards kx (−kx) direction [see Fig. 3(d)]. Therefore, the
integral around each K and K ′ can not be canceled, leading to
a finite second-order magnon thermal Hall conductivity κxyy.

To further illustrate the above picture, we show the de-
pendence of κxyy on the temperature and the strain-induced
coupling δJ , which is plotted in Fig. 4(a). Notice that κxyy

approaches zero as T approaches zero. For fixed T , κxyy

increases monotonically with increasing δJ , suggesting the
appearance of the nonlinear MTHE induced by the strain. It
should be noted that our analysis based on the linear spin-
wave theory is only valid in the temperature range much lower
than the Néel temperature, which is estimated to be around
200 K in MnPS3 [50]. However, κxyy is not monotonic in
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FIG. 4. (a) The magnon thermal Hall conductivity up to the
second order (i.e., κxyy, and first order disappears) as a function of
strain-induced coupling δJ and temperature of a collinear antiferro-
magnets. J = 2, K = −0.2, and gJμBB = 0.01. (b) The T -dependent
factor F for different δJ . εp is taken to be −0.2. Numbers are in units
of meV.

T . For fixed δJ , κxyy increases at first and then decreases
with a maximum around 22 K. To understand this nonmono-
tonicity, we extract the temperature dependence of Eq. (171).
The T -dependent factor of Eq. (171) is expressed as F =

1
(kBT )2

exp (βεp)
[exp (βεp)−1]2 . In Fig. 4(b) we depict the T -dependent

factor F as a function of T . For different δJ , F is maxi-
mized around 22 K, hence, we conclude that the temperature
nonmonotonicity of κxyy is determined by F . As shown in
Fig. 4(b), the temperature position Tmax of the maximum of
F decreases from 25 to 18 K as δJ increases from 0.5 to
0.7 meV. In Fig. 4(a) we indicate the position Tmax of the
maximum of κxyy by the dashed-dotted line. As a contrast,
Tmax increases slightly with the increment δJ . This is because
the T dependent F indicates that all momentum k is weighted
equally for fixed T . However, according to Eq. (171), the final
temperature dependence of κxyy should be weighted by ε3

p�
z
p

additionally.

V. CONCLUDING REMARKS AND DISCUSSIONS

In summary, a nonlinear thermal response theory is de-
veloped through perturbed expansion approach in favor of
thermal vector potential. Based on the diagram rules and
values of vertices connecting the propagator of temper-
ature gradient, the general expressions of the dynamical
thermoelectric and thermal conductivity are obtained. The
central results for the linear-order [the thermoelectric response
(64) and the thermal-thermal response (76)], the second-
order [the thermoelectric responses (124) and (125) and the
thermal-thermal response (146) and (147)], and the third-
order responses [(157) and (158)] are explicitly derived.

The choice of the gauge depends on convenience. It is easy
to give a cleaner resonance structure and is easier to imple-
ment numerically in velocity gauge. For the DC limit and
semiclassical limits, it is better to apply the length gauge. By
providing the DC limit formula in length gauge, we demon-
strate the relations among the thermal response coefficients
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beyond the linear order (cf. Table III). For linear transport, the
Mott relation and WF law tell us that the thermoelectric (ther-
mal) conductivity is proportional to the first (zero) derivative
of the linear electric conductivity to the Fermi energy. Beyond
the linear order, it is found that there exist higher-order Mott
relation and WF law. The second-order Mott relation and
WF law say that the second-order electric conductivity is
proportional to zero (the first) derivative of the thermoelectric
(thermal) conductivity with respect to the chemical potential.
And the third-order Mott relation and WF law show that the
third-order electric conductivity is proportional to the first
(second) derivative of the thermoelectric (thermal) conductiv-
ity with respect to the chemical potential. It is found that the
derivative on the thermoelectric and the thermal conductivity
increases linearly with the nonlinear order. The derivative in
the WF law is one order higher than that of the Mott relation.
We call this structure as a ”hierarchy rule.” Although we
only explicitly calculate the nonlinear response up to the third
order, we speculate that this “hierarchy rule” between Mott
relation and the WF law exists to higher order, revealing a
deeper relationship between them. Moreover, it is discovered
that the Lorentz number characterizing the relation of linear
thermoelectric and thermal-thermal response applies to the
nonlinear order.

An interesting and important fact is that for the second-
order response, the Mott relation is only proportional to the
second-order electric conductivity by the linear Lorentz num-
ber. Since the off-diagonal element of the second electric
conductivity is just the nonlinear Hall conductivity which
has been measured in experiments, the off-diagonal element
of the second thermoelectric conductivity (i.e., the second-
order Nernst coefficient) can be obtained immediately by
using the experimental data of the nonlinear Hall conduc-
tivity. We estimate that the transverse charge current density

can be the order of 10−6 A/(cm)2 for a temperature gra-
dient of 0.01 K/cm based on few layers WTe2 [51]. This
charge-current density induced by a temperature gradient can
be explored in experiments. For the second-order WF law,
the electric conductivity is proportional to the first derivative
of the second-order thermal conductivity with respect to the
chemical potential. The proportional factor is related to the
Lorentz number, and the second thermal conductivity can
be sizable. Therefore, the quantities from the second-order
response can be measured in experiments without introducing
more difficulties. We expect that our predictions can be tested
in the near future experiments.

