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One- and two-particle properties of the weakly interacting two-dimensional Hubbard
model in proximity to the van Hove singularity
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We study the weak-coupling limit of the t − t ′ − U Hubbard model on a two-dimensional square lattice
using a direct perturbative approach. Aided by symbolic computational tools, we compute the longitudinal
density-density correlation functions in the χ↑↑ and χ↑↓ basis from which we can obtain the dynamical spin
and charge susceptibilities at arbitrary doping and temperature. We find that for nonzero t ′, the zero-frequency
commensurate q = (π, π ) spin and charge excitations are each strongest at different densities and we observe
a clear behavioral change that appears tied to the van Hove singularity of the noninteracting dispersion upon
which the perturbative expansion is built. We find a strongly reduced compressibility in the vicinity of the van
Hove singularity as well as a behavioral change in the double occupancy. For finite t ′, the observed van Hove
singularity occurs away from half filling, leading us to conclude that this reduction in compressibility is distinct
from the Mott insulating physics that one expects in the strong-coupling regime. We compute the full dynamical
spin and charge excitations and observe distinct structure for electron- and hole-doped scenarios, in agreement
with experiments on cuprate materials. Finally, we observe a peculiar splitting in spin and charge excitations in
the vicinity of the van Hove singularity, the origin of which is traced to a splitting near the bottom of the band.
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I. INTRODUCTION

It is generally assumed that the dominant physics of the
cuprate phase diagram emerges from strong electronic corre-
lations, and, for this reason, the square lattice Hubbard model
in the strong-coupling regime has been the focus of theoreti-
cal and computational studies [1–3] as well as experimental
work on ultracold atom systems [4,5]. Such work on the
Hubbard model has found a plethora of phases with strik-
ing similarity to the doping-dependent phase diagram of the
high-temperature cuprate class of materials [6–8]. In contrast,
much of the experimental work on cuprates connects single-
and two-particle properties based on the arguments of nesting
of scattering vectors for various Fermi-surface topologies [9].
If such nested momentum- or energy-transfer processes can
be identified then the idea of vector nesting provides an in-
credibly powerful lens through which one can understand the
effects of weak renormalization due to interactions [10] and
has often been a central consideration for the development of
phenomenological theories of pseudogap physics [11–15].

Dynamical mean-field theory (DMFT) [16] is perhaps the
most well-known method for studying correlated electron
systems which, when applied to the two-dimensional (2D)
Hubbard model at strong-coupling strengths, finds a gapped
system known as a Mott insulator that originates from both
strong local electron-electron interactions and, in the case of
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the Hubbard model, proximity to the half-filling point of the
band (see Supplemental Materials [17]). Although alternate
explanations remain possible [18], a number of numerical
studies have suggested that strong commensurate spin ex-
citations lead to pseudogapped and insulating states in the
symmetric (t ′ = 0) half-filled two-dimensional (2D) Hubbard
model in the weak-coupling limit, where direct perturbative
schemes are convergent [19–22]. As temperature is decreased,
the onset of insulating behavior occurs at smaller values of
the Hubbard interaction strength U/t and also coincides with
long-range antiferromagnetic spin-correlation lengths, and
this behavior is observed from a variety of numerical methods
[19,23–25]. This begs the question as to how one should
interpret a wealth of literature that clearly demonstrates the
formation of a Mott gap beyond the range of perturbative
methods and above a finite critical interaction value Uc in the
T = 0 limit [26–28].

For the single-band Hubbard model with only nearest-
neighbor hopping, the strongest vector nesting is expected
to occur at half filling. There is then the potential for a
mixture of two physical phenomena occurring at the same
point: insulating behavior due to vector nesting that is rooted
in weak-coupling ideas, and Mott-insulating physics rooted
in the strong-coupling limit. Separating these two effects is
essential to developing a true understanding of the single-band
model on the square lattice.

To delineate these two effects, we study the single-band
model with finite next-neighbor hopping t ′, which plays a key
role since it moves the van Hove point for the noninteracting
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problem away from the half filled point and breaks the perfect
q = (π, π ) nesting. We then study the charge and spin exci-
tation spectra in the weak-coupling limit. Our methodology is
based on the direct perturbative expansion of density-density
correlation functions in the form of Feynman diagrammatics
in conjunction with a scheme to automate the analytic eval-
uation of Matsubara sums [29,30]. This scheme, known as
algorithmic Matsubara integration (AMI), provides analytic
expressions in which Matsubara frequencies can be analyti-
cally continued by replacing iω → ω + i� which is exact in
the � → 0+ limit. Furthermore, the calculations do not suffer
from finite-size effects, and the generated expressions have
explicit dependence on temperature and chemical potential,
ultimately giving access to arbitrary temperatures and doping,
which, when combined, allow us to develop a full picture of
the weak-coupling physics within the model.

