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Robust propagating in-gap modes due to spin-orbit domain walls in graphene
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Recently, great experimental efforts towards designing topological electronic states have been invested in
layered incommensurate heterostructures, which form various nano- and mesoscale domains. In particular, it
has become clear that a delicate interplay of different spin-orbit terms is induced in graphene on transition

metal dichalcogenide substrates. We therefore theoretically study various types of domain walls in spin-orbit
coupling in graphene looking for robust one-dimensional propagating electronic states. To do so, we use an
interface Chern number and a spectral flow analysis in the low-energy theory and contrast our results to the
standard arguments based on valley-Chern numbers or Chern numbers in continuum models. Surprisingly, we
find that a sign-changing domain wall in valley-Zeeman spin-orbit coupling binds two robust Kramers pairs,
within the bulk gap opened due to a simultaneous presence of Rashba coupling. We also study the robustness
to symmetry breaking and lattice backscattering effects in tight-binding models. We show an explicit mapping
of our valley-Zeeman domain wall to a domain wall in gated spinless bilayer graphene. We discuss the possible
spectroscopic and transport signatures of various types of spin-orbit coupling domain walls in heterostructures.
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I. INTRODUCTION

Amid an explosion of research into van der Waals materials
during this decade, graphene-based platforms remain central
for discovery and design of topological states of matter. To-
day’s promising platforms are based on inhomogeneities in
real space, for example, in devices and heterostructures with
designed spatial variation of order parameters and external
fields. Great progress has been achieved in twisted multilayers
in which new electronic states may arise in Moire patterns
and domains, as observed in twisted bilayer graphene [1-4].
In particular, layering graphene and transition metal dichalco-
genides realizes the early idea of seeking topological states in
graphene by inducing spin-orbit coupling (SOC) in it [5-8].
Experiments [6-9], first principles calculations [10,11], and
theory [11,12] agree that the outcome is complex, with at
least four different induced coupling terms in accord with the
lowered symmetry of the system [13]: the Kane-Mele SOC,
the valley-Zeeman SOC [6,14], the Rashba SOC, and the
Dirac mass. Therefore, understanding the electronic modes
due to spatial variations of multiple coupling parameters is
necessary both fundamentally and practically.

A special type of electronic states designed for spin-
and valleytronics involves creating one-dimensional chan-
nels, which can essentially be understood as domain walls
(DW) in a certain coupling parameter. One of the first pro-
posals for topological channels was due to a gating DW
in bilayer graphene [15], which was later connected to a
DW in stacking order [16], leading to experimental obser-
vation of the one-dimensional modes [17]. Further, DWs in
Dirac mass parameter yielded valley-polarized modes [18,19].
Alternative DWs using strain field as the parameter were pro-
posed [20,21], while multilayer systems allow for even more
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coupling parameters [4,22-24]. A unifying viewpoint of one-
dimensional topological modes as being DW modes is also
exemplified in the unexpected robustness to magnetic field of
quantum spin Hall helical edge states that was understood by
invoking a DW between a quantum spin Hall and a quantum
Hall domain [25]. Understanding DWs in presence of multiple
parameters is crucial, as becomes clear in the recent find-
ing that quantum spin Hall edge modes may be transformed
or supplemented by spin- or valley-polarized modes as one
changes the dominant SOC parameter [13,26]. Nevertheless,
the treatment of nonrandomly varying SOC parameters in this
context remains scarce [27,28].

Here we mainly focus on domain walls in valley-Zeeman
and Rashba spin-orbit couplings in graphene, and contrast
them to known domain walls in Dirac mass and Kane-Mele
SOC. Our main finding is that a domain wall in valley-Zeeman
SOC in presence of arbitrary constant Rashba SOC hosts two
valley-polarized Kramers pairs propagating along the domain
wall. Importantly, we find that these modes are not protected
by a bulk topological index of the 10-fold way [29-31],
nor an index derived from the remaining lattice symmetry
(Csy), but instead by an “interface Chern number”. In essence,
the bulk “valley Chern number” index C; ., i.€., the Chern
number calculated in the graphene continuum model for a
fixed valley index 7 = %1, has opposite values on the two
domains with opposite signs of valley-Zeeman SOC, but this
continuum-derived bulk index is ill defined and does not
provide topological protection of modes even without any
intervalley scattering, any symmetry breaking, nor bulkgap
closing [32]. Alternatively, it was proposed that the difference
of two nonzero values §C;,, = C;ulk’ R thulk, 1> occurring at
a domain wall interface between the right (R) and left (L)
bulk, is topologically well defined [32]. However, we show
explicitly that 8CY, incorrectly predicts modes in general,
and hence does not offer a “bulk-interface” correspondence. In

contrast, we find that an “interface Chern number” C .. =
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27 strictly predicts the valley-Zeeman DW modes by apply-
ing a more general spectral flow theorem for Berry-Chern
monopoles due to varying parameters [33]. The theorem is an
exact statement about the existence of quantum chiral domain-
wall-bound modes due to a topological index associated to a
degeneracy point of the bands of an auxiliary homogeneous
Hamiltonian. This degeneracy point corresponds to the real-
space point where valley-Zeeman SOC changes sign, and is
hence fully determined by the domain wall and not by the
topology of the domains.

Our paper is one demonstration of the usefulness of the
spectral flow theorem for topological modes in inhomoge-
neous quantum problems, for which there is a limited number
of methods. One may treat spatial coordinates classically at
long distances from a topological defect, and consider the
resulting band topology due to discrete symmetries [31,34].
One may also use real-space expressions that give a local
indication of nontrivial topology [35]. Nevertheless, a pre-
cise “bulk-defect” correspondence in this case remains quite
abstract and invokes generalized bulk topological numbers
[36,37] to cause some DW modes [32,38,39]. In contrast,
the spectral flow theorem [33,40,41] builds on the notion
of using topological numbers associated to local information
in parameter space [15,42]. In our case, the valley-Zeeman
domain wall is an interface across which parameters of a Dirac
equation vary in real space, and the theorem is useful both
conceptually and practically as for our Dirac operator we do
not have a standard index theorem, while the direct solution
for the in-gap modes spectrum is much more tedious and
opaque.

The uncovered valley-Zeeman DW modes are in contrast
to previously identified graphene edge modes due to valley-
Zeeman SOC, since the latter are fragile to the Rashba SOC
strength [26], and to some lattice terminations even in ab-
sence of intervalley scattering [32], due to the modes being
connected only to the bulk valley-Chern number |Cj | =1
[9,26,43]. Instead, we find an exact mapping of our valley-
Zeeman SOC DW modes onto modes of a DW between two
electrically gated regions in spinless bilayer graphene [15,44],
which were experimentally detected [16,17], but whose pro-
tection by 6C;, [32] is in this paper shown to rather be
due to C{ . ... Since experiments indicate that proximitized
graphene acquires spatially-dependent SOC of all three types,
where valley-Zeeman is considerable [7-9], we expect that
our valley-Zeeman domain-wall modes may contribute to
spectroscopic and transport properties.

