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Kolmogorov complexity as intrinsic entropy of a pure state:
Perspective from entanglement in free fermion systems
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We consider free fermion systems in arbitrary dimensions and represent the occupation pattern of each
eigenstate as a classical binary string. We find that the Kolmogorov complexity of the string correctly captures
the scaling behavior of its entanglement entropy (EE). In particular, the logarithmically enhanced area law for
EE in the ground state and the volume law for EE in typical highly excited states are reproduced. Since our
approach does not require bipartitioning the system, it allows us to distinguish typical and atypical eigenstates
directly by their intrinsic complexity. We reveal that the fraction of atypical eigenstates which do not thermalize
in the free fermion system vanishes exponentially in the thermodynamic limit. Our results illustrate explicitly
the connection between complexity and EE of individual pure states in quantum systems.
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I. INTRODUCTION

Statistical mechanics of isolated quantum system is a topic
of tremendous current interest [1–13]. Without an external
heat bath, definitions of standard thermodynamic quantities
such as temperature and entropy become subtle and often
ambiguous in such systems [13–15]. For example, every pure
state has zero von Neumann entropy [16]. On the other hand,
according to the eigenstate thermalization hypothesis (ETH)
[1–4], a highly excited eigenstate of a nonintegrable system
should be “thermal” and thus have the same temperature
and corresponding entropy density of a (mixed) thermal state
with the same energy density (and other conserved charge
densities if present). One way to resolve this tension is to
partition the system (usually in position space) and focus
on the smaller subsystem, which is in a mixed state and
has a nonzero von Neumann entropy associated with its re-
duced density matrix. This is known as the entanglement
entropy (EE). Indeed, it has been shown that the overwhelm-
ing majority of (or typical) free fermion eigenstates give
rise to thermal reduced density matrices, a property termed
“eigenstate typicality” [17,18]. An immediate consequence is
that EE equals the corresponding thermal entropy in these
cases. Eigenstate typicality also plays an important role in
the dynamical generation of entanglement in free fermion
systems [19].

This (by now standard) way of revealing the thermal nature
of a pure state is unsatisfactory in several aspects. First of
all, in principle EE depends on the way the system is par-
titioned, while entropy should be an intrinsic property of a
state. Free fermion states are good examples of this: They are
highly entangled in real space but are product states with zero
EE in a momentum space partitioning. Second, entanglement
is a unique property of quantum mechanics [20], while the
notion of entropy was first introduced in classical statistical
thermodynamics, where all individual states (or microstates;
not an ensemble of) are pure. As a result, the von Neumann

definition of entropy would always be zero there, regardless
of whether one considers the whole universe or a subset of
it. While one may object that the universe is intrinsically
quantum, we can always consider semiclassical pure states
that are well described by classical physics, whose EE can
be made arbitrarily small.

Over the years, various alternative definitions of entropy
have been introduced, in an attempt to reveal the intrin-
sic thermal properties of a state, either mixed or pure
[21–29]. Meanwhile, the applications of classical and quan-
tum Kolmogorov complexity make it possible to quantify the
complexity of quantum states [30–52]. It has been suggested
that physical entropy should be a reflection of the complexity
of a state and quantify the amount of information carried by
(or “hidden” in) it [26–31]. Furthermore, it has been shown
that the von Neumann entropy of a probabilistic source (or
density matrix) and the average quantum Kolmogorov com-
plexity of the qubit strings generated by the source should
coincide [32–41]. Nevertheless, a concrete example of the
connection between Kolmogorov complexity and nonzero EE
of individual pure states remains elusive.

In this paper, we show that the classical Kolmogorov com-
plexity of free fermion states has the same scaling behavior
as their bipartite EE, thus directly relating EE to the intrinsic
complexity of such pure states. Furthermore, Kolmogorov
complexity is a quantitative measure of how typical a state
is. This not only provides a systematic way to distinguish
between typical and atypical eigenstates in the free fermion
system from their occupation patterns, but also allows us to
demonstrate that the fraction of atypical eigenstates which
do not thermalize in the free fermion system vanishes expo-
nentially in the system size in the thermodynamic limit. Our
results shed light on the quantification of typical and atypical
(the noninteracting version of scar [53]) states, which is im-
portant in understanding thermalization and the emergence of
statistical mechanics in pure states.
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II. A BRIEF REVIEW OF KOLMOGOROV COMPLEXITY

