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We provide a quantitative analysis of the splittings in low-lying numerical entanglement spectra (ES), at
given momentum, of a number of quantum states that can be identified, based on “Li-Haldane state-counting”,
as ground states of (2 + 1)-dimensional chiral topological phases with global SU(2) symmetry. The ability to
account for numerical ES splittings solely within the context of conformal field theory (CFT) is an additional
diagnostic of the underlying topological theory, of finer sensitivity than “state-counting”. We use the conformal
boundary state description of the ES, which can be viewed as a quantum quench. In this language, the
ES splittings arise from local conservation laws in the chiral CFT besides the energy, which we view as a
generalized Gibbs ensemble (GGE). Global SU(2) symmetry imposes strong constraints on the number of
such conservation laws, so that only a small number of parameters can be responsible for the splittings. We
work out these conservation laws for chiral SU(2) Wess-Zumino-Witten CFTs at levels one and two, and for
the latter we notably find that some of the conservation laws take the form of local integrals of operators of
fractional dimension, as proposed by Cardy for quantum quenches. We analyze numerical ES from systems with
SU(2) symmetry including chiral spin-liquid ground states of local 2D Hamiltonians and two chiral projected
entangled pair states (PEPS) tensor networks, which exhibit the ‘“state-counting” of the SU(2)-level-one and
SU(2)-level-two theories. We find that the low-lying ES splittings can be well understood by the lowest of
our conservation laws, and we demonstrate the importance of accounting for the fractional conservation laws
at level two. Thus the states we consider, including the PEPS, appear chiral also under our more sensitive

diagnostic.
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I. INTRODUCTION

Topological states of matter exhibit a new kind of robust
“nonlocal” order that is of great interest to condensed mat-
ter physics [1-5]. Some types of topological states in two
spatial dimensions, including fractional quantum Hall states,
lack time-reversal symmetry and are known as chiral topo-
logical states, which possess gapless topologically-protected
edge states at their boundaries with universal finite-size spec-
tra governed by (14 1)D chiral conformal field theories
(CFTs) particular to the specific bulk topological order [5-8].
The searches for physical Hamiltonians that give rise to
two-dimensional quantum states of this type, as well as in-
vestigations of the states themselves, make up a very active
area of research.

A useful method to help identify these states in numerical
simulations is the entanglement spectrum (ES). Bipartition-
ing the Hilbert space into two disjoint halves A and A, we
can compute the reduced density matrix of A as py = Trz p,
where p is the (global, pure-state) density matrix of the topo-
logical quantum state, and Tr; indicates that we trace out
the degrees of freedom associated to A. Then we can define
the entanglement Hamiltonian as Hentanglement = — 10g 4. Its
spectrum will be the ES. If the bipartition corresponds to
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degrees of freedom in two regions of real space, we call this
spectrum the real-space entanglement spectrum (RSES), and
we refer to the division (interface) between the two spatial re-
gions A and A as the entanglement cut. The crucial realization
by Li and Haldane was that, for chiral topological systems,
the low-energy states of the theory on a physical edge in real
space, known to be described by a chiral CFT, are in a one-
to-one correspondence with the low-lying eigenstates of the
entanglement Hamiltonian computed across the entanglement
cut placed at the same location as that physical edge [9-14].
This wonderful fact, judiciously applied, allows the ES to
become a diagnostic for identifying the presence of chiral
topological states in numerical simulations. Typically, the en-
tanglement spectrum is computed across the entanglement cut
(see Fig. 1, e.g., for an entanglement cut that is a circle, which
appears when the surface of a cylinder is cut into two parts),
and for the low-(entanglement)-energy part of the spectrum,
the number of states at each momentum (along the circular
cut) and of each type is counted and compared to the corre-
sponding number in the relevant CFT. This agreement is taken
as evidence that the correct topological state (or something
similar to it) has been produced by the computation [15-18].
Numerical results at finite size, however, typically show
splitting of the energy levels of entanglement spectra at a
given momentum (see, e.g., Refs. [13,15-21], among many
others), energy levels that would be degenerate consider-
ing the corresponding CFT Hamiltonian alone. We would
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FIG. 1. An infinite cylinder is bipartitioned into two sections A
and A by a circumferential (virtual) entanglement cut (in black). If
the cylinder consists of a chiral topological bulk state, then by the re-
sult of Li and Haldane, the low-lying eigenstates of the entanglement
Hamiltonian computed across the depicted entanglement cut are in a
one-to-one correspondence with the low-energy states of the theory
on the physical edge in real space that would be present if a physical,
separating cut was made along the entanglement cut. An anyon flux
of type a is shown threaded through the cylinder.

like to gain a more complete understanding of the detailed
characteristics of these splittings in the low-energy levels
for real-space entanglement spectra, as these may provide
information (going beyond the state-counting alone) about
the underlying (2 + 1)-dimensional topological field theory,
which is directly reflected in the structure of the resulting CFT,
as well as the performance of the numerical methods used.
In particular, regarding the former point, if the underlying
(2 4+ 1)-dimensional bulk topological field theory has been
correctly identified, it must be possible to account for the
splittings in the ES entirely within the context of the resulting
CFT, i.e., without recourse to any other principles. If this is
not possible, then the nature of the bulk state was not correctly
identified.

Various papers [13,19,20] have successfully endeavored
to study splittings in the entanglement spectra for Laugh-
lin (or Pfaffian) quantum Hall states in a number of cases
by irrelevant and/or dispersive terms, or composite fermion
descriptions. We focus our attention on systematically inves-
tigating the ability of CFT to describe and characterize these
splittings in a variety of different numerically generated chiral
topological states, including projected entangled pair states
(PEPS)—see below. We use the conformal boundary state de-
scription [10,22-24] to do this. The specific chiral topological
states we consider are those where the bulk, and consequently
also the edge theory (and therefore the chiral CFT describing
the entanglement spectrum), possess global SU(2) symmetry:
In particular, those where the topological properties of the
bulk are described by SU(2)-level-k [SU(2);] Chern-Simons
theory [7], and thus where a physical edge is described by a
chiral SU(2);, Wess-Zumino-Witten (WZW) CFT (reviewed
in Sec. II), as is the case for some types of topological state
[5]. The Kalmeyer-Laughlin spin liquid [25] is one example
[15] of such a chiral topological state that hosts, at a physical

edge, edge modes described by a chiral SU(2); WZW CFT,
and the non-Abelian SU(2), chiral spin liquid has also been
investigated [26]. In this paper specifically, we consider chiral
spin liquids described by (chiral) SU(2); and SU(2), Chern-
Simons theories, and indeed we account for special features
appearing in the entanglement spectrum of the half-integer
spin sector of the SU(2), theory, stressing in particular the
importance of fractional conservation laws [22] in understand-
ing that entanglement spectrum. As compared to the quantum
Hall states mentioned above, global SU(2) symmetry turns
out to strongly constrain the number of parameters that can
be responsible for the splittings. We additionally consider the
effect of a discrete symmetry, the composition of spatial re-
flection and time reversal (R7), which further constrains the
number of parameters responsible for the splittings in some
cases.

For chiral topological states, the splittings can be under-
stood in terms of CFT, as outlined below, by considering
certain conserved quantities in the chiral CFT describing the
ES, which contribute to a generalized Gibbs ensemble (GGE)
form for the reduced density matrix. Thus the entanglement
Hamiltonian will incorporate not only the data of the CFT
Hamiltonian itself, but also data on the locally conserved
quantities of the theory of the CFT that obey the SU(2) sym-
metry, as well as relevant discrete symmetries. These locally
conserved quantities can be thought of as arising physically
in the process [10] of generating the reduced density matrix
along the real-space entanglement cut and are a property of
the underlying two-dimensional topological quantum state it-
self. (See Sec. III below for a review of this process using
the “conformal boundary state” formulation.) Further, in Ref.
[22], Cardy describes, in the context of quantum quenches,
“semilocal” conserved quantities, integrals of operators with
noninteger dimension, that should in general be present in the
GGE. These are the aforementioned fractional conservation
laws. In sectors with twisted boundary conditions (such as, in
a cylindrical geometry, those arising from threading the cylin-
der with topological flux, as shown in Fig. 1), these quantities
take the form of integrals of local operators, commute with
the Hamiltonian, and belong to the GGE along with other lo-
cally conserved quantities. We detail the contribution by these
conserved quantities described by Cardy to the splittings in
the half-integer spin sector of the chiral SU(2), theory (which
can be viewed as the Ramond sector of a theory with N = 1
supersymmetry). This discussion, of how to understand the
entanglement spectrum splittings with conserved quantities
from CFT, and which conserved quantities will contribute to
the splittings, is found in Secs. III and IV.

In Sec. V, we fit this description of the ES (which by con-
struction is capable of describing the entanglement spectrum
of any such chiral topological state) to numerically computed
entanglement spectrum data of a variety of different states,
all of which were observed to obey Li-Haldane counting.
What we find from these fits is that we can understand the
numerical spectra very well using our approach, including
the novel fractional dimension conserved quantities, which
we show to be essential to the understanding of the entangle-
ment spectra of chiral topological states described by SU(2),
Chern-Simons theory. As mentioned above, this provides con-
firmation that the description of the bulk topological state by
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the corresponding topological field theory is correct for the
systems considered, as the ES, including the splittings, can be
described entirely in terms of quantities of the CFT associated
with that bulk topological field theory.

This approach also gives insight into the success of the var-
ious computational techniques used by the studies considered
here in capturing the chiral topological nature of the states in
question. For instance, Refs. [15] and [16], whose study we
discuss in Sec. V, use density matrix renormalization group
(DMRG)-based techniques, and we verify that they exhibit
detailed splitting behavior in the entanglement spectrum that
is consistent with the possibilities allowed by the construction
of the entanglement Hamiltonian out of available terms in
the GGE from the chiral CFT, thereby supporting the ability
of these DMRG-based techniques to capture chiral topolog-
ical behavior. The other two numerical entanglement spectra
discussed in Sec. V, Refs. [17] and [18], are generated in-
stead through the use of chiral projected entangled pair states
(PEPS) tensor network techniques. There, too, our results
support the ability of these (PEPS) techniques to capture chiral
topological behavior.

PEPS tensor network techniques are a powerful general
tool and the subject of considerable interest in their own right
[27]. Here, we consider in particular chiral interacting PEPS
[17,18,28]. However, noninteracting fermionic chiral topolog-
ical PEPS (that is, noninteracting fermionic PEPS possessing
a nontrivial Chern number) are known to obey a “no-go
theorem”, stating that they cannot be ground states of local
Hamiltonians gapped in the bulk [29,30]. Thus, if a noninter-
acting fermionic chiral topological PEPS is the ground state of
a local parent Hamiltonian, that Hamiltonian must be gapless
in the bulk. Whether this “no-go theorem”, or a variation
thereof, generalizes to interacting chiral topological PEPS is,
to date, an open question. Our paper can provide insight into
this topic. For example, we consider the entanglement spec-
trum of the spin-1/2 PEPS investigated in Ref. [17] [shown,
with our fit to the splittings, in Fig. 5, corresponding to those
for an Abelian SU(2); chiral spin liquid]. The observed finite
size splittings of the entanglement spectrum can be very well
understood by our approach, only using the information from
the CFT. This analysis lends substantial support to the claim
of chirality for the PEPS of Ref. [17], consistent with earlier
work pointing toward chirality of this PEPS [31].