This paper is organized as follows: In Sec. II we start by
motivating the use of an interface Chern number, and dis-
cuss its connection to a difference of bulk Chern numbers.
In Sec. III we first define domain walls in continuum theory
of graphene, we apply the spectral flow theorem to DWs in
valley-Zeeman SOC with a constant Rashba SOC, and show
the mapping to spinless bilayer graphene. Then we introduce
domain walls in the tight-binding lattice model of graphene
and discuss the robustness of valley-Zeeman DW modes, as
well as of modes on other domain walls. We finish with a
discussion of potential impact on experiments, other domain
walls in Dirac mass and Kane-Mele SOC, and an outlook.
Technical details supplementing our analysis appear in four
appendices.

II. THE INTERFACE CHERN NUMBER

In this paper we apply the general theory of spectral flow
due to Berry-Chern monopoles [33,40,41], i.e., a spectral flow
theorem (SFT), to the particular case of one spatially varying
parameter in a two-dimensional system, i.e., a domain wall
profile of a SOC in graphene. The application of SFT is
presented in full detail in Appendix A, while here we sketch
its form and relationship to bulk topology.

We start from the bulk topology. Importantly, for smooth
domain walls (and we discuss sharp ones in Sec. IIID), a
priori the intervalley scattering is negligible and the pertinent
analysis is of the continuum model of graphene with valley
index 7 conserved. The essential problem of valley-based
bulk topology was exposed in Ref. [32], which deals with
the model of bilayer graphene with a DW profile of gate
voltage—the model, which we show maps (in its spinless ver-
sion) exactly to our model of valley-Zeeman DW in graphene
with constant Rashba SOC (see Sec. II1 C). In a nutshell, they
show that the bulk “valley Chern number” index Cp ., i.e.,
the Chern number calculated in the continuum model for a
fixed valley index t = =+1, is actually not protecting an edge
mode. The key reason is that any Chern number calculated for
the infinite (k,, k,) plane (i.e., in the single-valley continuum
model) is not topologically well defined [33]. Hence, the edge
modes disappear depending on microscopic details of the
edge, even without any intervalley scattering, any symmetry
breaking, nor bulkgap closing.

The Cj,, itself obviously cannot predict DW modes ei-
ther, but Ref. [32] argues that in contrast the difference of
two nonzero values §Cy . = Gy g — Gy 1> Occurring at a
domain wall interface between the right (R) and left (L) bulk,
is topologically well defined. Hence their gate-voltage DW
modes in bilayer graphene are theoretically indeed stable. This
argument is illustrated in Figs. 1(a) and 1(b), with the key
point that the bandstructure of R and L domains becomes
equal far away from (k, k;) = (0,0), so in the difference
3C¢, i one may compactify the two planes into a sphere. Based
on the exact mapping between the bilayer gate-voltage DW
problem and our valley-Zeeman DW problem, it seemingly
follows that the difference §C;, provides protection to our
modes too.

To the contrary, our point is that the §C;,, is also fragile
in general, while the interface Chern number C! . . and
the SFT is generally well defined and more powerful for
interface (domain-wall) problems. Namely, in this context,
(1) a Ginterface can exist without reference to any well-defined
bulk quantity or compact parameter space, which are absent
in valley-resolved situations, and (2) the SFT is an exact
statement about the quantum domain-wall modes, as opposed
to a bulk-boundary correspondence, which is vague or it is
justified a posteriori by tedious explicit calculations. We now
consider the relationship between C ... and §C7 , more
explicitly.

Let us now introduce the C ;... assuming that a Hamil-
tonian parameter A (such as SOC) varies smoothly along the x
axis [as in a domain-wall profile A(x)]: The SFT prescribes
(see Sec. A and Ref. [33] for details) that we look at an
auxiliary Hamiltonian matrix H in which the operator —id, is
replaced by a real parameter k., and that we seek band degen-
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FIG. 1. (a) Two planar integrals in the continuum giving the bulk Chern numbers associated with the left (L) and right (R) domain. These
Chern numbers are unstable and the bulk-edge correspondence for either R or L is nonuniversal. (b) When the difference of two Chern numbers
8Cwuk 1s considered, as seems natural for a domain wall, one may compactify the planes in (a) and obtain a stable bulk index, which however
is only handwavingly connected to domain wall modes. (c) Sphere integration defining the interface Chern number Ciyerface. (d) We deform the
sphere into a cylinder, and as obvious in comparison to panel (a), one finds that Ciyerface = 6Coux + Ac, Where Ac may be a function of the

aspect ratio h/r.

eracies of A as function of A(x), k., ky. If the interface profile
causes such a degeneracy at the parameter values (x, k, k,) =
(xc, K, k;') = p., one needs to calculate the interface Chern

number CJ,,. ;... of filled bands of H on a sphere surrounding
p.. Hence the naming of “interface” Chern number, which
uses only information from the vicinity of the point p, and
does not involve any integrations over, e.g., a Brillouin zone.
With this definition of Cf . ..., in Figs. 1(c) and 1(d)

: is

we devise a procedure where the integration in Cj . ¢ .

smoothly deformed from a sphere to a cylinder to give

i = 0CE + ACT, (1)

interface

where one takes the limit for the radius of the cylinder r —
oo; the difference Ac® = limy/,—.o Act(h/r) is given by the
Chern integral on the side of cylinder keeping its height &
finite (could be arbitrarily small as long as the cylinder en-
closes the degeneracy point of H at the origin). For our VZ
DW continuum model we explicitly find Ac® = 0. Hence in
our model, C{ ... and §C; . coincide. However, note that
only the CJ ... invariant guarantees the domain-wall modes
through the SFT, while the exact correspondence between
8C¢ i and domain-wall modes is not guaranteed and may be
found a posteriori (e.g., Ref. [32] had to solve explicitly for
the modes).

In order to make this point concrete, we consider a sim-
ple continuum model (with a single valley) in which the
Cinterface = 1 protects a chiral domain-wall mode, while in
contrast the corresponding Cyyix = 0, and hence §Cpyx = 0, S0
the bulk-derived Chern numbers predict the absence of modes
on edges and domain walls. In this example the interface
Chern number comes entirely from the side of the cylinder
in Fig. 1(d), while the cylinder bases contribute zero, i.e.,
Ac = 1. The model is based on a single-spin component of
the Bernevig-Hughes-Zhang model with a gapped Dirac cone
at the I point,

Houe = keoy + kyoy + A(M — k2 — k2o, )

where we will be imagining a DW in the parameter A(x)
going from Ay = A(x = —00) = +1 to Ag = A(x = +00) =
—1, while keeping M < 0 constant. Thinking of either of the
two bulk domains, A(x) = A, or A(x) = Ag, we know that
for any nonzero A the M < 0 bulk Hamiltonian is trivial and
Couik (A = £1) = 0, and obviously §Cpyx = 0. In contrast, for
any M < 0 we find Ciyerface = 1 due to the degeneracy point
(ky, ky, A(x)) = (0,0, 0) and hence there is one chiral mode
on a DW where A(x) changes sign. We confirm this in a nu-
merical solution. Looking at the cylinder in the limit 2/r — 0
we find explicitly that in this model the Ciyerface = Ac comes
entirely from the side of the cylinder.

