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Density functional theory offers accurate structure prediction at acceptable computational cost, but commonly
used approximations suffer from delocalization error; this results in inaccurate predictions of quantities such as
energy band gaps of finite and bulk systems, energy level alignments, and electron distributions at interfaces.
The localized orbital scaling correction (LOSC) was developed to correct delocalization error by using orbitals
localized in space and energy. These localized orbitals span both the occupied and unoccupied spaces and can
have fractional occupations in order to correct both the total energy and the one-electron energy eigenvalues.
We extend the LOSC method to periodic systems, in which the localized orbitals employed are dually localized
Wannier functions. In light of the effect of the bulk environment on the electrostatic interaction between localized
orbitals, we modify the LOSC energy correction to include a screened Coulomb kernel. For a test set of
semiconductors and large-gap insulators, we show that the screened LOSC method consistently improves the
band gap compared to the parent density functional approximation.

DOLI: 10.1103/PhysRevB.106.035147

I. INTRODUCTION

The cost of solving the electronic Schrédinger equa-
tion scales exponentially with the size of the system,
exceeding the computational resources available on the planet
for any system larger than a few tens of electrons [1]. Den-
sity functional theory (DFT) sidesteps this exponential cost
by treating the electron density as the fundamental variable
instead of computing the wave function directly and by con-
structing an auxiliary noninteracting reference system sharing
the density of the physical system [2,3]. Due to the accuracy
attainable at a cost only cubic in the number of electrons N,
DFT has become a mainstay of computational chemistry and
materials science [4—7]. While DFT is exact in theory, the
form of the universal exchange-correlation functional is un-
known, and density functional approximations (DFAs) must
be used in practice. Commonly used DFAs suffer from sys-
tematic delocalization and static correlation errors [8,9]. The
delocalization error underlies the failure of DFAs to describe
energy band gaps of finite and bulk systems, energy level
alignments, and electron distributions at interfaces [10]. Over-
coming delocalization error remains an active and challenging
research effort.

Connecting single-particle orbital energies € to observable
quantities was another long-standing question in Kohn-Sham
DFT. As a contrast, Koopmans [11] showed in 1934 that the
Hartree-Fock ionization potential (IP) and electron affinity
(EA) are given under the frozen orbital approximation by
the negative of the highest occupied and lowest unoccupied
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molecular orbital eigenvalues, respectively. A series of three
results established a rigorous connection for DFT.

First, Janak [12] derived a link between the Kohn-Sham
orbital energies €, and the total energy E, viewed as a function
of the orbital occupation numbers 7n,,:

oE 0
€m = —.

on,,
However, dE /dn,, was not yet linked to a physical observable.

A few years later, Perdew, Parr, Levy, and Balduz [13]
showed that E is piecewise linear in the number of electrons
N when computed with the exact functional; that is, for all
6] < 1, we have

(14+8)ENN) —SEN — 1),
(1= 8)E(N)+SE(N + 1).

6<0

E(N+8)={ 5> 0. )

This relationship, called the PPLB condition, connects the
chemical potential (N) = dE /0N to the IP and EA; observe
that

—I(N)=E(N)—E(N — 1),

oN <0
W(N) = {—A(N) =EN+1)—EN),

oN > 0. 3)

Finally, Cohen et al. [14] proved that the chemical potential
is given by the partial derivative of E with respect to the
frontier orbital eigenvalues

oE
u(N) = —. “

on f
Crucially, f labels not only the highest unoccupied molecular
orbital (HOMO) if dN < 0, but also the lowest unoccupied
molecular orbital (LUMO) if 9N > 0; this was the first time a
physical meaning for the energy of the Kohn-Sham LUMO
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was established. This result holds for any local functional

continuous in the electron density, as well as any nonlocal

functional continuous in the Kohn-Sham density matrix; in

the latter case, the work also extends Janak’s theorem to the

eigenvalues from the generalized Kohn-Sham equations.
Combining these three results, we see that

oN <0

—I(N) = enomo.,
oN > 0. ®)

)= {—A(N) = €LUMO

Thus, the frontier eigenvalues obtained from an N-electron
DFT calculation correspond rigorously to physically relevant
quantities [14]; if the PPLB condition is obeyed and the func-
tional predicts the exact energies for N — 1, N, and N + 1
electrons, the correspondence is exact.

A feature derivable from these quantities is the fundamen-
tal or integer gap, defined as the difference between the IP and
the EA:

Epst =1 —A=EN —1)—2E(N)+E(N+1). (6)

E;a';f‘ger quantifies the difference between positively and nega-

tively ionizing the system and is a crucial part of the accurate
modeling of semiconductor electronic structure. If the PPLB
condition is obeyed, Egs. (3) and (5) also allow the gap to be
computed from a single N-electron calculation as the discon-
tinuity in the chemical potential; in this form, it is called the
derivative gap, defined as

deriv __ a_E
gp oON

JoE

- —| =€ —€ . 7
. TN LUMO — €HOMO @)

If the PPLB condition is obeyed, the derivative gap and the
integer gap are equal [14]. In bulk systems with periodic
boundary conditions, the PPLB condition is satisfied by any
DFA continuous in the Kohn-Sham density or density matrix,
regardless of systematic errors in its definition [10]; thus, the
fundamental gap of bulk systems can be predicted by the (gen-
eralized) Kohn-Sham orbital gap, for functionals continuous
in the density (density matrix), as in Eq. (7). In finite systems,
however, the PPLB condition is not in general obeyed, and the
gap computed from Eq. (7) may differ from that computed by
calculating the (N =+ 1)-electron energies to obtain the integer
gap as in Eq. (6), the ASCF method.