Although the derived quantum theory of nonlinear thermal
response is based on a formalism for fermions, it can be
utilized to boson systems. As an application, we specifically
calculate the magnon thermal Hall conductivity in a strained
collinear antiferromagnet model. We predict that with the
combined T cx symmetry and broken inversion symmetry, the
linear magnon thermal Hall conductivity vanishes and the
second-order thermal Hall effect dominates.
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APPENDIX A: DETAILS OF DERIVATION FOR EQ. (21), DEFINITION OF HEAT CURRENT,
AND THE RELATION TO ENTROPY FLUX

The definition of heat current in the presence of the “gravitational” potential, has been presented previously [33]. However,
since it is important to the rest of our discussion, we shall review it here. Considering a noninteracting electron system, the
energy density is written as

ĥ� (r) = [1 + �(r)]

{
m

2
[v̂ϕ̂(r)]† · [ϕ̂(r)v̂] + ϕ̂†(r)[V (r)]ϕ̂(r)

}
, (A1)

where ϕ̂(r) [ϕ̂†(r)] is the electron annihilation (creation) field operator. The energy current operator is defined by the conservation
equation

∂ ĥ� (r)

∂t
= 1

ih̄
[ĥ� (r), Ĥ� ] = −∇ · J�

E (r), (A2)

where Ĥ� = m
2 v̂[1 + �(r)]v̂ + [1 + �(r)]V (r). Substituting the energy density operator into the conservation equation, it yields

∂ ĥ� (r)

∂t
= −∇ ·

{
1

2
[1 + �(r)]

(
[v̂ϕ̂(r)]†[Ĥ�ϕ̂(r)] + [Ĥ�ϕ̂(r)]†[v̂ϕ̂(r)]

)}
. (A3)

Therefore, the energy current operator is identified as

J�
E (r) = {

1
2 [1 + �(r)]

(
[v̂ϕ̂(r)]†[Ĥ�ϕ̂(r)] + [Ĥ�ϕ̂(r)]†[v̂ϕ̂(r)]

)}
= 1

2 [1 + �(r)]2{([v̂ϕ̂(r)]†[Ĥ0ϕ̂(r)] + [Ĥ0ϕ̂(r)]†[v̂ϕ̂(r)])} + ∇[1 + �(r)]2 × �̂, (A4)
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where �̂ = − ih̄
8 [v̂ϕ̂(r)]† × [v̂ϕ̂(r)]. Noting that the current operator is only defined up to a curl by the equation of continuity.

The form of the energy current can be determined by the scaling law

J�
E (r) = [1 + �(r)]2JE (r), (A5)

therefore the energy current operator becomes

J�
E (r) → J�

E (r) − ∇[1 + �(r)]2 × �̂, (A6)

JE (r) → JE (r) + ∇ × �̂. (A7)

The heat current is defined as JQ(r) ≡ JE (r) − μJN (r). In the absence of temperature gradient field, the zero-field heat current
operator is given by

JQ(r) = 1
2 ([v̂ϕ̂(r)]†[K̂0ϕ̂(r)] + [K̂0ϕ̂(r)]†[v̂ϕ̂(r)]) − ∇ × �̂, (A8)

where K̂0 = Ĥ0 − μ0N̂ . Noting that apart from the first term which is recognized as the usual anticommutator representation of
the heat current, the second term appears is essential for satisfying the scaling law. It has been proved that in calculating the Kubo
formula, the second term cancels out [27,33]; this could be the reason why the anticommutator representation usually leads to
the right results.

Alternatively, the heat current can be defined through the thermodynamics of entropy flux [52], and it is equivalent to the
definition via conservation equation. To see this we start form the Luttinger’s Hamiltonian. The particle-number conservation
equation is given as

∂ n̂� (r)

∂t
= 1

ih̄
[n̂� (r), Ĥ� ] = −∇ · J�

N (r). (A9)

Combining Eqs. (A2) and (A9), the conservation equation of heat is written as

∂ k̂� (r)

∂t
= 1

ih̄
[k̂� (r), Ĥ� ] = −∇ · J�

Q (r), (A10)

in which k̂� (r) = ĥ� (r) − μn̂� (r) is the grand-canonical ensemble energy density. The Luttinger’s Hamiltonian can be rewritten
as

HL(t ) =
∫

d3r
∫ t

−∞
dt ′JQ(t ′) · ∇�(r, t ). (A11)

By converting the “gravitational” potential in form of thermal vector potential ∂AT (r, t )/∂t = ∇�(r, t ) = ∇T/T , the perturba-
tion Hamiltonian is written as

