
PHYSICAL REVIEW B 106, 035131 (2022)

Machine learning predictions for local electronic properties of disordered
correlated electron systems

Yi-Hsuan Liu ,1,2 Sheng Zhang ,3 Puhan Zhang,3 Ting-Kuo Lee ,1,2,4 and Gia-Wei Chern3

1Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
2Institute of Physics, Academia Sinica, Nankang 11529, Taiwan

3Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
4Department of Physics, National Sun Yat-sen University, Kaohsiun 80424, Taiwan

(Received 15 April 2022; revised 14 June 2022; accepted 8 July 2022; published 19 July 2022)

We present a scalable machine learning (ML) model to predict local electronic properties such as on-site
electron number and double occupation for disordered correlated electron systems. Our approach is based on
the locality principle, or the nearsightedness nature, of many-electron systems, which means local electronic
properties depend mainly on the immediate environment. A ML model is developed to encode this complex
dependence of local quantities on the neighborhood. We demonstrate our approach using the square-lattice
Anderson-Hubbard model, which is a paradigmatic system for studying the interplay between Mott transition
and Anderson localization. We develop a lattice descriptor based on the group-theoretical method to represent the
on-site random potentials within a finite region. The resultant feature variables are used as input to a multilayer
fully connected neural network, which is trained from data sets of variational Monte Carlo (VMC) simulations on
small systems. We show that the ML predictions agree reasonably well with the VMC data. Our work underscores
the promising potential of ML methods for multiscale modeling of correlated electron systems.
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I. INTRODUCTION

The growing field of machine learning (ML) is rapidly
revolutionizing the scientific research. In materials science
and condensed-matter physics, the ML methods have opened
up many research possibilities which are beyond conventional
approaches. In particular, the introduction of ML techniques
has reinvigorated the field of multiscale modeling of complex
materials. A fundamental issue in multiscale simulations is
the trade-off between efficiency and accuracy of the numeri-
cal methods. In particular, an accurate treatment of complex
quantum materials often requires time-consuming calcula-
tions, which significantly limit the accessible system sizes
and time scales. Recent advances in supervised learning are
able to bridge this gap by providing an efficient, yet accurate,
model to approximate the outcomes of complicated quantum
calculations, thus enabling large-scale simulations. A super-
vised ML model is essentially a complex high-dimensional
function with numerous tunable parameters, whose optimal
values can be determined from a large number of training data
sets. Among the various ML models, deep neural networks
(NN) [1–6] represent the most powerful and versatile tools,
which, in principle, can approximate any continuous function
with arbitrary accuracy [7–9].

Perhaps the best example of large-scale modeling enabled
by ML is ab initio molecular dynamics (MD) simulations
that are based on ML force-field models [10–22]. Contrary
to classical MD simulations with empirical force fields, the
atomic forces in quantum MD are computed by integrating
out electrons on the fly as the atomic trajectories are gen-
erated [23]. Over the past decade, various ML models have

been developed to emulate the time-consuming first-principles
electronic structure calculations based on, e.g., the density
functional theory (DFT). It is worth noting that an ML model
here is essentially a complicated classical force-field model,
trained from the DFT solutions. ML-based MD simulations
thus enjoy the efficiency of classical MD, while maintaining
the accuracy of first-principles calculations.

The success of the ML method in quantum MD sim-
ulations has further motivated similar ML approaches to
achieve large-scale dynamical simulations in correlated elec-
tron systems [24–26]. For example, ML methods have been
applied to enable large-scale quantum Landau-Lifshitz dy-
namics simulations of the double-exchange model [24,25],
which describes itinerant electrons interacting with mag-
netic moments of localized d electrons. In such simulations,
the exchange forces acting on spins are obtained by solv-
ing a tight-binding electron Hamiltonian at every time step,
which could be prohibitively expensive for large systems.
ML-based exchange-force models are developed to achieve
large-scale dynamical simulations of double-exchange sys-
tems [24,25]. In another recent work [26], a multilayer NN is
employed to enable large-scale quantum kinetic Monte Carlo
simulations of the Falicov-Kimball model, which is another
canonical example of correlated electron systems. Further-
more, NN has been employed to learn the Gutzwiller solution
of Hubbard-type models [22,27], thus enabling large-scale
MD simulations of Mott metal-insulator transition in atomic
liquids [22].