Given a binary string x, its Kolmogorov complexity is
defined as the length of the shortest possible description of
x [54–57]. Specifically, one can consider the “two-part codes”
which consist of a universal Turing machine and a program
[57]. Then, the plain Kolmogorov complexity of x is defined
as [58]

C(x) = min{l (T ) + l (p) : T (p) = x} + O(1). (1)

The program p is executed by the universal Turing machine
T , which outputs the string x and halts. Here, l (p) denotes
the length of p in bits. It is obvious that the shortest possible
program that can reconstruct x depends on the choice of T .
Nevertheless, using another Turing machine (or computer)
can only lead to a difference in C(x) bounded from above by
a finite constant that is independent of l (p). In other words,
this is a change in O(1). Furthermore, the length of the self-
delimiting encoding of T , i.e., l (T ), is independent of l (p).
Therefore it is common to simply focus on l (p) and view it
as the Kolmogorov complexity of x. Roughly speaking, all
irregularities in the string x are reflected by l (p).

With the above definition, we now summarize some im-
portant results for C(x). Although the value of C(x) cannot
be computed from any program, C(x) is bounded from above.
Consider a string which is random and has no simple descrip-
tion. To output the string, the best one can do is to take the
entire string as the input and ask the Turing machine to copy
the input to the output. Hence the Kolmogorov complexity
of any string satisfies C(x) � l (x) + O(1). It is expected that
a typical string is random and has C(x) � l (x). We use the
symbol � when the relationship holds up to the leading order.
As the O(1) term becomes negligible for sufficiently long
strings, it will be dropped for convenience.

On the other hand, some strings are easy to describe. For
example, consider the string “11 · · · 1′′ where the bit “1′′ is
repeated n times. We abbreviate the string as 1n. This abbre-
viation immediately shows that the string is very simple and
can be reconstructed from a very short input. Specifically, one
can define a Turing machine which prints “1′′ n times. Now,
we simply need log2 n bits to specify the binary representation
of n in the program p [59]. Alternatively, we can say that the
string 1n is highly compressible by encoding it as the binary
representation of n. Hence the string 1n has Kolmogorov
complexity,

C(1n) � log2 n. (2)

A string x is called c incompressible if its Kolmogorov
complexity satisfies C(x) � l (x) − c. Note that the upper
bound C(x) � l (x) + O(1) always holds. Denote the set of all
binary strings as B = {�, 0, 1, 00, 01, 10, 11, . . .}, where �

is the empty string. The total number of binary strings with
lengths shorter than N − c is

N−c−1∑

i=0

2i = 2N−c − 1. (3)

When one encodes x, the final result must be an element in B.
Notice that different elements in B may correspond to differ-
ent encodings of the same string. Hence the largest possible

fraction of strings with length N that is c compressible is

2N−c − 1

2N
= 2−c for N → ∞. (4)

This result implies that most of the strings cannot be com-
pressed by a significant amount. Therefore simple strings do
exist, but they are rare and atypical. Furthermore, x is said to
be Kolmogorov random if it cannot be compressed by one bit.
From the pigeonhole principle [60], there must be at least one
string for every length N that is incompressible.

Moreover, the difficulty in describing x depends on the
information y that is already specified to the program. This
leads to the concept of conditional Kolmogorov complexity,
denoted as C(x|y). The difference between C(x) and C(x|y) is
the most noticeable in simple strings. For example, suppose
that the length of the string N is given. Then, 1N has a condi-
tional Kolmogorov complexity,

C(1N |N ) = c, (5)

where c is a constant. Another related example for our later
discussion is the string which has a fixed number of 1s in its
elements. When both the length of the string N and the number
of 1s in the string n are given, then C(x|N, n) � log2

(N
n

)
.

Applying Stirling’s approximation, one has

C(x|N, n) � NH (n/N ). (6)

Here,

H (α) = −α log2 α − (1 − α) log2(1 − α) (7)

is the Shannon entropy of a Bernoulli distribution [61].

III. ENTANGLEMENT ENTROPY IN A 1D FREE
FERMION SYSTEM

In gapped systems described by local Hamiltonians and
most of the gapless systems in d > 1 dimensions, ground-
state EE satisfies an area law and scales with the surface area
of the subsystem, S ∼ Ld−1 [62–64]. This originates from
local or short-distance entanglement. Here, d is the dimen-
sionality of the system, and L is the typical length of the
subsystem in any direction. However, EE of free fermions in
the ground state satisfies S ∼ dLd−1 log2 L [65–69], whereas
a volume law S ∼ Ld is satisfied in the vast majority of highly
excited eigenstates [17].