II. METHODS

A. Hubbard Hamiltonian

We study the single-band Hubbard Hamiltonian on a 2D
square lattice [1],

H =
∑

i jσ

ti jc
†
iσ c jσ + U

∑

i

ni↑ni↓, (1)

where ti j is the hopping amplitude, c(†)
iσ (ciσ ) is the creation

(annihilation) operator at site i, σ ∈ {↑,↓} is the spin, U is
the onsite Hubbard interaction, and niσ = c†

iσ ciσ is the number
operator. We restrict the sum over sites to nearest and next-
nearest neighbors for a 2D square lattice, resulting in the free-
particle energy

ε(k) = −2t[cos (kx ) + cos (ky)] − 4t ′[cos (kx ) cos (ky)] − μ,

where μ is the chemical potential, and t (t ′) is the nearest
(next-nearest) neighbor hopping amplitude. Throughout, we
work with energies in units of the hopping, t = 1.

1. van Hove singularity

The primary effect of a nonzero t ′ is that the van Hove
singularity will occur at a density away from half filling. For
the noninteracting case this can be found analytically from
ε(k). For values of |t ′| < 0.5, the van Hove singularity occurs
at a chemical potential of μ = 4t ′. For larger amplitudes of
t ′, the topology of the Fermi surface is changed substantially
from the t ′ = 0 case, because the next-nearest-neighbor hop-
ping becomes dominant [31]. We therefore restrict our study
to nominal values of |t ′| < 0.5.

In the case of noninteracting problems there is a one-to-one
correspondence between the van Hove singularity and the
location of a topological change in the Fermi surface known
as a Lifshitz transition. Past studies of the Lifshitz transition
in the 2D Hubbard model have focused on the large U/t in-
sulating regime, where even for t ′ = 0, the Lifshitz transition
occurs for densities 〈n〉 ≡ n < 0.5 [32,33]. Our calculations
represent a perturbative expansion built upon the Hartree-
shifted but otherwise noninteracting problem. The inclusion
of a Hartree-shift creates a U/t dependence in the relationship
between chemical potential μ and density n. Since we are
at the weakly interacting limit of the model, the system has

a metallic Fermi surface, and therefore the location of the
van Hove point is not changed substantially from the non-
interacting case and should always occur in the vicinity of
μ = 4t ′. We therefore use this information to guide our choice
of parameters throughout.

B. Perturbation expansion

We obtain the diagrams for the spin susceptibility χs =
〈T Ŝz(τ, x)Ŝz(τ ′, x′)〉 and for the charge susceptibility χd =
〈T n̂(τ, x)n̂(τ ′, x′)〉 via perturbative expansions of each set of
operators. The two expansions are related due to the defi-
nitions of Ŝz = n̂↑ − n̂↓ and n̂ = n↑ + n↓. We can therefore
define the susceptibility in a basis of correlations between n̂↑
and n̂↓ operators. Assuming spin symmetry, we denote rel-
evant correlation functions as χ↑↑ = 2〈T n̂↑(τ, x)n̂↑(τ ′, x′)〉
and χ↑↓ = 2〈T n̂↑(τ, x)n̂↓(τ ′, x′)〉 [34]. This leads to the sim-
ple relations χs = χ↑↑ − χ↑↓ and χd = χ↑↑ + χ↑↓.

We present as well the double occupancy D = 〈n〉2 +
2〈n̂↑(τ, x)n̂↓(τ, x)〉 [35]. The first term represents the un-
correlated disconnected diagrams while the second term is
the local, same-time contribution from interactions. The sec-
ond term can be obtained from the Fourier transform of
the local, same-time expectation value above and is given
by

∑
q

∑
n χ↑↓(q, i	n). We provide a summary of each dia-

grammatic expansion in the Supplemental Materials [17]. The
convergence rate for each observable can differ drastically.
For example, results for double occupancy and density as
well as quantities on the Matsubara axis are much easier to
compute while results on the real frequency axis take sub-
stantially more computational effort. Results are obtained to
fourth order in the interaction for static and Matsubara axis
properties and for self-energies on the real-frequency axis, and
to third order for real-frequency evaluation of susceptibilities.
With these truncations in mind, we expect our results to be
robust for values of U/t < 4 and βt < 5 at the half-filled point
and for larger U/t and βt values away from half filling and for
finite t ′. We note that there is no conceptual barrier associated
with extending to higher orders, but there is a computational
hurdle that is beyond exponential in the expansion order. Fur-
ther advancements will be required to overcome those hurdles,
such as those suggested in Refs. [36,37].