Our approach also bolsters the evidence for chirality in the
spin-1 PEPS of Ref. [18], where we find splittings character-
istic of the non-Abelian chiral SU(2), theory, consistent with
the observed Li-Haldane counting. In Ref. [18], as well as
in other interacting PEPS that appear to be chiral based on
Li-Haldane counting (including the PEPS of Ref. [28], which
is similar to the PEPS found in Ref. [17], discussed above),
it has been observed numerically that equal-time correlations
of local operators in the PEPS quantum state appear to have
long-range correlations [18,28,32,33]. It is expected (see, e.g.,
Refs. [34,35]) that this implies that local parent Hamiltonians
of these PEPS would be gapless, which would be further
evidence in support of an interacting “no-go theorem”. There-
fore, by providing additional evidence for chiral topological
behavior in interacting PEPS, our approach shows the ability
to help determine whether such a “no-go theorem” holds for
interacting chiral topological PEPS.

II. STRUCTURE OF CHIRAL SU(2);
WESS-ZUMINO-WITTEN CFTS

The CFTs we will encounter in the entanglement spectra
we look at in this paper are chiral SU(2), WZW CFTs [36].
The Hilbert space of such a CFT consists of k 4 1 primary
states and their descendants under the actions of elements of
an affine SU(2) current algebra. Each primary state and its
(affine) descendants comprise a separate topological sector of
the theory. Each descendant of a primary state has a particular
(descendant) level associated to it based on the elements of
the current algebra used to specify the state. The descendant
states, ordered by increasing level above the primary state,
form “conformal towers” for each topological sector of the
theory.

We can denote each of the k + 1 primary states of SU(2);
by its global SU(2) spin quantum number j, with the notation
|j = i/2) for some integer i =0, ..., k. The state |j) takes
the form of the (2j + 1)-dimensional spin-j representation
of global SU(2) (with j* ranging from —j to 4 in inte-
gral increments in the usual way). The descendant states in
the conformal tower also obey the global SU(2) symmetry,
and we can therefore view all of them as SU(2) multiplets
of various dimensions. The pattern of multiplicities of these
multiplets is characteristic of the theory. In the SU(2); the-
ory, the two topological sectors, which correspond to |j = 0)
and |j = 1/2) primary states (of the affine current algebra),
are often referred to as the integer and half-integer sectors,
respectively. This structure is illustrated for the chiral SU(2);
WZW CFT in Fig. 2.

Our analysis will be done in a spatially circular geometry
with fixed time coordinate in the CFT, in which we take the
affine SU(2) currents J*(x) [where a = 1, 2, 3 is the index
of the generator in the adjoint representation of SU(2)] to
be periodic in the spatial coordinate x around the circle:
J4x) = J%x + £), where ¢ is the circumference of the circle.
The energy-momentum tensor 7 (x) of the CFT can be related
to the J%(x) by expressing 7 (x) in the Sugawara form [36],

1 3
T =1 > UIY@), @.1)
a=1

where we use brackets () around JJ“ to indicate normal
ordering. We note that 7 (x) will inherit the periodicity of
J4x): T(x) = T(x + £). We can then write T (x) in terms of
modes L_,, as

2 00
T(x) = (27”) <_i + ) Lnezﬂimf/’5>, 2.2)

n=—00

where the central charge ¢ = % for an SU2);, WZW CFT.
Thus we see that the Hamiltonian of this theory, which de-
scribes the left-moving states, will be

v ¢ 2mv c
H = — Tx)dx = — - —
L 2n/0 (dx = =5 (l" 24)

where v is a (nonuniversal) velocity. From now on we will
suppose v = 1 for simplicity, since the conclusions we draw
will not depend on an overall scale factor. The eigenvalue of
Ly (or Lo) is the overall conformal dimension % + K of the

2.3)
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FIG. 2. A reproduction of the entanglement spectrum of Fig. 4
from Bauer e al. (taken from Fig. 4 of the arXiv version [15]).
Two topological sectors are manifest, the integer in (a) and half
integer in (b), with conformal towers rooted, respectively, in the
|j = 0)and|j = 1/2) primary states (the lowest markers at momenta
0 and =+, respectively). Extending above these primary states in
each blue-shaded subtower of fixed j* are their descendant states,
all of which display SU(2) symmetry across the indicated j* writ-
ten at the bottom of the subtowers. [In the figure, these different
subtowers are horizontally offset from each other by 27 to make
them clearly visible (i.e., they actually have the same momenta).]
Within each subtower, indicated by vertical black lines up to the
fourth descendant level, we have the 1-1-2-3-5 counting of states that
are degenerate in momentum and under the pure CFT Hamiltonian.
This state-counting pattern is characteristic of the chiral SU(2),; CFT.
(See Appendix A for more detail on the counting of states here.)

state on which it acts: the sum of the conformal weight 4 of
the WZW primary state at the base of the relevant conformal
tower and, if the state in question is a descendant of a WZW
primary state, the level K of that descendant state above the
corresponding primary state.

The left-moving momentum k; acts uniformly on all the
states |h, K) at descendant level K above a primary state with
conformal weight /4 to give

2 2

kplh, K) = TLolh, K) = 7(h—|—K)|h, K). 24
We can also write down a corresponding set of quantities
for right-moving states (in the Hilbert space of the chiral
right-moving CFT): a Hamiltonian Hg that is instead an in-
tegral of the conjugate energy-momentum tensor 7T (x), Ly
the zero-mode of 7 (x), and the right-moving momentum k.
Therefore, all of the states in a given conformal tower at the
same descendant level should be degenerate in both momen-
tum, and energy, the eigenvalue of the CFT Hamiltonian Hj,
(or Hg). The counts of these degeneracies are a characteristic
marker of the CFT. These degeneracies and their description
in terms of SU(2) multiplets are described in a more detailed
discussion of the structure of the chiral SU(2), WZW CFT
Hilbert space in Appendix A.

We can observe these degeneracies in numerical results.
If this (1 +1)D CFT on a circular spatial geometry is in
fact the theory of one of the two decoupled circular edges
that arises from cutting, along its circumference, an infinite
cylinder home to a (2 4 1)D bulk topological quantum field

theory, then the left- and right-moving momenta k; and kg,
and Hamiltonians H; and Hg, govern the left- and right-
moving states along the respective physical edges created by
that cut of the cylinder. The aforementioned degeneracies of
the momenta and energy spectra will also be present.

The geometry of this setting is depicted in Fig. 1. As
discussed in the introduction, the Li-Haldane correspon-
dence means that these degeneracies will then appear in the
low-lying (entanglement) energy levels of the real-space en-
tanglement spectrum computed with an infinite cylinder bipar-
titioned with a (virtual) entanglement cut in the same location
as the physical cut determining the edge. Crucially, though,
when this computation is done, as in the numerical work, for
cylinders of finite circumference for the entanglement cut, the
degeneracies in question appear only for momentum, but are
split for the entanglement energies. To illustrate this with a
particular example, we can consider Fig. 2, an entanglement
spectrum exhibiting the characteristic pattern of degeneracies
associated with the chiral SU(2); WZW CFT. The degenera-
cies are present in momentum, but split in the entanglement
energy levels of the spectrum. We will consider this particular
entanglement spectrum in greater detail in Sec. V.

III. EXPLAINING ENTANGLEMENT SPECTRUM
SPLITTING WITH LOCALLY CONSERVED QUANTITIES

As we saw in Fig. 2, in the real-space entanglement spectra
that we study, numerically computed at finite size, the states
at the same descendant level are not all degenerate. Instead,
we observe splitting of such states despite their common con-
formal dimension. Our goal is to gain control over the RSES,
splittings and all. To do this, we need to re-examine the origin
of the entanglement/edge correspondence that allows us to
find the edge CFT data in the entanglement spectra in the first
place.

Reference [10] (as briefly summarized here below) under-
stands the entanglement/edge correspondence in a biparti-
tioned cylindrical geometry (Fig. 1) from the point of view
of a quantum quench, that for time # > 0 decouples the two
Hamiltonians H; and Hy of the counter-propagating left- and
right-moving physical edges produced by physically cutting
the cylinder along the entanglement cut. Then, the actual
topological ground state |G) of the system on the surface
of the cylinder will serve as the r+ = 0 boundary condition
of the quench, i.e., as the initial state. That short-range en-
tangled (and short-range correlated) initial state |G) can be
represented as the state resulting from a coupling between
the two counter-propagating edges above (e.g., by relevant
or marginally relevant operators), a process that generates a
gap. This initial state plays a dual role (see Refs. [10,23,24]):
(i) on the one hand, as described above, it can be viewed as
the ground state of a CFT gapped by coupling left- and right-
movers, and (ii) at the same time, it is a boundary condition
on a gapless CFT describing the initial state of the quantum
quench after Wick-rotation to imaginary time. That boundary
condition itself undergoes a renormalization group (RG) flow,
and is controlled at large scales by a scale-invariant boundary
fixed point. When formulated in the language of a state in the
Hilbert space of the bulk CFT, this fixed point is described by
what is known as a conformally invariant boundary state |G.).
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That fixed point boundary state is itself not immediately useful
for representing the physical state |G) because, representing
a fixed point, it turns out to be not normalizable. |G,) can
be given a finite norm by slightly “deforming” this state by
slightly moving away from the fixed point in the RG sense
by irrelevant boundary operators. The initial study by Cardy
and Calabrese on quantum quenches [37,38] made a particular
(special) choice for an irrelevant boundary operator, which
they chose to be the energy momentum tensor of the CFT at
the boundary; thus, they represented the physical state |G) in
terms of the fixed point conformal boundary state as

|G) o e ™HLAHR| Gy, 3.1

where H; and Hgi are the CFT Hamiltonians for left- and
right-movers, which are precisely the spatial integrals of the
left- and right-moving energy-momentum tensors 7 (x) and
T (), respectively. The so-obtained state |G) turns out to
be a purification of a thermal density matrix (as reviewed
below), where the “extrapolation length” 1y plays the role
of an inverse temperature, which sets the scale for the finite
correlation length of all “equal time” correlation functions of
local operators in this state [39].

But Eq. (3.1) is not the whole story, since the energy-
momentum tensor is only one of the possible irrelevant
operators that may be used to deform the boundary fixed point
state |G,) in order to make it normalizable. The integral of the
energy-momentum tensor alone is not general enough to rep-
resent the actual ground state |G) of the topological system on
the surface of the cylinder in terms of the fixed point boundary
state |G,). The procedure that allows for a representation of a
general ground state on the cylinder surface will be described
in Eq. (3.3). Before describing this, we need to also introduce
the different topological flux sectors. We do that first using the
state in Eq. (3.1), and generalize this subsequently.