It is worth noting that the unprecedented efficiency of ML
based multiscale modeling is due to the linear scalability of
electronic structure calculations enabled by ML methods. This
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is in stark contrast to most conventional approaches which
scale rather poorly with the system size. For example, exact
diagonalization, which is central to effective single-particle
methods including Hartree-Fock, Gutzwiller, and DFT, scales
cubically O(N3) with the system size N . More sophisticated
many-body techniques, such as quantum Monte Carlo and
configuration interaction, scale even more poorly with in-
creasing system size.

Fundamentally, as first pointed out by Kohn, linear-scaling
electronic structure methods are possible mainly because
of the locality nature or “nearsightedness” principle [28,29]
of many-electron systems. Indeed, in the pioneering work of
Behler and Parrinello [10], the locality principle was tacitly
assumed in their construction of the NN interatomic potential
model. The nearsightedness of electronic systems here does
not rely on the existence of well localized Wannier-type wave
functions, which only exist in large-gap insulators. Instead,
Kohn’s locality principle mainly refers to observable quanti-
ties such as the correlation function of many-particle systems;
the principle is generally a consequence of wave-mechanical
destructive interference. It requires the presence of many par-
ticles, which need not be interacting.

Although other linear-scaling methods, notably the kernel
polynomial method (KPM) [30,31], have been developed for
electronic structure calculation, they are mostly restricted to
solving the effective single-electron problem. As a result, they
cannot be directly applied to strongly interacting or correlated
systems, such as the Hubbard or t-J models. Further approxi-
mations are required to reduce the many-body Hamiltonian to
a single-particle one, which can then be solved by the O(N )
methods such as KPM. On the other hand, assuming near-
sightedness for many-electron systems, ML offers a general
approach to achieve linear scalability without further approxi-
mation. The key is to develop a ML model that can efficiently
and accurately emulate the many-body calculations based on
a finite local environment.

In this paper, we demonstrate such a scalable ML model
for a disordered electron system with Hubbard repulsion.
Specifically, we consider the type of on-site potential disorder
as described by the Anderson model of localization. Similar
on-site disorder can also arise dynamically as in the adiabatic
Holstein model. A neural network (NN) model is developed
to directly predict local electronic properties such as elec-
tron occupation number and double occupancy, based on the
disorder configuration in the immediate neighborhood. The
NN model is trained from quantum variational Monte Carlo
simulations on small lattices. We show that the trained NN
model gives accurate predictions on much larger systems of
varying Hubbard repulsion and disorder strength. Our work
demonstrates the transferability and scalability of the ML
approach to Hubbard-type models, paving the way for their
applications to multiscale modelings of correlated electron
systems.

The remainder of the paper is organized as follows. In
Sec. II, we present the variational Monte Carlo (VMC)
method and details of its implementation to the disordered
Hubbard model. Our focus is on the real-space electronic
inhomogeneity and how the local electronic properties depend
on the neighborhood disorder configuration. The structure of
the NN and the training process are discussed in Sec. III. A

lattice descriptor, based on the group-theoretical method, is
developed to incorporate the discrete lattice symmetry into
the NN model. Comparisons of the ML predictions versus the
VMC results on validation data sets are presented in Sec. IV.
Moreover, we discuss the application of the ML model to the
Mott transition of the Anderson-Hubbard model. Finally, a
summary and discussion for future work are given in Sec. V.