A. Delocalization error

The delocalization error has a dramatic size-dependent
manifestation. In finite systems, standard DFAs fail to obey
the PPLB linearity condition, so the derivative gap is not equal
to the integer gap. This is due to the error in the approx-
imate exchange-correlation functional, which nearly always
yields E convex in N, underestimating the piecewise linear-
ity prescribed by the PPLB condition. This convex deviation
has been identified as the cause for an unphysical smearing
of the electron density in space, as well as underestimation
of the total energy in a delocalized electron density; thus,
we may identify it with delocalization error, as exhibited in
small systems. In bulk systems, the delocalized nature of the
orbitals produces a total energy linear with respect to frac-
tional charge, yielding no deviation from the PPLB condition;
however, delocalization error manifests as an incorrect slope
of the E(N) line at integer N [10].

The effects of delocalization error include the underestima-
tion of band gaps and reaction barriers [15], undervaluation
of dissociation curves [16—18], overestimation of conduc-
tance and polarizability [19], and incorrect energy level
alignment and charge transfer across interfaces [20,21]. To
capture the full derivative discontinuity and hence the band
gap, it has been shown that the exact functional, whether
local or nonlocal, cannot be a differentiable functional of
the electron density or of the Kohn-Sham density ma-
trix [22,23]. To reduce the systematic delocalization error,
many approaches have been developed, including range-
separated functionals [24-30], the screened range-separated
hybrid functional [31], self-interaction error-corrected func-
tionals [17,32-38], Koopmans-compliant functionals [39,40],
and generalized transition state methods [41], along with re-
lated developments using localized Wannier functions [42].

The localized orbital scaling correction (LOSC) method
was developed to eliminate delocalization error systemat-
ically [43,44]. Previous incarnations of LOSC were im-
plemented for molecular systems with real orbitals and
the boundary condition lim—« p(r) = 0. They accurately
model IP, EA, photoemission spectra, dissociation curves, and
polarizabilities, as well as restore size consistency [43—46]. In
this work, we extend LOSC to periodic boundary conditions
(PBCs) and complex orbitals. Additionally, we introduce a
screened Coulomb interaction to the LOSC energy correc-
tion to enable the accurate computation of bulk system band
structures.

B. Periodic boundary conditions

In PBCs, the eigenfunctions of the single-particle Hamil-
tonian are known as Bloch orbitals; they satisfy hs|1/f,i‘) =
€X|yX). The Bloch orbitals are also eigenfunctions of the
unit-cell translation operator, so they take the form |¢/X) =
e®Tu¥), where |u¥) has the periodicity of the unit cell
and k is a point in the Brillouin zone (the reciprocal-space
unit cell) [47,48]. The Bloch orbitals obey the normal-
ization convention (Y |¥X) = §(k — q)8,,, where (f|g) =
fD dr f(r)g(r). Here, 8(k) is the Dirac delta distribution, 8,,,

is the Kronecker delta, and f is the complex conjugate of
f. The domain of integration D is the periodic unit for the
functions being integrated; for Bloch orbitals, D = R3. The
Iu',f) are orthonormal in the band index n at a fixed k point
in reciprocal space: that is, (u}f,|ul,§) = 8.1, Where the inner
product integrates over one unit cell. Note that we assume
closed-shell systems in this work.

The single-particle density can be represented in real space

by the occupied Bloch orbitals as

occe

|4
e AT

where V is the volume of the unit cell and the integral is over
the first Brillouin zone. Since the Hamiltonian is diagonal in
k, we can solve for the Bloch orbitals in reciprocal space,
requiring diagonalization only in one unit cell. In practice,
the Brillouin zone is sampled with a finite number of points;
in this work we use a Monkhorst-Pack mesh centered at the
origin I of the Brillouin zone [49]. Thus, integrals over the

2
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Brillouin zone become equally weighted sums over the k
mesh

1
G / dk k) = Xk:f(k), ©)

where N is the number of k points in the mesh. Using a
Monkhorst-Pack mesh centered at I' yields Bloch orbitals
having the periodicity of an unfolded supercell comprised
of N, primitive unit cells; this supercell is referred to as the
Born—von Karman cell [48]. The Bloch orbitals then obey
the normalization convention (Y1 |¥X) = Ni8kqdun. Where the
integral is over the Born—von Karman cell.

II. METHODS

The LOSC method consists of two steps. First, we find
orbitals that are spatially localized while remaining associated
with specific energy ranges. Next, we compute a curvature
matrix modeling the magnitude of the deviation from linearity.
This is combined with the fractionally occupied localized
orbitals to correct the convex deviation of E(/N) from linearity
at noninteger N, as well as incorrect total energies at integer
N. Both steps are implemented as postprocessing after a con-
verged self-consistent field calculation.

