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Quantum phases of dipolar bosons in one-dimensional optical lattices
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We theoretically analyze the phase diagram of a quantum gas of bosons that interact via repulsive dipolar
interactions. The bosons are tightly confined by an optical lattice in a quasi-one-dimensional geometry. In
the single-band approximation, their dynamics is described by an extended Bose-Hubbard model where the
relevant contributions of the dipolar interactions consist of density-density repulsion and correlated tunneling
terms. We evaluate the phase diagram for unit density using numerical techniques based on the density-matrix
renormalization group algorithm. Our results predict that correlated tunneling can significantly modify the
parameter range of the topological insulator phase. At vanishing values of the onsite interactions, moreover,
correlated tunneling promotes the onset of a phase with a large number of low-energy metastable configurations.
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I. INTRODUCTION

Quantum gases of atoms and molecules in optical lattices
are formidable platforms for studying the emergence of com-
plex states of matter from the dynamics of the individual
constituents, thanks to the experimental control of the charac-
teristic length and energy scales [1,2]. One prominent example
is the observation of the quantum phase transition between
Mott insulator (MI) and superfluid (SF) phases [3,4], demon-
strating that these systems are versatile quantum simulators of
the Bose-Hubbard model [1]. The most recent confinement of
ultracold dipolar gases in optical lattices [5] and the combina-
tion of optical lattices and cavity setups [6] has permitted us to
study the interplay between short- and long-range interactions
in these settings. These experiments reported dynamics that
can be encompassed by the so-called extended Bose-Hubbard
models [7], where these interactions are described by addi-
tional terms of the Bose-Hubbard Hamiltonian [8–10].

In a lattice, the effect of a two-body potential results in
interaction terms proportional to the onsite densities on both
contributing lattice sites as well as in so-called correlated
tunneling terms, where hopping from site to site depends
on the occupation of the neighboring sites [7,8,11]. Detailed
studies of the extended Bose-Hubbard model for dipolar gases
typically included only the density-density interaction terms.
These terms can induce density modulations and, in one di-
mension and at unit density, are responsible for the emergence
of the so-called haldane topological insulator, namely, an in-
compressible phase with a nonlocal order parameter [12–16].

Correlated tunneling is known from studies of supercon-
ductivity [17–19] and quantum magnets [20]. In quantum
gases of bosons, at sufficiently large dipolar interaction
strengths, they give rise to pair condensation [8,20] and SF
with a complex order parameter [21]. Recent works showed

that correlated tunneling is responsible for the emergence of
SF at large onsite repulsions, where one would instead expect
insulating phases [22–24]. The effect of correlated tunneling
for large densities in a one-dimensional lattice was studied
in Refs. [22,23], and its two-dimensional extension was ex-
amined in Ref. [24]. Preliminary studies of the influence of
correlated tunneling on the existence of the haldane insu-
lator (HI) for a certain parameter choice was performed in
Ref. [22].

In this paper, we perform an extensive characterization
of the effect of correlated tunneling on the ground state of
dipolar gases in (quasi)-one dimension for unit density, fo-
cusing particularly on the existence and properties of the
HI. For this purpose, we numerically determine the phase
diagram of the extended Bose-Hubbard model in one di-
mension and at unit density. We focus on the parameter
regime where the HI phase was predicted in Refs. [12–16]
and, differing from those works, we systematically include
correlated tunneling into our model. Motivated by recent
experiments with low-dimensional dipolar gases in optical
lattices [5,25–30], we take care of linking the coefficients
of the extended Bose-Hubbard model with the experimental
control parameters to preserve the correct scaling between
the coefficients across the phase diagram. The phase diagram
is evaluated by means of the density matrix renormalization
group (DMRG) approach [31–34] and its version simulat-
ing the thermodynamic limit, here referred to as the infinite
DMRG (iDMRG) [34–37].

This paper is organized as follows. In Sec. II, we in-
troduce the model, the extended Bose-Hubbard model for
bosons interacting via onsite repulsion, nearest-neighbor
repulsive interactions, and nearest-neighbor correlated tunnel-
ings. We then discuss the connection between the coefficients
of the extended Bose-Hubbard model and the experimental
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realizations in quasi-one-dimensional geometries. In Sec. III,
we analyze the resulting ground-state phase diagram for unit
density. The conclusions are drawn in Sec. V. The appendices
provide details on the numerical implementations.