We will discuss the robustness of modes protected by
Cinterface 10 Sec. I E, after we introduce the lattice model and
intervalley scattering.

III. DOMAIN WALLS IN VALLEY-ZEEMAN SOC
A. General model of smooth domain walls in the continuum

We start by considering the low-energy continuum Dirac
theory for graphene with a smooth domain wall in any of our
coupling parameters,

H =7,0,(—idy) + kyo, + m(x)o;, + Agy (X)T;0.5;
+ Avz(xX)Ts; + )\-R(x)(fzaxsy - Gysx)a (3)

where we assume translational invariance along the domain
wall in y direction (any direction is equivalent in the low-
energy theory), the m, Agpy, Ayz, and Ay are the Dirac mass,
Kane-Mele spin orbit (KM), valley-Zeeman spin-orbit (VZ),
and Rashba spin-orbit (R) couplings, respectively, and the
Pauli matrices t;, o;, s;, i = X, Y, z, are acting in the valley,
sublattice and spin space, respectively, while we set vy = 1.
Throughout the paper for simplicity we consider coupling
parameters in pairs: one having a DW profile (detailed below),
the other one being constant and nonzero, while the rest of
coupling parameters are set to zero. We further require that
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FIG. 2. Modes of a domain wall in valley-Zeeman (VZ) SOC,
and their robustness on the lattice. (a) Generic profile of sign-
changing DW in VZ SOC Ay, with arbitrary nonzero value of
Rashba SOC Ag. (b) Sketch of modes in momentum space predicted
by the spectral flow theorem for (a). Both valleys K, K’ are projected
to k, = 0, but are offset here for visibility. (c) An atomically sharp
profile of an armchair DW on the lattice, corresponding to (a).
(d) Tight-binding lattice model spectrum for the system sketched
in (e), with parameters N, = 801, N, = 2000, Ayz(do0) = £0.01¢
and Az = 0.17. In the spectrum we only show the in-gap modes
localized around the DW located at xpy [see (e)], with purple/pink
being states in valley K/K’ (both valleys project to k, = 0 on the
lattice). The modes match the spectrum of DW in gating of bilayer
graphene (full lines; see text). (e) Sketch of the lattice with periodic
boundary conditions (identifying two dashed edges with each other,
and likewise the dotted) and consequently a DW at position xpy and
an “anti-DW” of opposite orientation at X, ipw -

the two domains far away from the DW are gapped, so that
any DW modes are prominent inside a bulkgap. Obviously, if
multiple well-separated DWs appear in the system, they will
behave independently and each will carry its modes. In this
section we focus on the new DW in Ayz(x) with Ag constant.
In Appendix B we show that a DW in Az (x) with Ay constant
does not carry topological modes, while for DWs in Agy(x)
and m(x) we recover their already known DW modes.

The profile of a domain wall in any one of the couplings
A € {m, gy, vz, Ag} is defined as

Ar — Af

AX) = ———+ —F W) “

characterized by the limiting values Ap = A(x — —00),
Agr = A(x — o0), which define the domains to the left and
to the right of the DW, and by an arbitrary smooth function
n(x), which satisfies n(x — £oo) = £1 [see Fig. 2(a)]. For
a single DW the profile n(x) may be taken as monotonous,

and its particular form has no bearing on the results in this
section: one may imagine a typical profile such as n(x) €
{% arctan(x/!), tanh(x/l)...} with a finite width length-scale
[. We only consider DW modes in cases where both domains
L, R have a full gap far away from the DW.

B. Valley-Zeeman domain walls in the continuum and the
interface Chern number

We use the spectral flow theorem to show that a DW in
valley-Zeeman spin-orbit coupling in presence of a constant
nonzero Rashba spin-orbit coupling hosts propagating modes,
which were not identified before. First, a domain with constant
Avz, Ag # Ohas a gap 2rebvzl gt half filling even though nei-

NS

ther coupling on its own (I;pegzs a gap in graphene. Hence we
consider a domain wall in Ayz(x). The spectral flow theorem,
whose application is presented in full detail in Appendix A,
prescribes to look at an auxiliary Hamiltonian matrix A in

which —id, is replaced by a parameter k,, giving the spectrum

Et,aﬁ

= a\/kz +Avz(x)? +2A% + 2ﬂ\/A;§ + (A% + Avz(x)?)k2,

&)

with «, ==+, k* =k} +k;, having a valley degeneracy
(r = %1) of each band. As noted, this spectrum has a gap if
Avz, Ar # 0. We now look at gap-closing degeneracy points
at half filling, i.e., at band-touching points between the two
inner bands, which are the ones having « = £1 and g = —1.
At a constant Ag # 0 the only such gap closing may happen
at (x, ky, ky) = (x¢, 0, 0) such that Ayz(x.) = 0. With this de-
generacy point identified, the spectral flow theorem prescribes
(see Appendix A for details) that we construct the 4x4 pro-
jector (in Hilbert space of o, s) to the two filled bands of H,
P, = P*=—F=F 4 p*==F==_and we do it using the formula

for the projector to the nth band, P* =[], 7 —*. Finally,
in the parameter space (Ayz(x), ky, ky) we take a small sphere
S? enclosing the degeneracy point (0,0,0), and evaluate the
Chern number of P;(Ayz(x), kx, k,) on this sphere, obtaining

the result

C, =2t sgn(Ayzr — AvzL). (6)

The outcome of the spectral flow theorem is that a DW
across which Ay 7 changes sign, in presence of any nonzero Ag
as shown in Fig. 2(a), has |N*| = 2 chiral propagating modes
with the direction of velocity along y being sgn(N*) = %1 in
each valley T = &£ [Fig. 2(b)].

