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We report results from spin trimer-based cluster quantum Monte Carlo simulations for the thermodynamic
properties of two-dimensional frustrated quantum antiferromagnets that are composed of weakly coupled three-
spin (trimer) clusters. In particular, we consider the spin-1/2 kagome lattice with a strong breathing distortion,
and the triangle-square lattice model proposed previously for the cuprate La4Cu3MoO12. For both cases, we
demonstrate that an appropriately chosen trimer-based computational basis allows us to significantly reduce the
quantum Monte Carlo sign problem down to the low-temperature regime. Besides exploring the thermodynamic
behavior for the triangle-square lattice model we also assess a mean-field theory based prediction for the onset
of chiral order. For the breathing distorted kagome lattice model, we observe a robust two-peak structure in the
specific heat, both in the quantum spin liquid and the lattice-nematic regimes.
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I. INTRODUCTION

Triangular clusters form one of the most basic building
blocks of frustrated magnets in two dimensions [1], including
the paradigmatic Heisenberg antiferromagnets on the triangu-
lar or kagome lattice. In particular the S = 1/2 Heisenberg
antiferromagnet on the kagome lattice, which can be inter-
preted as a a lattice of corner-sharing triangles, has attracted
considerable interest as a promising system for realizing a
quantum spin liquid [2–6] in its ground state. In most can-
didate materials, the magnetic exchange couplings do not,
however, realize a perfect kagome lattice and are instead
distorted [7], which can have a significant impact on the low-
temperature physics, e.g., by stabilizing magnetic order [8],
precluding the formation of a quantum spin liquid.

This is, however, not true for all kinds of distortions, as
seen for example in the “breathing-distorted” kagome lattice,
where upward and downward triangles both remain equilat-
eral but inequivalent to each other [Fig. 1(a)] [9–11]. Even
under strong breathing distortion, a quantum spin-liquid phase
of the kagome lattice is expected to be stable [12,13]. Such
a distortion is indeed observed in the spin-1/2 vanadium
oxyfluoride [NH4]2[C7H14N][V7O6F18], which shows no sign
of order or spin freezing down to low temperatures [10,14,15].
It is thus important to accurately examine the ground state and
low-temperature thermodynamic behavior of such distorted
model systems.

Unbiased numerical studies of both the undistorted and
the breathing distorted kagome lattice have so far been based
mainly on exact diagonalization (ED) calculations [3,16–18]
on (relatively) small clusters, tensor-network methods such as
the density matrix renormalization group (DMRG) [3,4,12]
or infinite projected-entangled pair states (iPEPS) and related
approaches [13,19,20], which do, however, suffer in the case

of DMRG from finite-circumference cylinder geometries and
in the case of iPEPS from limited accessible bond dimen-
sions. Unbiased quantum Monte Carlo (QMC) methods such
as the stochastic series expansion (SSE) [21–25] typically
suffer from the negative sign problem [26,27] in the face
of frustration. Averting this basis-dependent sign problem is,
however, possible for a set of special models by performing a
local change of basis. A notable example for this is the class
of highly frustrated Heisenberg antiferromagnets on lattices
with fully frustrated interactions, where changing to a suitable
cluster basis removes the sign problem [28–33].

In this work, we show how a suitable cluster basis can also
be beneficial in the case of weakly coupled trimer clusters.
Here, the sign problem is in general still present but can
be reduced to a degree where unbiased calculations of the
thermodynamic quantities become possible down to the low-
temperature regime. We will perform these calculations for
the S = 1/2 Heisenberg antiferromagnet on two basic lattices
of coupled trimers, highlighting the strengths and shortcom-
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FIG. 1. (a) The breathing kagome lattice with intratrimer bonds
J� along the upward triangles and intertrimer bonds J� along the
downward triangles. (b) The triangle-square lattice with the in-
tratrimer bonds J1, J2, and J3 as well as the intertrimer bonds J . The
x (y) lattice direction points to the right (upwards).
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ings of this approach. First, we will consider a square lattice of
triangle clusters [the triangle-square lattice, Fig. 1(b)], where
the triangular clusters are arranged on a bipartite parent lat-
tice so that the frustration predominantly arises within the
clusters themselves. This model Hamiltonian has been put
forward [34,35] to describe the frustrated quantum magnetism
observed in the cuprate-based compound La4Cu3MoO12. Sec-
ond, we will then return to the kagome lattice with strong
breathing distortion [Fig. 1(a)] as a more challenging example
where also the interaction between trimers takes place on a
highly frustrated triangular parent lattice [12,13].

The remainder of this paper is structured as follows. In
Sec. II we outline the details of the different cluster bases we
employ in our simulation. In Sec. III, we present our results
for the triangle-square lattice, which are contrasted in Sec. IV
to those for the breathing-distorted kagome lattice. Finally, in
Sec. V, we draw a conclusion on our results and provide an
outlook.

II. CLUSTER BASES

In this paper, we employ and compare three different com-
putational bases that correspond to the eigenbasis of different
physical single-trimer operators. The first is the conventional
single-spin Sz basis [21], in which the Sz component of each
trimer spin is diagonal,

Sz
�,α |m1, m2, m3〉 = mα |m1, m2, m3〉 , α = 1, 2, 3.