II. EXTENDED BOSE-HUBBARD MODEL

The model at the basis of our analysis is the one-
dimensional extended Bose-Hubbard Hamiltonian ĤBH, that
reads [8,11]

ĤBH = −t
L−1∑
j=1

(â†
j â j+1 + H.c.) + U

2

L∑
j=1

n̂ j (n̂ j − 1)

+V
L−1∑
j=1

n̂ j n̂ j+1 − T
L−1∑
j=1

[â†
j (n̂ j + n̂ j+1)â j+1 + H.c.],

(1)

where the first line is the standard Bose-Hubbard model and
the second and third lines are due to additional nearest-
neighbor interactions. Here, L is the number of sites, the
operators â j and â†

j annihilate and create, respectively, a boson

at site j = 1, . . . , L, with (â j, â†
l ) = δ j,l , and the operator

n̂ j = â†
j â j counts the bosons at site j. The coefficients are

assumed to be real. Specifically, the tunneling rate t describes
the nearest-neighbor hopping, which promotes SF, and t > 0.
The onsite repulsion U , U > 0, penalizes multiple occupation
of a single site. In the standard Bose-Hubbard model, as given
by the first line of Eq. (1), the ratio t/U controls the phase
transition from SF to MI at commensurate densities [3].

The second and third lines of Eq. (1) contain terms due
to the dipolar interactions. The term proportional to V de-
scribes density-density interactions that favor the formation
of density modulations in the repulsive V > 0 case [38]. The
last term is responsible for tunneling processes that depend
on the density of the neighboring sites and are scaled by the
coefficient T . Here, we have omitted a pair-tunneling term and
four-site scattering terms since the corresponding coefficients
are of higher order in the Bose-Hubbard expansion [22,23,39].
Moreover, we have omitted terms beyond nearest neighbors.
These additional terms can significantly modify the phase
diagram for large values of V [23] but give rise to small
corrections for the parameters considered in this paper.

A. Order parameters

We characterize the ground-state phase diagram of the
Hamiltonian in Eq. (1) by means of the observables that we
detail in what follows. We first determine the ground-state en-
ergy E (N ) for N particles over L lattice sites, with N = L. The
so-called charge gap �c corresponds to the energy required
to create a particle-hole pair and is obtained after finding the
ground-state energies for N − 1 and N + 1 bosons [12,13]:

�c = E (N + 1) + E (N − 1) − 2E (N ). (2)

Its nonvanishing value in the thermodynamic limit signals an
insulating phase. An insulator is also characterized by a finite
value of the so-called neutral gap �n, corresponding to the
difference between the energy Eex(N ) of the first excited state

and the energy E (N ) of the ground state [12,13]:

�n = Eex(N ) − E (N ). (3)

The first excited state is numerically found by determining the
lowest energy state in the subspace orthogonal to the ground
state, see Appendix. In the SF phase, the neutral gap vanishes
in the thermodynamic limit.

We note that, in one dimension, the SF phase is
strictly speaking a Luttinger liquid with exponent K >

2 [13,22,40,41]; thus, the off-diagonal correlations decay with
the distance according to a power law:

CSF(r) = 〈â†
j â j+r〉 ∼ r−1/2K . (4)

To reveal modulations in the off-diagonal correlations, we
calculate the Fourier transform of the single-particle density
matrix M(q):

M(q) = 1

L2

L−1∑
i, j=1

exp[iq(i − j)]〈â†
i â j〉. (5)

Typically, in a standard SF, the maximum component of M(q)
is at q = 0. The correlated tunneling, on the other hand,
gives rise to effects that, in one dimension, are analogous to
an effective change of the sign of the tunneling coefficient.
Correspondingly, the Fourier transform of the single-particle
density matrix can have a nonzero component at q = π . We
dub the corresponding ground state as staggered SF (SSF)
phase [23].

Density-modulated phases are revealed by properties of
the local density-density correlations [14,42], whose Fourier
transform is the structure form factor:

S(k) = 1

L2

L−1∑
i, j

exp[ik(i − j)]〈n̂in̂ j〉. (6)

For a two-site translational symmetry, S(k) shows a finite peak
at k = π . The phase is a charge density wave (CDW) or lattice
supersolid (SS) depending on whether the density-modulated
phase is incompressible or SF, respectively. The SS phase is
a staggered SS (SSS) when M(q) is finite and maximum at
q = π .