HL(t ) = −
∫

d3r JQ(t ′) · AT (r, t ). (A12)

The rate of the change of the entropy S due to a heat current is [53]

dS

dt
= −

∫
d3r

1

T
∇ · JQ = −

∫
d3r

∇T

T 2
· JQ. (A13)

The change of entropy modifies the thermodynamic potential E − T S − μN (E is the internal energy). The perturbation
Hamiltonian induced by the temperature gradient field becomes

HS = 1

T

∫
d3r

∫ t

−∞
dt ′JQ(t ′) · ∇T . (A14)

It recovers the Luttinger’s Hamiltonian after the replacement ∇�(r, t ) = ∇T/T . Similar definition of the heat current can be
found in [54].

APPENDIX B: EXPANSION OF THE HERMITIAN DERIVATIVES

The second-order Hermitian derivative on the unperturbed Hamiltonian is expanded as

K̂αβ = D̂αD̂β[K̂0] = 1
4

(
K̂0ĥα ĥβ + K̂2

0 ĥαβ + 2K̂0ĥαβK̂0 + K̂0ĥβ ĥα + ĥα ĥβK̂0 + ĥαβK̂2
0 + ĥβ ĥαK̂0

)
. (B1)

Its normal derivative is given by

D̂μ[K̂αβ] = 1
4

(
ĥμĥα ĥβ + K̂0ĥμα ĥβ + K̂0ĥα ĥμβ + ĥμK̂0ĥαβ + K̂0ĥμĥαβ + K̂2

0 ĥμαβ + 2ĥμĥαβ K̂0 + 2K̂0ĥμαβK̂0

+2K̂0ĥαβ ĥμ + ĥμĥβ ĥα + K̂0ĥμβ ĥα + K̂0ĥβ ĥμα + ĥμα ĥβK̂0 + ĥα ĥμβK̂0 + ĥα ĥβ ĥμ + ĥμαβK̂2
0

+ĥαβ ĥμK̂0 + ĥαβ K̂0ĥμ + ĥμβ ĥαK̂0 + ĥβ ĥμαK̂0 + ĥβ ĥα ĥμ
)
. (B2)
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APPENDIX C: DERIVATION OF EQS. (59) AND (72)

Using the relations (42) and (43), and the following identities∫ ∞

β

f (ε)dλ = β

ε
ln(1 + e−βε )/β, (C1)∫ ∞

β

∂ f (ε)

∂ε
dλ = −β

ε
f (ε) + β

ε2

∫ ∞

ε

f (λ)dλ, (C2)

the first-order particle magnetization response (59) and heat magnetization response (72) are obtained by integrating the auxiliary
particle magnetization with respect to β.

APPENDIX D: EXPANSION OF THE INTEGRAL KERNELS USED IN LENGTH GAUGE

For the Kubo contribution of the linear thermoelectric response, the integrand is calculated as

Tr{vα (d (ω) ◦ Dβ[ρ (0)])} =
∑
p,q

1

2
vα

pqdqp(ω)[H0, Dβ [ρ (0)]]+,qp

=
∑
p,q

1

2
vα

pqdqp(ω)

{
[H0, ∂

βρ (0)]+,qp − i
1

2
[H0, [Aβ, ρ (0)]−]+,qp

}

=
∑

p

1

ω
vα

pεp∂
β fp −

∑
p,q

i
1

2(ω − εqp)
(εp + εq)vα

pqAβ
qp fpq. (D1)

The integrand in the second-order thermoelectric response is calculated as

Tr{vα (d (ω) ◦ Dβ[d (ω − ω1) ◦ Dγ [ρ (0)]])} =
∑
p,q

1

4
vα

pqdqp(ω)[H0, Dβ [d (ω − ω1) ◦ [H0, Dγ [ρ (0)]]+]]+,qp

= �(2),βγ + �(2),β + �(2),γ + �(2), (D2)

where

�(2),βγ =
∑
p,q

1

4
vα

pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, ∂

γ [ρ (0)]]+]]+,qp =
∑

p

vα
p

1

ω
εp

1

ω − ω1
∂β (εp∂

γ fp), (D3)

�(2),β =
∑
p,q

1

4
vα

pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, [Aγ , ρ (0)]−]+]]+,qp

=
∑
p,q

−i
1

4
vα

pq

1

ω − εqp
(εp + εq)∂β

{
1

ω − ω1 − εqp
× (εp + εq)Aγ

qp fpq

}
, (D4)

�(2),γ =
∑
p,q

1

4
vα

pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, ∂
γ [ρ (0)]]+]]−]+,qp

=
∑
p,q

−i
1

2
vα

pq

1

(ω − εqp)

1

(ω − ω1)
Aβ

qp

(
εpεq∂

γ fpq + ε2
p∂

γ fp − ε2
q∂

γ fq
)
, (D5)