We first consider the system of n free spinless fermions
in one dimension and show that the Kolmogorov complexity
of eigenstates has the same scaling behavior as their bipar-
tite EE. We assume that there are N different single-particle
eigenstates in the momentum space, where N is proportional
to the volume [in one dimension (1D), length] of the system.
In the following discussion, we are only interested in the
thermodynamic limit, in which both n and N are infinite but
the ratio α = n/N is fixed.

Now, each many-body eigenstate can be described by
an occupation pattern (n1, n2, . . . , nN ). Here, ni = 1 if the
single-particle eigenstate with momentum ki is occupied by a
fermion. Otherwise, ni = 0. This description resembles a bi-
nary string x with length N that has n 1s in its elements. From
Eq. (6), the Kolmogorov complexity of a typical occupation
pattern is asymptotically equal to the Shannon entropy, i.e.,
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Representing the GS:

FIG. 1. Labeling single-particle eigenstates (the black dots) and
representing the ground-state (GS) occupation pattern in the two-
dimensional free fermion system as a binary string. Here, the square
Fermi surface is a subgraph of the complete graph formed by the 49
vertices. All the edges in the complete graph are skipped for better
illustration. To describe the Fermi surface, one needs to specify the
labels 9–13, 16–20, 23–27, 30–34, and 37–41 in the order of their
connection.

C(x|α) � NH (n/N ). The scaling behavior of C(x|α) agrees
with the volume law of EE in typical eigenstates [17]. Here,
we reemphasize that EE in these states is also the thermal
entropy since the typical eigenstates are thermal [17]. Later,
we will have further discussion of typical and atypical eigen-
states.

What happens if we apply the above argument to the
ground state of the system? Suppose that the single-particle
eigenstates with the n smallest momenta are occupied. This
occupation pattern leads to the binary string 1n0N−n. From
Eq. (2), this string has a Kolmogorov complexity C(xGS|α) �
log2 n � log2 N ∝ log2 L. Here, xGS denotes the ground-state
occupation pattern. For a more generic Hamiltonian, the free
fermion ground state may possess m > 1 Fermi surfaces (pairs
of points in 1D). When m � n, the Kolmogorov complexity
of the occupation pattern satisfies C(xGS|α) � m log2 N [70].
The above results correctly reproduce the scaling behavior of
the ground-state EE without bipartitioning the system! Since
the thermal entropy should be extensive and scale as L in
one dimension, the EE of the ground state is not the thermal
entropy. In both the ground state and typical eigenstates, the
Kolmogorov complexity of the occupation pattern agrees with
the scaling behaviors of EE.

IV. ENTANGLEMENT ENTROPY IN
HIGHER-DIMENSIONAL FREE FERMION SYSTEMS

For free fermion systems in d > 1 dimensions, we can still
assign a label to each single-particle eigenstate in the momen-
tum space. Each label takes a value between 1 and N , with
the values of all labels being different. Figure 1 illustrates an
example of labeling the single-particle eigenstates in the two-
dimensional momentum space. We assume that the labeling
scheme is a piece of information that is already specified to the
program. Now, it becomes very straightforward to generalize
the previous discussion on typical eigenstates to d > 1 dimen-

sions. Again, the occupation pattern for a typical eigenstate
satisfies C(x|α) � NH (α) ∝ Ld . Here, Ld is the volume of
the system. Just as with the one-dimensional system, the result
resembles the volume law of EE in a typical eigenstate.

One may naively think that the previous argument on
the ground state in one-dimensional system can also be di-
rectly generalized to higher dimensions. This will lead to
a Kolmogorov complexity that scales as log2 N ∝ d log2 L,
which does not agree with the EE of the ground state,
S ∼ dLd−1 log2 L [65–68]. However, the naive generalization
breaks down because the occupation pattern 1n0N−n contains
no information about the shape of the Fermi surface (FS)!
Therefore we need to develop a suitable approach for describ-
ing the FS with its shape in the form of a one-dimensional
binary string.