The second is the dimer basis, |l12, m12, m3〉, which diagonal-
izes the total spin, S2

�,12 = (S�,1 + S�,2)2, and magnetization,
Sz

�,12 = Sz
�,1 + Sz

�,2, along one bond of the trimer (taken here
to be the one connecting S1 and S2) and leaves the third spin
untouched,

|1, 1, m3〉 = |↑,↑, m3〉 , |1,−1, m3〉 = |↓,↓, m3〉 ,

|1, 0, m3〉 = (|↑,↓〉 + |↓,↑〉) ⊗ |m3〉 /
√

2,

|0, 0, m3〉 = (|↑,↓〉 − |↓,↑〉) ⊗ |m3〉 /
√

2. (1)

Finally we consider the trimer basis, where the total
spin, S2

� = (
∑3

α=1 S�,α )2, and total magnetization, Sz
� =∑3

α=1 Sz
�,α , of the full trimer are diagonal. In addition to

these two, a third operator is needed to completely distinguish
the eight states on the trimer. This operator is not uniquely
determined, but can be readily constructed from symmetry
considerations. First, choosing an SU(2) symmetric operator
ensures that it has a common eigenbasis with S2

� and Sz
�.

Second, by additionally requiring time-reversal symmetry, its
eigenbasis (and thus the trimer basis) can be chosen to be real
valued with respect to the single-spin Sz basis. Therefore, the
Hamiltonian, which is also real valued in the Sz basis, will
not acquire a phase problem by transformation to the trimer
basis [36]. The simplest way of fulfilling these conditions is to
use one of the dimer total spin operators, such as (S1 + S2)2,
which we do in the following. Therefore, for the trimer basis

|l�, m�, l�,12〉, we have three quantum numbers and

|3/2,+3/2, 1〉 = |↑↑↑〉 , |3/2,−3/2, 1〉 = |↓↓↓〉 ,

|3/2,+1/2, 1〉 = (|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉)/
√

3,

|3/2,−1/2, 1〉 = (|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉)/
√

3,

|1/2,+1/2, 0〉 = (|↑↓〉 − |↓↑〉) ⊗ |↑〉 /
√

2,

|1/2,−1/2, 0〉 = (|↓↑〉 − |↑↓〉) ⊗ |↓〉 /
√

2,

|1/2,+1/2, 1〉 = (|↑↓↑〉 + |↓↑↑〉 − 2 |↑↑↓〉)/
√

6,

|1/2,−1/2, 1〉 = (|↓↑↓〉 + |↑↓↓〉 − 2 |↓↓↑〉)/
√

6. (2)

For the Hamiltonian of uncoupled trimers, the single-spin
basis has a sign problem. The dimer basis is sign-free under
the condition that the decoupled trimers are mirror symmetric
perpendicular to the dimer it singles out (e.g., if the dimer
basis is formed with respect to the bond with coupling J3,
this requires that J1 = J2). By contrast, the trimer basis can be
made sign-free in any case by choosing an appropriate third
operator as detailed above.

Once an intertrimer coupling is introduced, in general, all
three bases are subject to the sign problem. The severity of this
sign problem depends on the model studied and can also differ
largely between different bases. For example, for the specific
case of the fully frustrated trilayer (FFTL) model considered
in Ref. [33], the sign problem is completely eliminated only
in the trimer basis [the FFTL is obtained upon adding in Fig.
1(b) couplings of strength J between all spins belonging to
nearest-neighbor trimers]. In the following, we will show how,
in contrast to the single-spin basis, the dimer and trimer bases
remain useful in the regime of weak intertrimer coupling and
allow us to resolve the thermodynamics of the two trimer
magnets that we examine here.

In order to perform QMC simulations of coupled trimer
systems in the various bases introduced above, we employ the
SSE method in the basis-independent formulation introduced
in Ref. [33]. In particular, within the directed loop SSE update
scheme, we use the abstract loop formulation from Ref. [33]:
the actions of the local operators on the cluster (single spins,
dimers, or trimers) basis states are binary operations (such as
the bit-wise exclusive-OR) defined on the binary representa-
tion of the basis states. We refer to Ref. [33] for a detailed
presentation of this approach.

III. TRIANGLE-SQUARE LATTICE

In this section, we first consider the triangle-square lattice
model of coupled spin trimers. In this system, the trimers are
arranged on a bipartite square lattice, so that the magnetic
frustration resides within the individual trimers. The ground-
state phase diagram of this model has been analyzed based
on ED and mean-field theory [34,35]. As detailed further in
Sec. III C, in the weak J ′ regime, the ground-state phase dia-
gram is composed of various magnetically ordered regimes,
depending on the relative strength of the three intratrimer
couplings. In the following we consider finite-size systems
with periodic boundary conditions, where the number of spins
relates via N = 3L2 to the linear system size L of the square
lattice.
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FIG. 2. Average configuration sign, 〈sign〉, of the L = 12
triangle-square lattice in different computational bases for different
values of the intratrimer couplings J1/2/3 and the intertrimer coupling
J . In panels (a)–(d) solid lines show the dimer and trimer basis using
the total spin of the S1-S2 dimer as a quantum number. In panel (c),
the dashed lines show rotated versions of these bases using the S2-S3

dimer, allowing for an improved sign in this case.