C. Mapping to spinless bilayer graphene

The valley-Zeeman DW modes can be exactly mapped
onto the bound states of a DW profile in gate voltage in
spinless bilayer graphene introduced in Ref. [15]. The low-
energy Hamiltonian of AB-stacked gated bilayer graphene is

I
Hprg = ko, + kyfzay + E(anx + Uy']y) -V, ()

where the new Pauli matrices 7; act in the layer space, while
t, is the hopping amplitude to go from the A atom of one layer
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to a B atom of the other layer. The mapping to our graphene
model with valley-Zeeman and Rashba can be done stepwise
by applying two unitary transformations. First, to recover our
form of the kinetic part we apply U' = Lo -, Which
multiplies the T = —1 sector by o, obtamlng

t
iy = ket:0y + kyoy + TT(00 + 0yy) = Vi, (8)

Second, we map the layer exchange part onto Rashba SOC,
and the gate voltage onto valley-Zeeman SOC by performing
a rotation around 7, to exchange x and y, and then multiplying
by 7, in the T = —1 sector, which altogether requires U =

ﬂ( b %ny), so that in the end we have

I
Hl(?LG = kyT;00 + k 0y + E(Tzaxny - Uynx) -Vrn. 9

By reinterpreting the spinless bilayer’s layer degree of
freedom as a spin degree of freedom we finally get the Hamil-
tonian of graphene with a valley-Zeeman SOC Ayz = —V and
a Rashba SOC Ag = %.

In the limit where V < f; = Ayz < Ag, which was stud-
ied in Ref. [15] they show that for V(x) = «Vpsgn(x) with
t; >0, Vy >0, and x = %1, there are four in-gap branches
crossing zero energy,

2

vrkyTk v12c1€2 N Vo

20E VL T2

Vo
232
the velocity around the crossings is given by —« 7. Given the
identification Ayz(x) = —V (x), it means that in our model for
a DW with negative values of valley-Zeeman SOC on the left
and positive values on the right, the bound states with 7 = 1
are right movers, which matches our results, see Figs. 2(a) and
2(b).

E..=+ FV2Vo. (10

The crossings appear at k, = :Flf—F while the sign of

D. General model of domain walls on the lattice

In the preceding continuum theory the electronic modes
hosted by DWs are labeled by a valley index t, so even the
spectral flow theorem cannot prevent the mixing and gapping-
out of modes in presence of intervalley scattering on the
graphene lattice. Therefore we study via exact diagonalization
the tight-binding lattice models of DWs with two main goals:
(i) To confirm the continuum theory predictions when DW
profile varies slowly over many lattice sites and (ii) to assess
the robustness to intervalley scattering and lattice anisotropy
using an atomically sharp DW profile.

The tight-binding Hamiltonian collecting all the position-
dependent coupling terms we consider is

H=—t Z cTc]+Z( Dlimic) cia an
<i,j>
Z )‘ Vij€ 101 z cjp +Hec.

{(i,j>.a.B

+i Y MA=Dvel s e+ He.
((i,j>a.B

+i Y Afz-(dy x3P)clcip + He,
<ij>,o,B

¥

where c;, creates an electron on site i with S; spin o = =,

the (—1)" = 4(—) for a site on sublattice A(B), the v;; =

sgn[Z - (d(l) X d(z))] with d(l) d(z) the two NN-bond vectors
forming the path j—o>1— 2 - i between NNN neighbors
Jj, i, where we normalize |Jij| = 1. When the couplings are
homogeneous, independent of sites i, j, one finds the quan-
titative connection to the continuum couplings, i.e., m; = m,
hkw = —3V3MM dyy = =3VBA/Z, g = =34 /2.

Before introducing the models for domain walls let us re-
call the crystalline symmetries of the various spin-orbit terms
we introduced in the above Hamiltonian. The Kane-Mele SOC
preserves the full graphene point-group symmetry Dg;. The
valley-Zeeman SOC breaks symmetries exchanging sublat-
tices, such as inversion and Cg, but not the z — —z mirror
symmetry, hence preserving the point group Ds;. The Rashba
SOC breaks the z — —z mirror symmetry and inversion so
preserves Cg,. Finally, the Dirac mass preserves the D3, sym-
metry such as the valley-Zeeman SOC.

Now we consider a graphene lattice with two domains.
Requiring periodic boundary conditions on the lattice forces
the existence of two domain walls since the domains meet
each other twice, see Fig. 2(e). More precisely, consider first
the profile of the coupling constant, which creates one DW on
the lattice,

R'_EO)'éDW] 12)

n(ﬁ,-, Ry) = tanh[( d ]

where I?,- is the position of site i, ﬁo is a position in the center
of a honeycomb plaquette through which the DW passes,
while the épy = X(9) gives an armchair(zigzag) DW on the
lattice, see Fig. 2(c). The Hamiltonian has translational sym-
metry along the straight DW, and consequently the bulk Dirac
points are projected onto two distant momenta k, in case of
zigzag DW, and onto the same k, = 0 in case of armchair
DW. Effects of intervalley scattering are consequently masked
in the zigzag DW case, and we find the predicted continuum
modes. Therefore in the rest of the paper we present the arm-
chair DWs for which the intervalley lattice scattering effects
are fully exhibited. The length / is used to vary the smoothness
of the DW profile and therefore tune the amount of intervalley
scattering. By “sharp DW” we mean the limit / — 0, where
n(R,, Ro) becomes a step function [Fig. 2(c)]. For a sharp DW
we verify that the precise value of couplings on NNN bonds,

which cross the domain boundary do not matter for the main
features of in-gap modes.

To satisfy the periodic boundary conditions as in Fig. 2(e)
we position the DW to cross ﬁo = ﬁpw and overlay a second
(lomain wall profile (the so-called “anti-DW”) to cross Ry =
Ramipw »

n(R:) = n(Ri, Row) - n(Ri, Rapsipw ) (13)
AL + A Ap — A o
A= Lz L R2 En(Ry). (14)

The sketch in Fig. 2(e) represents an armchair DW and anti-
DW, hence their positions are given by xpy = ﬁDW - X and
XantiDW = ﬁmmw - X. The coupling A can be any one of A €
{m, Axm, Avz, AR}, and by construction on the lattice A; has
the values A, (Ag) on the left(right) side of the DW, but has
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the opposite values Ag(Ay) on the left(right) side of the anti-
DW (hence the name “anti”), see Fig. 2(e) for the example of
valley-Zeeman SOC, A = Ayz. Since the bulkgap is given by
the smaller of the bulkgaps on two domains, for simplicity our
profile has —A; = Agr = A.

Electronic states localized in real space around DW and
around anti-DW are degenerate by lattice symmetry. To iden-
tify these states separately, we energetically split them by
adding a small chemical potential ), chm in real space at
the lattice sites 7 along the DW. To assign a valley index to an
electron state, we Fourier transform its x dependence, and note
that the two valleys contribute Fourier components at opposite
momenta +K.

E. Robustness of valley-Zeeman domain-wall modes

The main result of the tight-binding lattice model with
an armchair DW profile in valley-Zeeman SOC 4} and a

constant nonzero Rashba SOC )L,’S- as defined in the previous
subsection, is that we find two copropagating modes in each
valley per DW in exact accord with the new modes identified
in the continuum in Sec. III B.