The tool we employ is graph theory [71]. A graph is an
ordered pair G(V, E ) comprising a set of vertices V and a set
of edges E . A graph G′(V ′, E ′) is a subgraph of G if and only
if V ′ ⊆ V and E ′ ⊆ E . Usually, one represents the adjacency
matrix as a binary string to describe the graph. Since there
are at most N (N − 1)/2 edges, the Kolmogorov complexity
of a typical graph scales as N2. Meanwhile, basic (simple)
graphs exist. An example is the complete graph, in which each
vertex is connected to all other vertices. This graph has Kol-
mogorov complexity O(1) [72]. Now, the FS encloses n points
(including the points on the FS) in the momentum space. In
particular, the points on the FS and the edges connecting them
form a cycle subgraph of the aforementioned complete graph.
Obviously, this subgraph describes the shape of the FS. To
describe this cycle subgraph, we need to specify the labels of
the vertices on the FS in the order of their connection [72]. It
takes no more than log2 N ∝ log2 Ld bits to specify each label.
An example for the two-dimensional system is given in Fig. 1.
We assume that the system is nearly isotropic, such that the
number of vertices lying on the FS scales as n(d−1)/d ∼ Ld−1.
After describing the FS, a suitably defined Turing machine can
fill in “1” for the string elements which label the points inside
the FS and “0” otherwise. Therefore the occupation pattern
for the ground state has Kolmogorov complexity,

C(xGS|α) � n(d−1)/d log2 N ∝ dLd−1 log2 L. (8)

This agrees with the scaling behavior of EE of free fermions
in the ground state [65–68].

What happens if n = N , corresponding to a band insulator?
In this case, all single-particle eigenstates are occupied, and
there is no FS. From Eq. (5), we know that the occupation
pattern has C(x|n) = O(1). The occupation pattern can be
specified by describing the cycle graph that connects all out-
ermost vertices, which has C(G) = O(1) [72], consistent with
the simple result above. In this case, EE is actually dominated
by local or short-distance entanglement (not directly related
to the complexity of the global state) that gives rise to the area
law.

It is illuminating to compare the above case with disordered
free fermions, where there is no FS even for the metallic
phase. In this case the ground-state EE always satisfies the
area law [73,74]. Since momentum is no longer a good quan-
tum number, the previous graph theoretic description of the FS
becomes unsuitable. Instead, each single-particle eigenstate is
labeled by its eigenenergy. The Kolmogorov complexity of the
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global many-body ground state scales as log2 N ∼ d log2 L
just as in the 1D case, but is subdominant compared with the
area law contribution. We conjecture that this logarithmic term
would show up as a subleading correction in the EE in the
metallic phase, while it is absent in the insulating phase. It
would be very interesting to test this numerically.

Although our focus in this paper is the free fermion system,
the methodology can be easily generalized to other systems.
An obvious example is free boson states. At zero tempera-
ture all bosons condense into momentum k = k0 [75]. This
ground state can be described by specifying the label of the
single-particle eigenstate (see Fig. 1) being occupied by the
bosons. Thus C(xGS|α) � log2 N . This result agrees with the
scaling behavior of bipartite EE obtained in Refs. [76,77],
and there is no area law contribution in this case. Suppose
that the system is perturbed by a weak interaction between
bosons. In this (more generic) case there is an area law term
in the ground-state EE, while the logarithmic term from the
condensate becomes a subleading contribution, which comes
from the spontaneously broken continuous symmetry it repre-
sents and the corresponding quantum fluctuations of the order
parameter and Goldstone modes [78,79]. Such behavior is
consistent with the scenario described in the paragraph above.

It is worthwhile to mention that such subleading contribu-
tions are in some sense more important than the leading area
law contribution in EE, as they reflect the intrinsic complexity
of the global state. A famous example is the topological EE
[80,81], which captures the topological nature of the ground
state.

V. TYPICAL AND ATYPICAL EIGENSTATES

Previously, we observed that it is much easier to describe
the occupation pattern for the ground state than the typical
eigenstates for free fermions. Now, we make the distinction
more explicit. We define a state as typical if and only if the
Kolmogorov complexity of its occupation pattern scales as
the number of particles or the system size. On the other hand,
the occupation pattern of an atypical state has a Kolmogorov
complexity that scales as o(N ). Since satisfying the volume
law in EE is a necessary condition for thermalization, the
above definition and our previous results directly imply that
atypical states do not thermalize.