A. Sign

We start our discussion of the triangle-square lattice by
comparing the average configuration sign, 〈sign〉 [26,27,30],
for the three different bases and at different points in the
parameter space of the intradimer couplings (Fig. 2). Gen-
erally, the average sign decays to zero as temperature goes
to zero, but the scale of this decay depends on the basis.
For the single-spin basis it is set by the dominant of the
intratrimer couplings J1, J2, J3. For weakly coupled trimers
[Figs. 2(a)–2(c)], the dimer and trimer bases greatly outper-
form the single-spin basis, retaining a robust sign down to
T ∼ J . Along the symmetric line J1 = J2, the dimer basis
is slightly more favorable than the trimer basis and off the
symmetric line [Fig. 2(c)], the trimer basis is favorable. In
the special case where J1 �= J2 but J2 = J3 a rotated version of
the dimer and trimer basis, using the S2-S3 instead of the S1-S2

dimer, can be used to further enhance the average sign (Fig. 2).
For stronger couplings [Fig. 2(d)], the trimer basis becomes
less effective than the single-spin basis while the dimer basis
retains a robust sign down to T ∼ J [in practice, our SSE
simulations remain feasible for 〈sign〉 larger than O(10−2)].

This behavior can be intuitively understood by considering
the ways in which the triangle-square lattice can be extended
to eliminate the sign problem in the respective bases. For the
single-spin basis, no such extension exists. The only way to
remove the sign problem is to remove couplings—both inter-
and intratrimer—until there is no more geometric frustration.
For the dimer basis, if J1 = J2, the model becomes sign-free
upon adding further interactions of strength J among all spins
that belong to neighboring horizontal dimers so that the model
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FIG. 3. The magnetic susceptibility χ of the L = 12 triangle-
square lattice, multiplied by the temperature T as a function
of temperature for different values of the intra- and intertrimer
couplings. The insets show a magnification of the data in the
low-temperature region. For comparison, the exact solutions for de-
coupled trimers (J = 0) and L = 2 are drawn.

turns into rows of fully frustrated two-leg ladders interlaced
by rows of single spin-1/2’s. In the trimer basis, the model can
be made sign-free for any values of J1, J2, and J3 by extending
it to the FFTL model [33]; however, doing so requires more
additional couplings than in the case of the dimer basis.

Going back to the original triangle-square lattice, we may
assume that at temperatures T that are large compared to
the energy scale of these modifications, the system should
behave similarly to the sign-free system. In particular, the
average sign should stay finite. At lower temperatures, where
these differences become important, the sign will, however,
drop towards zero. For the single-spin basis, the energy scale
needed to make the model sign-free is that of the intratrimer
couplings. For the dimer basis, the scale is the bigger of
|J1 − J2| (to make the model symmetric) and J . For the trimer
basis it is J , although with a larger prefactor since in the ex-
tended model, more bonds are added. Thus, unless the mirror
symmetry is broken, the dimer basis is superior. We note that
in any case, if 〈sign〉 < 1, the average sign decreases exponen-
tially with increasing system size [26,27]. This limits QMC
simulations at low temperatures beyond the system sizes that
we accessed here. After having examined the behavior of the
average computational sign, we next consider the thermody-
namic behavior of the triangle-square lattice.

B. Thermodynamics

In the following, we will investigate the thermodynamics
of the weakly coupled triangle-square lattice in the regime
T � J , choosing for different points in the phase diagram
the best-performing basis according to the preceding analysis.
We will commence by looking at the magnetic susceptibility,
followed by the specific heat of the system, at the three char-
acteristic sets of intratrimer couplings already considered in
the above analysis of the average sign.

The magnetic susceptibility χ (Fig. 3) shows that at weak
intertrimer coupling J � J1, J2, J3, the physics at high tem-
peratures is well described by an ensemble of decoupled
trimers (J = 0). In this ensemble, there is a crossover from the
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FIG. 4. The specific heat C of the L = 12 triangle-square lattice,
divided by the temperature T as a function of temperature for differ-
ent values of the intra- and intertrimer couplings. Black lines show
the exact solution for J = 0.