The topological sector of the theory on the surface of the
cylinder depends on the topological flux through the cylinder
(Fig. 1). This will select, following Ref. [10], a correspond-
ing sector in the entanglement spectrum we are interested in
describing. In any so-called rational CFT, such as those under
consideration, all conformally invariant boundary states |G.)
turn out to be finite linear combinations of states |G ,), where
a denotes topological flux [40]. This leads to the obvious gen-
eralization of Eq. (3.1), namely, |G,) o e Ut |G, ),
where |G,) describes the ground state of the system in the
topological flux sector a. We are interested in the reduced
density matrix pr , of the ground state |G,) of the topological
system in question, for which the half of the cylinder with the
right-moving edge has been traced out. It turns out that under
the assumption of Eq. (3.1), tracing out the half of the cylinder
with the right-moving edge degrees of freedom yields [10]

pr.a = Trr(1Go)(Gyl) o Pe *™HLp,, (3.2)

where P, is a projector onto the sector a. That is, the re-
duced density matrix has a thermal form with effective inverse
temperature 8 = 415. Then we would have an entanglement
Hamiltonian simply proportional to the Hamiltonian H; of
the left-moving chiral edge CFT Eq. (2.3) projected onto the
sector a. As previously noted, though, under this Hamiltonian,
all the states of a given conformal dimension are degenerate,
so there must be additional terms in the entanglement Hamil-

tonian. Cardy has more recently argued [22] in the context of
quantum quenches that one can generalize the assumption of
Eq. (3.1) to include also conservation laws, which are inte-
grals of irrelevant local boundary operators ®; and @, (left-
and right-moving, respectively, in the bulk, with coinciding
boundary limits [41], ®;(x) = ®;(x), corresponding to the
boundary operator) other than the energy-momentum tensor
T(x) and T(x), leading to a generalized Gibbs ensemble
(GGE):

IG) e~ (B/M(HL+Hg) 1_[ e—(ﬁi/4)/'[¢i(x)+5i(x)]dx|G*>' (3.3)

l

That is to say, we now introduce a more fine-grained ansatz
to guide |G) closer toward the actual topological ground state
on the surface of the cylinder by deforming |G,) with a more
complete set of irrelevant boundary operators [42]. When we
calculate the reduced density matrix pr , by tracing out the
right-moving parts of the above expression, we obtain a GGE
form for pr 4,

pLa = Trr(|Ga)(Gal) o< Pue P [ [ e/ ®00p, - (3.4)

l

where ®;(x) can be viewed as operators acting only on
the left-moving boundary [43]. This clarifies the cause of
the splittings: additional locally conserved quantities H® =
ﬁ foz ®;(x)dx in the theory, besides just the Hamiltonian H},
are entering into the form of the reduced density matrices
pL.q- These may include integrals of such irrelevant opera-
tors as powers of the energy-momentum tensor 7 (x), e.g.,
ﬁ f dx(TT)(x), a hierarchy of integrals of motion that can
be written down for a wide range of CFTs [44,45]. Integrals
of other available local operators of even integer conformal di-
mension will come in as well, however, and for the case of the
chiral SU(2), theory (in the spin-1/2 sector, where the bound-
ary conditions allow them) we will also have integrals of
operators with half-integer conformal dimension, a case dis-
cussed in Ref. [22] in the context of quantum quenches. One
example of these in our case is the integral Gy = ﬁ f dxG(x)
of a chiral superconformal current operator G(x), analogous
to that included in the hierarchy of integrals of motion in
an N = 1 superconformal field theory [46]. We will find that
this same conservation law can be written down in the chiral
SU(2), theory, since it is known [47-49] to possess N = 1
superconformal invariance.

The entanglement Hamiltonian is then a sum involving all
these conserved quantities, and we have [50] (within a given
sector, so we can suppress the subscripts a)

o0

Hentanglement — const. = —log p, — const. = Z ,BiH(I)

1

oo
BHL+ Y BH",
i1

(3.5)

where B; are parameters chosen to properly match the initial
conditions of the quench, and we take 8, = 8 and HV =
H; (the Hamiltonian of the CFT, which is just one of the
conservation laws). Thus, we explain the splittings by some
linear combination of the locally conserved quantities H®.
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We end this section by highlighting an aspect of the fact
that the entanglement Hamiltonian Eq. (3.5) is described by a
linear combination of conservation laws involving irrelevant
boundary operators, the particular linear combination being
dictated by the wave function of the topological quantum state
on the cylinder surface (the initial condition of the quench).
When expressed in terms of system size ¢-independent con-
servation laws H® := (;5)~'H® (where A; > 1 is the
associated conformal dimension—these are summarized in
Table IV of Appendix B),

2z > 2 \At
Hentanglement — const. = ,B <7)HL —+ Z ﬂi <7> H(l)’

i#1
(3.6)

the entanglement Hamiltonian in the limit of large system
size ¢ (cylinder circumference) ought to be dominated by the
least irrelevant conservation law (the A¥ with the smallest
A;). While we find that for most systems (and topological
sectors) whose numerical ES data we investigated, this least
irrelevant conservation law is the Hamiltonian H; of the CFT,
the integral of the energy momentum tensor (i.e., all A; > 2,
for i # 1), we find instead in Sec. VB below that, in con-
trast, the entanglement spectrum of the spin-1/2 sector of the
non-Abelian chiral SU(2), spin liquid requires a fractional
conservation law H® « G, with scaling dimension (A;—¢ =
3/2) smaller than that of the energy momentum tensor (and
any other conservation laws). More generally, this conser-
vation law is allowed to occur in this sector on symmetry
grounds [51], so it will in general be present in the entangle-
ment Hamiltonian. It would appear, then, that this fractional
conservation law, arising (as already mentioned above) from
an underlying supersymmetry of the corresponding CFT, will
dominate the entanglement spectrum at large system size (far
beyond the small finite sizes of the spectra shown in Sec. V).
As a consequence of this, the entanglement spectrum in the
limit of large system size would therefore not be expected to
approach the spectrum of a CFT Hamiltonian [which would
describe the spectrum at a physical edge as in (2.3)], but rather
the spectrum of Gy,

277 1/2
Hemang]emem ~ /30(7) Go, (£ — 00). 3.7

Since the Hamiltonian of the CFT is related to the square of
G due to the space-time supersymmetry [48], the eigenvalues
of Gy are related to those of the energy (and the momentum)

via [52]
/ c

Given this relation, it would seem that in this sector the en-
tanglement spectrum would take values equal to the positive
and negative square-root of the (left-moving) momenta k;
[compare (2.3)]:

Hentanglement ~ +pov/ vk + O(kr) (£ — 00). (3.9)

It would be interesting to try to understand this in future
work, e.g., through numerical investigation by accessing the
thermodynamic limit of the entanglement spectrum using an

(3.8)

excitation ansatz approach, as discussed in Ref. [53] for the
simpler, Abelian Kalmeyer-Laughlin chiral spin liquid [31].

IV. CHOOSING THE LOCALLY
CONSERVED QUANTITIES

A crucial question in this effort is how to properly
choose the locally conserved quantities H® that go into our
parametrization Eq. (3.5) of the entanglement Hamiltonian.
These quantities ) must both commute with the Hamilto-
nian H; of Eq. (2.3) and, crucially, must preserve both the
SU(2) symmetry of the CFT and any applicable discrete sym-
metries. The requirement of global SU(2) symmetry serves
as a strong constraint on the irrelevant local operators whose
integrals we can use for the H”). For the systems we consider,
the principal discrete symmetry in question is the R7 symme-
try of the (1 4+ 1)D theory found in the entanglement spect-
rum that results from the symmetry of the (2 4 1)D theory
under the composition of a spatial reflection through a plane
parallel to the axis of the cylinder and time reversal. Further, in
the case of each of the PEPS we consider, the R7 symmetry
has been built into the PEPS wavefunction by construction.
The details of the R7 symmetry can be found in Appendix C.

We will not require our conserved quantities to commute
among themselves as long as they commute with H;. One
might rightly worry about the issue of noncommutativity of
the H” among themselves when taking the logarithm of
Eq. (3.4) to obtain Eq. (3.5), but since our list of H® will be
exhaustive of quantities that commute with H; and preserve
SU(2) and RT symmetry, we can simply reassign the §; as
needed to account for the commutators.

To simplify our calculations and to avoid a surfeit of
parameters, we only consider integrals of local operators
up to conformal dimension A = 6. (Operators of higher
conformal dimension, more irrelevant, will have less
significant contributions to the spectral splittings, and could
of course be incorporated if necessary.) At a given conformal
dimension A, we begin by considering the complete list of all
the independent SU(2)-invariant operators of dimension A in
the theory. The operators of this type available will exactly
correspond to the SU(2) singlet descendant states of the
primary states of the theory. For the SU(2); WZW CFT, the
number of operators in that list is the number of SU(2) singlet
descendant operators of the identity with dimension A, equal
to the number of singlet descendant states of the primary
state |j = 0) at descendant level K = A. Since the level k
of the SU(2)x=; theory is k = 1, we can take advantage of
Abelian bosonization to construct these singlet descendants
from |j = 0) using only the Virasoro modes of the energy-
momentum tensor, and therefore these operators will consist
only of combinations of the energy-momentum tensor 7 (x)
and its derivatives. We do, however, exclude total derivatives
from the list of operators we consider, as their spatial integrals
will not contribute given the periodicity of the cylinder.
[Indeed, while the number of singlet descendant states of
|j = 0) can be found in Table II of Appendix A as the number
of singlets (1’s) in the “Multiplet content” column for the
|j = 0) primary sector, a further calculation is required to get
the actual number of operators we consider at each dimension
A = K: one must account for the exclusion of the derivatives
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TABLE I. An enumeration of the lower-dimensional (of conformal dimensions A; < 6) irrelevant operators ®;(x) we will use to fit the
splittings of the numerical spectra within each descendant level for (Ieftmost column) the chiral SU(2); and (all columns) chiral SU(2), WZW
theories we consider. The shaded cell indicates an irrelevant operator that we choose to exclude due to consideration of R7” symmetry.

A ®;(x) in SUQ )1 ®(x)in SUQ2), (A; € Z) ®,(x) in SUQ), (A € Z + 1)
3/2 G(x)

2 T(x)

7/2 (TG)(x)

4 (TT)(x) i(GAG)(x)

9/2

112 (G(TT))(x), AT IG)(x)

6 (T(TT))(x), @TIT)(x) i(T(GIG))(x), i(3GI*G)(x)

of the operators of dimension A — 1, corresponding to the
subtraction of the number of singlet states at descendant level
K = 1.] Additionally, the R7 symmetry requires that we
only include operators with even dimension A, as it can be
observed that operators with an odd number of derivatives
will be odd under R7T, while all factors of T (x) are even
under R7. In SU(2);, though, this does not exclude any
further operators, as all such operators of odd dimension A in
the SU(2); theory up to A = 6 turn out to be total derivatives
as well. A list of the operators ®;(x) we consider for the
SU(2), theory can be found in the leftmost column of Table I,
arranged by their corresponding conformal dimension A;.