The HI phase is gapped and characterized by nonlocal
spatial correlations in the density fluctuations δn̂ j . This is
captured by the string order parameter OS [12–15,42]:

OS = lim
r→∞ OS (r),

with OS (r) =
∣∣∣∣∣
〈
δn̂i exp

(
iπ

i+r∑
k=i

δn̂k

)
δn̂i+r

〉∣∣∣∣∣. (7)

The definition of the density fluctuation δn̂ j is important.
When we consider the density fluctuations about the mean
value ρ, namely, δn̂ j = n̂ j − ρ, then we label the string or-
der parameter OS (ρ). When instead the density fluctuations
are taken about the local mean occupation 〈n̂ j〉, namely,
δn̂ j (〈n̂ j〉) = n̂ j − 〈n̂ j〉, then the corresponding string order
parameter is given by OS (〈n̂ j〉). Both definitions give finite
values within the HI phase. Instead, in the CDW phase,
OS (〈n̂ j〉) vanishes, while OS (ρ) is finite. Thus, OS (〈n̂ j〉) sig-
nals the HI phase. The HI phase can also be distinguished
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TABLE I. Table of the phases and the corresponding values of the observables.

Density
Charge Neutral Fourier trans. modulation String order String order Parity order
gap �c, gap �n, M(π ), S(π ), OS (ρ ), OS (〈n̂ j〉), OP,

Phase Eq. (2) Eq. (3) Eq. (5) Eq. (6) Eq. (7) Eq. (7) Eq. (8)

MI �=0 �=0 =0 =0 =0 =0 �=0
CDW �=0 �=0 =0 �=0 �=0 =0 �=0
HI �=0 �=0 =0 =0 �=0 �=0 =0
Lattice SF =0 =0 =0 =0 =0 =0 =0
Lattice SS =0 =0 =0 �=0 �=0 =0 �=0
Lattice SSF =0 =0 �=0 =0 =0 =0 =0
Lattice SSS =0 =0 �=0 �=0 �=0 =0 �=0

from other insulating phases by means of the parity order
parameter:

OP = lim
r→∞ OP(r),

(8)

with OP(r) =
∣∣∣∣∣
〈

exp

(
iπ

i+r∑
k=i

δn̂k

)〉∣∣∣∣∣,
which is finite in the MI and CDW phases, while it vanishes
in the HI phase independent of the definition of δn̂ j .

The phases and the corresponding values of order parame-
ters are summarized in Table I.

Finally, we determine the von Neumann entropy of the
ground state for a lattice bipartition into two subsystems A
and B. Denoting the ground state by |ψ0〉, the von Neumann
(entanglement) entropy is defined as [43–46]

SvN = −Tr{ρ̂B ln (ρ̂B)}, (9)

where ρ̂B = TrA{|ψ0〉 〈ψ0|}.

B. Bose-Hubbard coefficients

The extended Bose-Hubbard model of Eq. (1) is a good
approximation of the Hamiltonian describing the dynamics of
dipolar atoms tightly confined by the lowest band of an opti-
cal lattice in a quasi-one-dimensional geometry. The trapping
potentials can be described by a potential of the form:

Vtrap = mω2

2
(y2 + z2) + V0 sin2

(πx

a

)
, (10)

where m is the atomic mass, ω is the frequency of the
harmonic trap that confines the atomic motion along the x
direction, and V0 is the depth of the optical lattice with pe-
riodicity a. The details of the derivation of Eq. (1), starting
from the full Hamiltonian of interacting atoms in the potential
of Eq. (10), have been extensively reported, for instance, in
Refs. [11,23]. These derivations allow one to link the Bose-
Hubbard coefficients with the experimental parameters.

In this paper, we set V0 = 8ER and ω =
√

2Vharπ2/a2m,
with Vhar = 50ER and ER = h2/2m(2a)2 the recoil energy for
a laser with wavelength λ = 2a. The choice of ω warrants that
the transverse motion is frozen out for the parameters that we
consider. Since we keep the depth V0 constant, the tunneling
amplitude t is fixed and finite.