�(2) =
∑
p,q

1

4
vα

pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [Aγ , ρ (0)]−]+]]−]+,qp

=
∑
p,q,r

−1

4
vα

pq

1

ω − εqp
(εq + εp)

[
1

ω − ω1 − εr p
Aβ

qrAγ
r pεp(εr + εp) − 1

ω − ω1 − εqr
Aγ

qrAβ
r pεp(εr + εq)

]
. (D6)

The integrand in the second-order thermal-thermal response is calculated as

Tr

{
1

2
[H0, v

α]+ × (d (ω) ◦ Dβ[d (ω − ω1) ◦ Dγ [ρ (0)]])

}

=
∑
p,q

1

4
vα

pqdqp(ω)[H0, Dβ[d (ω − ω1) ◦ [H0, Dγ [ρ (0)]]+]]+,qp = �(2),βγ + �(2),β + �(2),γ + �(2), (D7)
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where

�(2),βγ =
∑
p,q

1

8
[H0, v

α]+,pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, ∂

γ [ρ (0)]]+]]+,qp

=
∑

p

vα
p

1

ω
ε̃2

p∂
β

[
1

ω − ω1
ε̃q∂

γ fp

]
, (D8)

�(2),β =
∑
p,q

1

8
[H0, v

α]+,pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, [Aγ , ρ (0)]−]+]]+,qp

=
∑
p,q

−i
1

8
vα

pq(ε̃p + ε̃q)2 1

ω − εpq
∂β

[
1

ω − ω1 − εqp
(ε̃p + ε̃q)Aγ

qp fpq

]
, (D9)

�(2),γ =
∑
p,q

1

8
[H0, v

α]+,pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, ∂
γ [ρ (0)]]+]]−]+,qp

=
∑
p,q

−i
1

8
(ε̃p + ε̃q)2vα

pq

1

(ω − εqp)

1

(ω − ω1)
Aβ

qp

(
ε̃pε̃q∂

γ fpq + ε̃2
p∂

γ fp − ε̃2
q∂

γ fq
)
, (D10)

�(2) =
∑
p,q

1

8
[H0, v

α]+,pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [Aγ , ρ (0)]−]+]]−]+,qp

=
∑
p,q,r

−1

8
vα

pq

1

ω − εqp
(εq + εp)2

[
1

ω − ω1 − εr p
Aβ

qrAγ
r pεp(εr + εp) − 1

ω − ω1 − εqr
Aγ

qrAβ
r pεp(εr + εq)

]
. (D11)

APPENDIX E: EXPANSION OF THE INTEGRAL KERNELS AT THE THIRD ORDER

The integrand in the third-order thermoelectric response is calculated as

Tr{vα (d (ω) ◦ Dβ[d (ω − ω1) ◦ Dγ [d (ω − ω[2] ) ◦ Dδ[ρ (0)]]])}

=
∑
p,q

1

8
vα

pqdqp(ω)[H0, Dβ[d (ω − ω1) ◦ [H0, Dγ [d (ω − ω[2] ) ◦ [H0, Dδ[ρ (0)]]+]]+]]+,qp

= �(3),βγ δ + �(3),βγ + �(3),βδ + �(3),γ δ + �(3),β + �(3),γ + �(3),δ + �(3), (E1)

where

�(3),βγ δ =
∑
p,q

1

8
vα

pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, ∂

γ [d (ω − ω[2] ) ◦ [H0, [∂δ[ρ (0)]]+]]+]]+,qp

=
∑

p

vα
p

1

ω

1

ω − ω1

1

ω − ω[2]
εp∂

β[εp∂
γ (εp∂

δ fp)], (E2)

�(3),βγ =
∑
p,q

1

8
vα

pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, ∂

γ [d (ω − ω[2] ) ◦ [H0, [Aδ, ρ (0)]−]+]]+]]+,qp

=
∑
p,q,r

−i
1

8
vα

pq

1

ω − εqp
(εp + εq)∂β

[
1

ω − ω1 − εqp
(εp + εq)

[
∂γ 1

ω − ω[2] − εpq
(εp + εq)Aδ

qp fpq

]]
, (E3)

�(3),βδ =
∑
p,q

1

8
vα

pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, ∂

δ[ρ (0)]]+]]−]+]]+,qp

=
∑
p,q

−i
1

8
vα

pq

1

ω − εqp
(εp + εq)

1

ω − ω[2]
∂β

[
1

ω − ω1 − εqp
Aγ

qp

(
εpεq∂

δ fpq + ε2
p∂

δ fp − ε2
q∂

δ fq
)]

, (E4)

�(3),γ δ =
∑
p,q

1

8
vα

pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [∂γ [d (ω − ω[2] ) ◦ [H0, ∂
δ[ρ (0)]]+]]−]+]]−]+,qp

=
∑
p,q

−i
1

8
vα

pq

1

ω − εqp

1

ω − ω1

1

ω − ω[2]
Aβ

qp

[
εqεp∂

γ (εp∂
δ fp) − εqεp∂

γ (εq∂
δ fq) + ε2

p∂
γ (εp∂

δ fp) − ε2
q∂

γ (εq∂
β fq)