For the SU(2), WZW CFT, the picture is somewhat more
complex. As we did for SU(2);, we can use the operator-state
correspondence to find the operators available to us in the
SU(2), theory. For SU(2),, the SU(2) singlet states come in
two sets: descendants of the |j = 0) primary state and de-
scendants of the |j = 1) primary state [54]. [This is because
these are the two sectors that have integer spin multiplets, and
therefore contain SU(2) singlet states.] Descendants of the
|j = 0) primary state correspond to operators that have integer
conformal dimension, since the conformal weight of the |j =
0) primary state is /1j—o = 0. This set of operators includes as
a subset the operators we considered for the SU(2); theory,
all of which had integer conformal dimension. Descendants
of the |j = 1) primary state, on the other hand, correspond
to operators that have fractional (half-integer) conformal di-
mension, as the conformal weight of the | j = 1) primary state
is hj—; = 1/2. [The number of singlet descendant states at
each descendant level K for both the |j =0) and |j = 1)
primary sectors, corresponding to the number of available
operators of dimension A = K (for |j =0))or A =K +1/2
(for |j = 1)), can be found in the respective “Multiplet con-
tent” columns in Table III of Appendix A (where singlets
are denoted by 1’s), though as in the SU(2), case, one must
account for the exclusion of total derivatives when comparing
to the enumeration of operators in Table 1.]

It turns out that we will only need to consider the action
of the integrals of the operators with half-integer conformal
dimension on the states of the |j = 1/2) sector, in which the
operators possess periodicity around the cylinder. One way to
see this is to express [55] the chiral SU(2), WZW CFT as a
theory of three free real Majorana fermions, which we will
denote by ¥¢(x) fora = 1, 2, 3. (See e.g., Ref. [56].) We can
relate the 3-fermion theory to the chiral SU(2), WZW CFT as
described in Sec. II by writing the SU(2) current J*(x) as the

fermion bilinear

J9(x) = —%eabc LYYl (),

where the :: indicates normal ordering. The 3-fermion theory
possesses N = 1 supersymmetry. The sectors of the |j = 0)
and |j = 1) primary states of the chiral SU(2), theory corre-
spond to the Neveu-Schwarz sector of the 3-fermion theory,
while the sector of the |j = 1/2) primary state corresponds to
the Ramond sector. ¥“(x) has conformal dimension 1/2, so
in the 3-fermion theory the half-integer dimensional operators
are exactly the fermionic operators. On the cylinder, fermionic
operators have periodic boundary conditions only in the Ra-
mond sector, with antiperiodic boundary conditions in the
Neveu-Schwarz sector. Thus integrals of fermionic operators
will be nontrivial only in the Ramond sector. And indeed,
this result holds in general for the half-integer dimensional
operators of the SU(2), theory we consider, so we will only
take them into account in our set of conserved quantities for
the |j = 1/2) primary state sector, which corresponds to the
Ramond sector, of SU(2),.

We will not work with the three fermions ¥ “(x) per se,
however, but rather with bosonic spin-1 Kac-Moody (affine)
primary operators ¢“(x) of conformal dimension A =1/2
that possess identical “anticommutation relations” within the
chiral theory [57] and satisfy

“.1)

J9(x) = —%eabc L gheC  (x).

We can then additionally write down a current operator G(x)
in terms of the ¢“(x) operators, which has the same oper-
ator product expansion relations within the chiral theory as
the superconformal current operator G(x) (see, e.g., Refs.
[47,48,58]):

4.2)

G(x) = éem L ¢0Pe  (x).

G(x) has conformal dimension A;—y = 3/2 [as it is composed
of three of the A = 1/2 operators ¢“(x)]. Furthermore, G(x)
is an SU(2) singlet. G(x) corresponds to the lowest-level
SU(2) singlet descendant in the |j = 1) primary sector, and
is thus one of the fractional dimension operators available
in SU(2),. The operators T (x), G(x), and combinations of
both and their derivatives will comprise the set of all of the
operators ®;(x) we consider in the SU(2), theory. These are
explicitly listed up to conformal dimension A; = 6 in all the
columns of Table I. The left two columns comprise the integer

(4.3)

035138-7



MARK J. ARILDSEN AND ANDREAS W. W. LUDWIG

PHYSICAL REVIEW B 106, 035138 (2022)

%*
Bauer et al., integer sector FEF

>
o3 FEXEEE
2 Tt
02 *%k K=t
5 wt
5
<_C7) K=1
So (¥ + Data
0 K0 )

x Fit

(a)

5 FK|
Bauer et al., half-integer sector
3 P
@ o
g3 k| okkok
= ettt K=4
T @ K=2
87 e K=1
kK|
20 ko + Data
L .
x Fit

(b)

FIG. 3. Our fit to the SU(2), entanglement spectrum data of Bauer et al. [15] is shown in (a) the integer sector (| j = 0) primary state and
descendants) and (b) the half-integer sector (|j = 1/2) primary state and descendants). The original data is indicated by black +’s, while red
x’s mark the fit produced by our approach. The black boxes indicate states with the same momentum, and hence the same descendant level
K above the corresponding primary state, while SU(2) multiplets are grouped within each box. (The multiplet content of each box may be
compared to Table II in Appendix A.) We attempt to fit 11 differences between multiplets in the integer sector and 11 differences between
multiplets in the half-integer sector. For each sector, our approach uses 4 parameters: 4 coefficients 8; in Eq. (3.5) for the conserved quantities
corresponding to the 4 distinct operators of A < 6 available in SU(2), found in the left column of Table I. The data was computed with a
cylinder of circumference £ = 12 [15]. The scales of the vertical entanglement energy axes are normalized such that (2w /¢) =1 [B(27 /€)
being the coefficient of H; in Eq. (3.6)], with the zero point appropriate to the conformal weight of the primary state for each sector.

dimensional operators, those which contain an even number of
half-integer dimensional factors [G(x) or its derivatives] and
hence are periodic in, and therefore found in, all sectors. The
right column contains the half-integer dimensional operators,
which contain an odd number of factors of G(x) or its deriva-
tives, and are only available to us in the |j = 1/2) sector as
discussed above. Note that we again exclude total derivatives.
The RT symmetry also requires that we again exclude all
operators with odd integer dimension A, though as was the
case for SU(2),, all operators of odd integer dimension below
A = 6 for SU(2), will again be total derivatives of even inte-
ger dimensional operators as well, and thus they are already
excluded. G(x), however, which has A,y = 3/2, is invariant
under R7 in the Ramond sector as discussed in Appendix C 3.
Thus, of the half-integer dimensional operators we consider,
only (T9G)(x), where an odd number of derivatives are not
multiplied by an i (which will become —i under the antiunitary
RT), will actually be wholly excluded from the entanglement
Hamiltonian due to the R7 symmetry. This is indicated in
Table I by a shaded cell.

For each of these operators ®;(x), we compute the mode-
expanded form of the system size £-independent integral H®.
[Recall that H? = (;5)»~'H®, where A; is the confor-
mal dimension of ®;(x).] The mode-expanded forms of the
H® can be found in Table IV of Appendix B. Using the
mode-expanded forms for the ), Hepganglement Of Eq. (3.5) is
diagonalized on the space of descendant states of each of the
k + 1 CFT primary states of SU(2)y, a description also found
in Appendix B. For each primary state, this gives a method
for finding the entanglement spectrum of the corresponding
sector of the CFT in terms of the set of parameters {8;} of
Eq. (3.5). As can be seen from Table I, this will give four free
parameters f; for the SU(2); case and 11 free parameters f;
for the SU(2), case. To test the ability of this method to fit
the RSES data, we use a least-squares method to find the set

of parameters that lead to splittings that best fit the numerical
data. Details on the fitting procedure are found in Appendix D.
The results of this fitting procedure are shown for a number
of data sets in the plots of the next section. Precise values
of the parameters and statistics of individual fits are found in
Tables V and VI of Appendix E.

V. RESULTS

We present fits to four different sets of numerical entangle-
ment spectrum data, of which the first three exhibit the chiral
SU(2); WZW CFT, characteristic of the Kalmeyer-Laughlin
spin liquid, while the last exhibits the chiral SU(2), WZW
CFT, characteristic of a non-Abelian chiral SU(2), spin lig-
uid. In each case, we consider a certain number of low-lying
descendant levels of the numerical entanglement spectrum
data, as typically, numerical results may be less reliable as
we get to higher entanglement energies.

A. Entanglement spectra containing an SU(2); WZW CFT

The first fit is to the numerical entanglement spectrum of
the Kalmeyer-Laughlin chiral spin liquid found in a Mott
insulator on the kagome lattice with broken time-reversal
symmetry by Bauer ef al. in Fig. 4 of their 2014 paper [15].
Bauer et al. employed the method of Ref. [59] to compute their
spectrum, using infinite DMRG to optimize a variational MPS
state on a cylinder of circumference ¢ = 12 sites. The authors
cite the observed degeneracies and multiplets of the global
SU(2) symmetry as evidence that the entanglement spectrum
is described by a chiral SU(2); CFT [15]. Indeed, we dis-
cussed the chiral SU(2), countings in Sec. II, accompanied
by the depiction of this particular numerical entanglement
spectrum in Fig. 2. Our fit of the splittings of the first five
descendant levels of the spectrum is seen in Fig. 3. Note that
the depiction of the SU(2) multiplets in Fig. 3, as well as our
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FIG. 4. Our fit to the SU(2); entanglement spectrum data of Hickey et al. [16] is shown in (a) the integer sector (|j = 0) primary state
and descendants) and (b) the half-integer sector (|j = 1/2) primary state and descendants). The original data is indicated by black +’s, while
red x’s mark the fit produced by our approach. The black boxes indicate states with the same momentum, and hence the same descendant
level K above the corresponding primary state, while SU(2) multiplets are grouped within each box. (The multiplet content of each box may
be compared to Table II in Appendix A.) We attempt to fit 11 differences between multiplets in the integer sector and 11 differences between
multiplets in the half-integer sector, i.e., a total of 22 differences. Fitting both sectors simultaneously, our approach uses four parameters: four
coefficients B; in Eq. (3.5) for the conserved quantities corresponding to the four distinct operators of A < 6 available in SU(2), found in the
left column of Table I. The data was computed with a cylinder of circumference ¢ = 8 [16]. The scales of the vertical entanglement energy
axes are normalized such that 8(27 /£) = 1 [B(2m /£) being the coefficient of A, in Eq. (3.6)], with the zero point appropriate to the conformal

weight of the primary state for each sector.

subsequent plots of fits, differs from the depiction in Fig. 2.
In Fig. 2, the individual states of each multiplet at fixed j* are
depicted in each blue-shaded subtower. By contrast, in Fig. 3,
each spin-j SU(2) multiplet of dimension d = (2j + 1) is
depicted as a horizontal row of d markers at the vertical
coordinate corresponding to the entanglement energy of the
multiplet. Multiplets are grouped by descendant level K. The
associated countings of various dimensions of multiplets at
a given K in each of the integer (|j = 0)) and half-integer
(|7 = 1/2)) sectors may be compared with Table II in Ap-
pendix A. For the Bauer et al. data set, the fits are performed
independently in both the integer and half-integer sectors [60].
On the whole, while not perfect, we see that the fits are
fairly successful in explaining the 11 splittings between the 12
multiplets in those levels with the four parameters available by
considering the coefficients of the integrals of the four opera-
tors up to dimension A = 6 in the SU(2), theory (see Table I).
In particular, the fits match the relative positioning of the dif-
ferent multiplets within each descendant level of the spectrum.