What can we say about the population of atypical eigen-
states? Following the reasoning in Eq. (3), we know that the
largest possible number of atypical eigenstates is 2o(N )+1 − 1.
The number is actually smaller as the entanglement entropy of
an eigenstate cannot be lower than that of the ground state. For
the entire energy spectrum, there are

(N
n

) � 2NH (n/N ) different
many-body eigenstates for the free fermion systems. Suppose
that α = n/N is sufficiently away from 0 or 1, so that H (n/N )
is not close to zero. In the thermodynamic limit, the largest
possible fraction of atypical eigenstates in the entire spectrum,

lim
N→∞

2o(N )+1 − 1

2NH (n/N )
→ 0, (9)

vanishes exponentially. This justifies our definitions of typical
and atypical eigenstates based on the Kolmogorov complexity
of their occupation patterns.

VI. CONCLUSION AND DISCUSSION

To conclude, using free fermion systems as our primary
examples, we have demonstrated explicitly the connection
between the intrinsic complexity and entanglement entropy of
individual pure states. Specifically, we have shown that the
Kolmogorov complexity of the fermion occupation pattern
successfully reproduces the logarithmically enhanced area
law and the volume law of EE for the ground state and typical
eigenstates, respectively. In the latter case, the Kolmogorov
complexity asymptotically agrees with the Shannon entropy
in the thermodynamic limit [82].

Interestingly, our result suggests an alternative explanation
to the logarithmic enhancement in the ground-state EE. By
representing the Fermi surface as a graph, the logarithmic
term originates from the number of bits required to specify
a vertex on the FS.

Furthermore, we distinguish between typical and atypical
eigenstates by the Kolmogorov complexity of their occupation
patterns. Based on this, we deduced that the fraction of atyp-
ical eigenstates in the entire spectrum vanishes exponentially
in the thermodynamic limit. As pointed out in Ref. [18], these
atypical states can be easily eliminated by mixing with the
typical states when the fermions interact. It is expected that
most of the states in the interacting system would satisfy
the volume law of EE and become thermal. On the other
hand, quantum states with low EE, which are analogous to
scar states [53], may still persist with low probabilities. Our
present approach cannot prove or disprove the strong ETH,
which postulates that all highly excited states in nonintegrable
systems are thermal [83]. We leave this important problem for
future studies.

Last but not least, we should clarify that the intrinsic com-
plexity of a generic pure state may not be quantified by the
classical Kolmogorov complexity. To serve the purpose, the
concept of quantum Kolmogorov complexity was introduced
[32–44,57]. Nevertheless, explicit examples of the connection
between intrinsic complexity and entanglement entropy in
realistic physical systems remain elusive. The simple free
fermion system allows us to define its occupation patterns
in momentum space which take a disentangled form (i.e.,
behave as classical-like objects) and quantify the intrinsic
complexity of its eigenstates by classical Kolmogorov com-
plexity. This further allows us to demonstrate its connection
to the entanglement entropy. In fact, Kolmogorov complexity
was employed in studying the physical entropy of classical
systems, in particular, the Boltzmann gas [26]. Its relevance
to entanglement entropy in quantum systems that may have
classical-like descriptions of their wave functions in some
basis is revealed in this paper. Therefore we believe that our
work provides an important step in the research direction of
connecting intrinsic complexity and entanglement entropy in
(quantum) pure states.
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[25] M. Holeček, arXiv:2103.16913.
[26] W. H. Zurek, Phys. Rev. A 40, 4731 (1989).
[27] W. H. Zurek, Nature (London) 341, 119 (1989).
[28] Complexity, Entropy and the Physics of Information, 1st ed.,

edited by W. H. Zurek (CRC, Boca Raton, FL, 1990).
[29] C. M. Caves, Phys. Rev. E 47, 4010 (1993).
[30] A. R. Brown, L. Susskind, and Y. Zhao, Phys. Rev. D 95,

045010 (2017).
[31] A. R. Brown and L. Susskind, Phys. Rev. D 97, 086015 (2018).
[32] K. Svozil, J. Univers. Comput. Sci. 2, 311 (1996).
[33] P. Vitányi, in Proceedings 15th Annual IEEE Conference

on Computational Complexity, (IEEE Computer Society, Los
Alamitos, CA, 2000), pp. 263–270.

