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We study the quantum electrodynamics of Luttinger fermions with quadratic band-crossing dispersion in three
dimensions. The model can be viewed as the low-energy effective theory of a putative U(1) quantum spin liquid
with fermionic Luttinger spinons, or as an extension of the Luttinger-Abrikosov-Beneslavskii (LAB) model that
accounts for transverse gauge fluctuations with finite photon velocity. Aided by a renormalization group analysis
below four dimensions, we elucidate the presence and stability of quantum critical phenomena in this model.
We find that the non-Fermi liquid LAB phase is stable against gauge fluctuations and can thus also be viewed
as a U(1) spin liquid with gapless Luttinger spinons. We discover a multicritical point with Lifshitz scaling that
corresponds to a time-reversal symmetry-breaking quantum phase transition from the LAB state to a chiral spin
liquid with spinon Landau levels and birefringent emergent photons. This multicritical point is characterized by a
finite fermion-photon coupling in the infrared and can be viewed as a fermionic analog of the Rokhsar-Kivelson
point in three-dimensional quantum dimer models.
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I. INTRODUCTION

Quantum field theories of gapless fermions coupled to
dynamical U(1) gauge fields play a key role in contempo-
rary physics. In high-energy physics, relativistic quantum
electrodynamics (QED) describes fundamental light-matter
interactions and historically served as the first example of
unification of quantum mechanics and special relativity. In
condensed matter physics, fermionic gauge theories arise
naturally as low-energy effective descriptions of strongly cor-
related systems [1]. In frustrated magnetism, relativistic QED
in 2 + 1 dimensions serves as an effective description of the
algebraic or Dirac spin liquid, a stable critical state of in-
teracting spins with universal power-law correlations [2–8].
Quantum phase transitions out of the Dirac spin liquid are
described by the critical fixed points of various relativis-
tic QED-Gross-Neveu theories, where gauge interactions are
supplemented with four-fermion contact interactions [9–22].

In condensed matter systems, Lorentz invariance can
emerge as a symmetry of the low-energy continuum field
theory only if the fermion band structure exhibits symmetry-
protected linear (Dirac/Weyl) crossings in the noninteracting
limit. The more generic case is that of an extended Fermi
surface coupled to a fluctuating gauge field, which appears in
the description of U(1) spin liquids with a spinon Fermi sur-
face [23–28] and the composite Fermi liquid in the half-filled
Landau level [29,30]. Such (2 + 1)-dimensional nonrela-
tivistic gauge theories also model possible quantum phase
transitions out of the spinon Fermi surface state or the com-
posite Fermi liquid, e.g., pairing transitions [31].

In this work, we study a situation intermediate between
the aforementioned examples of relativistic fermions and
Fermi surfaces: Luttinger fermions coupled to a U(1) gauge

field in 3 + 1 dimensions. The nonrelativistic Luttinger model
with dynamic critical exponent z = 2 describes the electronic
structure of a spin-orbit coupled material in the vicinity
of a quadratic band crossing (QBC) protected by cubic
point-group symmetries [32]. It has been applied to vari-
ous compounds of recent interest such as inverted band gap
semiconductors (HgTe, α-Sn) [33] and the pyrochlore iridates
A2Ir2O7, where A is a lanthanide element [34]. Owing to its
gauge structure, our model can be viewed as the effective
theory of a putative (3 + 1)-dimensional U(1) spin liquid
with fermionic Luttinger spinons. (Spin liquids with QBC
spinons in 2 + 1 dimensions were proposed in Refs. [35,36]
and studies of U(1) spin liquids in 3 + 1 dimensions have
largely focused on the Coulomb spin liquid [37–40] with
no gapless matter excitations.) To elucidate the low-energy
physics of our gauge theory of Luttinger fermions, we employ
a controlled perturbative renormalization group (RG) analysis
in d = 4 − ε spatial dimensions, and search for fixed points of
the RG flow. Stable fixed points correspond to stable phases
of matter, i.e., spin liquid or broken-symmetry phases, while
unstable fixed points correspond to possible (multi)critical
points associated with phase transitions.

Our main results, which are illustrated in Fig. 1, can be
summarized as follows. Our model initially consists of rota-
tionally invariant, particle-hole symmetric Luttinger fermions
minimally coupled to Maxwell electrodynamics with dynami-
cal electric and magnetic fields E, B. Requiring z = 2 scaling
at tree level, we find that the theory admits an additional
derivative coupling (∇ × B)2 in the gauge sector. In our
RG treatment, the photon velocity squared, c2, emerges as
a relevant tuning parameter for quantum phase transitions.
The only symmetric, perturbatively accessible, stable fixed
point of the theory has c2

∗ = ∞ and is equivalent to the
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FIG. 1. Quantum criticality of rotationally and particle-hole
symmetric Luttinger fermions (blue dispersion) coupled to a dynam-
ical U(1) gauge field (red dispersion). The photon velocity squared c2

is a relevant coupling; it drives a transition between a symmetric LAB
phase with instantaneous photons and a time-reversal symmetry-
breaking (TRSB) phase with a spontaneously generated background
magnetic field, Landau levels for Luttinger fermions, and birefrin-
gent photons. For more than one fermion flavor, the phase boundary
contains a critical line governed by a Lifshitz-QED (LQED) theory
with finite fermion-photon coupling and anisotropic z > 2 scaling for
both fermions and photons.

Luttinger-Abrikosov-Beneslavskii (LAB) fixed point of elec-
trons interacting via the static Coulomb interaction [34,41,42].
Our first main result is thus that, in the rotationally invari-
ant and particle-hole symmetric limits, the LAB fixed point
is stable against transverse gauge fluctuations for arbitrary
number Nf of fermion flavors. In the current context, it cor-
responds to a stable critical spin liquid in 3 + 1 dimensions
with QBC spinons, analogous to the (2 + 1)-dimensional al-
gebraic spin liquid. In addition to the LAB fixed point, for
Nf � 2, we find an unstable fixed point with c2

∗ ∼ O(ε).
Since c2 is a relevant parameter, we interpret it as a Wilson-
Fisher-like multicritical point governing a quantum phase
transition between the LAB phase and a broken-symmetry
phase at c2

∗ = −∞. The latter exhibits a spontaneously gener-
ated, time-reversal symmetry-breaking background magnetic
field 〈B〉 �= 0 orbitally coupled to the Luttinger fermions:
it thus corresponds to a type of chiral spin liquid with
emergent, three-dimensional Landau levels. The gauge sector
exhibits birefringence, i.e., an “ordinary” Lifshitz photon with
isotropic z = 2 dispersion, as well as an “extraordinary” pho-
ton with z = 2 scaling along the background field and z = 1
scaling perpendicular to the field. At criticality, the gauge
sector is again described by a (spatially isotropic) quantum
Lifshitz gauge theory with a nonrelativistic photon dispersion,
ω ∼ kz, which also describes the Rokhsar-Kivelson point of
quantum dimer models in 3 + 1 dimensions [38,39]. To the
difference of the latter, however, the Lifshitz electrodynamics
at our multicritical point is strongly coupled to the fermion
sector, leading to non-Gaussian corrections z − 2 > 0 to the

dynamic critical exponent. While Lorentz-violating gauge
theories have been investigated in a high-energy physics con-
text [43–49], we are not aware that interacting fixed points
of gauged QBC fermions have been discussed previously.
Quantum critical phenomena with Luttinger fermions have
been discussed extensively [50–56], but in the absence of
propagating photons (static limit).

The rest of the paper is organized as follows. Section II
describes a theory of rotationally invariant, particle-hole
symmetric Luttinger fermions coupled to a dynamical U(1)
gauge field. Section III details the Wilsonian RG analysis
of the theory by means of an ε = 4 − d expansion near the
upper-critical dimension d = 4. Section IV discusses the first
important result of our analysis: the theory admits a symmetric
LAB phase that is stable against transverse gauge fluctuations.
Section V focuses on the time-reversal symmetry-breaking
phase, and Sec. VI describes the interacting Lifshitz-QED
(LQED) multicritical point that intervenes between the two
stable phases. In Sec. VII, we summarize our findings and
outline directions for future research.