We sweep across the insulator-SF transition by varying the
onsite interaction coefficient U . The latter results from the

interplay between the van der Waals contact potential Ug(r)
and the onsite contribution of the dipolar interaction Ud (r):

Ug(r) = gδ(3)(r), (11)

Ud (r) = Cdd

4π

1 − 3 cos2(θ )

r3
. (12)

Here, g = 4π h̄2as/m and is tuned by changing the scattering
length, while the dipole-dipole potential is scaled by the coef-
ficient Cdd , and θ denotes the angle between the dipoles and
the interparticle distance vector r. The other coefficients V
and T are changed by varying the dipolar strength.

Figure 1 displays the absolute value of the correlated tun-
neling coefficient |T | as a function of the nearest-neighbor
interaction V and of the onsite interaction U . Both coefficients
|T | as well as V increase with the dipole-dipole interaction
strength, which is here reported in terms of the dimensionless
parameter d [22,47]:

d = mCdd

2π3h̄2a
. (13)

FIG. 1. Color plot of the correlated tunneling coefficient |T |/t
in the V/t − U/t plane. All coefficients are in units of the tunneling
rate t . The black (white) dashed lines show the values of V and U at
specific values of the dipolar interaction strength d . Note that T � 0
across the phase diagram.
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FIG. 2. Phase diagrams in the (U/t,V/t ) plane for density ρ = 1
obtained with the density matrix renormalization group (DMRG) on
a finite lattice. The phases and boundaries are identified according
to the behavior of the observables as in Table I. The different col-
ors indicate the parameters at which the corresponding observables
vanish, namely, the neutral gap (magenta), the charge gap (blue), the
parity (black), the string (red), and the density-wave (green) order
parameters. The values are extrapolated to the thermodynamic limit
from the data calculated with lattices of L = 64, 100, 128, and 160
sites (see text for details). We show few representative error bars. The
error bars for each point are displayed in Fig. 14 in Appendix.

Note that T is negative for the parameters we consider, and
it scales as |T | ∼ V/10.

III. GROUND-STATE PHASE DIAGRAM

In this section, we analyze the properties of the ground
state of the extended Bose-Hubbard Hamiltonian in the
(U/t,V/t ) plane and for the unit density. We numerically
determine the ground state on a finite lattice by means of
DMRG and extrapolate to the thermodynamic limit of a given
observable according to the procedure [13,14]:

O(L) = O(L → ∞) + A

L
+ B

L2
, (14)

where A and B are constants, and O(L) stands for the observ-
able at the lattice length L (see Appendix). In our numerical
simulations, we take L = 64, 100, 128, and 160. We identify
the phase boundaries following the prescription given in Ta-
ble I for different observables. In this procedure, we neglect
the outer L/4 sites at both edges of the lattice to get rid
of boundary effects, and we evaluate the order parameters
in the central part of the lattice, which consists of r = L/2
sites [13,14] (see Appendix). We compare these results with
the phase diagram determined using iDMRG, i.e., in the di-
rect thermodynamic limit. Details of the implementations are
provided in Appendix.

A. Phase diagram

The phase diagram for the density ρ = 1 is shown in Fig. 2
for a finite chain. The different colors indicate the phase
boundaries predicted by (i) the charge gap (blue), (ii) the

FIG. 3. String order parameter OS (〈n̂i〉), Eq. (7) (lower panel),
and parity order parameter OP, Eq. (8) (upper panel), in the
(U/t,V/t ) plane obtained with the infinite density matrix renor-
malization group (iDMRG). The red (black) squares indicate the
boundaries identified by the vanishing parity OP [string, OS (ρ )]
order parameter, respectively (see Appendix). The left subplots show
the order parameters for T = 0, whereas the right subplots for T �= 0.

neutral gap (magenta), (iii) the string order parameter (red),
(iv) the parity order parameter (black), and (v) the CDW order
parameter (green). The boundaries are extracted following the
procedure described above, using Eq. (14).

In the considered parameter regime, the phases are SF, MI,
HI, CDW, and a region which has the features of a phase
separation (PS), which will be discussed in Sec. III D. We note
that we do not find any SSF. These findings are in agreement
with the results obtained with iDMRG. Figure 3 displays a
color plot of the string order parameter OS (〈n̂i〉), Eq. (7), and
the parity order parameter OP, Eq. (8), both obtained with
iDMRG. For comparison, we also report the corresponding
values obtained by setting T = 0.