C. Algorithmic Matsubara integration

First presented in Ref. [29], AMI automates the evaluation
of internal Matsubara sums for arbitrary Feynman diagrams
via a repeated application of the well-understood residue
theorem. This works so long as the perturbative expansion
can be built within a diagonal basis of known eigenvalues
that are frequency independent. The interaction must also
be frequency independent, or its frequency dependence must
be explicitly known. In the case of the Hubbard interaction,
the result of AMI applied to an nth-order diagram is an
analytic expression comprised of a prefactor times U n, a prod-
uct of Fermi or Bose distribution functions and derivatives
of such, and a product of noninteracting Green’s functions.
Each diagram typically results in many such terms, the num-
ber of which grow exponentially with expansion order (see
Supplemental Materials [17]). We use AMI to analytically
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FIG. 1. The static two-particle susceptibility at scattering vector
q = (π, π ) in the χ↑↑, and χ↑↓ basis (left) and in the spin-charge
basis (right) for t ′ = 0.0, −0.3t , U/t = 3, βt = 5 as a function of
particle density n.

perform the Matsubara sums over the internal Matsubara fre-
quencies for χ↑↑ and χ↑↓, and also the external frequency
i	n for the double occupancy. The resulting analytic expres-
sions must then be integrated numerically over the remaining
internal spatial degrees of freedom, which we resolve using
standard Monte Carlo techniques for which we make use of
the open source ALPSCORE framework [38,39] combined with
the open source AMI library LIBAMI [40].

1. Analytic Wick rotation to the real frequency axis

The results of AMI are analytic expressions containing
the external frequency that can be analytically continued to
the real frequency axis without numerical methods such as
maximum entropy inversion [41,42]. In the case of frequency-
dependent observables, we perform analytic continuation by
replacing the external frequency i	n → ω + i�, which is ex-
act in the � → 0+ limit. Throughout, we employ a finite
value of � = 0.125 which serves as a numerical regulator. The
impact of the regulator can be controlled, with larger values
of � acting to soften sharp features. The regulator should
typically appear as the smallest energy scale to ensure it does
not impact results.

2. Numerical analytic continuation to the real frequency axis

While numerical analytic continuation is not required in
our approach, we can equally well produce results on the
Matsubara axis and perform numerical analytic continuation.
For this we employ the method of maximum entropy inversion
using a flat default model [42] utilizing the code presented in
Ref. [41] and its dependencies [38,39].

III. RESULTS

A. Doping and temperature dependence
of static q = (π,π) susceptibilities

We present in Fig. 1 the density dependence of the static
q = (π, π ) susceptibility in the ↑↑ / ↑↓, as well as the spin-

(a) (b)

(c) (d)

FIG. 2. The static spin (top row) and charge (bottom row) sus-
ceptibilities at q = (π, π ), t ′ = −0.3t as functions of doping for:
(a), (c) fixed U/t = 3 for variation in t ′, and (b), (d) for fixed t ′ for
variation in U/t . Vertical lines represent the location of the van Hove
singularity for t ′ = −0.3 at U/t = 3 in the case of frames (a), (c) and
for U/t = 4 in the case of frame (d). Black dashed curves in (d) are
RPA results for the corresponding interaction strengths. χd and χRPA

d

curves in frame (d) are offset for clarity.