II. VARIATIONAL MONTE CARLO METHOD
FOR HUBBARD MODEL

We consider the following two-dimensional Hubbard
model with an on-site disorder, also known as the Anderson-
Hubbard (AH) model [32–34]:

Ĥ = −t
∑
〈i j〉,σ

ĉ†
i,σ ĉ j,σ +

∑
i

εin̂i +
∑

i

U n̂i↑n̂i↓. (1)

Here t is the nearest-neighbor electron hopping constant,
ĉ†

i,σ is the electron creation operator with spin σ =↑,↓ at

site i, n̂i,σ ≡ ĉ†
i,σ ĉi,σ is the corresponding number operator,

and n̂i = n̂i↑ + n̂i↓ is the total number operator. The on-site
Coulomb repulsion is described by the last term where U is
the Hubbard parameter. The second term describes an on-site
or potential disorder considered by Anderson; εi denotes the
on-site potential, which is a random number drawn uniformly
from the interval [−W/2,+W/2]. The strength of the disorder
is thus characterized by the parameter W .

It is worth noting that such on-site disorder can also be of
dynamical origin, e.g., due to lattice distortions. A canonical
example is the Holstein-Hubbard model [35–37], in which
a scalar dynamical variable Qi is introduced to describe lo-
cal lattice distortion of A1 symmetry, such as the breathing
mode of oxygen octahedron, associated with site i. The ran-
dom on-site potential εi = −gQi comes from the deformation
potential coupling between electrons and lattice: Hel-ph =
−g

∑
i n̂i Qi, where g is the coupling constant [35]. As will

be discussed below, the NN model developed for the AH
Hamiltonian can also be used to predict the effective forces
acting on Qi in the adiabatic limit.

The AH model is one of the canonical electron systems.
In addition to exhibiting rich phase diagrams [38–44], the AH
model offers a simple platform to study the interplay between
two important mechanisms of metal-insulator transition,
namely the Anderson localization versus correlation-induced
Mott transition. The AH model has been extensively studied
by a wide variety of numerical methods. Depending on the nu-
merical treatments of the spatial disorder, there are two types
of approaches to this problem: the self-consistent theories
and the real-space methods. The most representative example
of the former approach is the generalization of dynamical
mean field theory (DMFT) [45] to include the disorder effects.
While several self-consistent theories have been developed
for disordered electronic systems, the typical medium the-
ory (TMT) [46] proves successful to capture the Anderson
localization phenomena and can be readily combined with
DMFT [38,39]. As such self-consistent methods are free of
finite-size effect, they provide an overall theoretical picture of
the AH model in the thermodynamic limit.

The nonmagnetic phase diagram of the AH model obtained
from the TMT-DMFT method includes three distinct phases:
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a correlated metallic phase, a Mott insulating phase, and an
Anderson insulating phase [38,39]. Importantly, the two insu-
lating phases of the AH model have very different characters.
The Mott insulator results from the strong correlation effect
which prohibits electrons from hopping to the neighboring
sites. On the other hand, strong disorder weakens the con-
structive interference that allows an electron wave packet to
propagate coherently in a periodic potential, leading to the
Anderson insulator. TMT-DMFT calculation shows that these
two insulating phases are continuously connected [38,39].

On the other hand, the real-space approach, although
limited by finite-size effect, can better describe the spatial
fluctuations and correlations of the inhomogeneous electronic
state due to the disorder, especially for low-dimensional
systems. In this real-space approach, the AH Hamiltonian
for a particular disorder configuration on a finite lattice is
solved by many-body techniques ranging from unrestricted
Hartree-Fock [40,47–49] and Gutzwiller [41,50] mean-field
type theories to small-cluster exact diagonalization [51–53],
inhomogeneous or statistical DMFT [33,54–56], and quan-
tum determinent Monte Carlo [57–60] as well as variational
Monte Carlo simulations [61–64]. The calculation results
are then averaged over different disorder realizations. In
particular, extensive large-scale simulations based on the
Gutzwiller/slave-boson methods showed that the strong spa-
tial inhomogeneity gives rise to an electronic Griffiths phase
that precedes the metal-insulator transition [41].