A. Localization

The wavelike nature of the Bloch orbitals prohibits them
from being spatially localized. In order to obtain a state that is
localized in space, the discrete Fourier transform of the Bloch
orbitals is used to produce Wannier functions [50]

1 .
|wR) = N Z e *R|y k), (10)

k

Wannier functions inherit the periodicity of the Born—von
Karman cell, and are indexed by electron bands n and unit
cells R in the supercell. They are symmetric under translation
by unit cell vectors, so that w,lf(r) = wg(r —R); R=0is
referred to as the home unit cell. There is a unitary, or gauge,
freedom at each k point in the choice of Bloch orbitals that
comprise a Wannier function, so we can define generalized
Wannier functions [51]
o et

|wlR>__Z _lkRZ m’wn -
) (1)

where we refer to |¢}‘) as a transformed Bloch orbital (TBO).
From now on, we will refer to generalized Wannier functions
as Wannier functions.

The gauge freedom U * in the TBOs can be chosen such
that the resulting set of Wannier functions have advantageous
properties. In order to obtain localization in space, Marzari
and Vanderbilt suggested choosing U * that minimize the Wan-
nier functions’ spatial variance (Ar?); = (r?); — (r)?, where
(x); = (w 0|x|w ); the resulting orbitals are called maximally
localized Wannier functions [52]. In molecules, the scheme
of minimizing spatial variance is referred to as Foster-Boys
localization [53]. However, constructing maximally localized
Wannier functions from both valence and conduction bands
is physically ill motivated. Because bands far apart in energy

can mix freely and the Bloch bands form a complete basis,
adding more virtual bands will result in increasing spatial
localization of the maximally localized Wannier functions,
with a corresponding loss of information about the energy
dispersion of the bands.

In order to preserve locality in energy while maintaining
spatial localization, enabling simultaneous treatment of the
occupied and unoccupied spaces, we choose the Wannier
gauge that minimizes a cost function considering both energy
and spatial variance:

F=(-y)) (Ar),

where 0 < ¥ < 1 and in the units used here C = 1a§ /eV?,
where ag is the Bohr radius. This cost function was first
proposed by Gygi et al. [54] for computations sampling the
Brillouin zone only at I' and implemented for such systems
by Giustino and Pasquarello [55]. It was used for LOSC in
molecules [44] to treat system symmetries and degeneracies
more robustly than the original localization, which used soft
energy windows [43]; in molecular LOSC, the localized or-
bitals are called orbitalets. We recently extended F' to systems
with N, > 1 [56]; we refer to such orbitals as dually localized
Wannier functions (DLWFs). These formulations show how
the combination of occupied and unoccupied spaces can be
localized simultaneously to produce Wannier functions that
are localized in both space and energy. This construction is
critical for addressing delocalization error in finite systems
because it allows for dynamic localization in the resulting
orbitals; the orbitals can qualitatively and quantitatively differ
depending on the geometry of the system [43,44]. In keeping
with the principle of universality in functional development,
we use the same mixing parameter in Eq. (12), setting y =
0.477 14. The value of y has important implications for the
LOSC method; see Section VI of the Supplemental Material
of Su et al. [44]. Setting y = 0, for instance, yields maximally
localized Wannier functions [52], while y = 1 yields DLWFs
that are pure Fourier transforms (up to k-dependent phases) of
the Kohn-Sham bands.

Note that we have not proven that a unique global mini-
mum of F exists; in practice, F' has a fairly rugged landscape
of solutions, and we have observed multiple local minima.
We choose the DLWFs yielding the smallest total cost. Differ-
ent DLWFs can produce somewhat different screened LOSC
(sLOSC) corrections, with eigenvalues varying by up to a few
tenths of an eV. The problem of multiple minima of F has also
been observed in molecular LOSC [57], but was not found to
be the dominant source of error. An additional question worth
exploring is the effect of symmetry breaking, such as that
due to perturbations of the crystal lattice, on the localization
procedure.

The compromise between spatial and energy localization
and the inclusion of unoccupied orbitals are key to producing
localized orbitals that can address delocalization error while
retaining size consistency. For example, the DFA HOMO
and LUMO of H;r at (or near) the dissociation limit are
delocalized over the whole molecule; since they are (nearly)
degenerate, there exists a unitary freedom in the subspace
spanned by both. Due to the symmetry of the system, we

+yCD (AR, (12)
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expect to obtain two separate H>* fragments; the (small or)
vanishing gap means that any choice of y < 1 in Eq. (12)
will result in half-occupied orbitals localized on each H atom.
This is the physical motivation for a localization scheme that
minimizes the spatial variance of occupied and unoccupied
orbitals while allowing only orbitals that are close in energy
to mix [43].