Despite some similarities with the phase diagram found
setting T = 0 in Eq. (1) [12–14], there are also some striking
differences. In the first place, for T �= 0, the HI phase occupies
a smaller area in parameter space. This confirms the observa-
tion in Ref. [22]. In general, correlated tunneling stabilizes the
MI and CDW phases in the parameter space, while the sizes
of the SF and HI phases are substantially reduced. Moreover,
the HI phase seems to stretch down to smaller values of
U/t and V/t . We note that we cannot determine the phase
boundaries for small U/t and around 1.5 � V/t � 2 because,
in this region, the error bars are large.

B. von Neumann entropy

The color plots in Fig. 4 report the von Neumann entropy
SvN, Eq. (9), across the phase diagram and calculated by
means of iDMRG. The von Neumann entropy sheds light on
the spatial decay of correlations. Comparison with the plot
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FIG. 4. Color plot of the von Neumann entropy, Eq. 9, in the
(U/t,V/t ) plane using the infinite density matrix renormalization
group (iDMRG). The squares indicate the boundaries identified using
iDMRG and correspond to the values where the string OS (ρ ) (black)
and/or parity OP (red) order parameters vanish. The upper subplot
shows the von Neumann entropy for T �= 0, whereas the lower sub-
plot depicts the von Neumann entropy for T = 0.

of the Fourier transform of the single-particle density matrix,
Fig. 5, shows that part of the region where SvN is maximal
overlaps with the SF domain. Like M(q), the von Neumann
entropy decays slowly to zero when increasing U/t at small
values of V/t , sweeping across the SF-MI phase transition.

For small U/t and for V/t � 1.5, SvN undergoes strong
fluctuations from point to point. We associate this behavior
with the PS where the convergence of DMRG is doubtful.
Comparing this region with the one at T = 0, lower panel of
Fig. 4, we observe that, for T �= 0, it appears at significantly
lower values of V/t .

Figure 6 displays SvN as a function of V/t at fixed ratio
U/t in the part of the phase diagram where the phases are
insulating. Starting from the MI phase, we observe peaks
when crossing the MI-HI and the HI-CDW transitions, which
we discuss in detail in the following.

FIG. 5. Fourier transform of the single-particle density matrix
M(q) at q = 0, (5), in the (U/t,V/t ) plane. The data have been
determined using the density matrix renormalization group (DMRG)
on a lattice with L = 100. The different lines correspond to the phase
boundaries identified by means of the neutral gap (magenta), charge
gap (blue), parity (black), string (red), and density-wave (green)
order parameters. We remark that everywhere M(q) is maximum at
q = 0. We do not find staggered superfluidity (SSF) in the displayed
parameter region.

C. MI-HI-CDW transitions

In Fig. 2, we observe a direct transition from the MI to the
CDW phase at sufficiently high values of U/t . Figure 7 shows
that string [OS (ρ)] and density-wave [S(q = π )] order pa-
rameters are discontinuous at the transition point, indicating a
first-order phase transition. Here, the string and density-wave
order parameters agree almost exactly since, in the large U/t
limit, the MI and CDW can be described by trivial Fock states,

FIG. 6. The von Neumann entropy for a fixed value of U/t = 3
and as a function of the nearest-neighbor interaction strength V in
units of the tunneling t . The curve is a cut of the color plot in Fig. 4
calculated by means of the infinite density matrix renormalization
group (iDMRG). We note that the noisy behavior at the left part of
the blue curve is within the superfluid (SF) phase, where the iDMRG
for a large bond dimension is hard to converge.
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FIG. 7. String and density-wave order parameters as a function
of the nearest-neighbor interaction V in units of t . The data have been
calculated for finite U/t = 7 by means of the finite density matrix
renormalization group (DMRG) and extrapolated to the thermody-
namic limit. Both order parameters are discontinuous at the Mott
insulator (MI)-to-charge density wave (CDW) transition, signaling
a first-order phase transition.

which lead to the same value of the string and density-wave
order parameters in the thermodynamic limit.

At smaller values of the ratio U/t , the HI phase separates
the MI from the CDW phase. The peaks in the profile of the
von Neumann entropy in Fig. 6 suggest that the phase tran-
sitions at the MI-HI and HI-CDW transitions are continuous
(of second order). This is corroborated by the behavior of the
neutral gap at the MI-HI and HI-CDW transitions. The HI
phase corresponds to the interval where the energy gaps and
the string order parameter possess finite values, while both
parity and density-wave order parameters vanish. The finite
value of the string order parameter and the vanishing parity
order parameter demonstrate the topological nature of the HI
phase.