The second fit is to the numerical entanglement spectrum
of the chiral spin liquid found in a Haldane-Hubbard Mott
Insulator on the honeycomb lattice by Hickey et al. in Fig. 3
of their 2016 paper [16]. Hickey et al. used infinite DMRG as
well, on a cylinder with a circumference of £ = 8 sites. Also
here, the degeneracies and multiplets of global SU(2) sym-
metry were cited as evidence of a description of the observed
entanglement by the SU(2); WZW CFT [16]. Our fit of the
splittings of the first five descendant levels of this spectrum
is seen in Fig. 4. For the Hickey et al. dataset, we are able
to very successfully fit both integer and half-integer sectors
simultaneously, with one set of four parameters. In particular,
the fit captures the relative positioning of the multiplets within
each descendant level of the spectrum, in both the integer
and half-integer sectors. The 22 splittings of the 24 multiplets
of the first five levels in both the integer and half-integer
sectors are explained with the four parameters available by

considering the coefficients of the integrals of the 4 operators
up to dimension A = 6 in the SU(2), theory (see Table I).

The third fit is to the entanglement spectrum of a particular
PEPS on an infinite cylinder by Hackenbroich et al. in their
2018 paper [17]. We fit the spectrum found in their Fig. 14.
Hackenbroich ef al. worked with a cylinder of circumference
£ = 8. In this spectrum the authors cited the degeneracies
and relative computed conformal weight of the |j = 0) and
|j = 1/2) primary states as evidence of a description of the
entanglement spectrum by a chiral SU(2); WZW CFT [17].

Figure 5 is our fit of the spectrum. We are able to fit both
sectors of the Hackenbroich et al. dataset simultaneously with
great success, though a relative scale factor between the two
sectors is used due to their possibly differing velocities v in
Eq. (2.3) [17]. We thus end up using five parameters—the
four parameters available by considering the coefficients of
the integrals of the four operators up to dimension A =6
in the chiral SU(2); theory (see Table I), plus the relative
scale factor, to fit the 22 differences between the multiplets
in the first five descendant levels (with 12 multiplets each)
in both the integer and half-integer sectors. The fit is quite
good, and certainly captures the relative positioning of the
multiplets within each descendant level of the spectrum in
both sectors.

The power of our approach was demonstrated by one phe-
nomenon in the Hackenbroich et al. data: The highest-energy
multiplet in the highest descendant level that we fit in the half-
integer sector is not simply the next higher doublet at the same
value of momentum, as the Brillouin zone of the spectrum is
“folded” in the half-integer sector (as compared to the integer
sector—momenta are multiples of 2m /4 instead of 27 /8)
[17]. This leads data from higher descendant levels to overlap
with the data of the level we are trying to fit. Yet, by fitting
the integer sector, we were able to determine an estimate of
the correct parameters {f;} for the half-integer sector, as well.
These parameters predicted where the final highest-energy
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FIG. 5. Our fit to the SU(2), entanglement spectrum data of Hackenbroich et al. [17] is shown in (a) the integer sector (|j = 0) primary
state and descendants) and (b) the half-integer sector (]j = 1/2) primary state and descendants). The original data is indicated by black +’s,
while red x’s mark the fit produced by our approach. The black boxes indicate states with the same momentum, and hence the same descendant
level K above the corresponding primary state, while SU(2) multiplets are grouped within each box. (The multiplet content of each box may
be compared to Table II in Appendix A.) We attempt to fit 11 differences between multiplets in the integer sector and 11 differences between
multiplets in the half-integer sector, i.e., a total of 22 differences. Fitting both sectors simultaneously up to a scale factor, our approach uses
five parameters: four coefficients B; in Eq. (3.5) for conserved quantities corresponding to the four distinct operators of A < 6 available in
SU(2), found in the left column of Table I, plus a relative scale factor between the two sectors. The data was computed with a cylinder of
circumference £ = 8 [17]. The scales of the vertical entanglement energy axes are normalized such that B(27 /¢) = 1 [8(27 /¢) being the
coefficient of A, in Eq. (3.6)], with the zero point appropriate to the conformal weight of the primary state for each sector.

doublet in the half-integer sector could be found. Indeed,
there was a doublet present at that point in the entanglement
spectrum, and so we were able to show (in Fig. 5) the success
of our fit for the Hackenbroich et al. dataset.

B. Entanglement spectra containing an SU(2), WZW CFT

The fourth and final set of fits is to the entanglement
spectrum of a PEPS aimed at representing a spin-1 chi-
ral Heisenberg antiferromagnet defined on a square lattice
by Chen et al. in their 2018 paper [18]. The spectra we
fit are those of their Figs. 11(c) and 11(d), which display
numerical entanglement spectra computed on a cylinder of
circumference £ = 6 [18]. The authors obtained degeneracies
and multiplet content consistent with a chiral SU(2), WZW
CFT, as may be seen by comparison with the data of Table I1I
of Appendix A. Recall from Sec. II that the chiral SU(2),
WZW CFT will have three (affine) primary states, |j = 0),
|j =1/2), and |j = 1), each with an associated topological
sector of descendant states. The Chen er al. data does not
contain a clear representation of the |j = 1) sector [61]. We
perform several fits to the Chen et al. data.

In the first pair of fits, depicted in Fig. 6 in the same
format as the figures of Sec. V A, we illustrate the necessity of
including the conserved quantities corresponding to the half-
integer dimensional operators (found in the rightmost column
of Table I) in the fit. To show this, we fit only the three lowest
descendant levels of the |j = 1/2) sector, by two different
approaches. In one approach, shown in Fig. 6(a), we use the
conserved quantities corresponding to the first three integer
dimensional operators from Table I available in SU(2),, up
to A =4, which are T (x), (TT)(x), and i(GoG)(x), to fit the
numerical spectrum. In the other approach, shown in Fig. 6(b),
we use the conserved quantities corresponding to the first
three operators available of both integer and half-integer di-

mension, up to A = 7/2, which are G(x), T (x), and (T G)(x),
to fit the numerical spectrum. In both approaches, there are
three parameters available corresponding to the coefficients of
the conserved integrals of the operators in question, which are
used to fit the six differences present in the data for the first
three levels of the |j = 1/2) sector. Yet it is clear from Fig. 6
that the second approach, which makes use of the two half-
integer dimensional operators, produces a far better fit [62].

In the second fit, depicted in Fig. 7, we consider the first
three descendant levels of both [in Fig. 7(a)] the |j = 0) and
[in Fig. 7(b)] the |j = 1/2) sectors in tandem. We employ the
conserved integrals of all integer and half-integer dimensional
operators in the SU(2), theory (all three columns of Table I)
up to A = 4 to fit the numerical spectra. The two half-integer
dimensional operators will contribute to the fit in the |j =
1/2) sector only, while the three integer dimensional operators
will contribute in both sectors. We thus fit the four differences
between the multiplets of the first three levels of the |j = 0)
sector and the six differences between the multiplets of the
first three levels of the |j = 1/2) sector, for a total of 10
differences simultaneously, with the six parameters available
by considering the coefficients of conserved integrals of the
five operators up to dimension A =4 in Table I, plus an
additional relative scale factor between the two sectors. The
fit is quite good in both sectors and correctly captures the
relative positioning of multiplets within each level of both
sectors.

In the third and final fit, found in Fig. 8, we consider a
simultaneous fit of the first four descendant levels of both [in
Fig. 8(a)] the |j = 0) and [in Fig. 8(b)] the |j = 1/2) sector
with all 11 unshaded operators of Table I (up to A = 6). As
before, the half-integer dimensional operators, of which there
are now four, will contribute in the |j = 1/2) sector only,
while the seven integer dimensional operators will contribute
to the fit in both sectors. This fit attempts to account for nine
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FIG. 6. Two fits to the SU(2), entanglement spectrum data of Chen et al. [18] in the sector of the |j = 1/2) primary state and descendants
are shown. The original data is indicated by black +’s, while red x’s mark the fits produced by our approach. The black boxes indicate states
with the same descendant level K above the corresponding primary state, while states in the same SU(2) multiplet are grouped within each
box. (The multiplet content of each box may be compared to Table III in Appendix A.) We attempt to fit the 6 differences between multiplets in
the three depicted levels of the |j = 1/2) sector, up to K = 2. The fits use three parameters corresponding to the coefficients §; in Eq. (3.5) for
the conserved quantities corresponding to, in (a), the three integer dimensional operators with A < 4 available in SU(2), [T (x), (T T )(x), and
i(GAG)(x)], and, in (b), the three integer and half-integer dimensional operators with A < 7/2 available in SU(2), [G(x), T (x), and (T G)(x)].
(See Table 1.) The scales of the vertical entanglement energy axes are normalized such that 8(27 /£) = 1 [(27 /£) being the coefficient of A
in Eq. (3.6)], with the zero point appropriate to the conformal weight of the primary state for the sector.

differences between multiplets in the |j = 0) sector and 14
differences between multiplets in the |j = 1/2) sector, for a
total of 23 differences between multiplets, using the 12 param-
eters available by considering the coefficients of conserved
integrals of the 11 included operators up to dimension A = 6
in Table I, plus an additional relative scale factor between the
two sectors. The resulting fit is reasonable, especially in the
lower levels. In each of the sectors, though, there are instances
where the relative ordering of the multiplets has been changed
in a few places in the higher levels.

That this occurs despite the use of all 11 operators with
A < 6 indicates that, at higher entanglement energies, the
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numerical entanglement spectrum for the particular system of
Chen et al. begins to differ slightly from our expectations for
a topological state with an entanglement spectrum exhibiting
the chiral SU(2), WZW CFT. (This may be a consequence
of numerical limitations on the accuracy of the data at higher
entanglement energies.) We did also perform a slight modi-
fication of this last fit that included the integral of (T9G)(x)
(the operator from Table I otherwise excluded due to the R7T
symmetry). The inclusion of this additional integral did not
result in a significant improvement of the quality of the fit,
consistent with the fact that the integral ought to be excluded.
Taken together, the results of the three fits in this subsection

Chenetal., |j=1/2) sk KK

32 primary sector (SU(2),) 3% 2% % %k * %k
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(0] 3 ¥ % ¥

5 ¥

E K=1

)]
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(b)

FIG. 7. A fit to the SU(2), entanglement spectrum data of Chen et al. [18] is shown for the first three levels (up to K = 2) in (a) the
sector of the |j = 0) primary state and descendants and (b) the sector of the |j = 1/2) primary state and descendants. The original data is
indicated by black +’s, while red x’s mark the fit produced by our approach. The black boxes indicate states with the same descendant level
K above the corresponding primary state, while SU(2) multiplets are grouped within each box. (The multiplet content of each box may be
compared to Table III in Appendix A.) We attempt to fit four differences in the |j = 0) sector and six differences in the |j = 1/2) sector.
Fitting both sectors simultaneously up to a relative scale factor, our approach uses six parameters: five coefficients §; in Eq. (3.5) for conserved
quantities corresponding to the five distinct operators of A < 4 available in SU(2), (see Table I), plus a scale factor, which corresponds to the
relative scale of the two sectors. The scales of the vertical entanglement energy axes are normalized such that 8(27/¢) = 1 [B(27/€) being
the coefficient of A in Eq. (3.6)], with the zero point appropriate to the conformal weight of the primary state for each sector.
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FIG. 8. A fit to the SU(2), entanglement spectrum data of Chen et al. [18] is shown for the first four levels (up to K = 3) in (a) the sector
of the |j = 0) primary state and descendants and (b) the sector of the |j = 1/2) primary state and descendants. The original data is indicated
by black +’s, while red x’s mark the fit produced by our approach. The black boxes indicate states with the same descendant level K above
the corresponding primary state, while SU(2) multiplets are grouped within each box. (The multiplet content of each box may be compared to
Table III in Appendix A.) We attempt to fit 9 differences in the |j = 0) sector and 14 differences in the |j = 1/2) sector. Fitting both sectors
simultaneously up to a relative scale factor, our approach uses 12 parameters: 11 coefficients 8; in Eq. (3.5) for included conserved quantities
corresponding to the 11 distinct operators of A < 6 available in SU(2), (see Table 1), plus a scale factor, which corresponds to the relative scale
of the two sectors. The scales of the vertical entanglement energy axes are normalized such that 8(27 /) = 1 [8(2n /£) being the coefficient
of H; in Eq. (3.6)], with the zero point appropriate to the conformal weight of the primary state for each sector.

do demonstrate the necessity of including the fractional con-
served quantities, and in particular Gy, in the chiral SU(2),
entanglement spectrum.