We are now in a position to discuss the robustness of
these valley-Zeeman DW modes provided by the interface
Chern number Cj . ;... = 27 and the spectral flow theorem.
We study three ways to destroy the DW modes: (1) intervalley
scattering, which destroys the T number, and hybridizes the
modes in the same way as it would any modes protected by
some bulk topology Cp,, in general. (2) Closing the direct
bulkgap, which removes a prerequisite in the SFT proof of
domain-wall modes, is as detrimental as for bulk-topology
protected modes. (3) Destroying translation symmetry along
the domain wall, which figures explicitly in SFT and is hence
a peculiarity of protection by Cinterface -

First, we consider closing the direct bulkgap. We add a con-
stant ASM coupling, which is a natural choice since all three
types of spin-orbit coupling appear in graphene on transition
metal dichalcogenide substrates [7-9,11,12]. The in-gap DW
modes indeed stay gapless with increasing Ak, all the way un-
til the bulkgap opened by 1} and A closes on both domains.
This is fully explained in the SFT picture, since once the
)L{jM closes and reopens the bulkgap in competition with the
valley-Zeeman and Rashba, the degeneracy point in parameter
space disappears [45]. Note, the SFT does not require a bulk
insulator to stabilize the DW modes, since it relies on the
band structure only in the vicinity of the degeneracy point
in parameter space. In other words, the bulkgap could close
at some far away point in the Brillouin zone of the domains
without affecting the DW modes. In contrast, bulk topological
numbers would not even be defined in such a scenario.

Second, we consider intervalley scattering. Within the en-
ergy resolution of our tight-binding model, the gapless DW
modes persist even for a sharp DW profile, see Fig. 2(d)
[compare to continuum result in Fig. 2(b)]. This is however
a consequence of the fact that SOC is a weak intervalley
scatterer, so although the atomically sharp armchair DW has
large intervalley scattering Fourier amplitudes, these are sup-
pressed by a geometric scattering prefactor of the SOC. We
confirmed that the valley-Zeeman DW modes can be gapped
by adding strong enough atomic-scale impurities, as expected,

FIG. 3. Spectral flow theorem for domain walls in the con-
tinuum. (a) Generic profile of a continuum DW with arbitrary
asymptotic values Ay, Ag on the two domains. (b) A degeneracy
point in classical variable space is enclosed by a sphere S2(6, ¢)
on which one calculates the Chern number of the projector to states
below the gap.

so that this robustness is only parametrical. Let us compare
this behavior to the well-known valley-polarized modes for a
sign-changing DW of Dirac mass m, which are known to be
sensitive to intervalley scattering [19]. We are able to quantify
the effect. Treating a sharp DW as a perturbation to ideal
graphene (see details in Appendix D), we find that intervalley
scattering at second order of perturbation opens a gap of size
2% in the DW modes, which matches very well the tight-
binding results, Figs. 4(a) and 4(b). Our perturbative approach
is applicable only if m < ¢, which translates to the gapped DW
modes still remaining inside the bulkgap. Interestingly, even
a small smoothing of the DW profile drastically reduces this
intervalley scattering effect, e.g., a DW profile with width of a
few lattice constants / ~ 2a reduces the gap in the modes by
an order of magnitude, see Fig. 4(c).

Third, destroying translation symmetry along the DW, i.e.,
removing the k, quantum number of the armchair DW, which
figures explicitly in the SFT and is hence a peculiarity of
protection by Cf ... As one way to test this, in our tight-
binding model of the valley-Zeeman DW, we added a random
component to the VZ SOC in wide strips covering each DW,
and observed that even with appreciable random component
(with standard deviation of order of the bulkgap) the density
of states inside the bulkgap remains the same as for the perfect
DW modes, while we check that the localization of DW modes
does not change appreciably. Hence there is no pathological
sensitivity to deforming the translationally invariant DW.

(a?) In(Gap) /(b) Gap ©) .I.ng(Gap)
..".. 1 . N K .
-5 “e.,
-5 111(]\@ b o '-,...;
95 -0.5 0 08 M 0 5 §

FIG. 4. Intervalley scattering in a tight-binding lattice model
for a sign-changing armchair DW in Dirac mass, with parameters
N, =204, N, =500, m(£oo) = £0.1¢. [(a),(b)] The size of the
gap at k, = 0 opened in the valley-polarized DW modes due to
intervalley scattering of an atomically sharp DW profile. Measured
in tight binding (dots) and derived perturbatively (line) as function
of M = |m(x — 00)/t|, in log-log scale (a) and lin-lin scale (b).
(c) Exponential decay of the gap in DW modes (in units of ) as a
function of the width of the domain wall (in units of lattice constant).

035139-6



ROBUST PROPAGATING IN-GAP MODES DUE TO ...

PHYSICAL REVIEW B 106, 035139 (2022)

We close this section with a detailed comparison of our
valley-Zeeman DW modes and the previously identified [26]
zigzag-ribbon edge modes of graphene with Ay; in the
so-called “quantum valley spin Hall state” (QVSHS). The
homogeneous bulk model used to study QVSHS is identical
to our homogeneous bulk model, when they both focus on
graphene with valley-Zeeman and Rashba SOC.

We consider zigzag edges and DWs to eliminate intervalley
scattering effects and focus on topological protection with t
fixed. In terms of topological protection, we have two co-
propagating modes per domain wall in each valley due to
|Gl erface] = 2, While the QVSHS has one “valley-centered”
mode per edge in each valley associated to the (topologically
ill-defined) valley-Chern number |C,| = 1 [9,26,43]. To prove
the different degrees of topological protection, in our tight-
binding model we make the hoppings located on the domain
walls tunable, so that we can smoothly interpolate between a
system with two zigzag DWs (separating two domains in a
periodic lattice) and a system with four zigzag edges (when
the two domains become disconnected) [46]. We find that
the four valley-centered QVSHS edge modes evolve into the
four valley-Zeeman DW modes. Strikingly, the QVSHS edge
modes are gapped out by increasing the value of Ag/Ayz
consistent with the claim in Ref. [26], although this does not
change the band topology. In contrast, the DW modes remain
gapless, as predicted by the SFT and Cf ... for any value
Ar # 0 [47].

IV. DISCUSSION AND CONCLUSIONS

Using the spectral flow theorem we derived topologi-
cally protected electronic modes of various domain walls in
graphene with Dirac mass, Kane-Mele SOC, valley-Zeeman
SOC, and Rashba SOC, with precise symmetry and chirality
labeling. However this method does not address the robustness
to breaking symmetries and to lattice effects, for which we
employed tight-binding modeling.