The neutral and charge gaps are displayed in the lower
panel of Fig. 8 for U/t = 3 as a function of V/t . For small
V/t , the neutral and charge gaps are finite, corresponding to
the MI phase. For a larger value of V/t , the gaps shrink to
zero, indicating the continuous transition to the HI phase. This
agrees with the results for the T = 0 case (no correlated tun-
neling) [13,42,48,49], where vanishing gaps both in the charge
and neutral sectors signal a second-order phase transition with
central charge c = 1 [42,48,49]. At the transition separating
the HI and the CDW (symmetry-broken) phase, the neutral
gap vanishes, while the charge gap remains finite. This is
as in the T = 0 case, where the transition is of Ising type
with central charge c = 1

2 [42,48–50] and the quantum critical
point is topological [51]. In the CDW phase, the density-wave
order parameter reaches a finite value, see the upper panel of
Fig. 8.

D. PS

We finally discuss the parameter region at large V/t but
small U/t , where the von Neumann entropy has large fluc-
tuations from point to point. We denote this regime by PS.

FIG. 8. Different observables as a function of the nearest-
neighbor interaction V in units of t for finite U/t = 3 calculated by
means of the finite density matrix renormalization group (DMRG)
and extrapolated to the thermodynamic limit. Upper panel: String,
parity, and density-wave order parameters. Lower panel: Neutral
and charge gaps. The color code is reported in the insets. Here,
we take a smaller value of the ratio U/t with respect to the one of
the corresponding figure in Ref. [13] since the phase boundaries for
T �= 0 are shifted to smaller values of U/t and V/t with respect to
the one for T = 0 (see also Fig. 6).

Here, we find that the ground state of the canonical ensemble
consists of a mixture of two or more phases. This feature can
be revealed by inspecting the site occupation and its variance
across the lattice. It can also be captured by the chemical
potential as a function of the density ρ [13,52]. In fact, in
the grand-canonical ensemble, the phase at unit density is
unstable, and the density is a discontinuous function of the
chemical potential [13].

To analyze the PS region in the canonical ensemble, we
calculate the density ρ = N/L as a function of the chemical
potential μ, which we find by means of the formula [13]:

μ(N ) ≈ E (N + 1) − E (N ). (15)

Figure 9 displays ρ as a function of μ for (U/t,V/t ) =
(0.5, 4) within the PS region. The behavior suggests a hystere-
sis, which signals a discontinuous transition. The PS region

035144-6



QUANTUM PHASES OF DIPOLAR BOSONS IN … PHYSICAL REVIEW B 106, 035144 (2022)

FIG. 9. Density ρ as function of the chemical potential μ (in
units of t) for U = 0.5t and V = 4t . The chemical potential is
calculated according to Eq. (15) by means of the density matrix
renormalization group (DMRG) in a finite lattice with L = 20.

for T = 0 has been recently extensively analyzed in Ref. [53].
Correlated tunneling shifts the appearance of this phase to
lower values of V/t and possibly increases the number of
metastable configurations. Figure 10 displays some of the
metastable configurations we find, corresponding to CDW
clusters separated by SF regions. Configurations like the one
in the upper panel have been reported in Ref. [13]. The con-
figuration in the lower panel, instead, seems to be stable due
the presence of correlated tunneling.

IV. DISCUSSION

In previous works, some of us showed that the effect of
correlated tunneling on the ground-state phase diagram can
be partially captured by an effective model. In this effective

FIG. 10. Typical metastable configurations in the phase sepa-
ration regime. Occupation 〈n̂ j〉 as a function of the lattice site j
calculated by means of the density matrix renormalization group
(DMRG) on a lattice with L = 100 and for U/t = 0.15 and V/t =
2.2 (upper panel), U/t = 0.15 and V/t = 2.8 (lower panel).