]
,

(E5)
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�(3),δ =
∑
p,q

1

8
vα

pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, ∂
δ[ρ (0)]]+]]−]+]−]+]+,qp

=
∑
p,q,r

−i
1

8
vα

pq

1

ω − εqp
(εp + εq)

[
1

ω − ω1 − εrq

1

ω − ω[2] − εr p
Aβ

qrAγ
r p

(
εpεr∂

δ fpr + ε2
p∂

δ fp − ε2
r ∂

δ fr
)

− 1

ω − ω1 − εr p

1

ω − ω[2] − εr p
Aγ

qrAβ
r p

(
εqεr∂

δ frq + ε2
r ∂

δ fr − ε2
p∂

δ fp
)]

, (E6)

�(3),γ =
∑
p,q

1

8
vα

pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, ∂
γ [d (ω − ω[2] ) ◦ [H0, [Aδ, ρ (0)]−]+]]+]−]+]+,qp

=
∑
p,q,r

−i
1

8
vα

pq

1

ω − εqp

1

ω − ω1 − εrq
(εp + εq)

[
Aβ

qr (εp + εr )∂γ

[
1

ω − ω[2] − εr p
Aδ

r p(εr + εp) fpr

]

+(εr + εq)∂γ

[
1

ω − ω[2] − εqr
Aδ

qr (εq + εr ) frqAβ
r p

]]
, (E7)

�(3),β =
∑
p,q

1

8
vα

pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, [Aδ, ρ (0)]−]+]]−]+]]+,qp

=
∑
p,q,r

−i
1

8
vα

pq

1

ω − εqp
(εp + εq)∂β

[
1

ω − ω1 − εr p
Aγ

qrAδ
r pεp(εr + εp) − 1

ω − ω1 − εqr
Aδ

qrAγ
r pεp(εr + εq)

]
, (E8)

�(3) =
∑
p,q

1

8
vα

pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, [Aδ, [ρ (0)]]−]+]]−]+]−]+]+,qp

=
∑

p,q,r,s

−1

8
vα

pq

1

ω − εqp
(εq + εp)

[[
1

ω − ω1 − εsp
Aγ

rsAδ
spεp(εs + εp) − 1

ω − ω1 − εrs
Aδ

rsAγ
spεp(εs + εr )β

]
Asp

+Aβ
qr

[
1

ω − ω1 − εrs
Aγ

qrAδ
rsεs(εr + εs) − 1

ω − ω1 − εqr
Aδ

qrAγ
rsεs(εr + εq)

]]
. (E9)

The integrand in the third-order thermal-thermal response is calculated as

Tr

{
1

2
[H0, v

α]+ × (d (ω) ◦ Dβ[d (ω − ω1) ◦ Dγ [d (ω − ω[2] ) ◦ Dδ[ρ (0)]]])

}

=
∑
p,q

1

16
[H0,v

α]+,pqdqp(ω)[H0, Dβ[d (ω − ω1) ◦ [H0, Dγ [d (ω − ω[2] ) ◦ [H0, Dδ[ρ (0)]]+]]+]]+,qp

= �(3),βγ δ + �(3),βγ + �(3),βδ + �(3),γ δ + �(3),β + �(3),γ + �(3),δ + �(3), (E10)

where

�(3),βγ δ =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, ∂

γ [d (ω − ω[2] ) ◦ [H0, [∂δ[ρ (0)]]+]]+]]+,qp

=
∑

p

vα
p

1

ω

1

ω − ω1

1

ω − ω[2]
ε2

p∂
β[εp∂

γ (εp∂
δ fp)], (E11)

�(3),βγ =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, ∂

γ [d (ω − ω[2] ) ◦ [H0, [Aδ, ρ (0)]−]+]]+]]+,qp

=
∑
p,q,r

−i
1

8
vα

pq

1

ω − εqp
(εp + εq)2∂β

[
1

ω − ω1 − εqp
(εp + εq)

[
∂γ 1

ω − ω[2] − εpq
(εp + εq)Aδ

qp fpq

]]
, (E12)

�(3),βδ =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, ∂

δ[ρ (0)]]+]]−]+]]+,qp

=
∑
p,q

−i
1

16
vα

pq

1

ω − εqp
(εp + εq)2 1

ω − ω[2]
∂β

[
1

ω − ω1 − εqp
Aγ

qp

(
εpεq∂

δ fpq + ε2
p∂

δ fp − ε2
q∂

δ fq
)]

, (E13)
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�(3),γ δ =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [∂γ [d (ω − ω[2] ) ◦ [H0, ∂
δ[ρ (0)]]+]]−]+]]−]+,qp