II. MODEL

In this section, we describe the U(1) gauge theory that
dictates the low-energy behavior of charged, QBC Luttinger
fermions. The imaginary-time Lagrangian is

L = Lψ + LA, (1)

where Lψ describes the fermion sector and LA the gauge
sector. The simplest QBC Hamiltonian in d spatial dimen-
sions can be written down in the form H = −∑d

i, j=1 Gi j pi p j ,
where Gi j transforms as a second-rank symmetric tensor
under rotations. Considering for simplicity a particle-hole
symmetric dispersion E±(p) = ±p2/2m with effective mass
m, the Lagrangian Lψ of the QBC fermions minimally
coupled to a U(1) gauge field can be expressed in terms
of N� = (d − 1)(d + 2)/2 Hermitian gamma matrices �a

obeying the Euclidean Clifford algebra {�a, �b} = 2δab (see
Appendix A 1):

Lψ =
Nf∑

α=1

ψ†
α

(
Dτ + �a

2m
da(−iD)

)
ψα, (2)

where ψα denotes Nf flavors of Luttinger fermions, which are
d�-dimensional spinors. Here d� = 2	N�/2
 where 	·
 is the
floor function. Dμ = ∂μ + ieAμ denotes the gauge-covariant
derivative in d + 1 dimensions, with Aμ = (Aτ , A) the U(1)
gauge field and ∂μ = (∂τ ,∇ ). We define

da(−iD) = −
√

d

2(d − 1)

i j

a DiDj, (3)

where the 
a are the N� real, symmetric, traceless d × d
Gell-Mann matrices, introduced in d = 3 to describe the band
structure of j = 3/2 Luttinger semimetals [33] and later gen-
eralized to arbitrary d [52].

The Lagrangian LA of the gauge sector contains the usual
Maxwell term, but also a derivative coupling for the magnetic
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field B = ∇ × A:

LA = 1
2 E2 + c2

2
B2 + v2

2
(∇ × B)2, (4)

where E = ∂τ A − ∇Aτ denotes the electric field. Equiva-
lently, introducing the electromagnetic field strength tensor
Fμν = ∂μAν − ∂νAμ, we obtain

LA = 1
2 F 2

τ i + c2

4
F 2

i j + v2

4
Fi j (−∇2)Fi j, (5)

which is suitable for generalization to d spatial dimensions. To
understand why the derivative term is necessary, we consider
Lifshitz scaling [τ ] = −z, [xi] = −1 with dynamic critical
exponent z. The tree-level scaling dimensions of the vari-
ous fields and couplings of the theory follow from power
counting:

[ψα] = d/2, [Aτ ] = (d + z − 2)/2, [Ai] = (d − z)/2,

[e2] = 2 + z − d, [m−1] = z − 2, [c2] = 2z − 2,

[v2] = 2z − 4. (6)

In the spatial dimension of interest d = 3 with z = 2, the
theory is strongly coupled with relevant gauge coupling [e2] =
1 as in the original LAB analysis [34,41,42]. The theory
becomes perturbatively renormalizable in d = 4 − ε with ε

treated as a small parameter. However, the photon stiffness
v2 is also marginal for z = 2 and must be included in the
analysis; this coupling did not feature in the static theory
without transverse gauge fields. Likewise, the photon velocity
squared c2 becomes a relevant coupling. The photon couplings
c2 and v2 can be treated nonperturbatively at the level of the
propagator (see Appendix A 2).

In principle, the theory admits another relevant coupling in
d < 4: the Zeeman coupling,

L′ = − g

2

Nf∑
α=1

ψ†
α�i jψαFi j, (7)

where

�i j = −� ji = 1
4 [
a,
b]i j�ab, (8)

is a generator of SO(d ) spatial rotations in the d�-dimensional
spinor representation (see Appendix A 3). Here we define
the SO(N� ) generators �ab = 1

2i [�
a, �b]. Equation (7) can

be viewed as the spatial part of the Lorentz-invariant Pauli
coupling in nonminimal extensions of QED [57,58]. In d = 3,
one can check using explicit representations of the 
a and
�a matrices [33,52] that �i j = εi jkJk where Jx, Jy, Jz are spin-
3/2 matrices; thus Eq. (7) reduces to the usual Zeeman term
−gψ†Jψ · B. Note that B is not a background magnetic field
but a fluctuating field; L′ is thus an interaction term, which
additionally preserves time-reversal symmetry. The Zeeman
coupling has dimension [g] = (3z − d − 2)/2 = ε/2, which
is relevant for d < 4.

However, the Zeeman coupling can be excluded if we
impose invariance of the Lagrangian under the following
particle-hole transformation [54]:

ψα → (ψ†
α )T , Aμ → −Aμ, �a → −�a∗. (9)

(a) (b)

FIG. 2. One-loop 1PI diagrams contributing to (a) the fermion
self-energy and (b) the photon self-energy.

One can verify that under the substitution (9), the fermion
Lagrangian (2) remains invariant (see Appendix A 4). The
photon Lagrangian (4) is quadratic in Aμ and thus also
obviously invariant. However, the Zeeman term (7) is odd
under this transformation. The transformation also prohibits
a quadratic kinetic term ∝ ψ†

α (−D2)ψα proportional to the
identity in spin space. The transformation (9) is not a stan-
dard symmetry operation, because it involves the replacement
�a → �̃a where �̃a = −�a∗ forms an inequivalent represen-
tation of the Clifford algebra. Such a representation cannot
be obtained via conjugation, i.e., there is no unitary charge
conjugation matrix C such that C�aC−1 = −�a∗ holds for all
a = 1, . . . , 5. However, we have verified that at one-loop or-
der, neither the spin-independent kinetic term nor the Zeeman
term are generated if they are absent in the bare Lagrangian.
(Conversely, the spin-independent kinetic term is generated
to quadratic order in the Zeeman coupling.) At least at the
one-loop level, the set of couplings e2, m−1, c2, and v2 is thus
closed under RG.

III. RG ANALYSIS

To elucidate the infrared fate of the theory, we employ the
standard Wilsonian or momentum-shell RG scheme. We inte-
grate out the high-energy modes of the action S = ∫

dτdd x L
near the upper-critical dimension d = 4. Due to the space-
time anisotropy of the theory, we integrate over all frequencies
−∞ < ω < ∞ while spatial momenta are integrated only
over an infinitesimal shell 
/b < |p| < 
 [59]. Here 
 is an
ultraviolet (UV) cutoff and b = 1 + d is a scale parameter
where d is a positive infinitesimal. The effective Lagrangian
after mode elimination is

L< =
Nf∑

α=1

ψ<†
α

(
Z1Dτ + Z2

�a

2m
da(−iD)

)
ψ<

α

+ Z3

2
(F<

τ i )2 + Z4c2
2

4
(F<

i j )2 + Z5v
2

4
F<

i j (−∇2)F<
i j ,

(10)

where the Zi are renormalization constants, related to anoma-
lous dimensions γi via Zi − 1 = γi ln b ≈ γid, and the slow
fields with momenta |p| < 
/b are labeled with the super-
script <. Gauge invariance implies that the gauge charge e
does not undergo renormalizations independent of Z1 and
Z2 (Ward identity). We have also introduced a factor 
2 in
front of the B2 term to redefine the relevant coupling c2 as
dimensionless.

The anomalous dimensions γi are computed diagrammati-
cally at one-loop order (Fig. 2). Only one-particle irreducible
(1PI) diagrams contribute. Fermion propagators are denoted
by straight lines, and photon propagators by wavy lines.
The fermion-photon QED vertex is proportional to the gauge
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charge e. The quadratic derivative coupling in Eq. (3) involves
a quartic “seagull” vertex proportional to e2 (see Fig. 8 in
Appendix B); due to a Ward identity this vertex does not
contribute independent renormalizations and is not drawn ex-
plicitly. The γ1, γ2 anomalous dimensions arise from fermion
self-energy corrections [Fig. 2(a)], and γ3, γ4, γ5, from pho-
ton self-energy corrections [Fig. 2(b)]. As mentioned above,
renormalizations of the QED vertex follow from gauge in-
variance and need not be computed separately. Details of the
diagrammatic computations are given in Appendix B.