The main finding is the robust pair of Kramers pairs
on a valley-Zeeman DW in presence of a constant Rashba
SOC, which might be relevant to the efforts of inducing
topological phases in graphene by proximity to transition
metal dichalcogenides; namely, experiments find that the in-
duced valley-Zeeman SOC is strong, and there is a weaker
Rashba SOC, at least on a large-scale average [7,8]. Due
to incommensurability, on the scale of Moire pattern there
can be domains where couplings vary significantly and even
change sign. The Rashba SOC could possibly be made con-
stant on larger domains by external fields perpendicular to
graphene. Altogether, the valley-Zeeman DW states may
form a tunable network of propagating states between do-
mains [1,3,22,23,43,48]. For untwisted graphene on transition
metal dichalcogenide substrates the Moire pattern is on the
nanoscale, which might allow the propagating states to remain
well-defined, but also might lead to collective effects due to
their real-space overlap. Spectroscopic measurements on the
nanoscale might be useful to look for the modes, while it
would be interesting to expand this study with the effects of
local strain due to incommensurability.

The connection between a valley-Zeeman DW and a DW
in gating of spinless bilayer graphene implies possibilities

to explore valleytronics ideas. Compared to the modes in
the spinless bilayer, the valley-Zeeman DW modes are not
doubled and they lack any spin-rotation symmetry, hence they
should be more resilient to time-reversal breaking. The spinful
gated bilayer setup was used in Ref. [44] to engineer helical
modes by magnetic field, and it is an interesting question how
the valley-Zeeman DW modes could be manipulated using
external fields.

As we have been focusing on modes inside the bulkgap,
we note that a DW, which is smooth on the nanoscale should
also host gapped excited modes beside the topologically pro-
tected gapless modes [49,50]. Such gapped SOC DW modes
would be observable inside the bulkgap if the DW profile
was smooth enough, e.g., for |A| ~ 10meV having width
70nm [51]. Hence, this phenomenology might be relevant
for twisted incommensurate heterostructures with large Moire
periods. Consequently, a valley-Zeeman DW might host an
in-gap tower of propagating modes, which could be tuned by
changing the spatial variation lengthscale and/or the strength
of Rashba SOC. The same could be relevant for Kane-Mele
SOC DWs, whose topological modes are gapped by Rashba
SOC, but the induced amplitude of Rashba SOC in graphene
heterostructures seems to be small enough so that all the
modes of a Kane-Mele DW could still be within the bulkgap.

In the broader perspective on topological modes in
graphene due to domain walls in spin-orbit coupling, one
may note that the Kane-Mele SOC Ak, provides bulk-index
protected DW modes: either protected by time-reversal sym-
metry and the Z, bulk-index (on a topological insulator edge,
where |Agy | < |m| < |Agm.rl|), or protected by S, spin-
rotation symmetry and the bulk spin-Chern number (on a
sign-changing DW in Ak with |m| < |Agpm |, Ak r|), rais-
ing the question whether there are DWs in A, which break
S, by design but whose modes are not equivalent to topo-
logical insulator edge modes. A natural candidate is a DW
across which the spin-axis of the Kane-Mele coupling rotates.
From a different viewpoint, the idea that a spiralling magnetic
coupling emulates a constant spin-orbit coupling [52] has
been fruitful in designing topological modes, so it is natural
to ask what modes are associated with a spiralling spin-orbit
coupling. We will show elsewhere that there are no isolated
domain-wall-bound modes, but instead they are tied to the
bulk modes.

More generally, our paper should motivate further theo-
retical study of topological defects in spin-orbit coupling,
since a domain wall is just the simplest one-dimensional ex-
ample, while zero-dimensional defects in spin-orbit coupling
were also confirmed to host interesting bound states [53,54].
Methodically, the spectral flow theorem proved useful and in-
formative in understanding both single-valley and two-valley
systems with one-dimensional defects in two spatial dimen-
sions because the resulting three-dimensional parameter space
had point- and line-like degeneracies in our models. It would
be interesting to further apply this approach to the numerous
quantum condensed matter models in this category.
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APPENDIX A: SPECTRAL FLOW THEOREM REVIEWED
ON EXAMPLE OF DOMAIN WALLS IN KANE-MELE
SOC AND DIRAC MASS

The spectral flow theorem is presented in mathematical
detail in Refs. [33,40,41], while here we demonstrate its
practical use in two dimensions with one spatially dependent
coupling by solving step-by-step the DW in Kane-Mele cou-
pling A(x) = Agm(x), whose typical profile is exemplified
in Fig. 3(a), in presence of a constant mass term m. This
example unifies two physical situations as discussed below,
and we choose it because each step in the calculation is fully
analytical. The theorem involves a few steps:

(1) We replace the quantum Hamiltonian of Eq. (3),
H(x, —idy, ky), with a matrix function H(x, ks, k)=
ket.0, + kyo, +mo, + A(x)t;0,5, of classical variables
so that k, now commutes with x and thereby with n(x) and
A(X) = )\KM(X)- B

(2) We consider H, which have some gap in the spectrum
that may close at most at some isolated points (x', k., k;)
labeled by an integer i. Physically, this requires that on
both domains far away from the DW the H has a gap be-
tween, say the bands n and n+ 1, and we consider the
lower n bands filled. The spectrum of our H is E . =
j:\/kf + kf + (tsA(x) + m)?, with T = %, s = & being the
eigenvalues of 7,, s, respectively. We are interested in the gap
opened at the Dirac point, i.e., half filling, so there are four
filled bands E_.

(3) We identify at most two possible degeneracy points
closing the gap between filled and empty bands, namely

(', kL, kL) = (x[, 0,0) where TsA(x]) + m = 0 so that

Axm(x) = —tsm € {+m, —m}, (A)

and for our smooth monotonous DW profile n(x) the equa-
tion over all 7, s has either
(a) no solutions for |Ap|, |Ag| < |m| (both domains
trivially gapped with the same mass),
(b) one solution if |Az| < |m| < |Ag|or |AL| > |m| >
|Ag| (edge between TI and trivial mass gap), or
(c) both solutions for |Ap|, |Ag| > |m| with
sgn(ApAgr) < 0 (DW between two TI domains of opposite
sign of Agp).
(4) We enclose a given degeneracy point (x', k%, kI) with
a closed surface, e.g., sphere S(6, ¢), and on this surface
consider the projector P. onto the filled bands of H. For a
degeneracy line we need to adapt the enclosing surface. This
is detailed in the next Appendix B. The spectral flow theorem
states that the number of chiral modes N/ traversing the
gap (more precisely, leaving the valence band) is
N =C,

chiral

(A2)

where the chiral modes of positive(negative) velocity along y
are counted positively(negatively), and C' is the first Chern
number of the filled states on the sphere S i, ),

1 2w k4

C.=—— | d¢ | dOTP (3P 3,P" — 3,P 3eP").
2mi Jo 0

‘ (A3)