B. Energy corrections

The deviation from energy linearity with respect to
fractional charges is characteristically quadratic in most
exchange-correlation functionals [43,58,59]. To restore com-
pliance with the PPLB condition for small finite systems, the
global scaling correction (GSC) was developed. GSC corrects
the total energy by an amount quadratic in the occupation
numbers of the canonical molecular orbitals [58,60]. This
method is effective at correcting the systematic deviation
from the PPLB condition for systems with fractional charges
and leads to accurate prediction of quasiparticle energies as
the eigenvalues from the resulting one-electron Hamiltonian.
However, GSC is applicable only for systems of small and
moderate size; the convex deviation of conventional DFAs
from the piecewise linearity prescribed by the PPLB condition
decreases with increasing system size, and the delocalization
error manifests instead as underestimated ground-state ener-
gies for integer systems and incorrect linear Ey (V) curves
with wrong slopes at the bulk limit [10]. The localized or-
bital scaling correction (LOSC) applies its energy correction
adaptively by the construction of localized orbitals, allowing
systematic and size-consistent correction of delocalization er-
ror [43,44]. In this section, we discuss the extension of LOSC
to periodic systems.

A basic quantity in LOSC is the density matrix in the basis
of DLWFs; its elements are occupations

MR = wf s w). (13)

The occupations between all pairs of DLWFs are used to re-
move quadratic deviations, while the diagonal terms are used
to restore linearity. The energy correction defined by LOSC
for each unit cell is given by

LOSC _ ~TR, TR (sTR _ 7 IR
AE 2Nk ZZ AR —=20). (14)
TR ij

where S?jR = 8;j8or; K models the curvature of the deviation
from linearity.

The diagonal terms in the energy correction are propor-
tional to TR — |ATR |2 thus, if a DLWF has integer occupancy
(implying AR =0 whenever i # j or T # R), then the en-
ergy correction due to that DLWF will also be zero.

The matrix [kiTjR] of occupations between the DLWFs is the
discrete Fourier transform of the occupation matrix between
the TBOs. As such, it is positive semidefinite and Hermitian,
and

tre[AR] = ZNf, (15)

where tr. denotes the trace per unit cell and N}‘-‘ is the number
of electrons below the Fermi energy at k.

Following Su et al. [44], the elements of the curvature
matrix are given by

iR = erf (8S1%) /i Tk RR 4 erfe(8S¥ )R, (16)

Here, erfc(r) = 1 — erf(r) is the complementary error func-
tion. S,-TjR is the absolute overlap between DLWFs,

st = [[ar [oFmpka) (a7

where p(r) = |w](r)|*> is a DLWF’s charge density. The
matrix elements ;% in Eq. (16) are given by

ay =Ilols o] = X[l o}, (18)

with
I[pt. p}] = f f drdr’ pl(r)pR (K (r —r']), (19a)

2€C
X[ p}] =75 / dr [pl ®pf @] (19b)

In the above, K(r) = 1/r is the Coulomb kernel, Cx =
2(£)!73 is the Dirac exchange constant [61], and T = 6(1 —
2°1/3) ~ 1.2378 is a nonempirical parameter [43]. The deriva-
tion of how this correction restores the PPLB condition can
be found in the supplementary data of Li et al. [43]. The use
of ¥ instead of x was introduced because the cost function in
Eq. (12) can induce discontinuous jumps between localization
characters during molecular dissociation [44]. The diagonal
elements of k¥ and « are equal, so when A; € {0, 1} the cor-
rections from ¥ and « are the same. In practice, X [,ol.T, p?]
term is evaluated using numerical integration on a grid of
real-space points. The Coulomb term J[p;', p}] is evaluated
in a plane-wave basis, detailed in Sec. II C.

Applying the extension of Janak’s theorem [12] to the gen-
eralized Kohn-Sham theory [14], the LOSC energy correction
of Eq. (14) yields corrections to the Bloch orbital energy
eigenvalues eff given by

Z ~00 < Aoo) |Um 2

p— Z KORRG{)\,OR ik- RU’”U':;} (20)
Ri#0j

Consider the diagonal corrections given by the first summand
in Eq. (20). There is no correction to the eigenvalue when
a DLWF is half-occupied (A; = %); on the other hand, the
correction is maximal when it is completely occupied or unoc-
cupied. Li er al. [43] observed that the slopes of the quadratic
DFA and the correct linear E(N) curves agree at half-integer
N. Since the frontier orbital energy corresponds to this slope,
we see that accurate frontier orbital energies are given by
half-occupied frontier orbitals. The LOSC correction to the
orbital energies arrives naturally at this conclusion, addition-
ally agreeing with Slater transition state theory [62,63].
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We may also view LOSC as a correction to the Kohn-Sham
Hamiltonian. It is given by the functional derivative of the
energy correction with respect to the density operator under
the frozen orbital approximation

SAELOSC
Y

Av , 2D

and can be written in operator form as

SR
Av= Y "® (# - AiTjR> wifwi]- @

ij, TR

(See the Supplemental Material [64] for details on this deriva-
tion.) The correction to the nth Bloch orbital eigenvalue is then
given by Aef = (Vx| Av|y).