In the second step of the Wilsonian renormalization proce-
dure, the space and time coordinates are rescaled according to
x′

i = b−1xi and τ ′ = b−zτ , respectively, to restore the original
UV cutoff 
. Finally, the effective Lagrangian is brought to
its original form by rescaling the fields,

ψ ′
α = bd/2Z1/2

1 ψ<
α , A′

τ = b(d+z−2)/2Z1/2
3 A<

τ ,

A′
i = b(d−z)/2Z1/2

3 A<
i , (11)

and the couplings e2, m−1, c2, and v2. Taking derivatives of
the renormalized couplings with respect to the RG scale,
we obtain RG flow equations for those couplings. The RG
equation for the inverse fermion band mass m−1 is

dm−1

d
= (z − 2 − γ1 + γ2)m−1. (12)

By introducing a modified dynamic critical exponent:

z = 2 + γ1 − γ2, (13)

the flow of m−1 can be arrested. By appropriate rescaling of
the fields and the couplings, the band parameter m−1 can be
scaled away from the action altogether.

Following the rescaling, we introduce a set of redefined
parameters: the charge coupling squared α = me2/(8π2), the
squared photon velocity K = m2c2, and the photon stiffness
ρ = m2v2. The respective tree-level scaling dimensions of
these redefined couplings are [α] = 4 − d = ε, [K] = 2, and
[ρ] = 0. As mentioned before, the QED interaction can be
treated perturbatively in a controlled manner in the ε ex-
pansion, while the photon velocity and stiffness terms are
treated nonperturbatively at the propagator level. The RG flow
equations for these three couplings read:

dα

d
= (ε + γ1 − γ2 − γ3)α,

dK

d
= (2 + 2γ1 − 2γ2 − γ3 + γ4)K,

dρ

d
= (2γ1 − 2γ2 − γ3 + γ5)ρ. (14)

The full expressions of the anomalous dimensions γi are
cumbersome and are provided in Appendix B. They are per-
turbative in the charge coupling but nonperturbative in the
photon velocity and stiffness. To maintain perturbative con-
trol, we look for RG fixed points, i.e., common zeros of the
four equations (14), with α∗ ∼ O(ε).

Our strategy for identifying fixed points rests on the ob-
servation that the flow equations (14) are similar in structure
to the well-known Wilson-Fisher RG equations of φ4 theory
[60]. The photon velocity squared K is a relevant coupling

that plays a role analogous to the scalar mass squared r in
that theory. Its tree-level dimension is shifted at one-loop
order by perturbative corrections of order ε; for sufficiently
large initial values of K , the RG equations undoubtedly admit
trajectories where K flows to +∞ or −∞ in the infrared
limit  → ∞. In Wilson-Fisher theory, r → −∞ corresponds
to the broken (ferromagnetic) phase while r → +∞ corre-
sponds to the symmetric (paramagnetic) phase of φ4 theory.
While a fixed point with K → −∞ here is also identified as a
broken-symmetry phase, as will be argued in Sec. V, a fixed
point with K → +∞ corresponds to instantaneous photon
propagation and reduces in fact to the (symmetric) LAB fixed
point, as discussed in detail in the next section (Sec. IV).

In φ4 theory, an unstable fixed point with r∗ ∼ O(ε) sep-
arates the two phases with r → ±∞; it is the celebrated
Wilson-Fisher fixed point, which corresponds to a continuous
phase transition between the two phases. This fixed point
exists in the ε expansion because the one-loop correction
term in the flow equation for r is linear in the φ4 interaction
strength u [60]:

dr

d
= 2r +

(
n + 2

6

)
u + . . . , (15)

for an n-component field, where . . . denotes higher-order,
O(ε2) terms. Since u∗ ∼ O(ε) at the Wilson-Fisher fixed
point, a solution r∗ = −(n + 2)u∗/12 ∼ O(ε) is possible. Di-
agrammatically, the term proportional to u on the right-hand
side of Eq. (15) arises because a scalar mass can be gener-
ated from a φ4 interaction via a tadpole diagram. Likewise
here, as will be seen in Sec. VI, a photon velocity term can
be generated perturbatively from the QED interaction via a
polarization bubble. For small K , the RG equation for K has
the same structure as Eq. (15), and an unstable fixed point
with K∗ ∼ O(ε) becomes possible. This fixed point inter-
venes between the K → ±∞ fixed points and, similarly to
the Wilson-Fisher fixed point of φ4 theory, corresponds to a
(multi)critical point of the theory, associated with a symmetry-
breaking transition out of the LAB phase.

IV. LAB PHASE AND ITS STABILITY

Based on the above reasoning, we first investigate the pos-
sibility of a fixed point with infinite photon velocity. Taking
the limit K → +∞ in Eq. (14), we arrive at the following
reduced flow equations:

dα

d
=
(

ε − 6Nf + 1

3
α

)
α,

dρ

d
= − (5Nf + 18(3Nf + 1)ρ)

27
α. (16)

Besides the noninteracting fixed point α∗ = 0, which is un-
stable, the only other fixed point of these RG equations is
given by

α∗ = 3ε

6Nf + 1
, ρ∗ = − 5Nf

54Nf + 18
, (17)

with the inverse photon velocity squared 1/K∗ = 0. This
fixed point corresponds to the LAB fixed point [34,41,42,61].
Although ρ∗ < 0, since K∗ = ∞, the Lishitz term can be

035140-4



QUANTUM-CRITICAL ELECTRODYNAMICS OF LUTTINGER … PHYSICAL REVIEW B 106, 035140 (2022)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

α

1/
K

(a)

− 0.2 − 0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

ρ

1/
K

(b)

0.0 0.2 0.4 0.6 0.8 1.0

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

α/

ρ

(c)

FIG. 3. RG flows of the gauged Luttinger fermion theory with
Nf = 1 near the LAB fixed point (red dot) in (a) the α − K−1, (b) the
ρ − K−1, and (c) the α − ρ planes. For (a) and (b), we set ε = 1.
Flows are qualitatively similar for other values of Nf > 1.

neglected in the photon Lagrangian (4), and the fixed-point
action is physical. Evaluating Eq. (13) at the fixed point, we
find it exhibits Lifshitz scaling with dynamic critical exponent
z = 2 − ε/(6Nf + 1) [61].

The stability of the fixed point is given by the Hessian
matrix Mi j = ∂βi/∂λ j , where λi ∈ {α, 1/K, ρ} are the three
independent couplings. At the LAB fixed point (17), the ma-
trix is given by

M =

⎛
⎜⎜⎝

−ε 0 0

0 −2 +
(

6Nf +2
6Nf +1

)
ε 0

0 5Nf
√

K∗ε
32(18N2

f +9Nf +1)
−
(

6Nf +2
6Nf +1

)
ε

⎞
⎟⎟⎠, (18)

to O(ε), with its eigenvalues:

−ε, −2 +
(

6Nf +2
6Nf +1

)
ε, −

(
6Nf +2
6Nf +1

)
ε, (19)

which are all negative, demonstrating stability of the fixed
point for all Nf . Although the stability matrix (18) contains a
diverging entry in the fixed-point limit K∗ � 1, this does not
affect the eigenvalues (19). We have also verified by numerical
integration of the full RG equations (14) that the flow in all
directions is attractive towards the LAB fixed point in its
vicinity (Fig. 3).

Stability of the LAB fixed point with respect to the pho-
ton velocity direction with a strongly irrelevant eigenvalue
−2 + O(ε) is expected at such a strong-coupling fixed point.
However, irrelevance with respect to the other couplings is not
a priori obvious but results from a delicate balance between

tree-level dimensions and quantum corrections. Stability with
respect to the charge coupling follows from stability of the
LAB non-Fermi liquid in the static Coulomb limit [34,41,42],
but stability with respect to the ρ direction, which is marginal
at tree level, follows from the particular sign of the one-loop
contribution to dρ/d in Eq. (16).

Our computation shows that the LAB fixed point is
not only a stable phase of electrons interacting via the
static Coulomb interaction, but indeed a stable phase of a
full-fledged U(1) gauge theory of Luttinger fermions and
propagating transverse photons. In the rotationally invariant
approximation, this fixed point can be understood as a stable
(3 + 1)-dimensional critical spin liquid with QBC spinons.