VI. CONCLUSIONS AND OUTLOOK

The results of Sec. V demonstrate the success of our ap-
proach to quantitatively understanding splittings in low-lying
numerical entanglement spectra entirely within the framework
of CFT, and thereby further support the chiral nature of the
considered quantum states. We also note that such a success
of the fits applies even more so to the chiral topological PEPS
data of Hackenbroich et al. (Fig. 5). The results for the PEPS
data from Chen et al., as well, are close to what we expect
(Figs. 7 and 8), and these, as well as the results shown in
Fig. 6, clearly illustrate the necessity of including the integrals
of the half-integer dimensional operators of Table I. Because
we are able to reproduce the splittings of the respective entan-
glement spectra at low energies, we are able to confirm, with
more confidence than based on the characteristic Li-Haldane
countings of the chiral SU(2); or SU(2), WZW CFT alone,
that the PEPS entanglement spectra of Hackenbroich et al.
and Chen et al., as well as the non-PEPS entanglement spectra
we consider from Bauer et al. and Hickey et al., reflect the
presence of an underlying (2 + 1)-dimensional chiral topolog-
ical theory. Where the PEPS we considered are concerned,
our analysis thus provides substantial support to the claim
of the chiral topological nature of the corresponding PEPS
wavefunctions. As mentioned, our analysis and approach also
show the ability to help determine whether a “no-go theorem”
holds for interacting topological PEPS.

As numerical methods for calculating the entanglement
spectra of chiral topological states develop further, more data
will become amenable to analysis by the approach developed

in this work. The next target could perhaps be the chiral
SU(2); spin-liquid state [63], known to possess non-Abelian
anyonic excitations capable of supporting universal quantum
computation [5,64]. This system will require the understand-
ing of generalizations of the conserved quantities in this work,
including those of half-integer dimension introduced in the
context of SU(2),. The CFT of SU(2)3;, however, is known
to possess fractional conservation laws [65] (also referred to
as “fractional supersymmetry”’), which are a direct generaliza-
tion of the (actual, nonfractional) N = 1 supersymmetry used
in the present paper to handle the SU(2), case. Based on the
present paper, it is presumably to be expected that these more
unusual fractional conservation laws will be needed to explain
the splittings in the entanglement spectrum of the chiral topo-
logical SU(2); spin-liquid. We leave the discussion of this
to future work. Beyond that, it may also become worthwhile
to extend our approach to more general SU (N); spin-liquids
such as those with N > 2, or SU(2); spin-liquids with £ > 3.
Most such extensions will also require understanding general-
izations of the conserved quantities discussed here, including
those of fractional dimension, and potentially again including
those found in Ref. [65].
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TABLEII. SU(2) multiplet content of the chiral SU(2); WZW CFT, in both the | j = 0) and |j = 1/2) primary sectors, listed by descendant
level K. The multiplets are written as representations of SU(2), with the dimension d = (2j + 1) of the spin-j representation shown in bold.
For example, the primary state multiplets are shown at A = 0 as 1 and 2 (i.e., singlet and doublet), respectively. The “#” columns indicate the
total number of multiplets at each level, which corresponds to the number of states at the indicated central j* value.

|j = 0) primary sector

|j = 1/2) primary sector

K Multiplet content #at j°=0 Multiplet content #atj°=+1/2
0 1 1 2 1
1 3 1 2 1
2 1+3 2 2+4 2
3 1+23) 3 2(2)+4 3
4 2)+23)+5 5 312)+24) 5

APPENDIX A: BRIEF REVIEW OF PROPERTIES OF SU(2);

Here we expand somewhat on the structure of the chiral
SU2)y WZW theory that we first discussed in Sec. II. We
wish to understand the structure of the chiral SU(2), WZW
Hilbert space in more detail. That Hilbert space is built up
from the primary states. The k 4 1 primaries of the SU(2);
theory can be thought of as SU(2) multiplets, so we can write
down states of each |j = i/2) primary (where i =0, ..., k)
as states | j, j°) that correspond to the 2 + 1 individual states
with a particular j* within the primary spin-j multiplet. These
states of the primary spin-j multiplet will all share the same
conformal weight given by

L 4Gt

iz T A
k+2

In the WZW theory, we can go beyond the modes L,

of T'(x) defined in Eq. (2.2) and define modes J¢, of the
(“affine””) SU(2) Noether current J¢(x) as well, writing

(AD)

2T —
Jw = > gt (A2)

n=—0o0
These modes can be used to build up the chiral SU(2), Hilbert
space from the k 4+ 1 primary multiplets. Descendant states
can then be written down, of the form

T T L),

—ny

(A3)

Such a state will have descendant level K = )" | n,,, and the
spin-j primary of which it is a descendant will have conformal
weight h = h;. With these values of & and K, the expression
of Eq. (A3) then provides a more concrete realization of the
state |h, K) discussed in Eq. (2.4). Note that such a realization
is not unique, leading to the degeneracies of momentum and
energy (considered as eigenvalues of k;, and H; from Sec. II)
present at each descendant level in each primary sector of the
SU(2) theory. Even the states of Eq. (A3) ought not to be
considered distinct in general [36].

The distinct such states can be organized into SU(2) rep-
resentations, or multiplets, of various dimensions. The SU(2)
multiplet content in the cases of the chiral SU(2); and SU(2),
WZW CFTs can be calculated [66] and is givenup to K = 4 in
Tables II and II1, respectively. These multiplets are preserved
despite the spectral splittings by SU(2)-invariant conservation
laws studied in this work. The countings of the “Multiplet
content” column of Table II can be observed in low-lying
entanglement spectra from the studies of chiral SU(2); spin

liquids [15-17] in Figs. 2-5. The multiplets are written as
representations of SU(2), with the dimension d = (2 + 1)
of the spin-j representation shown in bold. For example, the 1
representation is the singlet (j = 0). The “# at j° = 0” and “#
at j° = 41/2” columns simply describe the number of multi-
plets at each descendant level K, since every multiplet, even
singlets (in the |j = 0) primary sector, wherein the multiplets
have integer spin) or doublets (in the | j = 1/2) primary sector,
wherein the multiplets have half-integer spin), has a single
state at that value of j*. In Fig. 2 this can be seen by looking at
the central subtowers, which exhibit the 1-1-2-3-5 degeneracy
in momentum, consistent with these columns for Table II. In
Figs. 3-5, these numbers are simply the number of multiplets
depicted in each box of level K. Since we fit the entanglement
energies of the multiplets, these are also the numbers of data
points involved in the fit at each level K.

We have written down the same columns for the chiral
SU(2), WZW CFT in Table III. The countings of the “Multi-
plet content” column of Table III can be observed in low-lying
entanglement spectra from the study of the chiral SU(2); spin
liquid [18] in Figs. 6-8, at least for the |j = 0) and |j = 1/2)
primary sectors found in these spectra. The countings of the
|j = 1) sector are also included in Table III. The data of the
“#at j*=0" and “# at j° = +1/2” columns (for the |j = 0)
and |j = 1/2) primary sectors) is represented in the number
of multiplets depicted in each box of level K in Figs. 6-8, and
again these data represent the numbers of data points involved
in the fit at each level K.

APPENDIX B: CALCULATION OF THE
CONSERVED QUANTITIES

To compute the values of the conserved quantities we will
use in the GGE, we first write them in terms of the modes L,
of T'(x) defined by Eq. (2.2), and the modes G, defined by a
similar mode expansion for the superconformal currents G(x)
of Eq. (4.3):

27\ i
— imx/¢
G(x)—<£ ) E G_pe ™"

m=—0oQ

(B1)

where we will choose m € Z + 1/2 if the conserved quantity
is to be used in the Neveu-Schwarz sector (the sector of de-
scendants of the |j = 0) and |j = 1) primary states), and m €
Z if the conserved quantity is to be used in the Ramond sector
(the sector of descendants of the |j = 1/2) primary state).
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TABLE III. SU(2) multiplet content of the chiral SU(2), WZW CFT, in the |j = 0), |j = 1/2), and |j = 1) primary sectors, listed by
descendant level K. The multiplets are written as representations of SU(2), with the dimension d = (2 4 1) of the spin-j representation
shown in bold. For example the primary state multiplets are shown at A = 0 as 1, 2, and 3 (i.e. singlet, doublet, and triplet), respectively. The
“#” columns indicate the total number of multiplets at each level, which corresponds to the number of states at the indicated central j* value.

|j = 0) primary sector |j = 1/2) primary sector |j = 1) primary sector

K Multiplet content #at =0 Multiplet content #at j*=+1/2 Multiplet content #at =0
0 1 1 2 1 3 1
1 3 1 2+4 2 1+3 2
2 1+3+5 3 2(2)+24) 4 1+23)+5 4
3 1+33)+5 5 42)+34)+6 8 2(1)+3@3) +2(5) 7
4 3(1) + 4(3) + 3(5) 10 6(2) + 6(4) + 2(6) 14 3(1) +6(3) +3(5)+7 13
The expressions we get are collected in Table IV. For com- multiplet by a unique linear combination of states with the
pleteness, the table includes H®’, which is excluded from the ~ form
entanglement Hamiltonian by R7 symmetry (indicated by the 73 PBoia B2
shading of the row), though we take the associated coefficient Sn I ) (B2)
,35.= 0 in the 'exp.ression of the entangle'rr'lent. Hamiltonian as  where |j, 4) is the highest-weight state in the |j = 0) or
a linear combination of conser\{ed quantities in Eq. (3'.5). |j = 1/2) primary SU(2) multiplets, for some choice of pos-

To find the spectral levels with our approach, we diagonal- itive integers n; < ... < ng [68]. The eigenvalue of Ly on

ize the expression Eq. (3.5) using these mode representations  the state Eq. (B2) will be equal to h; + K, where h; is the