high-temperature Curie law T χ = 1/4 to a lower-temperature
regime, where the spins on each trimer combine into one
effective spin-1/2, corresponding to a T χ = 1/12 Curie law.
At even lower temperatures, the uncoupled-trimer approxima-
tion breaks down as the intertrimer interactions couple the
effective spin-1/2’s, eventually leading to different antiferro-
magnetic (AFM) orders compatible with the square parent
lattice of the trimers [34,35]. This crossover happens at dif-
ferent temperatures, depending on the intratrimer couplings,
with (J1, J2)/J3 = (0.5, 1.0) being the most robust to inter-
actions out of those studied here. With increasing intertrimer
interaction J , deviations from the decoupled-trimer form are
also visible at higher temperatures. We note that while the
exact solution for L = 2 captures this behavior qualitatively,
it significantly differs from the L = 12 QMC results at low
temperatures. This indicates an increased correlation length
at low temperatures in the triangle-square lattice. At the same
time, this deviation confirms that the QMC approach does per-
form well beyond the temperature regime of trivial few-trimer
physics. The specific heat C provides a different perspective
on this situation (Fig. 4). Here, at high temperatures, the data
is again well described by the decoupled case (showing even
less deviations than χ at J/J3 = 0.1). We note that the area un-
der the C/T curves shown in Fig. 4 corresponds to the released
entropy of the model and a deviation from the value log 2 per
spin signifies a residual extensive ground-state degeneracy.
For J = 0 this is indeed the case as the ground state is a prod-
uct state of doublets (or quartets in the special case J1 = J2 =
J3). At low temperatures, the intertrimer interactions will in
general lift this degeneracy leading to an additional release of
entropy. For J/J3 = 0.01, we cannot resolve this regime due
to the severity of the sign problem at such low temperatures.
At J/J3 = 0.1, the corresponding temperature scale is higher
and we clearly resolve a low-temperature peak in the case
(J1, J2)/J3 = (1, 1) corresponding to the lifting of the quartet
degeneracy.

In summary, in this section, we computed the thermo-
dynamics of the triangle-square lattice, resolving different
temperature regimes where different couplings of the Hamil-
tonian start to play a role. In the next step, we will take a

1

1

J1/J3

0 J2/J3

Q = (0, π)

(0, π)

(π
, π

)

(π, 0)

FIG. 5. Illustration of the magnetic phase diagram of the
triangle-square lattice model obtained from ED in Ref. [34]. Depend-
ing on the intratrimer coupling ratios, the effective spin-1/2 degrees
of freedom per trimer form magnetic order along different wave
vectors Q. The extent of the (π, π ) phase depends on the magnitude
of J , shrinking to the singular point J1 = J2 = J3 as J → 0; the
illustration corresponds to J ≈ 0.1J3.

closer look at the low-temperature regime and check various
predictions of ground-state order in the triangle-square lattice.

C. Ground-state orders

As mentioned in the previous section, at low temperatures,
each trimer of the triangle-square lattice forms an effective
spin-1/2, or in other words, only the lowest energy doublet
contributes to the physics. In a leading-order perturbative
expansion in the weak intertrimer coupling J , an effective
Heisenberg model

Heff =
∑
�

Jeff
x s� · s�+x̂ + Jeff

y s� · s�+ŷ (3)

for these effective spins, denoted s� = P� S� P�, can be de-
rived [35], where P� is a projector to the lowest energy doublet
on trimer �. Because the trimers themselves are arranged on
a square parent lattice, this effective low-energy model is no
longer frustrated and its ground-state phase diagram is well
known to display magnetic order at different wave vectors Q
depending on the signs of Jeff

x/y, which in turn depend on the
values of J1/2/3 [34,35].

The case J1 = J2 = J3 forms an exception in this analysis
since the low-energy subspace consists of two degenerate
SU(2) doublets. In addition to an effective SU(2) spin s�,
this gives rise to a pseudospin low-energy degree of freedom
τ distinguishing the two doublets. The effective Hamiltonian
then becomes

H ′
eff = J

∑
�

s� · s�+x̂A�,�+x̂ + s� · s�+ŷA�,�+ŷ, (4)

where the operators A�,�′ act on the pseudospins (given in
detail in Ref. [35] and further below). The ground state of
this model is not well known, but ED and mean-field theory
suggest the formation of (π, π ) order around J1 = J2 = J3. A
sketch of the complete phase diagram as obtained in Ref. [34]
is shown in Fig. 5.

In the following, we will check the validity of this phase
diagram for finite but small intertrimer couplings. To this end,
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FIG. 6. Finite-size and temperature scaling (T = J3/2L) of the
magnetic structure factor S(Q) of the triangle-square lattice along
the symmetric line (J1 = J2, J/J3 = 0.1, see Fig. 5. The system size
increases with the opacity of the lines.

we compute the magnetic structure factor,

S(Q) = 1

L2

∑
�,�′

eiQ·(R�−R�′ ) 〈S� · S�′ 〉 , (5)

with the unit cell positions R�, while simultaneously scaling
the system size L and the temperature T = J3/2L to re-
solve the onset of the different magnetic ground-state orders.
Since the sign problem is least severe along the symmetric line
J1 = J2, we concentrate on this case in the following analysis.