charge bases (annotated by s and d following Ref. [34]) for the
particle-hole symmetric case of t ′ = 0, and for a particle-hole
asymmetric case of t ′ = −0.3t , both at βt = 5 for a nominal
interaction strength of U/t = 3. Considering first χ↑↑ and
χ↑↓, we see that the former is positive for all densities and
peaked at the half filling point n = 0.5 while the latter is
negative for all densities. The simple subtraction or addition of
these two curves leads directly to the spin and charge suscep-
tibilities [34], respectively, shown in the right-hand frame of
Fig. 1. For t ′ = 0, the perfect particle-hole symmetry results
in both the spin and charge susceptibility being strongest at
half filling. This is not the case for finite t ′ where we see
that moderate asymmetry leads to a mismatch between χ↑↑
and χ↑↓ peaks. When obtaining χs this slight asymmetry
is washed out, and while it does decrease with t ′, the spin
susceptibility remains peaked near the half filled point. This
is not the case for the charge susceptibility χd , where we
see that the simple addition of χ↑↑ and χ↑↓ leads to a dip
in susceptibility near half filling and creates a structure with
one peak on the electron-doped side and a second peak on the
hole-doped side. We have performed additional calculations
from nonperturbative methods to verify the existence of the
two-peak structure of χd (see Supplemental Materials [17]).

Precisely how the two-peak structure in χd is shaped is
dependent upon the degree of asymmetry (value of t ′) but
also on the temperature and interaction strength. We present
results for χ (π,π )

s and χ
(π,π )
d in Fig. 2 for variation in t ′ at fixed

interaction strength of U = 3t (left) and at fixed temperature
(βt = 5) for variation in interaction strength (right). Begin-
ning with commensurate spin excitations in Fig. 2(a), we see
the dominant spin peak at n = 0.5 for the most widely studied
case of t ′ = 0. Increasing the magnitude value of t ′ incremen-
tally causes a reduction in χ (π,π )

s in the vicinity of n = 0.5
and has virtually no effect below n = 0.4 or above n = 0.6.
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In contrast, we see an entirely different behavior from χ
(π,π )
d

shown in Fig. 2(c). While the peak in commensurate charge
excitations for the t ′ = 0 case occurs at n = 0.5, even a mod-
est change in t ′ causes a depletion of charge excitations which
results in a two-peak structure as a function of doping [43].
Interestingly, the depletion is not centered at the half filled
point, but instead in the vicinity of the van Hove singular-
ity marked with a vertical dashed line. Shown in Fig. 2(d),
this splitting appears to be a robust feature that exists above
U = 2t for increasing interaction strengths. Similarly, there is
no structure in the spin susceptibility. For reference, we also
include results for the charge susceptibility from the simplistic
random-phase approximation, χRPA

d , marked as black dashed
curves in Fig. 2(d). At weak U/t = 1 the AMI and RPA results
are nearly identical, but for larger U/t the RPA result does not
demonstrate a two-peak structure. While the RPA expansion
does include some diagrams from χ↑↓ it does so only through
even powers of the bare bubble diagram. This results in no
mismatch in peaks of χ↑↑ and χ↑↓ as described in Fig. 1 and
this results in only a single peak in the density dependence.

It is perhaps not surprising that we observe the maximal
q = (π, π ) charge excitations, at low temperatures, near the
van Hove singularity since there the Fermi surface will most
closely resemble that of the antiferromagnetic Brillouin zone
and allow for vector nesting in the susceptibility. There is
evidence to suggest that insulating behavior in the 2D Hub-
bard model at weak coupling is caused by strong q = (π, π )
antiferromagnetic fluctuations [19,21,22,44], which in Fig. 2
remain centered at half filling. If pseudogap and insulating
behavior are indeed due to antiferromagnetic fluctuations then
we expect to find insulating behavior near half filling. We will
see in the next section that this assertion appears to be false,
and that the suppression of the charge susceptibility, which
is an indicator of insulating character, is centered at the van
Hove point and coincides with a reduced compressibility of
the electron density.

B. Double occupancy and compressibility

Representing susceptibilities in the ↑↑ / ↑↓ basis is par-
ticularly useful since it separates out the key element that
distinguishes the charge and spin susceptibilities, namely,
contributions from the correlated 2χ↑↓. One can get an imprint
of the impact of χ↑↓(q,	) by examining also its same-time,
local counterpart the double occupancy D. For a noninteract-
ing system, one would find χ↑↓ = 0 and the double occupancy
is given by D = 〈n〉2. For the interacting system, it is conve-
nient to consider the deviation from the noninteracting case
〈n〉2 − D [35]. We present this deviation in Fig. 3 (top) for the
particle-hole asymmetric case for t ′ = −0.3t at nominal tem-
perature of βt = 5 for increasing interaction strength. Here,
a positive value of the deviation corresponds to a reduced
value of the double occupancy which we see occurs for all
densities, similar to the observed negative value of χ↑↓ in
Fig. 1. One expects to find a maximal reduction in double
occupancy occurring when interaction effects are maximal.
Above U = 2t , the data exhibits a peak near n = 0.3 and
demonstrates a kink feature at slightly higher density. This
kink feature coincides with the van Hove singularity which for

FIG. 3. Deviation of double occupancy from the uncorrelated
case (top) and compressibility (bottom) as a function of density for
fixed t ′ = −0.3t , βt = 5. Vertical dashed line marks location of van
Hove singularity at U/t = 4.