[34] P. M. B. Vitanyi, IEEE Trans. Inf. Theory 47, 2464 (2001).
[35] P. Gács, J. Phys. A: Math. Gen. 34, 6859 (2001).
[36] A. Berthiaume, W. van Dam, and S. Laplante, J. Comput. Syst.

Sci. 63, 201 (2001).
[37] T. Yamakami, Proc. 14th ISAAC. Springer’s LNCS, Vol. 2906,

pp.117, (2003), arXiv:quant-ph/0308072.
[38] F. Benatti, T. Krüger, M. Müller, R. Siegmund-Schultze, and A.

Szkoła, Commun. Math. Phys. 265, 437 (2006).

[39] F. Benatti, Nat. Comput. 6, 133 (2007).
[40] M. Mueller, Ph.D. thesis, Technical University of Berlin, 2007,

arXiv:0712.4377.
[41] C. Rogers, V. Vedral, and R. Nagarajan, Int. J. Quantum Inf. 06,

907 (2008).
[42] C. E. Mora and H. J. Briegel, Phys. Rev. Lett. 95, 200503

(2005).
[43] C. E. Mora and H. J. Briegel, Int. J. Quantum Inf. 04, 715

(2006).
[44] C. E. Mora, H. J. Briegel, and B. Kraus, Int. J. Quantum Inf. 05,

729 (2007).
[45] Y. Ge and J. Eisert, New J. Phys. 18, 083026 (2016).
[46] M. G. Kovalsky, A. A. Hnilo, and M. B. Agüero, Phys. Rev. A

98, 042131 (2018).
[47] J. Eisert, Phys. Rev. Lett. 127, 020501 (2021).
[48] M. Nonaka, M. Agüero, M. Kovalsky, and A. Hnilo,

arXiv:1908.10794.
[49] T. Bhojraj, Theor. Comput. Sci. 875, 65 (2021).
[50] J. Kazemi and H. Weimer, arXiv:2106.07673.
[51] A. Kaltchenko, arXiv:2110.05937.
[52] For a classical string, its quantum Kolmogorov complexity and

classical Kolmogorov complexity differ by an O(1) term. See
M. Müller, Int. J. Quantum Inf. 7, 701 (2009).

[53] For a review, see M. Serbyn, D. A. Abanin, and Z. Papić, Nat.
Phys. 17, 675 (2021), and references therein.

[54] R. J. Solomonoff, Inf. Control 7, 1 (1964); 7, 224 (1964).
[55] A. N. Kolmogorov, Probl. Inf. Transm. 1, 3 (1965).
[56] G. J. Chaitin, Information, Randomness & Incompleteness

(World Scientific, Singapore, 1987).
[57] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity

and Its Applications, 4th ed. (Springer, Berlin, 2019).
[58] To be more precise, one should consider the prefix Kol-

mogorov complexity, K (x). In a self-delimiting program,
x is encoded as a prefix-free code [57]. Using K (x), the
joint Kolmogorov complexity K (x1, x2) satisfies the subaddi-
tive condition: K (x1, x2) � K (x1) + K (x2) + O(1). This feature
provides a more rigorous connection between the Kolmogorov
complexity and Shannon entropy [61]. Since the self-delimiting
program p∗ requires an additional O( log2 [l (p)]) bits to store
the length of p, where p is the non-self-delimiting program,
K (x) and C(x) are different. Compared with the leading-order
term l (p), |K (x) − C(x)| is always a subleading-order term that
does not affect our results in the main text.

[59] To follow the convention in information theory, the logarithm
with base 2 is used.

[60] P. G. L. Dirichlet and R. Dedekind, Lectures on Number Theory
(American Mathematical Society, Providence, RI, 1999).

[61] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[62] M. B. Hastings, J. Stat. Mech.: Theory Exp. (2007) P08024.
[63] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.

80, 517 (2008).
[64] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277

(2010).
[65] M. M. Wolf, Phys. Rev. Lett. 96, 010404 (2006).
[66] D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 (2006).
[67] B. Swingle, Phys. Rev. Lett. 105, 050502 (2010).
[68] W. Ding, A. Seidel, and K. Yang, Phys. Rev. X 2, 011012

(2012).
[69] Note that a violation of area law also occurs in one-dimensional

critical systems [84,85].