A scan of the structure factor at different possible ordering
wave vectors (Fig. 6) reveals that along the symmetric line, the
(π, 0) and (π, π ) orders are most prevalent, with the former
dominating at high J1 = J2 and the latter taking over in the
regime around J1 = J2 = J3. At lower J1 = J2, the competi-
tion between different orders is very close. However, out of
the three structure factors, the one belonging to (π, 0) is the
only one growing with system size in this region, suggesting
that it will dominate in the thermodynamic limit. These find-
ings are in agreement with the phase diagram obtained using
ED, perturbation theory, and mean-field theory. In particular,
the close competition at low J1 = J2 can be explained by a
weak effective coupling Jeff

y that only appears at higher orders
perturbatively in the intertrimer coupling J [35].

As we saw, most of the phase diagram of the triangle-
square lattice can be understood in terms of the effective
spin-1/2 degrees of freedom formed by each trimer. So far,
however, we have not considered the pseudospin degree of
freedom at the point J1 = J2 = J3. This degree of freedom has
a similar role as the third quantum number we had to add in the
trimer basis in Sec. II in that it lives in the subspace of fixed
l� and m�. In Sec. II, we used the eigenbasis of the operator
(S�,1 + S�,2)2 to map out this part of the trimer Hilbert space
while retaining a real basis. Without this constraint, it is, how-
ever, often useful to use a basis that makes the symmetry of the
J1 = J2 = J3 trimer explicit. One such basis is the eigenbasis
of the chirality operator [37]

τ z
� :=

√
3

4
S�,1 · (S�,2 × S�,3) =: |R〉〈R| − |L〉〈L| , (6)

with

|L,↑〉 = 1√
3

(|↑↑↓〉 + ω |↑↓↑〉 + ω∗ |↓↑↑〉), (7)

|L,↓〉 = 1√
3

(|↓↓↑〉 + ω |↓↑↓〉 + ω∗ |↑↓↓〉), (8)

|R,↑〉 = 1√
3

(|↑↑↓〉 + ω∗ |↑↓↑〉 + ω |↓↑↑〉), (9)

|R,↓〉 = 1√
3

(|↓↓↑〉 + ω∗ |↓↑↓〉 + ω |↑↓↓〉), (10)

and ω = ei2π/3. Writing the effective Hamiltonian of Eq. 4 in
this basis yields [35]

Heff = J

9

∑
�

Al
�Ar

�+x̂ S� · S�+x̂

+ Ad
�Au

�+ŷ S� · S�+ŷ, (11)

where [38]

Al
� = 1 − 2ω∗τ+

� − 2ωτ−
�

= 1 + τ x
� +

√
3τ

y
�, (12)

Ar
� = 1 − 2ωτ+

� − 2ω∗τ−
�

= 1 + τ x
� −

√
3τ

y
�, (13)

Ad
� = 1 − 2τ x

�, (14)

Au
� = 2 + 2τ x

� (15)

act on the pseudospin degree of freedom via the operators
τ+ = |L〉〈R| and τ− = (τ+)†. Note that the shape of the A
operators is strongly constrained by the symmetries of the
triangle-square lattice. The horizontal mirror symmetry �,
represented by τ x (skipping the trimer index �) on each trimer
implies

�Al�−1 = Ar, �Ad�−1 = Ad , �Au�−1 = Au. (16)

Similarly, the time-reversal symmetry 	, given by Kτ x, where
K is the complex conjugation operator in the chirality basis,
leads to

	Al	−1 = Al , 	Ar	−1 = Ar, (17)

	Ad	−1 = Ad , 	Au	−1 = Au. (18)

At low temperatures, the pseudospin degree of freedom
may spontaneously break either of these symmetries, form-
ing a chiral or lattice-nematic state. The former was indeed
proposed based on mean-field theory results for H ′

eff [35]. In
contrast to the magnetic order which constitutes the breaking
of a continuous symmetry, the pseudospin can break its dis-
crete symmetries also at finite temperature.

To check these possibilities, we compute the correlation
functions of the chirality pseudospin τ z, which is odd under
time reversal,

Cz(r) = 〈
τ z

0τ
z
r

〉
, (19)
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and the operator τ y = 2√
3
(S1 − S2) · S3, which is odd under

horizontal reflections,

Cy(r) = 〈
τ

y
0 τ y

r

〉
. (20)

Since we cannot directly simulate in the chirality basis,
both of these correlation functions contain operators that are
off-diagonal in our computational basis. Nevertheless, it is
possible to compute them on-the-fly during the loop update. In
Appendix A we show how such on-the-fly measurements can
be performed within the SSE loop update also in the presence
of a sign problem.

Having identified τ z and τ y in terms of constituent spin
operators, we note that τ x = (S1 + S2)2 − 1. This highlights
that the chirality basis and the computational “l�,12” trimer
basis introduced in Sec. II are related by a simple unitary
pseudospin rotation. Consequently, in the l�,12-trimer basis,
the correlation functions Cz and Cy can still be expressed by
simple (albeit different) Pauli matrices,

τ z = |1/2〉〈1/2|l� ⊗ 1m�
⊗ i(|1〉〈0| − |0〉〈1|)l�,12 , (21)

τ y = |1/2〉〈1/2|l� ⊗ 1m�
⊗ (|1〉〈0| + |0〉〈1|)l�,12 . (22)

For this reason, we prefer the trimer basis over the dimer
computational basis for this calculation even though it has
a slightly reduced average sign. In the dimer basis, calcu-
lating Cz and Cy in a similar way is in principle possible,
but with much more complicated matrix elements due to the
split of the Hilbert space of S�,1, S�,2, and S�,3 constituting
the spin chirality into two distinct computational cluster-basis
sites.