In this work, we are interested in the locality of electronic
properties and collective behaviors such as the double occu-
pancy. Specifically, our goal is to develop a NN model that can
accurately predict on-site quantities based on disorder config-
uration within a finite neighborhood. To capture these spatial
inhomogeneities, we employ the real-space variational Monte
Carlo (VMC) method to solve the square-lattice AH model.
As we are interested mainly in the competition between local-
ization effect and electron correlation, we restrict ourselves to
the paramagnetic phases to avoid complications due to long-
range magnetic order. We note that a similar ML approach
to disordered Hubbard models has been demonstrated based
on the data set from the real-space Gutzwiller/slave-boson
method [27]. However, the spatial correlation between local
electronic properties is ignored due to the Gutzwiller approx-
imation. The VMC method, on the other hand, can properly
take into account these spatial correlations, which are impor-
tant to test the locality of the ML models.

Next we outline the VMC method for the square-lattice AH
model. Following the previous works developed for Hubbard-
type models, we consider a variational wave function obtained
by applying a Gutzwiller factor Ĝ and a Jastrow factor Ĵ to a
Slater determinant |�0〉 [61,62,65]:

|�〉 = ĜĴ |�0〉. (2)

The uncorrelated Slater determinant state |�0〉 is computed
from the eigenstates of the following quadratic Hamiltonian:

ĤMF = −t
∑
i j,σ

ĉ†
i,σ ĉ j,σ +

∑
i,σ

ε̃i,σ n̂i,σ , (3)

which can be viewed as a mean-field approximation to the
AH model. The on-site energies ε̃i,σ are part of the variational

parameters. As mentioned above, we focus on the param-
agnetic phases and assume spin-independent local energies
ε̃i,↑ = ε̃i,↓ = ε̃i. To account for the crucial on-site electron
correlation, the Gutzwiller correlator is introduced [65–67]:

Ĝ =
∏

i

[1 − (1 − gi ) n̂i↑n̂i↓] ≡
∏

i

Ĝi, (4)

where gi are another set of variational parameters that control
the on-site double occupancy; as gi → 0, double-occupied
states are completely projected out. The long-range Jastrow
factor is defined as [65]

Ĵ = exp

[
−1

2

∑
i j

vi j (n̂i − 1)(n̂ j − 1)

]
. (5)

The Jastrow operator, parametrized by another set of vari-
ational parameters vi j , introduces correlation of charge
fluctuations δni = ni − 1 at different sites. For an arbitrary
inhomogeneous state, the parameter vi j in principle depends
on both sites i and j, giving rise to a total of N2 parameters
to be optimized. In order to make the numerical calculation
feasible [61,62], we assume translational invariance for these
parameters, i.e., vi j = v(|ri − r j |), and consider vi j for differ-
ent pairs up to the eighth nearest neighbors.

The optimal variational parameters ε̃i, gi, and vi j

are obtained by minimizing the variational energy
Evar = 〈�|Ĥ|�〉/〈�|�〉 using the stochastic reconfiguration
method [68,69]. The evaluation of the various expectation
values computed from |�〉 is computed based on Monte Carlo
simulations. In the following we apply the VMC methods to
study the ground state of the AH model with various disorder
strength W = 6t, 10t, 14t, 18t and Hubbard parameter
U = 4t, 8t, 10t, 12t, 16t . We focus on the case of half
filling, where the number of electrons Ne = N . Periodic and
antiperiodic boundary conditions along x and y directions,
respectively, are used. Depending on the convergence,
500–2000 iterations of the stochastic reconfiguration were
used to optimize the variational parameters. For each
iteration, the various expectation values were obtained
from approximately 105 Monte Carlo samplings. For each U
and W combination, 50 independent realizations were used to
generate the training data sets.