[67]. This requires finding a basis to represent the descen-  ejgenvalue of L on the primary state | j, 4 ). (h =0 = 0, while
dant states in each level of the conformal tower. For the hj—i/» = 1/4.) The descendant level K of the state is then

SU(2), case, in particular, where we can make use of Abelian
bosonization, we can then represent the central j° = 0 or j° =
+1/2 (depending on the sector) state of every descendant

given by K = Zfz 1 i~ We then use the Virasoro and affine
Lie commutation relations along with the Sugawara form for
L, [the mode-expanded form of Eq. (2.1)] to evaluate the

TABLE IV. Expressions for the size-independent parts H® of the corresponding locally conserved quantities H® in terms of the Fourier
modes L, and G, of the energy-momentum tensor 7 (x) and the superconformal current G(x), respectively. The shaded row indicates that we
will exclude H® from fits on the basis of the RT symmetry. The index® i denotes the quantity the parameter §; refers to, useful for comparison
to Tables V and VI. A; indicates the conformal dimension of the operator ®,(x), which is integrated to give H®. The symbols :: in the i = 6
row indicate normal ordering by increasing subscripts n;, 1y, n3. c is the central charge: ¢ = 1 for SU(2),, while ¢ = 3/2 for SU(2),. Note that
while A with associated half-integer A; occur only in the Ramond (| j = 1/2) primary) sector, leading to modes G,, with integer m, the H®
with associated integer A; can occur in both the Neveu-Schwarz (| j = 0) and |j = 1) primary) and Ramond sectors, leading to modes G,, with
half-integer m in the Neveu-Schwarz sector and integer m in the Ramond sector. Indices that are always integers have been denoted by n (or
ny, etc.) above, while indices that vary between integers and half-integers depending on the sector have been denoted by m.

i A ®;(x) D = ()M 1L [ @, (x)dx

0 3/2 G(x) Go

1 2 T(x) Lo — %

2 7/2 (TG)(x) > ooLnGy + G_,Ly) + LoGo — %Gy

3 4 (TT)(x) 2%, o Loaly + L2 — SLo+ &

4 4 i(GIG)(x) 2% omG_,G,,

6 11/2 (G(TT))(x) Y1 mn<0 GuaLn Ly, + X ~0 <0 Ga Ly L,

+ Z"‘ <0.n>0 L"‘ L_"Z_”l G"Z + Zm ny>0 L—nz—m Ln| an
. c 2
=15 2on=0(GnLn + LwGn) — §3GoLo + 575 Go

7 11/2 (3TIG)(x) > o n*(L G+ G_,L,)

8 6 (T(TT))(-X) Zn1+n2+n3:0 : Lnanan3 : +% Zn>0 nsznLn + % ZVL>0 Ll*ZnI/anl
_i Zn>0 L*"L" - §L§ + ICTZZLO - ﬁ

9 6 (OTAT)(x) 2% oL L,

10 6 l(T(GaG))(.X) - Zm,néo(n + m)LnGmenfm + Zm>0,ng0(" + m)Lntnfme

- ng(),n>0(n + m)GmG_,,_,,,L,, + Zm.n>0(n + m)G—"—'"GmL"
- % Zm>0 mG*me
11 6 i(0G3*G)(x) 2y om*G_,,G,

#The index i should not be confused with the imaginary number i found in some entries.
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mode expressions of Table IV corresponding to the integrals
of the operators of the leftmost column of Table I on the
basis of states Eq. (B2). This is possible because these mode
expressions H® are exactly those in Table IV that include
only Virasoro modes L,. The primary states of the chiral
SU(2); WZW CFT are also Virasoro primary, in the sense
that L, |j, +j) = O for all n > 0, which simplifies this process
greatly. Diagonalizing an arbitrary linear combination of the
H® evaluated in that basis, we obtain an expression for the
splittings of the SU(2); conformal tower that we can fit to
entanglement spectra.

It remains to identify each eigenvalue of the combined
operator with a particular dimension of multiplet in the con-
formal tower. In the Abelian case, we take advantage of the
symmetry of the conformal tower, and the fact that the mode
expressions we use are expressed solely in terms of Virasoro
modes. It turns out that in the SU(2); theory, in addition to
the WZW primary states, the lowest-level descendant SU(2)
multiplet of a given dimension is also a Virasoro primary
state [69]. We can then write down an additional basis similar
to Eq. (B2) for the states of descendant multiplets that have
Jj¢ = j+1i, foran integer i > O:

P L i i),

—n

(B3)

where the notation |j+1i, j+ i) now denotes the SU(2)
highest-weight state in the lowest-level descendant spin-(j +
i) multiplet. Because the |j + i, j + i) states are Virasoro
primary, acting on the elements of this basis with the mode
expressions of the conserved quantities we need to evaluate in
the SU(2); theory (composed solely of Virasoro modes) does
not require knowledge of the explicit form of the |j + i, j + i)
state in terms of the modes of the affine SU(2) current acting
on the underlying WZW primary state | j). Each basis Eq. (B3)
at fixed i spans a section of the full SU(2); conformal tower
with fixed j* = j 4 i. Fori = 0, j° = j, so the basis Eq. (B3)
is simply the original Abelian basis Eq. (B2). The number of
such bases at fixed i in which an eigenvalue of the conserved
quantities occurs then determines the dimension of the SU(2)
multiplet associated to that eigenvalue: If the eigenvalue oc-
curs in s such bases in addition to Eq. (B2), the multiplet is a
spin-(j + s) multiplet.

For the calculation in the SU(2), theory, we have to use
non-Abelian bosonization, and so we can no longer use the
Abelian basis Eq. (B2). Instead of building a similar non-
Abelian basis from the modes J¢,, we take the 3-fermion
theory point of view, though instead making use of the ¢“(x)
of Eq. (4.2). We can define modes ¢“, by

$9(x) = (2_”)1/2 i PO T/t (B4)
7 L —m
One non-Abelian basis is then
L, Pl o), (BS)

where o € {NS, R} corresponds to the ground state of the
Neveu-Schwarz or Ramond sectors, respectively. If ¢ = NS,
m; € Z 4+ 1/2, whereas if 0 =R, m; € Z. In either case,
a; € {1, 2, 3}. The Neveu-Schwarz sector of this theory cor-
responds to the |j = 0) and |j = 1) primary sectors of the
SU(2), WZW CFT: states with an even number of ¢¢, repre-

FIG. 9. A truncated representation of the infinite cylindrical ge-
ometry we consider is shown in blue, along with a diagram of the
spatial reflection R. R reflects the cylinder about the violet plane,
mapping regions A and A to themselves. The coordinate x; is the
compactified coordinate around the cylinder, while the coordinate x,
denotes spatial position along the cylinder. The entanglement cut lies
along the spatial circle x, = 0.

sent the descendants (by action of the affine current algebra)
of the |j = 0) primary state, while states with an odd num-
ber of ¢“, represent the descendants of the |j = 1) primary
state. The Ramond sector corresponds to the descendants
of the |j = 1/2) primary state. The eigenvalue of Ly on a
state in the basis Eq. (BS) is given by A, + Zf:l m;, where
hy = hy—ns = 0 for states in the Neveu-Schwarz sector, and
hy = hy—r = 3/16 for states in the Ramond sector. The de-
scendant level K of that state is then found by subtracting off
the eigenvalue i of Ly of the corresponding primary state
|j). For states in the |j =0) and |j = 1/2) primary state
sectors, this is simply K = Zle mj, since hj—g = hy—ns and
hj—1/2 = hs—r. For the |j = 1) primary state sector, we have
hj—1 = 1/2 = hns 4+ 1/2, so the level K of the descendant
state is given by K = Zle m; — 1/2.

To obtain a basis that more directly reflects the multiplet
structure of the theory, however, we diagonalize the operator
J§ [which can be expressed in terms of ¢ modes by the rela-
tion Eq. (4.2)] on the basis Eq. (B5) and use those eigenstates
as the basis. The eigenvalues of J; can be thought of as j*
quantum numbers. We can then diagonalize linear combina-
tions Eq. (3.5) of the conserved quantities corresponding to
the mode representations of Table IV (which can be algorith-
mically rewritten in terms of the ¢ modes) in each of the
fixed- j¢ sectors formed by that basis. The presence of a given
eigenvalue across 2s + 1 fixed- j* sectors is used to associate
that eigenvalue with a spin-s multiplet.

APPENDIX C: R7T SYMMETRY MECHANISM
1. The R7 Symmetry on a Cylinder

We consider a chiral topological state arranged in the cylin-
drical geometry of Fig. 9. The infinite cylinder is bipartitioned
into two regions A and A, with an entanglement cut between
them. The coordinate x; is the compactified spatial coordinate
around the cylinder, which has circumference ¢, while the
coordinate x, denotes spatial position along the cylinder. The
region A is thus the half-cylinder x, > 0, while the region A
is the half-cylinder x, < 0. The entanglement cut lies along
x, = 0. We can then define an orientation-reversing spatial
transformation that preserves the position of the entanglement
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cut,
R (x1, %) = (=x1, x2). (C1)

‘R reflects the cylinder about the violet plane in Fig. 9, map-
ping region A into region A and region A into region A.

This reflection reverses the orientation of the cylinder, so it
inverts the chirality of the chiral topological state, in the sense
that, among other things, the associated chiral edge modes, if
one were to physically cut the cylinder along the entanglement
cut, would reverse their direction of flow. We can restore the
system to its original state if we follow spatial reflection with
a time-reversal transformation 7, which will also reverse the
direction of flow of the chiral edge modes. This gives rise to
the discrete symmetry we will consider, R7, under which we
consider our system to be invariant.

2. The R7 Symmetry in the PEPS

At the level of the square-lattice PEPS wavefunctions we
consider in the SU(2); [17] and SU(2), [18] cases, we can see
the R7 invariance explicitly. The projectors onto the PEPS,
which are the building blocks of the PEPS wavefunctions, take
the form of either A; + i A, or By + i3, where A, A,, B,
and B, are linear combinations of projectors that transform
like the Ay, A,, By, and B, irreducible representations, respec-
tively, under the actions of the elements of Cy, point group of
the square lattice [70]. The consequence of this is that under
the action of R, we have

.A1 = .A] .Ag = —.AQ Bl (o Bl Bg = —Bg. (C2)

At the same time, A, A,, B, and BB, are all real, and therefore
invariant under 7. Thus the only effect of the antiunitary 7 is
to conjugate the i in A; + iA, or By + iBBy,

A1 +idy = A —iA, By +iB— B —iB,. (C3)
Thus A; + iA, and B; + i3, are both invariant under R7T .