V. BROKEN-SYMMETRY PHASE

We now discuss the other strong-coupling fixed point
with K → −∞. In φ4 theory, the r → −∞ limit is inter-
preted as a ferromagnetic phase. Indeed, for r < 0, the global
minimum of the interaction potential V (φ) = −|r|

2 φ2 + u
4!φ

4,
with u > 0, is at φ0 = √

6|r|/u. The symmetric vacuum
〈φ〉 = 0 becomes unstable, and the ground state develops
a symmetry-breaking expectation value 〈φ〉 = φ0 �= 0. Like-
wise here, we can elucidate the physical meaning of the
K → −∞ fixed point by analyzing the photon Lagrangian
(4) for c2 = K/m2 < 0. When c2 < 0, a paramagnetic ground
state with 〈B〉 = 0 becomes unstable: the photon velocity
becomes imaginary, which signals that one is expanding
about the wrong vacuum (unstable maximum instead of sta-
ble minimum). This is analogous to how imaginary phonon
frequencies (ω2

q < 0) in a first-principles calculation signal
a dynamical instability of the crystal structure. To determine
the correct vacuum in this regime, we search for equilibrium
ground states such that 〈E〉 = 0. To stabilize the free energy,
we must add higher-order (dangerously irrelevant) terms in
the Landau expansion,

LA = −|c2|
2

B2 + v2

2
(∇ × B)2 + w

4!
(B2)2 + . . . , (20)

with w > 0. Restricting ourselves to uniform ground states,
the second term and other possible terms with spatial deriva-
tives can be ignored. The free energy is minimized by
the fluctuating magnetic field acquiring a nonzero expecta-
tion value 〈B〉 = B0ê in some direction ê, with magnitude
B0 =

√
6|c2|/w. This problem was analyzed previously in

the context of quantum dimer models/U(1) spin liquids
in 3 + 1 dimensions, where this broken “magnetic” phase
adjacent to the c2 = 0 Rokhsar-Kivelson critical point corre-
sponds microscopically to a valence bond crystal [38,39]. The
Lagrangian (20) is also closely related to a Lagrangian used
previously to describe an isotropic-to-nematic transition in the
fractional quantum Hall effect [62].

In the present context, the generation of a vacuum mag-
netic field 〈B〉 �= 0 signals the spontaneous breakdown of
rotational and time-reversal symmetries in the ground state.
To the difference of the quantum dimer problem, here this
background magnetic field is additionally perceived by the
Luttinger fermions and leads to the formation of Landau levels
[63]. By rotational invariance of the zero-field problem, the
Landau level spectrum is independent of the field direction.
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FIG. 4. Landau levels in the fermion spectrum of the time-
reversal symmetry-breaking phase with spontaneously generated
magnetic field 〈B〉 = B0 ẑ, where ωc = eB0/m is the cyclotron fre-
quency, kz is the fermion momentum in the field direction, and
B = √

1/eB0 is the magnetic length.

In Fig. 4, we plot the Landau level spectrum as a function of
the fermion momentum kz along the field direction (ê = ẑ),
which is a good quantum number. The spectrum exhibits
unusual features like level crossings, unequal level spacings,
and unequal band curvatures, which have been discussed
previously [63].

In addition to the fermion spectrum, we may ask how the
photon spectrum is affected by the background magnetic field.
To derive the photon spectrum in the broken phase, we expand
the electromagnetic Lagrangian (20) to quadratic order in the
fluctuations e ≡ E − 〈E〉, b ≡ B − 〈B〉:

LA = 1
2 e2 + 1

2 c̃2b2
‖ + v2

2
(∇ × b)2 + O(b3), (21)

where we have decomposed the magnetic fluctuation about
〈B〉 = B0ẑ into longitudinal and transverse parts,

b = b‖ẑ + b⊥, (22)

with b⊥ · ẑ = 0, and we define c̃ =
√

2|c2|. As expected for
a broken O(3) symmetry, the coefficient of the “mass term”
∝ b2

⊥ for transverse fluctuations vanishes, while it is nonzero
and renormalized by a factor of two for longitudinal fluctu-
ations. However, the mode spectrum itself remains massless
by gauge invariance. Passing to momentum space Q ≡ (ω, q),
the quadratic action associated with Eq. (21) can be written in
the following suggestive form:

SA = 1

2

∫
d4Q

(2π )4
[δi jei(−Q)e j (Q) + μ−1

i j (q)bi(−Q)b j (Q)],

(23)

which describes a linear dispersive medium with isotropic per-
mittivity tensor εi j = δi j and anisotropic permeability tensor:

μi j (q) =
⎛
⎝μ⊥(q)

μ⊥(q)
μ‖(q)

⎞
⎠, (24)

(a) (b)

FIG. 5. (a) Isofrequency surfaces of the ordinary branch (purple)
and extraordinary branch (green) of the emergent photon dispersion
in the broken-symmetry phase; (b) extraordinary wave dispersion
in directions parallel (red) and perpendicular (blue) to the sponta-
neously generated magnetic field.

with

μ⊥(q) = 1

v2q2
, μ‖(q) = 1

c̃2 + v2q2
. (25)

The photon dispersion can then be extracted using classical
methods [64]. We use Maxwell’s equations in momentum
space and in the absence of sources,

q × e = ωb, q × h = −ωd, (26)

denoting the usual macroscopic fields e, b, d, h by lowercase
letters. Using additionally the constitutive relations di = ei

and bi = μi jh j , we find:[
q2δi j − qiq j − ω2μi j (q)

]
h j (Q) = 0, (27)

which admits nontrivial solutions only if the determinant
of the matrix on the left-hand side vanishes. Evaluating
this determinant, we find that it factorizes into two possible
conditions:

ω2 − q2

μ⊥(q)
= 0, ω2 − q2

x + q2
y

μ‖(q)
− q2

z

μ⊥(q)
= 0, (28)

which are the Fresnel equations for a medium with uniaxial
magnetic anisotropy [64]. Substituting (25), we find two dis-
tinct modes:

ωo(q) = ±vq2, (29)

ωe(q) = ±
√

c̃2q2
⊥ + v2(q2)2, (30)

with q2
⊥ = q2

x + q2
y , and ± denotes the particle/antiparticle

branches of the dispersion. In Fig. 5(a), we display isofre-
quency surfaces for both modes. The broken phase thus
exhibits emergent optical birefringence with an isotropic or-
dinary wave (29) and anisotropic extraordinary wave (30).
By contrast with conventional birefringence however, here
the ordinary wave is a z = 2 mode, while the extraordinary
wave has z = 2 scaling in the longitudinal direction but z = 1
scaling in the transverse direction [Fig. 5(b)]:

ωe(0, 0, q‖) = ±vq2
‖, ωe(qx, qy, 0) = ±c̃q⊥, (31)

in the long-wavelength limit.
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To summarize, the broken-symmetry phase (r → −∞
fixed point) corresponds to an unusual type of itinerant fer-
romagnet where gauge fluctuations lead to the spontaneous
generation of a background magnetic field, which subse-
quently induces orbital magnetization for the fermions and
birefringence of emergent photons. In the spin liquid inter-
pretation, this can be viewed as a type of chiral spin liquid in
3 + 1 dimensions.

VI. LIFSHITZ-QED MULTICRITICAL POINT

Having discussed the two stable phases of the coupled
fermion-photon system, the symmetric LAB phase (Sec. IV)
and the ferromagnetic broken-symmetry phase (Sec. V),
we now turn to possible unstable fixed points describing a
quantum phase transition between the two. As the transition is
reached by tuning the photon velocity squared K through zero,
we proceed as in φ4 theory [60] and seek a Wilson-Fisher-type
unstable fixed point with K∗ ∼ O(ε), that is perturbatively
accessible within the ε expansion. As explained at the end
of Sec. III, this scenario is possible if the relevant coupling
receives O(ε) corrections from interactions at the fixed point,
i.e., if the RG beta function for K is similar in structure to
Eq. (15). Assuming K ∼ O(ε), we find indeed that dK/d in
Eq. (14) becomes

dK

d
= 2K + 13Nf α

36
, (32)

to O(ε), which is precisely the same structure as Eq. (15). The
remaining RG equations in this limit are:

dα

d
= εα − [2Nf + f1(ρ)]α2, (33)

dρ

d
= f2(ρ, Nf )α, (34)

to leading order in ε. The functions f1 and f2 are given in
Appendix C. From Eq. (32), the Wilson-Fisher scenario is
realized by the fixed-point value:

K∗ = −13Nf α∗
72

, (35)

which is O(ε) if the fixed-point interaction α∗ is. Note that,
like in φ4 theory where r∗ < 0, here also K∗ < 0, expressing
the fact that the position of the critical point is shifted from its
bare value (K = 0) by one-loop corrections.