The results of the VMC simulation are summarized in
Fig. 1, which shows the scatter plots of various local quantities
versus on-site potentials εi for three different Hubbard U .
Here we are interested in the following local quantities: (a)
the local electron filling fraction fi, (b) the electron on-site
self-energy �i, (c) the double occupancy Di, and (d) the local
quasiparticle weight qi. Each point in the scatter plots cor-
responds to the data of a lattice site from the VMC solution
of a given disorder realization. The local electron number is
defined as

ni = 〈n̂i〉 = 〈n̂i,↑〉 + 〈n̂i,↓〉. (6)

For paramagnetic phases, we have 〈n̂i,↑〉 = 〈n̂i,↓〉. As shown in
Fig. 1(a), this local electron density is reduced with increas-
ing on-site potential, which is expected. At large U = 16t ,
the electron number develops a plateau at ni = 1 for small
on-site energies |εi| � 6t . The plateau thus represents lattice
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FIG. 1. Summary of the VMC solution for the AH model on a
16 × 16 square lattice. The four panels show the scatter diagram
of (a) on-site electron number ni, (b) variational local self-energy
�i, (c) double occupancy Di, and (d) effective quasiparticle weight
qi versus the random on-site potential εi. The data points were ob-
tained from calculations with random strength W/t = 6, 10, 14, 18
and three different U = 4t, 10t , and 16t . The overall dependence of
the various local quantities on the on-site potential is highlighted
by the three colored curves obtained using polynomial regression
with up to 16th-order polynomials. The red, blue, and green curves
correspond to U = 4t , 10t , and 16t , respectively.

sites with localized electrons, where the corresponding double
occupancy also tends to zero. The electronic properties out-
side the plateau are dominated by the strong local potential,
leading to either almost filled or empty sites. For systems
with large W � U , the interplay between electron correlation
and disorder thus gives rise to spatially very inhomogeneous
states with coexisting Mott regions and Anderson insulator,
consistent with the two-fluid behavior of the Mott-Anderson
insulator [39,41,55].

Another quantity of interest is the local self-energy, which
is defined as the difference between the renormalized and bare
on-site potentials:

�i = ε̃i − εi. (7)

As shown in Fig. 1(b), this self-energy clearly anticorrelates
with the random on-site potential εi, meaning that the renor-
malization due to �i is such that the effective potential ε̃i

tends to vanish. Indeed, screening of impurity potential by
the electron gas has been demonstrated even in the weak
interaction regime. As demonstrated in both real-space DMFT
and slave-boson studies on the 2D AH model [41,50,54],
the disorder screening persists also in the strong correlation
regime, albeit with a rather different nature. In particular,
this interplay leads to the enhancement of metallicity in an
intermediate regime where the interactions and the disorder
are of comparable magnitude.

To detect the correlation-induced electron localization, we
compute the local double occupancy from VMC:

Di = 〈n̂i,↑n̂i,↓〉. (8)

As expected, the average double occupation is reduced with
increasing Hubbard U ; see Fig. 1(c). It should be noted that

the large Di persisting even at large U is due to the deep
on-site potential which traps two electrons of opposite spins.
On the other hand, the small value of double occupancy at
large positive ε is a result of empty site, instead of strong
correlation. To properly distinguish these two scenarios, we
also compute an effective local quasiparticle weight defined
as

qi = 4gi

(1 + gi )2
, (9)

where gi is obtained from the VMC optimization. For ho-
mogeneous electron liquids, the quantity q characterizes the
discontinuity of the momentum distribution function at the
Fermi surface in the Gutzwiller approximation [66,67]. And,
for inhomogeneous systems, qi plays the role of renormalizing
the electron hopping. We emphasize that qi is not an exact
definition, but is meant to be a qualitative indicator of the
local quasiparticle weight. As shown in Fig. 1(d), overall the
quasiparticle weights decrease with increasing Hubbard U .
On the other hand, stronger disorder, e.g., sites with |εi| � U ,
preserves the itinerant nature of electrons.

The results summarized in Fig. 1 also indicate a continuous
trend with respect to increasing disorder for a fixed Hubbard
parameter. We note that these scatter plots include VMC data
from various disorder strengths W/t = 6, 10, 14, and 18. As
a result, some of the data points correspond to the Mott-
dominated insulating phase, i.e., those W < U , while others
belong to the Anderson insulator (W > U ). Nonetheless, the
collection of all data points clearly exhibit an overall trend as a
function of the on-site potential ε as highlighted by the smooth
curves in Fig. 1, which are obtained using polynomial regres-
sion up to 18th order. These continuous functions relating the
local quantities ni, Di, . . . to the on-site potential εi thus pro-
vide the zeroth order prediction. Deviations from this smooth
curve, as clearly indicated by the scattered points in the figure,
thus can be viewed as due to the influence of neighboring
random potentials. The effects of the neighborhood disorder
are accounted for by the ML model to be described below.