FIG. 11. Color plot of the phase diagram in the U − V plane.
The data are the same as in Fig. 2, the axes are rescaled here by the
effective tunneling amplitude teff = t + T , see text.

model, correlated tunneling and single-particle hopping are
replaced in Eq. (1) by a single hopping term with effective
tunneling coefficient teff = t + T (2ρ − 1) [23,24]. This co-
efficient can vanish, giving rise to an effective atomic limit
which agrees with numerical results obtained with the full
model [23,24]. We have verified that, for the parameters we
consider, teff is always finite. Figure 11 displays the same data
as in Fig. 2 but with the axes now rescaled by teff : The rescaled
phase boundaries SF-MI and MI-HI-CDW are in good agree-
ment with the phase diagram at T = 0 [c.f. Fig. 6(b)] [13],
suggesting that the effect of correlated tunneling on the size
of the insulating phase could be captured by this effective
description.

V. CONCLUSIONS

We have analyzed the ground-state phase diagram of the
extended Bose-Hubbard model in one dimension and unit
density, describing a gas of dipolar bosons in an optical lattice
and in a quasi-one-dimensional geometry. With respect to
previous studies, in this paper, we have performed a system-
atic characterization of the effect of correlated tunneling on
the phase diagram, focusing on the parameter regime of the
topological HI.

For the considered parameter space, correlated tunneling
plays a relevant role in determining the essential features of
the phase diagram. By comparing with the phase diagrams
calculated setting T = 0 [12–14,42], we find that correlated
tunneling tends to stabilize the insulating phases and shrink
the parameter region where the HI is found. Moreover, cor-
related tunneling promotes the onset of the PS regime also at
relatively low values of the dipolar interactions, giving rise
to a large number of low-energy metastable configurations.
Future work will analyze relaxation after quenches. In fact,
the Bose-Hubbard model with correlated tunneling exhibits
several analogies with constrained models, which are known
to give rise to a rich prethermalization dynamics [54–56].

In this paper, we show that correlated tunneling gives
rise to correlations which are only partially captured by the
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FIG. 12. String order parameter OS (ρ ), Eq. (7) (blue dots), as
function of the number of cut lattice sites c = i, with i + r = L − c
for L = 100 and compared with the value of the string order parame-
ter calculated by means of the infinite density matrix renormalization
group (iDMRG) (black line). The red line indicates the value at
which we cut the boundaries to produce the phase diagrams in the
main text. The upper subplot shows the string order parameter within
the haldane insulator (HI) phase for U = 1.5 and V = 1.5, and the
lower one shows the string order parameter within the charge density
wave (CDW) phase for U = 1.5 and V = 4.

observables typically employed for characterizing the phase
diagram. These correlations might also be important at frac-

tional filling. For instance, they might affect the properties of
the Fibonacci anyonic excitations expected at ρ = 3

2 for low
tunneling rates [57].

ACKNOWLEDGMENTS

The authors are grateful to Benoit Gremaud and Luis
Santos for discussions and especially to George Batrouni
for helpful comments. R.K. and G.M. acknowledge support
by the Deutsche Forschungsgemeinschaft via the CRC-TRR
306 “QuCoLiMa”, Project-ID No. 429529648, and by the
priority program No. 1929 “GiRyd”. We also thank funding
by the German Ministry of Education and Research via the
QuantERA project NAQUAS. Project NAQUAS has received
funding from the QuantERA ERA-NET Cofund in Quan-
tum Technologies implemented within the European Union’s
Horizon 2020 program. T.C. and J.Z. are thankful for the
support of PL-Grid Infrastructure and the National Science
Centre (Poland) under project Opus 2019/35/B/ST2/00034
(J.Z.) and Unisono 2017/25/Z/ST2/03029 (T.C.) realized
within QuantERA ERA-NET QTFLAG collaboration.

APPENDIX: DETAILS ON THE DMRG ALGORITHM

The phase diagrams are calculated by means of a DMRG
numerical program using the ITensor C++ library [58] (see
also Ref. [23]) and using the iDMRG method available in the
TeNPy library [59].