=
∑
p,q

−i
1

16
vα

pq(εp + εq)
1

ω − εqp

1

ω − ω1

1

ω − ω[2]
Aβ

qp[εqεp∂
γ (εp∂

δ fp) − εqεp∂
γ (εq∂

δ fq) + ε2
p∂

γ (εp∂
δ fp)

−ε2
q∂

γ (εq∂
β fq)], (E14)

�(3),δ =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, ∂
δ[ρ (0)]]+]]−]+]−]+]+,qp

=
∑
p,q,r

−i
1

16
vα

pq

1

ω − εqp
(εp + εq)2

[
1

ω − ω1 − εrq

1

ω − ω[2] − εr p
Aβ

qrAγ
r p

(
εpεr∂

δ fpr + ε2
p∂

δ fp − ε2
r ∂

δ fr
)

− 1

ω − ω1 − εr p

1

ω − ω[2] − εr p
Aγ

qrAβ
r p

(
εqεr∂

δ frq + ε2
r ∂

δ fr − ε2
p∂

δ fp
)]

, (E15)

�(3),γ =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, ∂
γ [d (ω − ω[2] ) ◦ [H0, [Aδ, ρ (0)]−]+]]+]−]+]+,qp

=
∑
p,q,r

−i
1

16
vα

pq

1

ω − εqp

1

ω − ω1 − εrq
(εp + εq)2

[
Aβ

qr (εp + εr )∂γ

[
1

ω − ω[2] − εr p
Aδ

r p(εr + εp) fpr

]

+ (εr + εq)∂γ

[
1

ω − ω[2] − εqr
Aδ

qr (εq + εr ) frqAβ
r p

]]
, (E16)

�(3),β =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, ∂
β[d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, [Aδ, ρ (0)]−]+]]−]+]]+,qp

=
∑
p,q,r

−i
1

16
vα

pq

1

ω − εqp
(εp + εq)2∂β

[
1

ω − ω1 − εr p
Aγ

qrAδ
r pεp(εr + εp) − 1

ω − ω1 − εqr
Aδ

qrAγ
r pεp(εr + εq)

]
, (E17)

�(3) =
∑
p,q

1

16
[H0, v

α]+,pqdqp(ω)[H0, [Aβ, [d (ω − ω1) ◦ [H0, [Aγ , [d (ω − ω[2] ) ◦ [H0, [Aδ, [ρ (0)]]−]+]]−]+]−]+]+,qp

=
∑

p,q,r,s

− 1

16
vα

pq

1

ω − εqp
(εq + εp)2

[[
1

ω − ω1 − εsp
Aγ

rsAδ
spεp(εs + εp) − 1

ω − ω1 − εrs
Aδ

rsAγ
spεp(εs + εr )β

]
Asp

+Aβ
qr

[
1

ω − ω1 − εrs
Aγ

qrAδ
rsεs(εr + εs) − 1

ω − ω1 − εqr
Aδ

qrAγ
rsεs(εr + εq)

]]
. (E18)

APPENDIX F: THIRD-ORDER THERMAL-THERMAL RESPONSE

The third-order thermal-thermal response is calculated in an similar way. The Kubo contribution in this case to the heat current
is

JKubo,(3),α
h (ω) =

∫
k

Tr
[

jαh ρ (3)
]
. (F1)

Following the same steps in calculating LKubo,αβδζ

12 , the third-order Kubo thermal-thermal response is rewritten as

LKubo,αβδζ

22 (ω; ω1, ω2, ω3) =
∫

k
[�(3),βδζ + �(3),βδ + �(3),βζ + �(3),δζ + �(3),β + �(3),δ + �(3),ζ + �(3)]. (F2)

The poles of �(3),... are identical to those of �(3),..., with the leading term contributed by �(3),βδζ and �(3),δζ . Hence, the Kubo
contribution in DC limit is found as

LKubo,αβδζ

22 (ω; ω1, ω2, ω3) =
∑

p

∫
k

{ −i

ωω[2]ω3
vα

p ε̃2
p∂

β[ε̃p∂
δ (ε̃p∂

ζ fp)] + 1

4ω[2]ω3
(ε̃p + ε̃q)Aβ

qp

[
ε̃qε̃p∂

δ (ε̃p∂
ζ fp)

−ε̃qε̃p∂
δ (ε̃q∂

ζ fq) + ε̃2
p∂

δ (ε̃p∂
ζ fp) − ε̃2

q∂
δ (ε̃q∂

ζ fq)
]}

, (F3)

035148-23



YUANDONG WANG, ZHEN-GANG ZHU, AND GANG SU PHYSICAL REVIEW B 106, 035148 (2022)

which can be written as

LKubo,αβδζ

22,DC (ω; ω1, ω2, ω3) =
∑

p

∫
k

{
−i

1

ωω[2]ω3
vα

p ε̃2
p∂

β[ε̃p∂
δ (ε̃p∂

ζ fp)] − 1

ω[2]ω3
ε̃pw

γ
p ∂δ (ε̃p∂

ζ fp)

}
. (F4)