III. MACHINE LEARNING MODEL

We next describe the framework of a scalable ML model
for predicting the local electronic properties of disordered
Hubbard systems. Our approach is similar to the ML modeling
of structure-property relationships in materials science, which
play an increasingly important role in accelerated materials
discovery. A particularly important application, as mentioned
in Sec. I, is the ML modeling of force field for ab initio MD
simulations. The central idea is to develop a ML model which
can accurately predict the force acting on individual atoms
and other local properties based on the immediate chemical
environment.

A widely used scheme, first pioneered by Behler and Par-
rinello [10], focuses on local energies. First, the total energy of
the system is partitioned into local contributions, E = ∑

i Ei,
where Ei is called the atomic energy associated with the ith
atom. Next, based on locality principle, the atomic energy Ei

is assumed to depend on the atomic configuration Ci in the
neighborhood of atom i. Specifically, this local chemical en-
vironment is given by Ci = {(Zj, R j ) | |R j − Ri| < rc}, where
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FIG. 2. Schematic diagram of the ML model for the vector function F (Ci;U ) defined in Eq. (11) for the AH model. The input of the ML
model is the disorder configuration Ci in the neighborhood of a given site i up to a cutoff radius rc. The output are local electron properties
including on-site electron number ni, self-energy �i, double-occupancy Di, and Gutzwiller parameter gi. There are two central components
of the ML model: the descriptor and the learning model, which is based on a multilayer neural network. The ReLU activation function is
used in the five hidden-feature extraction layers with 256 × 128 × 64 × 32 nodes. Note the special input node corresponding to the Hubbard
parameter U .

Zj is the atomic number of atom j at position R j and rc is
a cutoff radius (soft cutoff is often used). Finally, the com-
plex dependence of atomic energy on the local environment,
Ei = f (Ci ), is to be approximated by an ML model, which is
trained from electronic structure calculations such as DFT on
small systems.

The atomic forces in this scheme are obtained from the
derivatives of the total energy: Fi = −∂E/∂Ri. It is worth
noting that, instead of direct prediction of atomic forces,
which are vectors, the Behler-Parrinello type scheme focuses
on the local atomic energy. The fact that the atomic energy,
as a scalar, is readily invariant under transformations such
as rotations and translations of the system makes it easier
to incorporate the symmetry properties into the ML model.
Moreover, as forces are derived from an effective energy,
this approach also ensures a conservative force field, which
is important for quantum MD under Born-Oppenheimer ap-
proximation [23]. Most importantly, this ML method is both
transferrable and scalable as exactly the same ML model can
be used for much larger systems. We note in passing that a
similar approach has recently been developed for generalized
force fields in condensed matter systems [70].

Here we adapt this ML approach to develop a neural-
network (NN) model for the prediction of local electronic
properties of the AH model. Again, based on the nearsight-
edness of many-electron systems [28,29], we assume local
electronic properties such as electron density and double oc-
cupancy at site i only depend on the neighborhood disorder
configuration Ci. Explicitly, it is defined as

Ci = {
ε j

∣∣ |R j − Ri| < rc
}
, (10)

where rc is a predefined cutoff radius. The complex depen-
dence of local electronic properties on local energies Ci in the
neighborhood is represented by a vector function F (·):

Qi = (ni, �i, Di, gi, . . .) = F (Ci; U ). (11)