In practice, the energy corrections are applied to disentan-
gled Bloch orbitals. The conduction bands of most systems
cannot be formed into sets of bands that do not cross anywhere
in the Brillouin zone, a condition referred to as band entangle-
ment. In order to obtain a finite set of bands for localization
and energy correction, we use the disentanglement procedure
outlined by Souza et al. [65]. This procedure obtains N,, bands
from a set of N, > N,, Bloch orbitals at each k point, chosen
such that the subspace spanned by the disentangled bands
is as smooth as possible in k. To correct the band gap of
semiconductors and insulators, we include sufficiently many
virtual bands in the construction of the Wannier functions to
converge the localization of the frontier bands (that is, the
valence band maximum and conduction band minimum) [56].
We find that N, = Nyee + 3Neoora and Ny, = Noce + 2Ncoords
where N, is the number of occupied bands per unit cell and
Neoord 18 the coordination number of the lattice, are sufficient;
see the Supplemental Material [64] for details. The N,, disen-
tangled Bloch bands yield N, DLWFs per unit cell, so there
are N, Ny DLWFs in the Born—von Karman supercell on which
they are periodic. The energy corrections for the N, disen-
tangled Bloch rbitals at each k point are implemented using
Eq. (20).

In this work, we restrict our attentions to closed-shell sys-
tems. Extending the LOSC method to spin-polarized materials
is accomplished by finding the corrections from the spin-up
and -down DLWFs independently and summing them to ob-
tain AEOSC; this functionality is planned for the next version
of LOSC. However, treating the strong correlation common to
open-shell materials brings its own set of challenges beyond
the scope of this work. We discuss them briefly in Sec. IV
below.

C. Coulomb integrals

Accurate calculation of the Coulomb interaction J [,oiT , p}‘]
is needed for LOSC to restore the PPLB condition. In PBCs,
a plane-wave basis is typically employed. The Coulomb
energy is diagonal in this basis, and the double integral re-
quired in real space collapses to a single sum over basis
vectors G:

4
Ielpf] = Y 5 PHGORG). (23)
G

where G = |G|. However, this sum converges only for neutral
charge distributions, for which the G = 0 term vanishes. The
DLWF densities are individually charged, so ignoring the
divergent term coming from the net charge will significantly
underestimate the Coulomb energy. There are many methods
to evaluate the Coulomb energy for charged densities in the
plane-wave basis accurately, including those of Makov and
Payne [66], Kantorovich [67], Dabo et al. [68], and Li and
Dabo [69]. We choose the spherical cutoff method [70-72],
truncating the Coulomb kernel in Eq. (19a) at a cutoff radius
R_; this is taken to be half the length of the shortest Born—von
Karman supercell lattice vector, ensuring that the Coulomb
interactions between the a DLWF density and its images in
neighboring supercells are zero. Thus, the spherical cutoff
Coulomb kernel is

) )1/, r<R.
K.(r;R.) = {0’ F>R. 24)
which has Fourier coefficients
4711 —cos(GR,)]l, G #0
KA(G:R.) = { ol (ORI G# (25)
27R2, G=0.

Observe that K.(G; R.) does not diverge for any G. As long
as the pair of DLWF densities in Eq. (19a) lie in a sphere
of radius R,, the spherical cutoff method is also accurate in
highly anisotropic unit cells, unlike schemes such as that of
Makov and Payne [67]. We enforce this containment condi-
tion in practice by checking that each DLWF density is well
contained in a volume spanned by half of each Born—von
Karman supercell lattice vector, and only compute curvature
elements between pairs of DLWF densities that have centers
closer together than R.. We evaluate the Coulomb integrals on
the unfolded supercell in the plane-wave basis, which requires
a fast Fourier transform (FFT) of the DLWF densities on the
supercell.

D. Screening

Applying LOSC with a bare Coulomb interaction leads
to severe overcorrection of semiconductors’ band gaps in
PBCs. However, this is not surprising; we anticipate an ef-
fect of the other electrons in the lattice on J [,oiT , p}{]. As
shown by highly accurate methods such as GW, a screened
Coulomb interaction is required to model the interaction
between electrons in a periodic system accurately [73,74].
Recently, Mei and coworkers also found that the devia-
tion from linearity of the total energy as a function of
canonical orbital occupations is given to second order by
a screened interaction [60]. We model the screening phe-
nomenologically, attenuating the long-range 1/r behavior of
the spherical cutoff Coulomb interaction by a complemen-
tary error function. This modifies the Coulomb kernel to
read as

r <R,
r= R,

erfc(ar)/r,

Ky(ri Rev @) = {0 (26)
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where « is a screening parameter. We choose the « that best reproduces the experimental band gaps of a test set of semiconductors
and insulators. For r larger than the screening radius o', K (r;R., ) decays exponentially instead of as 1/r. The Fourier

coefficients of K are

K, (G;R;,a) =

The error function is unbounded for complex arguments,
overflowing double-precision floating-point numbers even for
relatively small G. Thus, we evaluate K (G;R,., o) with a
scaled form of erfz called the Faddeeva function, implemented
in the numerically stable ACM Algorithm 916 [75,76]. For
details, see the Supplemental Material [64].