3. The Action of R7” Symmetry on the Conserved Quantities of
the Entanglement Hamiltonian

We thus see that whether we think of an abstract chiral
topological state or the concrete PEPS we are working with,
we will have invariance of the overall density matrix p under
RT. Since the RT symmetry preserves p and maps A —
A and A — A, we can see that the reduced density matrix
pa = Trzp, which may be compared to Eq. (3.4), will be
preserved under R7. Hence, the entanglement Hamiltonian
Henganglement = — In p4, Eq. (3.5) in our case, should likewise
be invariant under R7. As a consequence, we demand that
the H® of Eq. (3.5) satisfy

RTHHPRT) ' =H®. (C4)

We can deduce the action of R7T on the HY by
considering its action on the modes of the various operators.
First, we consider the effect of R7T on the left-moving
energy-momentum tensor 7(f,x), the energy-momentum
tensor of our chiral theory, expressed as a function of the
time coordinate f and compact spatial coordinate x [x; in
the notation of Fig. 9, since T'(f,x) is an operator in the

(1 + 1)-dimensional theory along the cut]. Conjugating by
spatial reflection R alone, we have that

RT@, xR '=T@, £ —x)=T(t, —x), (C5)
RTt, xR ' =T, ¢ —x)=T(@, —x), (C6)

where T (¢, x) indicates the energy-momentum tensor of the
right-moving theory, and we have used the spatial periodicity
of T(t, x) and T (¢, x) around the cylinder in the last equality.
Likewise, time reversal gives

TT @, x)T ' =T(—t,x), (C7)
TT(t,x)T ' =T(—t,x). (C8)

We can then use the scaling property of the A = 2 operator
T (¢, x) to see that

(RIT @, x)(RT)"" = T(~t, —x) = (=1)*T(t, x)
= T(t,x), (C9)

(RIT @, x)(RT)"" =T (~t, —x) = (= 1)*T(t, x)
=T(,x). (C10)

Thus T'(¢, x), and hence the T (x) we have considered at fixed
time, remains invariant under conjugation by R7. By similar
logic, we have for the affine SU(2) currents J(¢, x) that

(Rt x)(RT)"" = J4~t, —x) = (=)' J(t, x)
= —J, x), (C11)

(RT(t, x)RT) " =T (—t, —x) = (=D'T(t, x)
=71, x), (C12)

where in the last equalities of Eq. (C11) and Eq. (C12) we
have used the scaling property of the A = 1 operator J°(t, x).

Now the invariance of T (x) extends to its modes [71], and
so we have

(RT)L,(RT)™' =L,. (C13)
From Eq. (C11) we can likewise conclude that the modes J¢
of Eq. (A2) will obey

(RTICRT) ™ = —J* (Cl14)
under conjugation by RT.

We observe that Eq. (C13) and Eq. (C14) are consistent
with the commutation relations [36] of the J¢

n?

. k
[Jr?’ Jlijl] = leabc-],$+m + _n8n+m,0’

5 (C15)

and the Sugawara relation Eq. (2.1). Equations (2.1) and (C13)
require that we must have one of (RT)J4(RT)! = +£J¢,
but only the minus sign of Eq. (C14) is also consistent with
Eq. (C15). This is due to the antiunitarity of R7, which causes
(RT)iI(RT)~" = —i to flip the sign of the i upon conjugation
of both sides of Eq. (C15) by RT. In the |j = 1/2) primary
sector, J§ acts [36] on the |j = 1/2) doublet like 0“/2, where
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o is the ath Pauli matrix [72], and we have

Jli=1 o = Tha )iy
olj=1/2)" = —=1j=1/2)". (C16)
where |j = 1/2)*, for « = =+, indicates the |1/2, £1/2) state
[in the notation of Eq. (B2)] within the |j = 1/2) doublet.
We now examine the effect of R7 on the ¢ modes. Group
theory guarantees that the ¢j modes act [36] on the |j = 1/2)
primary state as /+/2 [73]. Up to normalization, this is the
same as Eq. (C16), and so we see that we must also have

(RTGRT) ' = —¢§, (C17)

since the Jg obey Eq. (C14). The ¢; satisfy commutation
relations with the modes L, of the energy-momentum tensor,

n
[Ln’ ¢fn] = _(5 +m>¢Z+m~ (C18)
When m = 0, this becomes
n
IPHE —zcb,‘f- (C19)

From Egs. (C13) and (C17), we know how the left-hand side
of Eq. (C19) transforms, and therefore it follows that for
integer indices n,

RTPLRT) ™ = —

Note that the derivation of Eq. (C20) relies upon n € Z, i.e.,
that we are in the |j = 1/2) primary sector, which is the
Ramond sector for the ¢;. This is because the indices of the
L, in Eq. (C19) can only take integer values. In the |j = 0)
and |j = 1) primary sectors, which are the Neveu-Schwarz
sector for the ¢, the indices of the ¢¢ will instead take half-
integer values. There the fractional dimension operators will
be antiperiodic in space, and so the conjugation by R will
have the opposite sign [74]. Thus we instead obtain

(RTQURT) ' =¢f, (neZ +1/2). (C21)

From Egs. (4.3), (C20), and (C21), we thus deduce that the
superconformal current modes G, satisfy

¢ (nel). (C20)

RTG,(RT)Y ' =G, (n e Z),and (C22)

(RT)G(RT) ' = =G,, (n € Z +1/2), (C23)

in the Ramond and Neveu-Schwarz sectors, respectively.

Taking Egs. (C13) and (C22) into account, we can see
that of the conserved quantities in Table IV, only H®
(considered, of necessity, in the Ramond sector) will fail to
satisfy Eq. (C4), due to the effect of the antiunitarity of R7T
on the imaginary coefficient. This analysis is done in terms
of the modes, useful for considering the conserved quantities
themselves, but the translation to the corresponding local
operators of which they are the integrals (i.e., the contents of
Table I) is straightforward.

APPENDIX D: DISCUSSION OF FITTING ALGORITHM

Above, we have discussed how we compute the splittings
of entanglement spectra of chiral topological states that fea-
ture an SU(2); or SU(2), WZW CFT in the entanglement
spectrum by incorporating the linear combination of terms
with conserved integrals of irrelevant local operators Eq. (3.5).
We now discuss how we determine the optimal values of the
parameters f; in that linear combination.

For a given set of numerical entanglement spectrum data,
we choose the GGE parameters S; that best fit that spectrum.
Within each topological sector of the entanglement spectrum,
we calculate the eigenvalues of the linear combination of
operators as a function of the §; and order those eigenvalues
in increasing order of, first, the associated descendant level,
then multiplet dimension, and finally value. We write the £th
element of that ordered list as Szﬁ‘({,Bi}). We order the actual
entanglement spectrum data by the same criteria, and write
the £th element of that ordered list as £/, We can then write
a fitting function of the chosen GGE parameters in the |j)
primary sector:

Ri((BN = >[5 — 68 (BD] W,

€

(D1)

where W, is a weight associated to the &,. We set the weights
W, so that the states at each descendant level have, collec-
tively, the same weight in the fit, with W, « ﬁ, where N

is the number of states at descendant level A (i.e., the cor-
responding counting from the “#” column of Table II or III
of Appendix A), and A, is the descendant level of the fth
state from the spectral data. The weights W, are normalized,
however, so that ), W, = 1.

We then minimize either the individual R;({8;}) for each
sector of descendants of each primary state | j), or, in the case
of a simultaneous fit of multiple sectors, the sum ) iR i{BiH

TABLE V. The values of the fitting function R;({$;}), along with the associated normalized numerical values of the Bi (where B; is the
parameter corresponding to the ith conserved quantity of Table IV) that were calculated for the best fits to the SU(2); data of Sec. V A. The
fits to the data of Hickey ef al. and Hackenbroich et al. were performed simultaneously in both sectors, minimizing the sum of the R;({8;}),
and so the parameter values of the f; are the same in both sectors for those fits.

Data source Figure Size ¢ Sector R;({B}) Bs Bs Bo

Bauer et al. [15] Fig. 3 12 |j=0) 0.00201 -0.0733 0.00283 0.00401
lj= %) 0.00535 —-0.0423 0.000408 0.00452

Hickey et al. [16] Fig. 4 8 |j =0) 0.000482 -0.0313 0.000970 0.000441
lj= %) 0.000609

Hackenbroich et al. [17] Fig. 5 8 |j=0) 0.00222 —0.0554 0.00698 -0.00211
=15 0.00136
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TABLE VI. The values of the fitting function R;({f;}), along with the associated normalized numerical values of the B; (where B; is the
parameter corresponding to the ith conserved quantity of Table IV) that were calculated for the best fits to the SU(2), data of Sec. V B.
Note the substantial improvement in R;({;}) of Fig. 6(b) relative to Fig. 6(a) that was achieved by fitting with the half-integer dimensional
conserved quantities Hy and H, instead of the integer dimensional conserved quantities H; and H,. The fits of Figs. 7 and 8 were performed
simultaneously in both sectors, minimizing the sum of the R;({f:}), and so the parameter values of the j; corresponding to integer dimensional
conserved quantities are the same in both sectors for those fits. Half-integer dimensional conserved quantities were only used for the |j = 1/2)

sector, so the corresponding f; are blank in the | j = 0) sector. The data used for these fits is from Chen et al. [18], with size £ = 6.

Figure Sector R;({B:)) Bo B2 B Bs Bs Bs B Bs Bo Bo B
Fig.6(a) [j=1) 000727 0.0045  -0.03
Fig.6(b) [j=1) 000055 0.7 -0.018
. j=0) 000043
Fig. ~0.0061  ~0.022
&7 i=1y 000013 017 003 0000T 00
. j=0) 000142
Fig. 0049 —0. : 013 0016 —0.
ie.8 i=1 000174 019 0064 O 7000 g6 ggog 0000 0013 0016 —0.009

“We set Bs = 0 due to the exclusion of H® by the R7 symmetry.

of the R;({B;}) over all the relevant sectors. The method used
for minimization is Mathematica’s NMinimize function. The
results of this minimization are the plotted results of Sec. V,
Figs. 3-8. The corresponding values of the j; can be found in
Tables V-VI of Appendix E.

We note that the NMinimize function may not always find
the exact global minimum of the function that we attempt to
minimize. We believe, however, that the minimizing sets of Bi
reported here reflect local minima, which are representative,
in the sense that the globally minimal fits would not be sub-
stantial improvements in fitting the data. In cases where we
do obtain very good fits, this is necessarily true. But even in
the more difficult case of the SU(2), data from Chen et al.,
e.g., in Fig. 8, the consistency of our results with the exact
RT symmetry, as described in Sec. V B, gives us confidence
in this conclusion.

APPENDIX E: FITTING PARAMETER DATA

Tables V and VI exhibit the numerical values of the pa-
rameters that were actually used in our approach to generate

the best-fit results of the figures of Sec. V. Since our cal-
culations on the CFT Hilbert space are done using the size
¢-independent integrals of motion H® = (;5)*~'H® (enu-
merated in Table IV) we end up computing correspondingly
size-dependent parameters Bi = (%”)A"’1 Bi. Essentially, we
rewrite Eq. (3.6) as

[
Hemanglemem — const. = BH(I) + Z Biﬁ(i)- (El)
i#1

To remove arbitrary factors of scale, the B[, which de-
termine the splitting within a descendant level, have been
normalized by dividing by B, which is the parameter that
determines the distance between descendant levels as the co-
efficient of HV = %HL in Eq. (E1). Tables V and VI also
note the value of the corresponding fitting function R;({8;})
of Eq. (D1) for the best fit that was achieved for the given
data. Since R;({8;}) is a sum of the squares of the distances
between the data and our fit, we have normalized R;({8;}) by
dividing by B2.
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