For convenience, here we arrange the local quantities asso-
ciated with site i into a vector or array Qi. The definitions
of these quantities are discussed in Sec. II. Although the
approach discussed here can be straightforwardly general-
ized to include more local properties, here we mainly are

concerned with the four quantities shown in Fig. 1. Moreover,
we have explicitly included the dependence on the Hubbard
parameter U . By setting the nearest-hopping constant t = 1,
which serves as the unit for energy, the vector function F (·) is
universal for the AH model of a given electron filling fraction
n = Ne/N . A ML model, shown in Fig. 2, is developed to
approximate this universal function for the case of half filling.
The input of the model, which is the disorder configuration
Ci in the neighborhood of site i, is first transformed into a
set of feature variables {x1, x2, . . . , xM} called the descriptor.
These feature variables, along with the Hubbard parameter
U , are then fed into the neural network, which produces an
array of the local quantities Qi at the output. Details of these
two central components, namely the descriptor and the neural
network, are discussed in the following.

A. Lattice descriptor

It is worth noting that, despite the powerful approximation
capability of NNs, symmetries of the electron Hamiltonian are
not automatically included in the ML model. One approach
to incorporate the required symmetry into the ML model is
through the construction of a proper representation of the
local environment, which is then used as input to the learning
model. A good representation is invariant with respect to
transformations of the symmetry group of the system. This
crucial step of the ML model, namely the construction of
the proper representation, is often referred to as feature en-
gineering and the resultant feature variables, also called the
generalized coordinates, are termed a descriptor [71–73].

A sescriptor is also crucial to the ML interatomic po-
tentials for quantum MD simulations. A proper description
of the chemical environment should respect the fundamental
symmetries of interatomic interactions, which are invariant
under translational, rotational, and permutational transforma-
tions. Over the past decade, a number of descriptors have
been proposed together with the learning models based on
them [10,11,16,71–81]. A popular atomic descriptor used
in many ML models is the atom-centered symmetry func-
tions (ACSFs) built from the two-body (relative distances)
and three-body (relative angles) invariants of the atomic
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FIG. 3. Schematic diagrams of (a) four-site and (b) eight-site
blocks of neighbor sites.

configurations [10,76]. The group-theoretical method, on the
other hand, offers a more controlled approach to the construc-
tion of atomic representation based on the power-spectrum
and bispectrum coefficients [11,72]. It is worth noting that the
research of the atomic descriptor is an active ongoing field.

A general theory and several specific implementations of
descriptors in condensed matter systems, especially for lattice
models, have recently been presented in Ref. [70]. In particu-
lar, the group-theoretical bispectrum method was generalized
to systematically generate feature variables that are invariant
under symmetry operations of the on-site point group [27,70].
Here we apply this method to develop a descriptor of the AH
model. To this end, we first note that the on-site potentials
in the neighborhood Ci form a high-dimensional reducible
representation of the site-symmetry group, which in the case
of a square lattice is equivalent to the point group D4. The first
step of finding invariants under site symmetry is to decompose
the neighborhood Ci into irreducible representations (IRs) of
the symmetry group.

While this decomposition can be done following standard
procedure in group theory, the calculation here can be greatly
simplified by noting that neighboring sites j with the same
distance Ri j = |R j − Ri| from the center site i form a closed
representation of the point group. In the case of D4, the size
of these invariant neighbor blocks is either four or eight; see
Fig. 3. The four-site block can be decomposed as 4 = 1A1 ⊕
1B1 ⊕ 1E . The expansion coefficients of each IR are

fA1 = εa + εb + εc + εd ,

fB1 = εa − εb + εc − εd ,

f E = (εa − εc, εb − εd ). (12)

The decomposition of the eight-site block is 8 = 1A1 + 1B1 +
1A2 + 1B2 + 2E , with the following coefficients for each IR:

fA1 = εa + εb + εc + εd + εe + ε f + εg + εh,

fA2 = εa − εb + εc − εd + εe − ε f + εg − εh,

fB1 = εa − εb − εc + εd + εe − ε f − εg + εh,

fB2 = εa + εb − εc − εd + εe + ε f − εg − εh,

f (E ,1) = (εa + εb − εe − ε f , −εc − εd + εg + εh),

f (E ,2) = (εc − εd − εg + εh, εa − εb − εe + ε f ). (13)