As seen from the QMC data shown for Cz(r) [(top left
panel (a)] and Cy(r) [top right panel (b)] in Fig. 7, we ob-
serve a rapid decay of these correlations along both lattice
directions, i.e., for r ∝ x̂ (x direction) and r ∝ ŷ (y direc-
tion). The chirality correlations exhibit a finite value only
among nearest-neighbor trimers, and are essentially zero be-
yond r > 2 [the value of Cy(r) at r = 2x̂ is also suppressed
with increasing system size; cf. the bottom panel (c)]. We
therefore do not obtain indication for the presence of any
further symmetry breaking induced by the chirality degree of
freedom [35] within the accessible temperature regime of our
QMC approach.

IV. BREATHING KAGOME LATTICE

After having considered a system of coupled trimers, for
which the superlattice of trimers is bipartite, we next consider
the case of the (breathing) kagome lattice, which is formed by
a (nonbipartite) triangular lattice of coupled trimers. In this
system there is thus an additional source of magnetic frus-
tration beyond the one introduced by the antiferromagnetic
intratrimer couplings. We again consider finite-size systems
with periodic boundary conditions, and also in this case the
number of spins relates via N = 3L2 to the linear system size
L of the triangular lattice.

A. Sign

For the kagome lattice with breathing distortion, we also
start by comparing the average configuration sign for the

1 2 3

r

−0.04

−0.02

0.00

C
z
(r

)

(a)

r = rx̂:

L = 4

L = 6

r = rŷ:

L = 4

L = 6

1 2 3

r

C
y
(r

)

(b)

r = rx̂:

L = 4

L = 6

r = rŷ:

L = 4

L = 6

1 2 3

r

−0.002

0.000

0.002

0.004

0.006

C
z
/
y
( r

x̂
)

(c) Cz , L = 4

Cz , L = 6

Cy , L = 4

Cy , L = 6

FIG. 7. Chirality correlation functions Cz and Cy for the triangle-
square lattice for J1 = J2 = J3, J/J3 = 0.1 at T/J3 = 0.05. Panels
(a) and (b) show the respective correlations in both the x and y
lattice directions while panel (c) compares them along the dominant
x direction.

computational bases introduced in Sec. II (Fig. 8). For
weak intertrimer couplings J�, the dimer and trimer bases
again strongly outperform the single-spin basis retaining a
finite sign down to T ∼ J�, while at stronger couplings this

0.00

0.25

0.50

0.75

1.00

〈si
g
n
〉

(a) J�/J� = 0.05

spin

dimer

trimer

(b) J�/J� = 0.1

0 1 2

T/J�

0.00

0.25

0.50

0.75

1.00

〈si
g
n
〉

(c) J�/J� = 0.5

0 1 2 3

T/J�

(d) J�/J� = 0.8

FIG. 8. Average configuration sign, 〈sign〉, of the L = 12 breath-
ing kagome lattice in different computational bases for different
breathing distortions J�/J�.
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0.075
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FIG. 9. The magnetic susceptibility χ of the breathing kagome
lattice multiplied by the temperature T as a function of T for different
breathing distortions J�/J�. For J� = 0, the ED solution for decou-
pled trimers is shown. For finite J�, the dashed lines show L = 2 ED
data.

advantage fades away. In contrast to the triangle-square lat-
tice, however, at weak intertrimer couplings, the sign is nearly
identical between the dimer and trimer basis for J�/J� � 0.1,
with a slight advantage of the trimer basis in the low-T regime.
At larger J�, the dimer basis has a slightly higher average
sign, but eventually falls below the sign of the single-spin
basis. Therefore, moving forward, we will focus on the weak-
coupling regime, i.e., the regime of high breathing distortion,
and use the trimer computational basis.

B. Thermodynamics

In analogy to the triangle-square lattice, we compute the
magnetic susceptibility χ (Fig. 9) and the specific heat C
(Fig. 10). At high temperatures and weak intertrimer cou-
plings, these observables converge to the same decoupled
trimer limit as the triangle-square lattice. In the susceptibility
(Fig. 9), the effective spin-1/2 plateau at low temperatures

0.00 0.25 0.50 0.75 1.00 1.25 1.50

T/J�

0.00

0.05

0.10

0.15

C

L = 6

J�/J�
0

0.01

0.025

0.05

0.075

0.1
ED (L = 2)

FIG. 10. The specific heat C of the breathing kagome lattice as a
function of temperature T for different breathing distortions J�/J�.
For J� = 0 the ED solution for decoupled trimers is shown. For finite
J�, the dashed lines show L = 2 ED data.