In principle, the screening is system dependent. Im-
proved accuracy would be attainable by setting its value
to best reproduce each material’s band gap. However, the
phenomenological screening model of SLOSC does not en-
able doing so while retaining predictive ability. This would
require a rigorously screened Coulomb (or Hartree-exchange-
correlation) interaction based on the linear response function
x(r,r') = 8ps(r)/Sv(x’). Ab initio screening of this kind
appears in the extensions of the GSC method to hybrid
functionals [77] and in the following exploration of orbital
relaxation on GSC [78], the GSC2 method [60], as well as
in recent work on Koopmans-compliant functionals [79-81].
For small, finite systems, the delocalization error is quantified
by 9°E/ an?, where n; is the occupation number of the Kohn-
Sham orbital |v;); analytical expressions for 92E/ Bniz were
derived in Yang et al. [82]. In sLOSC, linear-response screen-
ing would very likely increase the accuracy, but at substantial
computational cost to compute the nonlocal x (r, r’).

III. RESULTS

We use the PBE functional [6] for the parent DFA
calculations, with optimized norm-conserving Vanderbilt
pseudopotentials [83] generated by PSEUDODOJO [84]. Both
self-consistent field (SCF) and non-SCF calculations are car-
ried out in the QUANTUM ESPRESSO code suite [85,86].

20

o

Calculated gap (eV)
o

o

0 5 10 15 20
Experimental gap (eV)

FIG. 1. Comparison of experimental band gaps with those calcu-
lated by PBE (o), sLOSC (x), and unscreened LOSC (+). The inset
shows systems with an experimental band gap less than SeV.

&[1 - cos(GRoerfe(@R,) — e~/ Reerf (aR. + i2) ],
27R? + werf(aR,) (a2 — 2R?) — 2/me~ R R, Ja,
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The energy cutoff for the fast Fourier transform is set
to 100 Ry for wave functions and 400 Ry for densities. The
Brillouin zone is sampled with Monkhorst-Pack meshes cen-
tered at I', which is necessary for the Wannier functions to
be periodic on the Born—-von Karman supercell. For SCF
calculations, we use a 16 x 16 x 16 k mesh, while the other
calculations are performed on 6 x 6 x 6 grids. The localiza-
tion step of LOSC is implemented in a modified fork of the
WANNIER90 code [87-89] and the energy correction as module
to a fork of QUANTUM ESPRESSO.

To determine an optimal screening parameter o, we mini-
mize the mean absolute percent error (MAPE) on the SC/40
set of semiconductors with experimentally available band
gaps [90] together with six additional large-gap insulators.
The experimental band gaps studied range from 23 to 27 eV.
We find that « = 0.15a; ! achieves the lowest MAPE; co-
incidentally, this value is numerically equal to the screening
parameter used in the HSE density functional [90]. As shown
in Fig. 1, LOSC with Coulomb screening (sLOSC) yields
marked improvement of the band gap for the test set in com-
parison with the parent functional. It is also apparent that
unscreened LOSC overcorrects the band gaps; indeed, it is
less accurate than the parent functional. The performance of
sLOSC in molecules is better than the parent functional, but
unscreened LOSC achieves the best performance in molecular
systems (see Table I). The Supplemental Material [64] details
the variation in performance of screened LOSC for both bulk
systems and molecules with the screening parameter o .

The band structures of sLOSC and of the parent func-
tional are shown for the small-gapped semiconductor silicon
in Fig. 2 and the larger-gapped insulator lithium fluoride in
Fig. 3. They use the disentangled band structures, which are
numerically indistinguishable from the true band structure
at and below the conduction band minimum for the parent
functional. Wannier interpolation in the same DLWEF basis as
that used in SLOSC is used to find the energy at the points in
the Brillouin zone not explicitly treated by the localization and
energy correction. The sSLOSC correction to the band structure
comes largely from the more localized DLWFs, for which
there is a larger Coulomb self-energy J [,ol-R, ,oiR]. Because of
this, SLOSC mostly corrects the energy of the occupied bands
(which we observe to correspond closely to the occupied

TABLE I. Mean absolute percent error of the band gap for PBC
and molecular test sets. For details on the systems tested, see the
Supplemental Material [64].

Method PBE LOSC sLOSC
PBC 47.5% 158.6% 19.7%
Molecule 79.8% 10.1% 43.6%
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Energy (eV)

FIG. 2. Band structure of silicon under the PBE functional
(dashes) and sLOSC (solid). The Fermi energy of the PBE calcu-
lation was 6.23 eV, while the PBE with LOSC Fermi energy was
5.49eV.

DLWFs in semiconductors); it affects the virtual bands much
less. More work on molecule-surface and surface-surface
interactions is required to determine whether LOSC yields
correct energy level alignment and whether the larger correc-
tion to the valence bands is physically meaningful.