035143-5

https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevLett.80.1373
https://doi.org/10.1038/nature06838
http://arxiv.org/abs/arXiv:1003.5058
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1038/nphys3215
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014548
https://doi.org/10.1103/PhysRevX.8.021026
https://doi.org/10.1103/PhysRevE.87.042135
https://doi.org/10.1103/PhysRevA.105.L030201
http://arxiv.org/abs/arXiv:2111.05083
https://doi.org/10.1103/PhysRevB.91.081110
https://doi.org/10.1103/PhysRevE.98.060103
https://doi.org/10.1103/PhysRevB.104.174302
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1088/1367-2630/12/7/075021
https://doi.org/10.1017/S0960129511000521
https://doi.org/10.1007/s10701-021-00498-x
https://doi.org/10.1103/PRXQuantum.2.030202
http://arxiv.org/abs/arXiv:2103.16913
https://doi.org/10.1103/PhysRevA.40.4731
https://doi.org/10.1038/341119a0
https://doi.org/10.1103/PhysRevE.47.4010
https://doi.org/10.1103/PhysRevD.95.045010
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.3217/jucs-002-05-0311
https://doi.org/10.1109/18.945258
https://doi.org/10.1088/0305-4470/34/35/312
https://doi.org/10.1006/jcss.2001.1765
http://arxiv.org/abs/arXiv:quant-ph/0308072
https://doi.org/10.1007/s00220-006-0027-z
https://doi.org/10.1007/s11047-006-9017-5
http://arxiv.org/abs/arXiv:0712.4377
https://doi.org/10.1142/S021974990800375X
https://doi.org/10.1103/PhysRevLett.95.200503
https://doi.org/10.1142/S0219749906002043
https://doi.org/10.1142/S0219749907003171
https://doi.org/10.1088/1367-2630/18/8/083026
https://doi.org/10.1103/PhysRevA.98.042131
https://doi.org/10.1103/PhysRevLett.127.020501
http://arxiv.org/abs/arXiv:1908.10794
https://doi.org/10.1016/j.tcs.2021.05.017
http://arxiv.org/abs/arXiv:2106.07673
http://arxiv.org/abs/arXiv:2110.05937
https://doi.org/10.1142/S0219749909005456
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1016/S0019-9958(64)90131-7
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/PhysRevLett.105.050502
https://doi.org/10.1103/PhysRevX.2.011012


KEN K. W. MA AND KUN YANG PHYSICAL REVIEW B 106, 035143 (2022)

[70] When m ∼ n, the system should be viewed as being in a highly
excited state. The Kolmogorov complexity of the corresponding
occupation pattern should scale as N .

[71] R. Diestel, Graph Theory, 5th ed. (Springer, Berlin, 2017).
[72] A. Farzaneh, J. P. Coon, and M.-A. Badiu, Entropy 23, 1604

(2021).
[73] A. C. Potter, arXiv:1408.1094.
[74] M. Pouranvari, Y. Zhang, and K. Yang, Adv. Condensed Matter

Phys. 2015, 397630 (2015).
[75] For a generic translationally invariant Hamiltonian with energy

dispersion ε(k), the momentum of the ground state need not be
at k = 0.

[76] I. Klich, G. Refael, and A. Silva, Phys. Rev. A 74, 032306
(2006).

[77] W. Ding and K. Yang, Phys. Rev. A 80, 012329 (2009).
[78] W. Ding, N. E. Bonesteel, and K. Yang, Phys. Rev. A 77,

052109 (2008).
[79] M. A. Metlitski and T. Grover, arXiv:1112.5166.
[80] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006).
[81] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[82] P. Grunwald and P. Vitanyi, arXiv:cs/0410002.
[83] G. Biroli, C. Kollath, and A. M. Läuchli, Phys. Rev. Lett. 105,

250401 (2010).
[84] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 (2003).
[85] P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. (2004)

P06002.

035143-6

https://doi.org/10.3390/e23121604
http://arxiv.org/abs/arXiv:1408.1094
https://doi.org/10.1155/2015/397630
https://doi.org/10.1103/PhysRevA.74.032306
https://doi.org/10.1103/PhysRevA.80.012329
https://doi.org/10.1103/PhysRevA.77.052109
http://arxiv.org/abs/arXiv:1112.5166
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110404
http://arxiv.org/abs/arXiv:cs/0410002
https://doi.org/10.1103/PhysRevLett.105.250401
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002