0.0 0.5 1.0 1.5 2.0 2.5

h/J

0.0
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0.2

0.3

0.4

0.5

M

L = 6, T = J /(2L)

0.0 0.1 0.2
0.0

0.1

J /J
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0.025
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0.075

0.100

FIG. 11. Magnetization per site M of the breathing kagome
lattice as a function of magnetic field h for different breathing dis-
tortions J�/J�, taken at T = 0.083J�.

again vanishes with increasing intertrimer interactions. The
specific heat shows the onset of a low-temperature peak as-
sociated with the lifting of degeneracies by the intertrimer
interactions. In general, due to the sign problem it is chal-
lenging to reach the low-temperature regime T ∼ J�, but in
our accessible temperature range both the susceptibility and
the specific heat are well described by ED data for L = 2.
This is in contrast to the triangle-square lattice for which at
similar temperatures, significant deviations from the L = 2
data were found due to the onset of magnetic correlations.
In addition to these observables, we furthermore computed
the magnetization (per site) M = 1

N

∑
i Sz

i at a finite magnetic
field h introduced to the Hamiltonian,

H ′ = H − h
∑
�

Sz
�, (23)

which shows two extended plateaus (Fig. 11) corresponding
to the magnetizations per trimer 〈m�〉 = 1/2 and 〈m�〉 =
3/2, respectively [11]. At the boundaries of these plateaus,
the competition between different magnetization sectors ren-
ders the energetic contributions due to the small intertrimer
coupling more important. In these regions the magnetization
displays smooth crossovers, where at our lowest accessible
temperature of around T/J� = 0.083, we do not resolve signs
of further plateaus. In general, increasing J� at fixed T/J�
leads to stronger frustration and thus to an overall decrease of
the magnetization.

Previous works have found a quantum phase transition
from a nematic state breaking the lattice rotation symmetry to
a spin liquid state at weak intertrimer coupling in the range
of J�/J� ≈ 0.05 [12]. While we see no signatures of such
a transition in the thermodynamic behavior presented until
now, measuring the associated nematicity order parameter
and its correlation function is in principle possible within our
approach, allowing for the direct detection of such a phase,
if it persists to high enough temperatures. In Appendix B, we
show the absence of a lattice-nematic state for T/J� � 0.083,
limiting a finite-temperature lattice-nematic phase, if it per-
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sists, to lower temperatures than those accessible to our QMC
approach.

V. CONCLUSION

In this paper we computed the thermodynamics of two
models of weakly coupled Heisenberg trimers using quantum
Monte Carlo simulations in different cluster bases. In both the
triangle-square lattice and the breathing kagome lattice, these
cluster bases allowed us to resolve temperatures down to the
order of the weak intertrimer coupling, greatly outperforming
the single-spin basis.

For the triangle-square lattice, we further picked up the
signatures of different magnetic orders expected to form in
the ground state. We also showed that correlations related
to the additional chirality degree of freedom for the case of
equal intratrimer couplings can be efficiently accessed using
the trimer basis. However, no additional symmetry breaking
is observed within the accessible temperature range.

The thermodynamic data for the breathing kagome lattice
was found to be well described by a simple L = 2 cluster
throughout our accessible temperature range. In particular, we
observe the presence of a two-peak structure in the specific
heat in both the lattice-nematic and the quantum spin liquid
regime of the breathing kagome lattice. Whereas some studies
also reported a two-peak structure in the undistorted kagome
lattice (J� = J�) [39,40], recent work concludes instead in
favor of a single peak with a pronounced low-T shoulder in
the undistorted kagome lattice [16,18,20]. It would therefore
be interesting to further examine the evolution of the low-
temperature specific heat upon increasing J� from the strong
breathing regime that we can access by QMC into the weak
breathing region, including the undistorted limit.

ACKNOWLEDGMENTS

We thank Andreas Honecker and Jürgen Schnack for useful
discussions. We acknowledge the support of the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) through Grant No. WE/3649/4- 2 of the program FOR
1807 and through project RTG 1995, and the IT Center at
RWTH Aachen University and the JSC Jülich for access to
computing time through JARA-HPC.

APPENDIX A: MEASURING CORRELATION FUNCTIONS

In the Sz basis formulation of the SSE it is possible to
measure the off-diagonal spin correlation functions 〈S+

i S−
j 〉 by

treating the (directed) loop update as an extended ensemble
where theses operators are part of the configuration [25,41].
This approach can be directly generalized to correlations
〈AI BJ〉 where AI and BI are local operators on cell (i.e., trimer)
I: In particular, these measurements can also be performed in
the presence of signed configurations, as we will show in the
following, based on the notation introduced in Ref. [33]. If we
choose a loop action (out of a total of Nactions) and the entry
cell (out of a total of Ncells) at random, the extended ensemble

takes the form

Zext =
∑

n,{bn},σ0
ah,ph,at ,pt

1

NactionsNcells

∣∣∣∣ (−β )n

n!
〈σ0|hb1 · · · |σph〉

× 〈ah(σph )| · · · |σpt 〉 〈at (σpt )| · · · hbn |σ0〉
∣∣∣∣. (A1)

Here, in addition to the expansion order n, operator string
{bn}, and state σ0 the configuration contains the position p and
action a of the loop’s head and tail. Furthermore, the system
Hamiltonian H has been decomposed in terms of operators hb

that each connect two cells [33] (they correspond to the bond
operators in the conventional site-basis formulation of the SSE
[21]). The at , pt , ah, and ph determine the position and type of
two discontinuities that appear in the string of nonbranching
operators [25,41].