To obtain a physical fixed point, we search for common
zeros (α∗, ρ∗) of the beta functions (33-34) with both fixed-
point couplings positive. Furthermore, α∗ is O(ε) while ρ∗ ∼
O(1). For Nf = 1, we do not find any such fixed points except
the trivial Gaussian fixed point α∗ = K∗ = 0 and ρ∗ arbitrary,
which exists for arbitrary Nf . This describes a decoupled
system of free Luttinger fermions and free Lifshitz photons
with z = 2, which is RG-unstable in all directions.

For Nf � 2, we find an unstable fixed point with finite
photon stiffness ρ∗ > 0 and finite gauge coupling α∗ > 0:

α∗ = ε

2Nf + f1(ρ∗)
, f2(ρ∗, Nf ) = 0, (36)

where the value of ρ∗ is given by the solution of the
second equation. That equation is highly nonlinear, since ρ is

FIG. 6. RG flows of the gauged Luttinger fermion theory in the
vicinity of the Lifshitz-QED (LQED) multicritical point α∗ �= 0,
ρ∗ �= 0 (red dot) for the threshold fermion flavor number Nf = 2,
in the α − ρ plane. The fixed point is stable along the α direction but
unstable along the remaining directions. RG flows are qualitatively
similar for other values of Nf � 2.

not a perturbative coupling, and must be solved numerically
for each Nf (see Appendix C). Close to this Lifshitz-QED
(LQED) fixed point, the RG flow is attractive along the α

direction but repulsive along the ρ direction (Fig. 6), as well
as the K direction. In Appendix C, we further investigate the
stability of the LQED fixed point by computing its stability
matrix. This multicritical point controls a special critical line
on a two-dimensional first-order phase boundary between the
LAB phase and the broken-symmetry phase where the tran-
sition becomes continuous (Fig. 1). The emergent Lifshitz
quantum electrodynamics at the fixed point is described by
the following critical action:

L∗
LQED =

Nf∑
α=1

ψ†
α

(
Dτ + �a

2m
da(−iD)

)
ψα

+ 1
2 E2 + v2

2
(∇ × B)2, (37)

i.e., Luttinger fermions minimally coupled to Lifshitz pho-
tons. In the infrared, the dynamic critical exponent z > 2 of
the coupled system remains anisotropic, but deviates strongly
from both its tree-level value z = 2 and its value at the LAB
fixed point (Fig. 7).

VII. SUMMARY AND OUTLOOK

In summary, we have investigated the infrared fate of a
theory of QBC Luttinger fermions coupled to a dynamical
U(1) gauge field in 3 + 1 dimensions. Modulo the simplify-
ing assumptions of rotational invariance and a particle-hole
symmetric dispersion, RG arguments led us to augment the
standard Maxwell terms in the gauge-field Lagrangian by a
derivative coupling for the fluctuating magnetic field B. Car-
rying out an RG analysis near the upper-critical dimension,
we discovered that the gauge theory assumes the structure of
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FIG. 7. Departure of the dynamic critical exponent z from
its Gaussian-limit value of z = 2 for the LAB (all Nf ) and
LQED (Nf � 2) fixed points, as a function of number of fermion
flavors Nf .

a Landau-Ginzburg-Wilson theory for a peculiar type of fer-
romagnetic quantum phase transition whose order parameter
is the gauge-invariant magnetic field B.

The tuning parameter for the transition is the photon veloc-
ity squared c2. The symmetric phase with uncondensed order
parameter 〈B〉 = 0 was found to coincide with the non-Fermi
liquid LAB phase studied previously. Its stability with respect
to transverse gauge fluctuations, elucidated here, indicates it
can be viewed as a novel critical spin liquid phase in 3 + 1
dimensions, analogous in some respects to the algebraic spin
liquid in 2 + 1 dimensions. In particular, such a QBC spin
liquid in 3 + 1 dimensions has the advantage over its (2 + 1)-
dimensional counterpart [35] that monopole condensation is
a strong-coupling phenomenon in 3 + 1 dimensions, while
instanton proliferation is a weak-coupling phenomenon in
2 + 1 dimensions [65]. Extending the present work to com-
pact U(1) gauge fields, a QBC spin liquid is thus expected to
be inherently more stable in 3 + 1 dimensions than in 2 + 1
dimensions.

Turning to the broken phase with 〈B〉 �= 0, it corresponds
to a time-reversal symmetry-breaking spin liquid with spinon
Landau levels and birefringent emergent photons. Adapting
the Wilson-Fisher paradigm of φ4 theory to the current con-
text, we found for Nf � 2 a multicritical point intervening
between the two phases at a critical value c2

∗ ∼ O(ε) of the
photon velocity squared. This multicritical point, with z �= 2
anisotropic scaling for both fermions and photons, represents
a novel example of strongly coupled Lifshitz gauge theory
[66,67].

Several questions remain open to further research. Per-
turbations that break particle-hole symmetry or continuous
rotational invariance in the QBC dispersion [34,54,56] signif-
icantly enlarge the dimension of the coupling-constant space
and may further destabilize the fixed points studied here.
The detailed phenomenology of the broken phase should be
further investigated, in particular, the effect of interactions
between low-energy Landau-level fermions and anisotropic
photons. It would also be desirable to complement the contin-
uum field-theoretic analysis presented here with microscopic

lattice model realizations, for example starting with a micro-
scopic spin model in three spatial dimensions and exploring
QBC fermionic parton ansätze along the lines of Refs. [35,36].
Even at the level of continuum field theories, 1/Nf expansions
[53] and 2 + ε expansions [55] may complement the 4 − ε

expansion utilized here and shed further light on the nature of
the unusual phase transition we have discussed. Additionally,
if the scenario studied in Refs. [51,52] remains operative in
the presence of transverse gauge fluctuations, it would predict
the destabilization of the LAB phase towards an interaction-
induced (3 + 1)-dimensional strong topological insulator [68]
with nematic order. Given the underlying U(1) gauge struc-
ture, this would provide a natural route towards realizing the
Pesin-Balents topological Mott insulator [69], an example of
fractionalized topological insulator [70].
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APPENDIX A: ACTION OF GAUGED LUTTINGER
FERMIONS

This section details the minimal theory of charged
Luttinger fermions in d + 1 space-time dimensions. The one-
loop renormalization of the interactions in this theory leads to
the results discussed in the main text.

1. Fermion sector

We consider a U(1) gauge theory coupled to fermions with
cubic-symmetry protected quadratic band crossing (QBC). In
the rotation and particle-hole symmetric limits, using N� =
(d + 2)(d − 1)/2 Euclidean Clifford matrices {�a} of dimen-
sions 2	N�/2
, the fermionic Lagrangian of QBC fermions can
be expressed in d-dimensional space as [33,52]

Lψ = ψ†

[
∂τ + �a

2m
da(−i∇ )

]
ψ,

da(−i∇ ) = −
√

d

2(d − 1)

i j

a ∂i∂ j, {�a, �b} = 2δab,

(A1)

where {
a} are the N� real, symmetric d × d Gell-Mann ma-
trices [52]. In three-dimensional momentum space, the band
dispersion is explicitly given by the functions,

d1(k) =
√

3

2

(
k2

x − k2
y

)
, d2(k) =

√
3kxky, d3(k) =

√
3kxkz,

d4(k) =
√

3kykz, d5(k) = 1
2

(
2k2

z − k2
x − k2

y

)
. (A2)
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In our notation, the greek indices span space-time and the
roman indices span space. Due to the Euclidean Clifford
algebra, �ab = [�a, �b]/(2i) are the N� (N� − 1)/2 genera-
tors of SO(N� ) rotations. Certain useful identities of the �

matrices that we use are as follows:

�b�a�b = (2 − N� )�a,

�c�a�b�c = (N� − 4)�a�b + 4δab,

�d�a�b�c�d = −2�c�b�a − (N� − 4)�a�b�c. (A3)

The symmetric Gell-Mann matrices obey the identities [52]


i j
a 
kl

a = (δikδ jl + δilδ jk ) − 2
d δi jδkl , tr(
a
b) = 2δab.