The third-order heat magnetization is given as

M (3),γ
Q (ω) = Tr

[∫
k
ρ (2)(ω)wγ − 1

e2

∫
dε ε̃σ γ (ε)ρ (2)(ω)

]
, (F5)

and we obtain the third-order thermal-thermal magnetization response

Ltr,αβδζ

22,DC (ω; ω1, ω2, ω3) = Ltr,αβδζ

22,D (ω; ω1, ω2, ω3) + Ltr,αβδζ

22,A (ω; ω1, ω2, ω3) (F6)

with

Ltr,αβδζ

22,D (ω; ω1, ω2, ω3) =
∑

p

∫
k

−i

ωω[2]ω3
vα

p ε̃2
p∂

β[ε̃p∂
δ (ε̃p∂

ζ fp)],

Ltr,αβδζ

22,A (ω; ω1, ω2, ω3) =
∑

p

∫
dεp

1

ωω2

[
6ε̃2

p

∂ fp

∂εp
+ 6ε̃3

p

∂2 fp

∂ε2
p

+ ε̃4
p

∂3 f

∂ε3
p

]
vδ (εp)vζ (εp)σγ

p (ε). (F7)

APPENDIX G: SEMICLASSICAL APPROACH

In this Appendix we carefully give the derivation of the
nonlinear thermal response through the semiclassical ap-
proach. We start with the semiclassical Boltzmann equation,
then show that it matches the results from the quantum
approach in previous sections. In the last we discuss the sym-
metries of the nonlinear currents.

The local particle or heat current is contributed by two
parts: one is from the motion of the wave-packet center, the
other is from the self-rotation of the wave packet, which can
be written as

JN =
∫

k
f (εk)ṙ + ∇r ×

∫
k

f (εk)m(k),

JQ =
∫

k
(ε − μ) f (εk)ṙ + ∇ ×

∫
k

f (εk)mQ(k), (G1)

in which we introduce the energy and thermal magnetic mo-
ment

mE (k) = εkm(k), mQ(k) = mE (k) − μm(k). (G2)

We write the formula of the transport currents again

Jtr
N (Q) = JN (Q) − ∇ × MN (Q). (G3)

The total particle magnetization can be derived based on the
wave-packet theory using a confining potential [28]

MN =
∫

k
f (εk)m(k) − 1

e2

∫
dε f (ε)σ(ε), (G4)

in which σ(ε) = e2

h̄

∫
k �(ε − εk)�(k) is the zero-temperature

Hall conductivity with Fermi energy ε. The thermal magneti-
zation is written as [30]

MQ =
∫

k
f (εk)mQ(k) − 1

e2

∫
dε(ε − μ) f (ε)σ(ε). (G5)

Note that the first term is from the self-rotation of the wave
packet, while the second term is contributed by the edge, as
it vanishes in the bulk for a uniform system. Using Eqs. (G4)

and (G5), the transport current is found as

Jtr
N (Q) = JD

N (Q) + JA
N (Q), (G6)

where the first term is the Drude contribution

JD
N =

∫
k

f (εk)vk, (G7)

JD
Q =

∫
k
(εk − μ) f (εk)vk. (G8)

The second term is from the anomalous term, manifesting
itself as the anomalous Nernst (thermal Hall) effect:

JA
N = − 1

e2
∇ ×

∫
dε f (ε)σ(ε), (G9)

JA
Q = − 1

e2
∇ ×

∫
dε(ε − μ) f (ε)σ(ε), (G10)

and the anomalous Hall effect

JA
N = e

h̄
E ×

∫
k

f (εk)�(k). (G11)

It is worth noting that the contribution from the particle mag-
netic moment m(k) cancels out since it is localized and does
not contribute to transport.

The Boltzmann equation is given as

(∂t + ṙ · ∇r + k̇ · ∇k) f (r, k, t ) = Icoll[ f (r, k, t )], (G12)

where the collision integral Icoll[ f (r, k, t )] captures the effect
of scattering. In the absence of the magnetic field, the equa-
tions of motion are given by

ṙ = ∂εk

h̄∂k
− k̇ × �(k),

h̄k̇ = −eE. (G13)

By expanding the distribution function f = ∑∞
n=0 fn by or-

der of temperature gradient ∇T or electric field E, the Hall
current at each order is obtained by replacing the distribution
function by fn. Since we are interested in the steady-state
solution, the t dependence of f (r, k, t ) is dropped.
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Perturbed by homogeneous electric field, the Boltzmann
equations is

− e

h̄
E · ∇k f (k) = f0 − f (k)

τ
, (G14)

where τ is the relaxation time. The iteration relation is found
as

f E
n = e

h̄
τE · ∇k f E

n−1. (G15)

The first two order distribution functions are directly obtained
as

f E
1 = eτ

h̄

∂ f0

∂εk
vα

k Eα,

f E
2 = e2τ 2

h̄2

(
∂ f0

∂εk

∂vα
k

∂kβ

+ ∂2 f0

∂ε2
k

vα
k v

β

k

)
EαEβ. (G16)