U = 4t occurs at a density of n ≈ 0.44 (marked with vertical
dashed line in Fig. 3).

We present also the compressibility, κ = ∂n
∂μ

, as a function
of density in the lower frame of Fig. 3. Upon increasing the
interaction strength, we observe a reduction in compressibility
that produces a minimum near the van Hove point. This reduc-
tion in compressibility grows stronger for increasing U/t and
leads ultimately to an incompressible phase centered precisely
at the van Hove point. We mark the van Hove point for U/t =
4 in the top frame of Fig. 3 and see that it coincides with a
minima in the charge excitations displayed in the right-hand
frames of Fig. 2 and not with the maxima of spin excitations.
In the limit of strong coupling we expect that the role of spin
excitations will dominate and this feature would migrate to the
half filled point as seen from nonperturbative methods (see
Supplemental Materials [17]), and similarly as one removes
the particle-hole asymmetry due to t ′.

Reiterating our earlier remark, the observation of incom-
pressibility at the van Hove point and not at half filling, where
spin excitations are strongest, conflicts with the assertion
that it is q = (π, π ) spin fluctuations that are responsible
for pseudogap and insulating behavior seen in Refs. [19,20].
Past works studied primarily the t ′ = 0 case where the van
Hove and half-filled points coincide. Here with finite t ′ we
see that there are two distinct mechanisms causing insulating
behavior: that of strong spin excitations and the role they are
expected to play in pseudogap physics, and that of a peaked
density of states that occurs near the van Hove singularity of
the noninteracting system.

C. Momentum dependence of static spin and charge excitations

We present in Fig. 4 results of the static spin (top row)
and charge (bottom row) susceptibility for the U/t = 2.5 case,
plotted as a function of the scattering vector q. This choice of
interaction strength is large enough to show distinct spin and
charge behavior while keeping numerical uncertainty under
control. For densities above half filling the spin and charge
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FIG. 4. χs(	 = 0, q) (top) and χd (	 = 0, q) (bottom) as a function of qx and qy for U/t = 2.5, t ′ = −0.3t , and βt = 5 for a range of
densities n = 0.2 → 0.58.

susceptibilities appear similar, with both having maximal val-
ues at q = (π, π ). The spin susceptibility at (π, π ), however,
is substantially larger than at other q vectors while the charge
susceptibility is much more diffuse. As one reduces chemical
potential towards the van Hove point at μ = −1.2, we primar-
ily note the separation of the single q = (π, π ) spin excitation
into two distinct peaks at q = (π ± δ, π ) and q = (π, π ±
δ), as noted in previous works [21,23]. Reducing μ further
causes δ to increase and this moves the peaks further from
the commensurate (π, π ) point. One also observes secondary
structure in the spin susceptibility that is strongest along the
diagonals—qualitatively similar to observations in past RPA
studies [31]. A similar albeit weaker splitting near q = (π, π )
is observed in χd . Rather than distinct peaks, we observe a
nearly continuous diamond shape and primarily demonstrates
an increase in signal along the boundaries, particularly near
q = (0, 0).

A sharp (in momentum) peak should be observed in the
case of long-ranged but static correlations. In our data, the
absence of strong features in neither the charge nor the spin
susceptibility below the van Hove point suggest that the origin
of incompressibility seen in Fig. 3 is not a property of static
nesting. This leaves only then the possibility of dynamical
scattering which we explore in Sec. III D.

We note as well that the values of χs and χd at the � point
of the Brillouin zone are not zero. This is due to the order
of the limits limq→0 lim	→0, where for static susceptibilities
the zero-frequency limit is applied before the zero scattering-
vector limit. Our results for dynamic susceptibilities (	 �= 0)
correctly represent the reverse order of the limit where for
all nonzero frequencies the susceptibilities are zero when
q = (0, 0).