(A4)

Using these identities it can be shown that

da(p)da(q) = d

d − 1

(
(p · q)2 − 1

d
p2q2

)

⇒ da(q)da(q) = q4. (A5)

The global U(1) symmetry of the action Eq. (A1) is mani-
fest with the global transformations ψ �→ eieαψ . We elevate
the global U(1) symmetry of the model to a local U(1)
gauge symmetry by introducing vector gauge photons Aμ

that are minimally coupled with the action. The inclusion
of the minimal coupling is achieved by replacing all the
normal derivatives of the action with covariant derivatives
Dμ = ∂μ + ieAμ. With the covariant derivatives, the action
reads

Lψ = ψ†

(
Dτ −

√
d

2(d − 1)

i j

a �a DiDj

2m

)
ψ, (A6)

with the rule that under the local U(1) transformations both
the fermionic fields and the vector gauge fields transform
simultaneously with the formula,

ψ (X ) �→ eieϕ(X )ψ (X ), Aμ(X ) �→ Aμ(X ) − ∂μϕ(X ), (A7)

where X = (τ, x) denotes the space-time coordinate. Simi-
larly for the frequency-momentum space we use the notation
K = (ω, k). It is straightforward to check that under the gauge
transformations, Eq. (A7), the action of the covariant deriva-
tive changes as

Dμψ (X ) �→ (∂μ + ieAμ(X ) − ie∂μϕ(X ))eieϕ(X )ψ (X )

= eieϕ(X )Dμψ (X ), (A8)

which in turn ensures that the minimally coupled action (A6)
remains invariant under the gauge transformation. The corre-
sponding global currents are given by

j0 = iψ†ψ,

ji = i

√
d

2(d − 1)



i j
a

2m
[ψ†�aDjψ − (Djψ )†�aψ], (A9)

with the gauge-invariant, current conservation condition,
Dμ jμ = 0 dictated by the symmetry.

2. Photon sector

With the fermionic sector so defined we need a gauge-
invariant description of the gauge field action. We are
interested in a U(1) gauge theory in 3 + 1 dimensions.
The gauge-invariant Euclidean Maxwell action is given
by LMaxwell = (1/4)F 2

μν + e jμAμ, with the matter current
jμ defined above [Eq. (A9)]. In our theory, space and
time have anisotropic Lifshitz scaling in the fermionic sec-
tor. Anticipating an anisotropic renormalization, the photon
Lagrangian is most compactly written in the Euclidean
space-time as

LU (1) = 1
2 Fτ iFτ i + 1

4 Fi j (c
2 − v2∇2)Fi j + e jμAμ, (A10)

with Fμν = ∂μAν − ∂νAμ. Here, c is the photon velocity,
and the additional ∝ v2 term is kept as it is marginal
from power counting in the Lifshitz scaling limit. As a
consequence of gauge invariance, the inverse photon prop-
agator obtained from this action is singular. To determine
the photon propagator, one needs to work in a fixed gauge
suitable to the inherent space-time asymmetry. We use a
nonlocal gauge that has been proposed in a similar con-
text [45], which leads to a simple photon Green’s function.
The gauge-fixing prescription for Maxwell electrodynamics
[71] can be easily adapted to this context, as we now dis-
cuss. A generic gauge-fixing function for the photons is
given by

G(Aμ, ω) = ∂τ Aτ (X ) + L∂iAi(X ) − ω(X ) = 0, (A11)

where ω(X ) is an arbitrary function and a differential operator
L = c2 − v2∇2 is introduced. In the path integral, we must
only sum over the unique gauge configurations dictated by the
gauge orbit ω(X ). Various different gauge field configurations
which are related to each other through reparametrization
must be counted once. The original functional integral is
given by

ZU (1)[ j] =
∫

DAμ e− ∫
X LU (1) (Aμ, jμ ), (A12)

where
∫

X = ∫
dτdd x is a short-hand notation for the d + 1

dimensional space-time integral. We wish to integrate over
gauge field configurations that satisfy the gauge fixing con-
dition G(Aμ, ω) = 0. Therefore we need to sum over all
gauge field reparametrizations Aμ �→ Aα

μ = Aμ + ∂μα, that
leave the functional integral invariant but also obey the gauge
fixing condition. The removal of the singularity in the gauge
field propagator and fixing of the gauge choice can be si-
multaneously carried out by the Faddeev-Popov prescription
[72]. In the first step, a coordinate-transformed delta function
identity,

1 =
∫

Dα det

(
δG(Aα

μ, ω)

δα

)
δ
(
G(Aα

μ, ω)
)
, (A13)

is used to modify the partition function of the gauge fields by
a resolution of identity,

ZU (1)[ j] =
∫

Dα

∫
DAμ e− ∫

x LU (1) (Aμ, jμ )

× det

(
δG(Aα

μ, ω)

δα

)
δ
(
G(Aα

μ, ω)
)
. (A14)
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FIG. 8. Feynman rules for the U(1) gauge theory of Luttinger QBC fermions. Solid line: fermion propagator Gψ ; wavy line: photon
propagator GA; three-point vertex: QED vertex Cμ ∝ e; four-point vertex: QED seagull vertex V μν ∝ e2.

With δG(Aα
μ(X ), ω)/δα(Y ) = (∂2

τ + L∇2)δ(d+1)(X − Y ), the
determinant in this expression factors out. The nonlocal gauge
choice adopted in Ref. [45] is carried out with a gauge fixing
function,

G(Aμ, ϕ) = ∂τ Aτ + L∂iAi − L1/2ϕ, (A15)

where we sum over all functions ϕ(X ) with a Gaussian weight
centered around ϕ(X ) = 0. Finally, we make a gauge trans-
formation Aμ �→ Aμ + ∂μα in the functional integral over the
gauge fields to obtain,

ZU (1)[ j] =
∫
Dϕ e− ∫

X
ϕ(X )2

2ξ

∫
Dα det

(
∂2
τ + L∇2

)
×
∫

DAα
μ e− ∫

x LU (1) (Aα
μ, jμ )δ

(
∂τ Aα

τ + L∂iA
α
i − L1/2ϕ

)
= det

(
∂2
τ + L∇2

) ∫
Dα

×
∫

DAα
μ e− ∫

X LU (1) (Aα
μ, jμ )e− ∫

X

(
L−1/2∂τ Aα

τ +L1/2∂iAα
i

)2

2ξ .

(A16)

It is clear in the second line that α has become a dummy
parameter and naturally the functional integral over α factors
out. The procedure achieves its goal of summing over unique
gauge field configurations, and with the Feynman-’t Hooft
gauge choice ξ = 1, further simplifies the gauge fixed action,

LA = 1
2 Fτ iFτ i + 1

4 Fi jLFi j + 1
2 (L−1/2∂τ Aτ + L1/2∂iAi )

2,

(A17)

which is no longer singular and yields a simple, diagonal
photon propagator [45]:

〈Aμ(−K )Aν (K )〉 = δμτ δντ

L(k)

ω2 + k2L(k)

+ δμiδν j
δi j

ω2 + k2L(k)
, (A18)

where L(k) = c2 + v2k2 (see also Fig. 8).