We want to measure equal-time correlation functions be-
tween general states, i.e.,

Cxiyi,x j y j = Tr[|xi〉〈yi| ⊗ |x j〉〈y j | e−βH ]

Z
. (A2)

If the local states x �= y, there is a loop action a so that y =
a(x) and we can express the correlations as an expectation
value in the extended ensemble

Cxiyi,x j y j = NactionsNcells
〈sign × P(ah, ph, at , pt )〉ext

〈sign × Q(ah, ph, at , pt )〉ext
(A3)

with two projectors

P(ah, ph, at , pt ) =
{

1, singularities match xiyi, x jy j

0, else,
(A4)

Q(ah, ph, at , pt ) =
{

1, ah = a−1
t and ph = pt

0, else,
(A5)

i.e., Q filters out closed-loop configurations that are also part
of the regular ensemble. Therefore, the denominator can be
simplified to

〈sign × Q(ah, ph, at , pt )〉ext = 〈sign〉 〈Q(ah, ph, at , pt )〉ext .

(A6)

In the numerator, we write the sign as a difference of projec-
tors P+ (P−) on the positive (negative) signed configurations

〈sign × P(ah, ph, at , pt )〉ext = 〈P+P(ah, ph, at , pt )〉ext

− 〈P−P(ah, ph, at , pt )〉ext .

(A7)

Analogously to the usual case [25,41], we can write the ratio
of the two probabilities 〈P〉 and 〈Q〉 as mean counts per loop.
Thus,

Cxiyi,x j y j = NactionsNcells

× 〈n+(ah, ph, at , pt ) − n−(ah, ph, at , pt )〉
〈sign〉

= 〈n(ah, ph, at , pt )〉
〈sign〉 , (A8)

where n(ah, ph, at , pt ) is the signed count of loop steps with
P(ah, ph, at , pt ) = 1. Arbitrary correlation functions of cell-
local operators can now be written as the sum of the Cxiyi,x j y j .
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If they are off-diagonal [(xi, yi ) �= (x j, y j )], they can be mea-
sured as described in this section. If they are diagonal, they
can be measured like every other diagonal observable [21,22].

APPENDIX B: LATTICE-NEMATIC RESPONSE IN THE
BREATHING KAGOME LATTICE

At low J�/J� � 0.05 and T = 0, the kagome lattice AFM
was previously found to spontaneously break the C3 lattice
rotational symmetry while leaving the translational, spin rota-
tional, and a lattice reflection symmetry intact [12,13]. Such a
lattice-nematic phase is expected to show a singular response
to a small C3 breaking perturbation, which can be detected,
e.g., using an order parameter defined as

φ = 1

L2

∑
�

3∑
n=1

e2π i(n−1)/3 〈S�,n · S�,n+1〉 . (B1)

In the C3-symmetric case, this quantity is exactly zero.
Previous studies have focused on the ground-state phase-

diagram, but since the lattice-nematic phase breaks a discrete
symmetry it may persist up to a finite temperature Tc. As
J� approaches zero, at any fixed temperature, the partition
function of the model should approach that of simple decou-
pled trimers, in agreement with our findings in the main text.
Decoupled trimers cannot, of course, form lattice-nematic
order, so the critical temperature Tc of the nematic transition is
expected to vanish with J�. Nevertheless, at finite J�, a finite
Tc may be observable in the temperature range accessible with
our method, which is what we investigate in this section.

We will introduce a small symmetry-breaking perturbation
by detuning one of the intratrimer couplings, denoted as J3 (in
analogy to the triangle-square lattice notation) while leaving
the other two intratrimer couplings at the value J�. We can
then monitor the evolution of the order parameter upon tuning
across the isotropic point J3 = J�. Using the residual lattice
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FIG. 12. The nematic order parameter φ in the L = 6 breathing
kagome lattice as a function of the intertrimer coupling J3 detuned
from the C3-symmetric point J3 = J� for different intertrimer cou-
plings J�.

reflection symmetry in this setup, the order parameter φ can
be expressed as

φ = 1

L2

(〈∑
�

l�,12

〉
−

〈∑
�

l�,23

〉)
. (B2)

Here, we computed the two terms as diagonal observables in
two separate simulations in appropriately rotated trimer bases.

The results for φ even at our lowest accessible tempera-
ture show a smooth dependence both on J3/J� and J�/J� =
0.010 − 0.075 (Fig. 12). In particular, for all values of J�/J�,
the data in Fig. 12 smoothly tend towards zero upon ap-
proaching the isotropic point J3 = J�. We therefore conclude
that a finite-temperature lattice-nematic phase, if it persists,
is limited to lower temperatures than accessible to our QMC
approach.
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