IV. DISCUSSION

We have shown that despite the simple form of its phe-
nomenological Coulomb screening, sSLOSC systematically
corrects the band-gap error associated with the parent func-
tional for materials spanning a large range of band gaps.
Screening improves the correction of delocalization error in
bulk systems, but degrades the accuracy of molecular systems’
band gaps relative to unscreened LOSC; however, SLOSC still
offers better band gaps than those computed by the parent

Energy (eV)

___________ tomwszo=—

ot

FIG. 3. Band structure of lithium fluoride under the PBE func-
tional (dashes) and sLOSC (solid). The Fermi energy of the PBE
calculation was 0.97 eV, while the PBE with LOSC Fermi energy
was —3.52eV. The core states are not included in the figure.

functional. One key remaining challenge is to model the cur-
vature more accurately for all systems; we expect that linear
response of the electron density, used by Mei et al. [60] for
accurate screening of the Kohn-Sham orbitals, could be used
to find the exact expression for 32E /9, ;- This would alleviate
the error imposed by modeling « as a difference between
Coulomb repulsion and Dirac exchange.

We implement the energy correction as a postprocessing
step to a self-consistent calculation; such corrections are accu-
rate when the change in electron density is small and hence the
total energy correction is small. For every system considered
in this work, AEYSC does not exceed three parts in 10°.
The corresponding change to the density for such systems is
also expected to be minimal. LOSC can also be implemented
self-consistently [45]; this can correct the delocalization error
of the total density, improving the accuracy of LOSC for
systems with large total energy corrections. A self-consistent
implementation of sSLOSC could be necessary for the accurate
computation of heterogeneous and interfacial systems. Since
delocalization error leads to incorrect charge distributions,
the sLOSC energy correction is likely to be larger, and self-
consistently correcting the delocalized density is expected to
yield better orbital energies.

Work is ongoing to implement SLOSC for spin-polarized
materials and to investigate its treatment of metals. The DL-
WFs of gapless systems constructed from Bloch bands near
the Fermi energy are expected to have occupations A;; close to
%, which means that the SLOSC correction to those eigenval-
ues will be small. While there may be changes to the overall
band structure, it is likely that such systems will remain
gapless.

This may not hold in semimetals, whose valence and con-
duction bands cross only in a small volume (or a single point)
of the Brillouin zone. Metals, on the other hand, have one
band that crosses the Fermi energy. sLOSC can open a gap
in systems the DFA predicts to be semimetals; this occurs
with the smallest-gapped system in our test set, InSb. Thus,
it is not certain that true semimetals would remain so after
the sLOSC correction. In addition, the treatment of strong
correlation due to (near) degeneracy of spin states and the
inclusion of topological or spin-orbit effects are beyond the
scope of this work. A modification of molecular LOSC to
include fractional spins was developed in Su et al. [91]; it
could possibly be extended to bulk materials as well.

A. Comparison with other methods
1. DFT+U(+V)

(s)LOSC is related to the DFT+U [92,93] method for
correcting delocalization error. The kinship can be seen in the
similarity of the sLOSC energy correction, Eq. (14), to the
rotationally invariant DFT+U correction [94]

1
AEprrip = 5 ) trlnee (1 =m0, (28)

Lo

where U is the effective Hubbard parameter for orthonormal
local orbital (LO) ¢, combining atom and orbital indices, and
ng, is the LO occupation matrix. Both offer an adjustment to
the total energy quadratic in the occupation of the LOs. The
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energy correction of DFT+U comes only from interactions
between LOs on the same atom, although DFT+U+V [95]
extends this to interactions between atoms, analogous to the
off-diagonal curvature elements ¥; ; of (s)LOSC. However,
the LOs of DFT+U (+V) are static (usually being d and f
orbitals on transition metal centers), while the DLWFs of
sLOSC dynamically localize based on the gauge set by the
cost function F. Thus, where DFT+U (4V') must recompute
the effective Hubbard parameter for every perturbation of
the crystal structure or molecular geometry, the size of the
correction in (s)LOSC follows from the DLWFs.

It is worth noting that, while DFT+U (+V') does not ex-
plicitly include energy localization in its construction, the
Hubbard correction applies primarily to the Kohn-Sham or-
bitals that have the most overlap with the LOs; viewed another
way, the (spatially) localized orbitals that have the most
energy-local character (via their large overlap with energy
eigenstates) [96]. In particular, the d and f atomic orbitals
of transition metals correspond closely to flat bands in recip-
rocal space, which carry some energy information implicitly.
However, they are independent of the system’s geometry. In
contrast, the LOs of LOSC are dynamic: the orbitals can
change with the geometric structure of the system. This is
key to their utility in finite systems. In compact structures
near equilibrium, the LOSC LOs can replicate the Kohn-Sham
canonical orbitals, while becoming localized as chemical
bonds are stretched. This allows the LOSC total energy cor-
rection to change with the geometry, as seen in Li et al. [43]
and Su et al. [44].

Neither sLOSC nor DFT+U are suitable for solving
the analog of delocalization error for systems with frac-
tional spin [14,22]. For molecules, fractional-spin LOSC
(FSLOSC) [91] extends the original LOSC method to this
case; the judiciously modified DFT (jmDFT) method [97,98]
does the same for DFT+U.