3. Zeeman coupling

In d = 3, the first-quantized Zeeman Hamiltonian for spin-
3/2 fermions can be written as

HZ = −gB · J = − g
2�i jFi j, (A19)

where the spin-3/2 matrices J = (Jx, Jy, Jz ) are generators of
SO(3) acting on 4-component spinors. Those generators can
also be packaged as the antisymmetric rank-2 tensor �i j =
εi jkJk which, when contracted with the spatial part Fi j of the
field strength tensor, forms an SO(3) invariant object. Indeed,
the spin-3/2 rotation operator U (R) is written for infinitesimal
rotations as

Uαβ (R) = δαβ − i
2θi j[�

i j]αβ, (A20)

where θi j = −θ ji ≡ θεi jk n̂k , for a rotation by infinitesimal
angle θ about axis n̂. In general, under an SO(3) rotation, �i j

transforms as

U †(R)�i jU (R) = Rik�
klRT

l j, (A21)

where Ri j is an SO(3) rotation matrix and Uαβ (R) is the
corresponding unitary transformation in the space of four-
dimensional spinors.
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To generalize Eq. (A19) to d = 4 dimensions, as required
by our RG analysis, we seek an object �i j which transforms
as an antisymmetric rank-2 tensor under SO(4) rotations in
the 16-dimensional spinor space to which d = 4 Luttinger
fermions belong [52]. This object can then be contracted with
the d = 4 field strength tensor Fi j to form an SO(4)-invariant
term in the Hamiltonian. We simply need to find those ma-
trices �i j in Eq. (A20) such that the object Gi j in the QBC
Hamiltonian H = −Gi j pi p j [52],

Gi j =
√

d

2(d − 1)

a

i j�a, (A22)

transforms as a rank-2 tensor under SO(4) rotations in the
16-dimensional spinor space:

U †(R)Gi jU (R) = RikGkl R
T
l j . (A23)

For an infinitesimal rotation, Ri j = δi j − (i/2)θkl [J kl ]i j , the
construction yields, to O(θ ),

Gi j − i
2θuv[Gi j, �

uv]

= Gi j − i

2
θuv ([J uv]ikδ jl + δik[J uv] jl )Gkl . (A24)

The 16-dimensional spinor space is spanned by the matri-
ces 1, �a, and �ab, so we can decompose �uv = Auv +
Buv

a �a + Cuv
ab �ab. In order to derive these A, B, and C sym-

bols, we compute the commutator on the left-hand side and
find that

[Gi j, �
uv] = −(

2
√

2i
)√ d

d − 1

[
Cuv

ab 
b
i j�

a + Buv
a 
i j

e �ea
]
.

(A25)

It is clear that for �uv to generate SO(4) rotations, the symbols
Buv

a must identically vanish. For the right-hand side, we have
the expression

([J uv]ikδ jl + δik[J uv] jl )Gkl

= −i

√
d

2(d − 1)
�e
(
δiv


e
ju − δiu


e
v j + 
e

iuδ jv − 
e
ivδ ju

)
.

(A26)

Comparing both sides, we have the relation for the C symbols

4Cuv
ab 
b

i j = (
δiv


a
ju − δiu


a
v j + 
a

iuδ jv − 
a
ivδ ju

)
, (A27)

from which the antisymmetry of the symbol under u ↔ v is
evident, as expected. To enumerate the symbol, we contract
both sides with 
c

ji, and use the property tr(
a
b) = 2δab

[52] to obtain

Cuv
ab = 1

4

(

a

ui

b
iv − 
a

vi

b
iu

) = 1
4 [
a,
b]uv, (A28)

which completes our mapping of the SO(4) rotation generator
in this 16-dimensional spinor space:

�i j = Ci j
ab�

ab = 1
4 [
a,
b]i j�ab. (A29)

Using the explicit expressions for the 3 × 3 Gell-Mann ma-
trices [52] and the 4 × 4 gamma matrices [33], we verify
explicitly that Eq. (A29) gives �i j = εi jkJk in d = 3 where
Jk are the usual spin-3/2 matrices. The d = 4 Zeeman

Hamiltonian thus again has the form HZ = − g
2�i jFi j as in

Eq. (A19), but with �i j given in Eq. (A29).

4. Particle-hole transformation

Under the substitution (9), the temporal term in the fermion
Lagrangian (2) transforms as:

ψ†
α (∂τ + ieAτ )ψα −→ ψT

α (∂τ − ieAτ )(ψ†
α )T

= −(∂τψ
†
α )ψα + ψ†

α ieAτψα = ψ†
α (∂τ + ieAτ )ψα,

(A30)

using the anticommutation property of Grassmann variables
and integration by parts. Likewise, for the spatial term,
we have

ψ†
α
i j

a �aDiDjψα −→ ψT
α 
i j

a (−�a∗)(∂i − ieAi )(∂ j − ieA j )

× (ψ†
α )T = −ψ†

α
i j
a (−�a∗)T

× (∂ j + ieA j )(∂i + ieAi )ψα

= ψ†
α
i j

a �aDiDjψα, (A31)

using in addition the fact that the �a are Hermitian and the

a are symmetric. Thus the Lagrangian (2) is even under the
particle-hole transformation. However, the Zeeman term (7)
involves the matrices �ab which, under the substitution �a →
�a∗, transform as

�ab = 1

2i
[�a, �b] −→ 1

2i
[−�a∗,−�b∗]

= −
(

1

2i
[�a, �b]

)∗
= −�ab∗. (A32)

Therefore, under the particle-hole substitution (9), the
Zeeman term (7) transforms as

ψ†
α�i jψαFi j = 1

4ψ†
α[
a,
b]i j�abψαFi j

−→ 1
4ψT

α [
a,
b]i j (−�ab∗)(ψ†
α )T (−Fi j )

= −1

4
ψ†

α[
a,
b]i j (�ab∗)T ψαFi j

= −ψ†
α�i jψαFi j, (A33)

using the fact that the �ab are Hermitian, since the �a are, and
that Fi j → −Fi j since Ai → −Ai. Finally, following similar
steps as in Eq. (A31), we find that a gauge-invariant quadratic
term

ψ†
αD2ψα −→ ψT

α δi j (∂i − ieAi )(∂ j − ieA j )(ψ
†
α )T

= −ψ†
αδi j (∂ j + ieA j )(∂i + ieAi )ψα = −ψ†

αD2ψα,

(A34)

is also odd under the particle-hole transformation.

APPENDIX B: DIAGRAMMATIC PERTURBATION
THEORY

In this section, we give further details concerning the dia-
grammatic evaluation of the renormalization constants γi =
Zi − 1. Adopting the Fourier transformation convention for
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the fields,

Aμ(X ) =
∫

dd+1K

(2π )d+1
Aμ(K )eiK ·X ,

ψ (X ) =
∫

dd+1K

(2π )d+1
ψ (K )eiK ·X , (B1)

we set up the diagrammatic rules for a loop-perturbation
expansion of the minimal interacting theory of the charged
Luttinger fermions, Eq. (1). As a consistent choice of notation,
momentum entering a Feynman diagram vertex is considered

positive, while the momentum leaving a vertex is considered
negative. The momentum-space Feynman rules for our model
action are given in Fig. 8. The last vertex (QED seagull vertex)
already contains the symmetry factor of permutation between
photonic legs.

Due to the gauge symmetry, the fermion-photon QED ver-
tex does not receive independent renormalization, and the
one-loop structure of the renormalized action emerges from
the self-energy corrections alone. Using the one-particle irre-
ducible (1PI) diagrams presented in the main text (Fig. 2), the
one-loop self-energy corrections evaluate to:

�
ψ

1L(K ) =
∫

dd+1Q

(2π )d+1
Cμ(Q,−Q + K,−K )Gψ (Q)Cν (K, Q − K,−Q)GA

μν (Q − K ) +
∫

dd+1Q

(2π )d+1
V μν (K, Q,−Q,−K )GA

μν (Q),

(B2)

�A
μν,1L(K ) = −

∫
dd+1Q

(2π )d+1
tr[Cμ(Q + K,−K, Q)Gψ (Q + K )Cν (Q, K,−Q − K )Gψ (Q)]

−
∫

dd+1Q

(2π )d+1
tr[V μν (Q, K,−K,−Q)G(Q)], (B3)

where Q = (ω, q) is the internal frequency-momentum. To integrate out high-energy fermionic and photonic modes, the internal
momenta in these loop integrals are restricted within the momentum shell |q| ∈ (
/b,
). The frequency integrals within the
loops are all convergent and they are computed exactly. The remaining momentum integrals for the self-energy corrections lead
to complicated expressions. To extract the renormalization-scale (b) dependent logarithmic factors of the momentum integrals
in d = 4, we expand the self-energy matrices in powers of small external frequency and momentum,