Following the same procedure, the Boltzmann equation in the
presence of temperature gradient is

ṙ · ∇r f (r, k) = f0 − f (r, k)

τ
, (G17)

and the iteration relation is found as

f T
n = −τvk · ∇r f T

n−1 = (−τvk · ∇r)n f0. (G18)

The first two order distribution functions are written as

f T
1 = τ

h̄T
F1(εk)vα

k ∇αT,

f T
2 = τ 2

h̄T 2
F2(εk)vα

k v
β

k ∇αT ∇βT, (G19)

where we define

FT
1 (εk) = (εk − μ)

∂ f0

∂εk
,

FT
2 (εk) =

[
2FT

1 (εk) + (εk − μ)2 ∂2 f0

∂ε2
k

]
. (G20)

By use of the relation

∇r f0 = − 1

T
(εk − μ)

∂ f0

∂εk
∇T (G21)

and substituting the formula of f T
n of Eq. (G19) into Eqs. (G9)

and (G10), one obtains the second-order anomalous Nernst
(thermal Hall) conductivity

ηγαδ = − eτ

h̄2T 2
εαβγ

∫
dεFT

2 (ε)vδ (ε)σβ (ε),

κγαδ = τ

h̄2T 2
εαβγ

∫
dε(ε − μ)FT

2 (ε)vδ (ε)σβ (ε), (G22)

in which we assume the temperature is slowly varying in
space, and omit the terms that are of nonlinear temperature
gradient. Equation (G22) reproduces the formulas derived
from the quantum approach in Sec. III.

Now we investigate how the large effective mass limit
changes the thermal transport coefficient. According to

Eq. (G9), the nth-order anomalous currents are given as

JA,(n)
N = 1

h̄
∇ ×

∫
dε F (n−1)(ε)

∫
k
δ(ε − εk)�(k),

JA,(n)
Q = 1

h̄
∇ ×

∫
dε G(n−1)(ε)

∫
k
δ(ε − εk)�(k),

(G23)

where F (n) and G(n) are the primitive functions of f T
1 and (ε −

μ) f T
1 :

F (n) =
∫ ε

−∞
f (n)(ε′)dε′, G(n) =

∫ ε

−∞
(ε′ − μ) f (n)(ε′)dε′.

(G24)

Under the large effective mass limit, F (1) and G(1) are found
as

F (1) ≈ τ

T
S( f0)vk · ∇T,

G(1) ≈ τ

T
C( f0)vk · ∇T, (G25)

where we define

S( f0) = f0 ln f0 + (1 − f0) ln(1 − f0),

C( f0) = ( f0 − 1) ln2( f −1
0 − 1) + ln2 f0 + 2 Li2 f0. (G26)

Therefore, we have

ηαβδ ≈ − eτ

h̄2T 2
εαβγ

∫
dε(ε − μ)2 ∂ f0

∂ε

×
∫

k
δ(ε − εk)vδ

k�(k)γ , (G27)

καβδ ≈ τ

h̄2T 2
εαβγ

∫
dε(ε − μ)3 ∂ f0

∂ε

×
∫

k
δ(ε − εk)vδ

k�(k)γ , (G28)

which recovers the results in Ref. [9].
As it is shown above, a group velocity term and a topolog-

ical term together constitute the conductivity in the DC limit.
Let us consider the transformation of these two terms under
time-reversal symmetry T and inversion symmetry I. For the
group velocity term, it is composed of the group velocity or
its higher-order derivatives. With the definition vα1...αn

p (k) ≡
[
∏n

i=1 ∂kαi ]εp(k), the time reversal T or the inversion I give

vα1...αn
p (k) = (−)nvα1...αn

p (−k). (G29)

Therefore, the group velocity term in odd-order conductivity
is even, leaving the momentum integral vanishes. For ex-
ample, the group velocity term in the second thermoelectric
conductivity is �(2),βδ given by Eq. (118), which is expanded
as

�(2),βδ =
∑

p

vα
p

1

ω

1

ω − ω1

(
ε̃pv

β
p vδ

p

∂ fp

∂εp

+ ε̃2
pv

β
p vδ

p

∂2 fp

∂ε2
p

+ ε̃2
pv

βδ
p

∂ fp

∂εp

)
. (G30)
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Referring to Eq. (G30), it is easy to see that �(2),βδ is odd. The
topological terms are functions of �p, mp, and wp. The time
reversal T gives

�p(k) = −�p(−k), (G31)

mp(k) = −mp(−k), (G32)

wp(k) = −wp(−k), (G33)

and the inversion I gives

�p(k) = �p(−k), (G34)

mp(k) = mp(−k), (G35)

wp(k) = wp(−k). (G36)

Therefore, the topological term in odd-order conductivities
is odd (even) under T (I), while this term in even-order
conductivities is even (odd) under T (I).
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