2. Koopmans-compliant functionals

Koopmans-compliant functionals [99,100] mitigate delo-
calization error by enforcing the PPLB linearity condition
directly: in the Koopmans integral (KI) formulation [39]

fi
AEm:Zai[f,»m— /0 ds,-<¢,»|hs<s,->|¢,->] (29)

l

Here «; is an orbital-dependent screening function based on
the relaxation of the LOs ¢;; f; is the (fractional) occupation of
oi; i = fol ds; (¢i|lhpz(s;)|@;), integrating the Perdew-Zunger
self-interaction corrected Kohn-Sham Hamiltonian [32], gives
the linearized slope of the energy with respect to f;; and the
last term computes the nonlinearity in E that is replaced by
fini. Like (s)LOSC, Koopmans-compliant functionals are de-
pendent on the choice of localized orbitals [101]. In extended
systems, localized orbitals are necessary for a Koopmans-
compliant correction to have any effect [80], and screening
has also been found to effect improvements in band-gap cal-
culation [79,81].

An advantage of sLOSC over the Koopmans-compliant
functionals for extended systems is that the DLWFs treat
the valence and conduction bands together; on the one hand,
DLWFs are empirically robust to increasing the number of

conduction bands from which they are constructed, and on
the other, SLOSC can in principle be applied to metals with-
out additional modification. For gapped systems, the energy
localization inherent in the DLWF cost function enforces
separation between the occupied and virtual electronic man-
ifolds without manual input. The system with the smallest
gap in our analysis, indium antimonide (InSb, experimen-
tal gap 0.23eV), which is predicted to be gapless by the
DFA (and whose sLOSC gap is 0.260eV) has DLWF oc-
cupations A}}R > 0.98 in the valence manifold and <0.0074
in the conduction manifold. It is conceivable that DLWFs
could also serve as effective LOs for Koopmans-compliant
methods, even if their subspaces corresponding to the valence
and conduction bands are not variational for total Koopmans-
compliant energy.

3. Additional methods

The Fermi-Lowdin orbital (FLO) self-interaction cor-
rection (SIC) [36,102,103], which has its roots in the
Perdew-Zunger (PZ) self-interaction correction method [32],
also uses localized orbitals for an energy correction. However,
the self-interaction error treated by both FLOSIC and PZ-SIC
is well defined only for one-electron systems; LOSC and its
derivatives account for the many-electron nature of delocal-
ization error explicitly [17].

As mentioned in Su et al. [91], the generalized transition
state method [41] and the Wannier-function method of Ma and
Wang [42] are effective at improving band-gap predictions.
However, since they do not mix valence and conduction bands
to create fractionally occupied orbitals, they cannot change the
total energy of the DFA calculation; thus, they cannot restore
size consistency to DFAs and will not be able to capture (for
instance) molecular dissociation at the same time as improv-
ing band-gap predictions. This problem is shared by early
Koopmans-compliant methods, which used the Kohn-Sham
orbitals as the ¢;; it underlies the observation of Nguyen
et al. [80] that localized orbitals such as Wannier functions
are required for Koopmans compliance in extended systems.

B. Computational efficiency

The sLOSC method as implemented in this work scales
as O(NS)N,() for the localization step, O(NiNG) for the com-
putation of curvature elements, and O(N,,Ng log Ng) for the
FFT of the DLWF densities. Here, N is the number of plane
waves in the unfolded supercell, which is N, times the number
of plane waves in the unit cell. Calculating the curvature
and energy corrections is the computational bottleneck for
the systems evaluated in this work, with wall times for each
system reaching a few hours using 16 threads on an Intel Xeon
E5-2630v3 processor. The systems that took the longest time
were those with the largest number of core states, which have
no effect on frontier state corrections; these could be neglected
if only a correction to the band gap is desired. The running
time was divided fairly evenly between the computation of
the matrix elements defined in Eqs. (17), (19a), and (19b). We
note that the size of the integration domain for these quantities
could be reduced from the full Born—von Karman supercell if
the relevant DLWF densities are contained in a smaller region.
This is supported by the fact that systems that had similar
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localizations for a 4 x 4 x 4 and 6 x 6 x 6k mesh yielded
very similar energy corrections.

Along the same lines, we find that for the systems in the
test set the correction results are converged witha 6 x 6 x 6k
mesh, but this is only necessary to achieve a converged lo-
calization. Certain systems exhibit a qualitatively different
localization with a smaller 4 x 4 x 4 k mesh; however, by
decreasing the value of y in the localization cost function F,
a set of DLWFs qualitatively similar to the 6 x 6 x 6 case can
be obtained.

Some other methods that attempt to address delocaliza-
tion error in bulk calculations, such as the approach of
Ma and Wang [42] and the screened range-separated hybrid
functional [31], rely on supercell self-consistent calculations.
These have cubic scaling in the number of electrons, so an
unfolded Born—von Karman supercell arising from N, k points
sampling a unit cell with N,, Wannier functions scales as
O(N}N3). Both of the aforementioned methods use Wannier

functions as a localized charge representation and rely on
manually choosing the Bloch orbitals to comprise the Wannier
functions representing the frontier of the occupied space. The
SLOSC method uses DLWFs, which naturally supply Wannier
functions representing the frontier of the occupied and unoc-
cupied spaces without the need for manual energy windowing.

Data and scripts pertaining to this work have been archived
in the Duke Research Data Repository [114].
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