�1L(K ) = �1L(0) + Kμ∂μ�1L(K )|K→0 + KμKν

2
∂μ∂ν�1L(K )|K→0 + . . . (B4)

Using the identities for the Gell-Mann matrices (A4) after taking spinor traces, the expansion coefficients only involve internal
momenta in the form of generic integrals

∫
dd q/(2π )d f (q2)qiq jqk . . . , that can be reduced further using well-known tensor-

integral identities, such as∫
dd q

(2π )d
f (q2)qiq j = δi j

d

∫
dd q

(2π )d
f (q2)q2,

∫
dd q

(2π )d
f (q2)qiq jqkql = δi jδkl + δikδ jl + δilδ jk

d (d + 2)

∫
dd q

(2π )d
f (q2)q4, (B5)

and similarly for higher-rank tensors. In such types of integral the only nonzero contribution comes from cases where all the
internal momentum indices can be pairwise contracted. The contraction identities can be proved with the help of the Laplace
transform of the (well-behaved) function f (q2). The Laplace transform of integrals of the type,

Ki jkl =
∫

dd q

(2π )d
f (q2)qiq jqkql =

∫ ∞

0
dt

∫
dd q

(2π )d
f̃ (t )e−q2t qiq jqkql , (B6)

can be recast in terms of a generating variable Yi such that

Ki jkl = ∂4

∂Yi∂Yj∂Yk∂Yl

[ ∫ ∞

0
dt

∫
dd q

(2π )d
f̃ (t )e−q2t+Yiqi

]∣∣∣∣
Yi→0

= ∂4

∂Yi∂Yj∂Yk∂Yl

[ ∫ ∞

0
dt f̃ (t )

eY 2
i /(4t )

(2π )d/2(2t )d/2

]∣∣∣∣
Yi→0

=
∫ ∞

0
dt

f̃ (t )

(2π )d/2(2t )d/2

(
δi j

2t

δkl

2t
+ δik

2t

δ jl

2t
+ δil

2t

δ jk

2t

)
. (B7)

On the other hand it follows that∫
dd q

(2π )d
f (q2)q4 =

∫ ∞

0
dt

∫
dd q

(2π )d
f̃ (t )e−q2t q4 =

∫ ∞

0
dt f̃ (t )

∂2

∂2t

∫
dd q

(2π )d
e−q2t =

∫ ∞

0
dt f̃ (t )

∂2

∂2t

(
1

(2π )d/2(2t )d/2

)

=
∫ ∞

0
dt

f̃ (t )

(2π )d/2(2t )d/2

(
d (d + 2)

4t2

)
. (B8)

Combining these two results we find that

Ki jkl =
∫

dd q

(2π )d
f (q2)qiq jqkql = 1

d (d + 2)

∫
dd q

(2π )d
f (q2)q4(δi jδkl + δikδ jl + δilδ jk ), (B9)
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and similarly,

Ki jklmn =
∫

dd q

(2π )d
f (q2)qiq jqkqlqmqn = 1

d (d + 2)(d + 4)

∫
dd q

(2π )d
f (q2)q6(δi jδklδmn + . . . ) (B10)

and so on.
Applying these algebraic manipulations to Eq. (B2), we obtain the following one-loop self-energy correction to the fermion

propagator [Fig. 2(a)]:

�
ψ

1L(K ) = −γ1(iω) − γ2
/d (�k)

2m
, (B11)

with the renormalized inverse propagator now given by (G̃ψ )−1 = (Gψ )−1 − �
ψ

1L. This leads to the effective one-loop renor-
malized fermionic action in Eq. (10). The term involving the quartic vertex in Eq. (B2) vanishes and does not contribute to the
fermionic self-energy. The two renormalization constants are given by

γ1 = α(4K + 4ρ − 3)(4
√

K + ρ − 4K − 4ρ − 1)

2
√

K + ρ(4K + 4ρ − 1)2
,

γ2 = α

36(K + ρ)3/2(4K + 4ρ − 1)3

{[
48K4

(
16
√

K + ρ − 15
)

+ 8K3
[
12ρ

(
32
√

K + ρ − 33
)

+ 16
√

K + ρ + 3
]

+ K2
[
8ρ

(
576ρ

√
K + ρ + 112

√
K + ρ − 666ρ − 21

)
+ 16

√
K + ρ − 13

]
+ 4Kρ

{
3
(

8
√

K + ρ − 5
)

+ 4ρ
[
12ρ

(
16
√

K + ρ − 21
)

+ 112
√

K + ρ − 39
]}

+ ρ
(

16ρ
{
ρ
[
24ρ

(
2
√

K + ρ − 3
)

+ 64
√

K + ρ − 27
]

+ 5
√

K + ρ − 2
}

+ 5
)

+ K
]}

. (B12)

The photon self-energy (B3) is computed in a similar manner and the four-point vertex once again offers no contribution. The
three renormalization constants from the photon self-energy correction [Fig. 2(b)] entering the renormalized effective action in
Eq. (10) are as follows:

γ3 = 2αNf , γ4 = 13αNf

36K
, γ5 = −5αNf

27ρ
. (B13)

Note that the dependence ∝ 1/K in γ4 is what enables the RG equation (32) to have a structure similar to the Wilson-Fisher
equation (15).

Finally, the dynamic critical exponent (13) of the theory has the following expression in terms of the renormalized couplings:

z − 2 = α

36(K + ρ)3/2(4K + 4ρ − 1)3

[( − 48K4
(
16
√

K + ρ + 9
) + 8K3

[ − 12ρ
(
32
√

K + ρ + 15
) + 128

√
K + ρ + 105

]
+ K2

[ − 144ρ2
(
32
√

K + ρ + 11
) + 40ρ

(
64
√

K + ρ + 69
) − 1168

√
K + ρ + 85

]
+ K

( − 4ρ
{
4ρ[12ρ

(
16
√

K + ρ + 3
) − 104

√
K + ρ − 201

] + 600
√

K + ρ − 51
} + 216

√
K + ρ − 55

)
+ ρ

{ − 8ρ
[
2ρ

(
48ρ

√
K + ρ − 8

√
K + ρ − 81

) + 154
√

K + ρ − 13
] + 216

√
K + ρ − 59

})]
. (B14)

APPENDIX C: STABILITY OF LIFSHITZ-QED FIXED POINT

The two functions appearing in the RG equations (33-34) are defined as

f1(ρ) = 4ρ[4
√

ρ(12(ρ + √
ρ) + 7) − 65] + 59 + 20

√
ρ

36
√

ρ(2
√

ρ − 1)(2
√

ρ + 1)3
,

f2(ρ, Nf ) = 1

108

[
− 4(54ρ + 5)Nf − 6

√
ρ(4

√
ρ(48ρ3/2 + 48ρ2 + 28ρ − 65

√
ρ + 5) + 59)

(2
√

ρ − 1)(2
√

ρ + 1)3

]
. (C1)

With the one-loop RG equations (33-34), for Nf � 2 we find a Lifshitz-QED (LQED) multicritical point with finite charge
coupling and finite photon stiffness. For Nf = 2, the magnitudes of the critical couplings are numerically found to be:

α∗ = 0.958584ε, K∗ = −0.346155ε, ρ∗ = 0.193547. (C2)
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The stability matrix Mi j = ∂βi/∂λ j , with couplings λ j ∈ {α, K, ρ} and beta functions βi = dλi/d, can be enumerated at the
fixed point to determine its stability. The stability matrix up to linear order in ε is found to be

MLQED =
⎛
⎝ −ε 0 0

0.722222 − 0.662399ε 2 + 1.83434ε 0
−2.92933ε 8.11199ε 14.3677ε

⎞
⎠. (C3)

The eigenvalues, found on the diagonal, are

−ε, 2 + 1.83434ε, 14.3677ε, (C4)

to O(ε). Since there exists more than one unstable direction, the fixed point is multicritical. The same number of stable/unstable
directions is found for other values of Nf � 2.
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