D. Dynamical spin and charge collective excitations

Within our approach, the same calculations that provide the
static q = (π, π ) susceptibilities for arbitrary densities can
be used to produce both finite real-frequency and Matsubara
frequency results, in the thermodynamic limit, at arbitrary q
vectors. Access to real frequency susceptibilities allows us

to examine the dispersive behavior of plasmon and magnon
collective excitations. Much is known of charge excitations
from studies of the two-dimensional electron gas [36] where
the RPA chain of diagrams has a formal divergence result-
ing in a sharp quasiparticle peak. In this work we operate
with a truncated expansion and therefore interpret peaks in
the imaginary part of the charge susceptibility as plasmon
excitations and similarly peaks in the spin susceptibility as
magnon excitations. This interpretation is commonplace in the
case of spin excitations where the cross section for magnetic
neutron scattering is related to the imaginary part of the spin
susceptibility [45].

We plot the dispersions of the spin and charge excitations
in Fig. 5 for a range of doping at U/t = 2.5 and βt = 5 for
momenta along the q = (0, qy) direction. Beginning with the
strongly electron doped case at n = 0.8, when accounting for
the change in scale the dispersion of χs and χd , are very
similar, with both showing a linear form up to rather high
energies. Since the difference between χs and χd is just 2χ↑↓,
this similarity suggests that χ↑↑ is the dominant contribution
far from half filling. Reducing the density towards half filling
(n = 0.5), the charge susceptibility remains linear but shows
more incoherent signal at lower energies. This incoherence
coincides with peaks in χs that show a more recognizable
sine-function shape that is representative of linear spin-wave
models [46–48]. Moving to the hole-doped cases, we observe
a massive behavioral change at n = 0.38 (coinciding with the
van Hove point at μ = −1.2), where both the spin and charge
excitations have split into two bands at finite q vectors and
merge at small q vectors and low energy. The observation
of splitting in χs and χd near the van Hove point suggests
that this effect is likely due to the incompressibility observed
in Fig. 3 where κ → 0. This impacts the susceptibility due
to renormalization of the single-particle propagator which
occurs in diagrams that are part of the χ↑↑ expansion, the
amplitude of which is shared by χs and χd . The splitting is
therefore not due to vertex effects that are primarily a part of
the χ↑↓ expansion (see Supplemental Materials [17]). Reduc-
ing the density further to the dilute limit, n = 0.19, we see that
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FIG. 5. Imaginary parts of χs(ω, q) (top) and χd (ω, q) (bottom) as a function of ω and q = (0, qy ) for U/t = 2.5, t ′ = −0.3t , and βt = 5
for a range of densities n = 0.19 → 0.8.

the two-peak structure has closed in χd but remains in χs. We
note a similarity in the overall shape of the dispersions of χs

and χd as seen in the heavily electron doped case, suggesting
again that χ↑↑ is the dominant contribution and that vertex
effects are minimal.

We have tracked this splitting with density and find that
it is strongest in proximity to the van Hove singularity that
coincides with the associated incompressible phase shown in
Fig. 3. We present a representative case in Fig. 6 (for addi-
tional data see Supplemental Materials [17] and references

FIG. 6. The imaginary parts of χs(ω, q) and χd (ω, q) at q =
(0, π/2) for a density of n = 0.34 produced via analytic continuation
of iωn → ω + i� for the case of � = 0.125. The result of numerical
analytic continuation via maximum entropy inversion (ME ) is shown
for reference with input from χs(iωn) and χd (iωn) shown in the inset.

within [49,50]), where a frequency cut of the dispersion at
fixed q = (0, π/2) for a hole-doped case with 〈n〉 = 0.4 is
shown for an interaction strength of U/t = 2.5 at βt = 5.
We plot Imχs(ω + i�) and Imχd (ω + i�) in the main frame
but also the result on the Matsubara axis, Reχs(iωn) and
Reχd (iωn), in the inset. We stress that real-frequency and
Matsubara axis results are the evaluation of the same analytic
expressions. For connection to earlier works we present also
the numerical analytic continuation of χs(iωn) → χME

s (ω)
and χd (iωn) → χME

d (ω) via maximum entropy (ME) inver-
sion. Results from ME are reminiscent of previous studies of
the model [35,51,52], and while we see that the numerical an-
alytic continuation has the same general shape and dominant
peak location as the direct real-frequency evaluation, the result
for χME

s/d does not resolve the two-peak structure. This is not
surprising and exemplifies the ill-posed nature of numerical
analytic continuation. It remains an open question if improved
numerical analytic continuation methods might resolve these
distinctions [53,54]. Our results throughout this paper do not
suffer from this issue, since they represent true analytic con-
tinuation, the symbolic replacement of iωn → ω + i� where
the choice of � can in principle be made arbitrarily small.