The enclosing sphere S'(6,¢) can be parametrized

using (v ke, ky) = (kLKD) + €(8x, 0ky, SKy)  with

(8x, 8k, 8ky) = (cos(9), sin(f) cos(¢), sin(6) sin(¢)), where
it is only important to preserve the orientations of the
coordinate systems, see Fig. 3(b). The coupling term is
also approximated on the sphere using the smoothness and
monotonicity of the profile n(x): tsA(x) + m =~ tsDgéx,
Dpgr, = sgn(Agmr — Axm.r) for the two possible degeneracy
points, where we rescaled the coupling by a positive constant,
which does not change the topology of P (similarly we set the
radius € = 1). The projectors to the four filled bands are

P =i1-d, o), (A4)

ﬁ;s = (7 sin(0) cos(¢), sin(0) sin(¢p), TsDg cos(0)). (AS)

The standard Chern number of spin-1/2 in magnetic field im-

plies that C;5 _ = sDgy, since C is preserved under inversion
of d but flips sign under mirror operations. A band contributes
one mode (|C5,_| = 1) for each degeneracy point its 7, s give

according to Eq. (Al). In particular, if Agy g > Aga,r then
a Kane-Mele DW profile Ak (x), which crosses the value m
hosts two chiral modes (Kramers pair) with quantum numbers
T = —s, while if it crosses the value —m there are two (more)
modes with T = s, with chiralities always Nepira = .

As expected we recover the Kramers pair of topologi-
cal insulator edge modes, and we find the four modes of a
Kane-Mele DW across which Agj, changes sign (while |m| <
[Akm.rls |Aka.], possibly m = 0), as expected from the spin
Chern number difference of 2.

Using the above approach we also find the well-known
valley-polarized modes for a DW with a sign change of mass
m (given that |Agy| < |mgl, |mc|) [19,40].

APPENDIX B: ABSENCE OF TOPOLOGICAL MODES FOR
OTHER DWs INVOLVING VALLEY-ZEEMAN AND
RASHBA SOC

We start by considering a DW in either Ayz or in
Ag in presence of a constant m, and find no topological
DW modes. Concretely, in the first case the spectrum of
H is E;; = tshyz = Vk* + m?, which is either gapless or
has no degeneracy point, while in the second case E.g =

a\/k2 +m? + 2202 + 2B|Ag|/k* + A%, with «, B =+, has
no degeneracy points for any value of Ag(x).

More interestingly, we now consider a DW in A(x) =
Agr(x) in presence of constant Ay 7% 0. Note that the bulkgap
of graphene with both constant Az, Ayz is equal to \Z/I%,
which is an expression symmetric to exchange of Ay, and Ag.
Nevertheless the DWs are completely different: the DW in
Ayz with constant Az hosts robust modes discussed in Sec. 111,
while in the following we show that a DW in Ag with constant
Avz hosts no modes at all. A DW in A(x) = Ag(x) in presence
of constant Ayz # 0 implies that a degeneracy at half-filling
occurs on a ring

(0 k2 Kk0) = (e, vzl cos(@), vz sin()), (B

where Ag(x.) = 0, Therefore propagating modes are a priori
possible only if the Rashba SOC changes sign across the DW.
The spectral flow theorem dictates that we enclose the entire
line of degeneracy points with a surface, in this case the ring
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is simply enclosed by a torus of small radius e,

AR € cos(f)
ke | = | (Avz| + €sin(@)) cos(9) |. (B2)
k, (|Avz| + € sin(8@)) sin(¢p)

The Chern number of the projector onto the filled bands over
the torus surface [one just changes the range of 6 € [0, 2]
in Eq. (A3)] gives zero, and therefore there are no topological
gapless modes on the Rashba DW. We confirmed the absence
of topological DW modes traversing the bulkgap on the lattice
too, for both smooth and sharp DW profiles.

APPENDIX C: EXACT SOLUTION OF DOMAIN WALLS IN
KANE-MELE AND DIRAC MASS COUPLINGS

Here we demonstrate that an exact solution for zero modes
of arbitrary Dirac mass and Kane-Mele SOC domain walls
in the continuum matches the predictions of the SFT. It is
obvious that this calculation is tedious, opaque and requires
ansatzes.

Given the rotation invariance of the low-energy Hamilto-
nian we can consider a domain wall in the x direction without
loss of generality. We start with Eq. (3) with the usual substi-
tution k, — —id,,

H = —ivp0sT,0x + Vrkyoy + A(X)T;5;0; + m(x)o,. (Cl)

We rewrite the eigenproblem HW¥ = EW as an explicit
first-order differential equation,

A E
o,V = (kvrzoz - ﬂszay - @rzov + i—tzax> v,
. VF Vf : Vr
Ax)
(€2)

Since A is block diagonal in the valley and spin space,
we can compute the exponential in the different eigenspace
independently. The general solution requires to compute the
space ordered integral exp( f(f A(t)dt). Since we are looking
for zero modes, we restrict ourselves to k, =0 and E =0,
which makes the exponential easy to obtain. Doing so we will
lose information on the chirality, but we will come back to it
at the end. We introduce the following intermediate notations:

alx) = i /X SAE) + Em(t)dt
UF Jo

so that fox A(t)dt = —a(x)o, where & and s° are respectively
the eigenvalues of t, and s,. As a consequence

exp ( — a(x)oy) = ch(a(x))1 — sh(a(x))oy. (C3)

Now we look for solutions of the differential equation, which
are normalizable. Let us assume that A and m have finite limits
in 00. Consequently,

1
a(x) ~ —x(shioo +Emico) = xay,
+oo Vp

1
a(x) ~ U—X(Szk_oo +Em_o) = xa_.
% VUp

This implies that

exp(laxx|)
————— 1 —sgn
) gn(xaz) >
To be normalizable, the divergent components of
exp (a(x)o,) must be simultaneously zero at Fo0o, which
means that

ker (1 — sgn(a4)oy) Nker (1 + sgn(a_)o,) # {0}.

This is true if and only if ara_ < 0.

If m + X changes sign, then we have a Kramers’ pair with
& = 5% If m — A changes sign then we have an other one with
& = —5%

Chirality can be most simply recovered in the limit of a
wide DW, and we do not expect that chirality is flipped under
smooth local deformations of the DW profile, including col-
lapsing the DW into a discontinuous step-like potential. This
limiting case can be fully solved with the previous method,
albeit with more difficulties than for a smooth DW. Hence we
will linearize the DW around a position where A = m + £s°A
changes sign. We already saw a change of sign in A is a
sufficient and necessary condition for the zero modes,

dA(x)

A _ Lo C6
= (x —x0) = T(X — Xo), (C6)

X0

exp(laxx|) . .

exp(aoy) ol n.o. (C4)

(C5)

where xp is the position where A goes to 0. Let us first
focus on k, = 0. By squaring the Hamiltonian we obtain an
harmonic oscillator and an homogeneous term,
2

H = —v%&f + %(x —x0)’ — vpslﬂoy. (CT
The eigenenergies of the harmonic oscillator part are
2vp|Ag/l|(n+ 1/2) with n a positive or null integer. The
last term of Eq. (C7) thus precisely shifts these energies
to 2vp|Ag/l|n and 2vp|Ag/l|(n + 1). In particular the zero-
energy subspace is not degenerate as opposed to all other
states, which are twofold degenerate and which contain both
eigenvectors of o,. So, the zero-energy eigenstate is also a
eigenstate of o, with eigenvalue £sgn(Ag). And of course, if
m + £s°A changes sign, then m + (—§&)(—s°)A also changes
sign in the same way.