1. DMRG for finite chains

For the finite chain, we lift the degeneracy in the CDW
and haldane phases by adding the boundary term Ĥad =
[2ρ](V n̂1 + VNNNn̂2). The maximal bond dimension is set to
β = 600, the energy error goal is fixed to εgoal = 10−16, and
the upper limit ε for the singular values discarded is set to
ε = 10−16. We allow for maximally nmax = 10 particles per
site. To ensure that the simulations end up in the ground state,
we run the simulation for three different initial states: The
CDW state:

|�〉init = ⊗k |2 · ρ〉k ⊗l |0〉l , (A1)

FIG. 13. Values of the observables (see inset) as a function of 1/L around the superfluid (SF)-to-Mott insulator (MI) transition at
(U/t,V/t ) = (2.5, 0.8) (left), the haldane insulator (HI)-to-MI transition (U/t,V/t ) = (3, 1.85) (middle) and the MI-to-charde density wave
(CDW) transition (U/t,V/t ) = (8, 4.05) (right). The dots show the values of the observables, whereas the black lines depict the correspond fit
according to Eq. (14).
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FIG. 14. Same as in Fig. 2 but now the error bars are explicitly
shown for every reported point.

with k ∈ {A = 2 · m|m ∈ N} and l ∈ N\A; the MI state
|�〉init = ⊗L

k=1 |ρ〉k; and a random initial state. The ran-
dom state is a superposition of Fock states |�〉init =

1√
niter

∑niter
k (⊗i |ni〉)k , where ni ∈ N is chosen randomly out

of the interval [0, nmax] with the constraint
∑L

i=1 ni = ρ. We
choose the number of the superimposed Fock state to be
niter = 100. We note that the string order parameter OS (ρ),
Eq. (7), and the structure form factor, Eq. (6), at k = π have
the same value for the CDW Fock state [see Eq. (A1)] modulo
a term proportional to 1/L and which vanishes in the limit
L → ∞. To calculate the first excited state, one adds an extra
term to the Hamiltonian, which lifts the energy of the ground
state:

Ĥ ′
BH = ĤBH + W |ψ0〉 〈ψ0| , (A2)

with |ψ0〉 as the ground state. The first excited state is de-
termined by calculating the ground state of Ĥ ′

BH in Eq. (A2)
using the DMRG ground-state algorithm. The weight of the
extra term is chosen to be W = 20t .

We determine the ground state by means of this DMRG
numerical program and calculate the observables presented
in Sec. II A. To get rid of the boundary effect, we neglect
the outer L/4 sites in the determination of the observables
following Refs. [13,14]. To justify this cut, we show in Fig. 12
the string order parameter OS (ρ), Eq. (7), as a function of the

number of lattice sites cut at the boundary together with the
value of the order parameter calculated by means of iDMRG.
For a systematic analysis of the effect of the boundary condi-
tions, see Ref. [60].

To get the phase diagram in the thermodynamic limit, we
fit the values of the observables for different numbers of
lattice sites according to Eq. (14). We justify the application
of Eq. (14) by inspecting the observables as a function of 1/L.
Figure 13 shows the neutral gap in Eq. (3), the charge gap in
Eq. (2), and the parity order parameter in Eq. (8) as a func-
tion of 1/L near the SF-MI phase transition at (U/t,V/t ) =
(2.5, 0.8). The gaps follow a linear behavior as a function
of 1/L near the SF-MI transition. Moreover, Fig. 13 shows
the behavior of the observables as a function of 1/L at the
HI-MI and MI-CDW transitions, where the observable 1/L
dependence is nicely fitted by Eq. (14).

We identified the boundary lines in Figs. 1, 3–5 by us-
ing a certain threshold value for the order parameter above
which we determine a certain phase. Those threshold values
are those which reproduce the critical value of the MI-SF
transition at V/t = 0 in Ref. [61] and the SF-HI transi-
tion at U/t = 2 in Ref. [13]. Here, we make use of our
dataset for T = 0. We then convert the error corresponding
to the fitting procedure into an error in the phase boundary.
Figure 14 displays the phase boundaries in the (U/t,V/t )
plane including the error bars for each point at the phase
boundary.

2. iDMRG simulations

We also explore the system directly at the thermody-
namic limit using the iDMRG algorithm [35–37] based on the
translationally invariant infinite matrix-product state (iMPS)
ansatz [62]. Since the onset of the CDW phase requires unit
cells of size integer multiples of 2, we consider iMPS rep-
resentation with unit cells of size 4 for our simulations. The
maximum bosonic occupancy is taken to be nmax = 8. We fix
the maximal iMPS bond dimension to β = 640 and check that
our results do not change by changing the bond dimension to
β = 384, 512. To confirm the convergence of the iDMRG al-
gorithm, we follow the change in energy density in successive
iDMRG sweeps, and when the change falls below 10−12, we
conclude that the resulting iMPS is the ground state of the
infinite system.
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