At lowest order the charge susceptibility represents a di-
rect transition from an occupied state at some energy ω and
momentum k to an unoccupied state at ω + 	 and momentum
k + q. At zero temperature the lowest energy where one will
find an unoccupied state is the Fermi level. At finite tempera-
ture there is of course a range of energies (on the scale of T )
where unoccupied states will be available. Since the multipeak
structures in Figs. 5 and 6 occur at finite frequency they cannot
be related to static Fermi-surface nesting. To elucidate their
origin, we plot in Fig. 7 the spectral function for the case
of U/t = 2.5 at a density of n = 0.34 where the observed
splitting is strong. Surprisingly, we observe that, at the bottom

035145-6



ONE- AND TWO-PARTICLE PROPERTIES OF THE … PHYSICAL REVIEW B 106, 035145 (2022)

FIG. 7. The spectral density A(k, ω) along the path k =
(π/2, π/2) → (0, 0) → X for the case shown in Fig. 6 evaluated
up to fourth order. Dominant nonzero-frequency transitions from the
bottom of the band to the k = (π, 0) antinodal point are marked in
red.

of the band near q = (0, 0), the dispersion becomes split,
albeit weakly. This behavior has been previously observed
in perturbative calculations of spectral functions as well as
dual-fermion calculations for comparable parameters [55,56].
In this particular case, instead of a single quasiparticle peak
at energy ω = μ = −1.4t we observe two peaks, one at ω =
−1.2t and another near ω ∼ −1.8t . We can see that, in the
case of the charge susceptibility, these peak locations correlate
strongly with the peaks in Figs. 5 and 6. We surmise that
finite-energy nesting comes into play because the dispersion
is flat in the vicinity of both k = (0, 0) and (π, 0). There
is then a roughly fixed energy transition from each peak at
the bottom of the band to the (π, 0) point—we illustrate this
with dashed-red lines in Fig. 7. Furthermore, the van Hove
singularity occurs precisely when the dispersion at q = (π, 0)
meets the Fermi level and so this effect is expected to be
strongest in the vicinity of the van Hove singularity of the
Hartree-shifted starting point of the expansion.

IV. CONCLUSIONS

We have presented a complete and consistent picture of
the formation of an incompressible phase in single-particle

properties of the t − t ′ − U Hubbard model on a 2D square
lattice when in proximity to the van Hove singularity. We
have demonstrated the impact of the van Hove singularity
on spin and charge excitations in the weak-coupling limit
of the 2D Hubbard model from a perturbative perspective.
By considering static and dynamic properties of the model,
we observe a disconnect between spin excitations that are
strongest in proximity to half filling from charge excitations
that demonstrate a minima near the van Hove point. Through
a simple argument based on susceptibilities in the χ↑↑-χ↑↓
basis, it becomes clear that commensurate charge excitations
should be expected on both the electron and hole doped sides
of the phase diagram while spin excitations, at the tempera-
tures explored, remain fixed at half filling—although slightly
on the hole-doped side for negative values of t ′. We further
examine the dynamical susceptibilities without the need for
ill-posed numerical analytic continuation, providing access
to plasmon and magnon dispersions. We observe a splitting
both of the plasmon and magnon dispersions into two distinct
modes that merge in the q → 0 limit. Such splitting is similar
to what has been observed at stronger coupling strengths for
charge excitations in one-dimensional (1D) Hubbard chains
due to the formation of a gap [57]. We note that multiple peaks
only occur for densities near or below the van Hove point. Re-
cent Raman experiments have suggested that the pseudogap
phenomenon might terminate at the density associated with
the Lifshitz point [58] which for a weakly coupled system
coincides with the van Hove singularity. Although we are not
directly computing the Raman spectra, our results would cor-
roborate this observation. Our work has further implications
to experimental probes of cuprates that have observed the
existence of a high-energy plasmon and low-energy magnon
for systems with particle-hole asymmetry [59–61]. Our re-
sults suggest that observing spin and charge excitations on
the electron-doped side of the phase diagrams would require
probing systems at higher energies than the hole-doped side.
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