Now, since H* = H?(k, = 0) + v%kf, this means that the
zero eigenvector of H(k, = 0) has eigenvalue o,vrk, where
we identify o, with its eigenvalue. So, we recapitulate the
chiralities of the different modes in the different cases in
Table I.

TABLE I. Chirality of the boundary modes.

m+ A m— A
A0>0 A0<0 A0>0 A0<0
+ 1 RM — |RM + | RM — 4RM
— LM + 4LM — 1 LM + LM
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The first row denotes which term is changing sign while
=+ is the value of &, 1 the value of s* and RM (LM) means
right (left) mover. For a DW between a trivial and QSH phase,
then either m + A or m — A changes sign, but they cannot
both change sign. We recover the standard edge states with
direction of movement, spin and valley being correlated. If
both terms change sign, then the DW separates either two
trivial or two QSH phases. If it separates two trivial phases,
then both m + A and m — A have the same sign. Thus, we have
both spins at both valley, but valley and direction of movement
are still correlated. If it separates two QSH phases, then m + X
and m — X have opposite signs, so direction of movement is
now only correlated with spin.

These match exactly the results of applying the spectral
flow theorem.

Ny
> —1N.—1

§ 2 i ¥ T i
Hyivial = ma(ca'g,Alcaﬁ,Al + C(Xﬁ,Azcaﬂ,AZ - Caﬁ’Blcot,B,Bl - Caﬁ’BQCaﬂ,BZ)v where m, =

=0 a=0

APPENDIX D: INTERVALLEY-SCATTERING GAP FOR
ARMCHAIR DOMAIN WALL IN DIRAC MASS

Here we derive an analytical perturbative result for the
small gap due to intervalley mixing of valley-polarized modes
of a DW in Dirac mass.

Continuum theory (either SFT or direct solution) predicts
four in-gap modes and hence four zero-energy states, with
both spins present in both valleys. Here we consider an
armchair domain wall in the mass term and perturbatively
compute the valley-mixing effect near the Dirac momenta.
Our initial eigenspace is the fourfold degenerate zero-energy
eigenspace for spinless fermions (so eightfold for electrons)
of standard graphene and our perturbation is the mass domain
wall,

: Nx
{+mlf()l <5 D1

—m otherwise

Here we introduce an enlarged unit-cell comprising four atoms which belong to two adjacent elementary unit cells. We use the
numbers {1, 2} to label this internal degree of freedom. This folds the hexagonal Brillouin zone into a rectangle where +K are

mapped to F27 /(3+/34a).
The first step is to compute the matrix elements of the mass term in the Fourier basis,
o 1 4
i ¥ f T
Huivial = Z Z " | g (c Chik, A1Chaky AL F Cpp 49Choky, A2 = Cpp g1 Choky, B1 — cklk),,Bzckzk,\sz)' (D2)
ky=0 k= rl—e
ko =0k, — k2 112]
[
Because we considered a sharp domain wall and symmetric in  the {jz\Al,K>+IAz,K> J21B1.K)+IBy K) A1, —K)+|Ar, —K)
domains we only couple states with an odd momentum dif- 1B1—K)+ 1A, —K) ﬁ_ ) vz V2
ference. As a consequence there is no first-order contribution A } basis is
of the mass on the Dirac cones, so we need to go to second
order. To do so we need the eigenvectors with energies close 0 0 0 «*
to 0 which we obtain by using first-order perturbation theory @) 0 0 «* O - ~
on the zero energy eigenspace of standard graphene but the H = 0 « O O] Ote)ze + 3¢ )my)or, (D3)
perturbation is now the small momentum in the X direction. k 0 0 O
The Bloch Hamiltonian at the Dirac point K = %e} is, in
units t = —1, where
8 8 1 J 16m> 1 1
—J k= T > )
Hg = 1 _j2 0 o |’ (D3) 3 o (1 o2 ‘“)(j _ —2m2'+1) v, 2p+ 1)
—J 1 0 0
/ NEE (D6)
_ . Uy = .

where j = ¢’ is the usual cubic root of 1, and the Bloch * Ny

Hamiltonian H_x at the other valley —K is obtained simply
by exchanging j and j%. Now we can compute the effect at
first order, namely at first order in £

N 9
o 0 0
Heo o —H +2i71’p 0 0 —j2 0 (D4)
K+pe, — HK NX 0 j O O
-2 0 0 0
Vv

Details of the calculation are not presented for the sake
of brevity, and finally we obtain that the effect of the mass
term at second order on the low-energy states of graphene

This Hamiltonian opens a 2|« | gap. To compute k we use that
N, — 400, hence

_ 16m? 1 1

N? S 2im B (1 — j = 2in BH) v.2p+ 1)

D7)

Since v, is in l it is justified to only keep the first-order con-

tribution in ]5 s Whlch will lead to a constant term thanks to the
while higher order contributions will disappear

prefactor T

035139-10



ROBUST PROPAGATING IN-GAP MODES DUE TO ...

PHYSICAL REVIEW B 106, 035139 (2022)

in the thermodynamic limit. We get

1 2 2
PRy P (D8)
(1= DNZ = 2/3im?(2p + 12
8m? 1 8m?> 2
= Z 2 = = 27
i(1— V32 7 Cp+ 1 i1 = j)v/3n> 8
2m?
= (D9)
V3 =)
and finally
2m?
|| = =3 (D10)

which is the expression quoted in the main text. The predicted
gap of 2|k| is compared to the gap in modes we obtain by
numerical exact diagonalization of the tight-binding Hamilto-
nian [Figs. 4(a) and 4(b)].

Finally, if we go from a sharp domain wall to a smooth
domain wall, the gap gets drastically reduced, as can be seen
in Fig. 4(c). Our smooth domain walls are obtained by con-
volution of a sharp DW (step function) with a Gaussian of
desired width &. The drop in the value of the gap is coherent
with our analysis as the value of the gap is tuned by the Fourier
coefficients linking states close to K to states close to —K.
Indeed, as the smoothness of the domain wall increases, which
means as its typical width increases, the width of its Fourier
transform decreases. This gives support to our assessment that
the gap is a second-order effect caused by the sharpness of the
domain wall.
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