As the neighborhood Ci contains several such invariant blocks,
we expect the same IRs to appear multiple times in the overall

decomposition of Ci. In the following, we label each IR in
the decomposition of Ci as 
 = (T, r), where T = A1, A2, . . .

denotes the symmetry type of the IR and r indicates a differ-
ent occurrence of the same IR. For convenience, we arrange
the expansion coefficients of an IR 
 into a vector f 
 =
( f
,1, f
,2, . . . , f
,n


), where n
 is the dimension of 
.
The power spectrum of the representation is given by the

amplitudes of the IR coefficients

p
 = | f 
|2. (14)

Since the power spectrum coefficients are obviously invariant
under symmetry transformations, they can be used as feature
variables for the ML models. However, a descriptor composed
only of power spectrum is incomplete since the relative phases
between different IRs are ignored. This also means that the
descriptor contains spurious symmetries as the transformation
of each IR is independent of each other without the phase in-
formation. A complete set of feature variables can be obtained
from the bispectrum coefficients b
1,
2,
3 , which are triple
products of the expansion coefficients f 
1,2,3

based on the
Clebsch-Gordan coefficients of the point group. Intuitively,
they can be viewed as the analog of the scalar triple product
of three-dimensional vectors. Not only are the bispectrum
coefficients invariant under symmetry transformations, they
can also be used to faithfully reconstruct the original disorder
configuration [72,82].

However, a descriptor based on all the bispectrum coeffi-
cients is in fact overcomplete as many of them are redundant.
Moreover, since the dimension of most IRs of point groups
is rather small, the number of bispectrum coefficients is of-
ten a very large number, which makes the implementation
infeasible. Instead, here we employ the method of reference
IR discussed in Ref. [70] to retain the phase information. The
central idea is to first construct an eight-dimensional represen-
tation of the neighborhood Ci based on an average of on-site
potentials over symmetry-related finite regions. As shown in
Fig. 2, an example is given by (εA, εB, . . . , εH ), where each
εK is given by the average of all on-site ε j within wedge K .

The decomposition of this eight-dimensional represen-
tation εK then gives coefficients f ∗

A1
, f ∗

A2
, . . . , f ∗

E for each
symmetry type. These coefficients f ∗

T are termed the reference
IR coefficients. For each IR, an effective phase can be defined
by the following inner product:

η
 = ( f 
 · f ∗
T


)/| f 
|| f ∗
T


|, (15)

where T
 is the symmetry type of IR 
. The phase η
 , which is
an inner product of two IR coefficients, is naturally invariant
with respect to symmetry operations. More importantly, by
including η
 in the descriptor, the relative phases between
different f 
 can now be inferred through the intermediate
reference IR coefficients.

B. Neural network

The various steps of the descriptor discussed above can
be summarized as Ci → f 
 → (p
, η
 ). Crucially, assum-
ing the various local quantities Qi of interest depend on the
neighborhood through these feature variables,

Qi = F ({p
, η
}i;U ). (16)
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The resultant ML model is ensured to preserve the site sym-
metry of the AH Hamiltonian. As discussed above, this vector
function F (·) is to be implemented using a NN. The ba-
sic unit of a NN is a perceptron or artificial neuron. And
a NN is essentially a set of nested linear regression func-
tions with nonlinear activation performed by the neurons;
see Fig. 2. For a neuron with m input signals, arranged
in a vector x = (x1, x2, . . . , xm), its output is given by y =
σ (w · x + b), where σ (·) is a nonlinear activation function,
w = (w1,w2, . . . ,wm) specifies weights for each input, and b
denotes a bias. Here each signal xk is the output of a neuron
from a previous layer. In a NN, each line is associated with a
weight, while each node (neuron) is assigned a bias. These
weight and bias variables are parameters to be optimized
through training processes.

We design a fully connected NN with four hidden lay-
ers consisting of N = 256 × 128 × 64 × 32 rectified linear
unit (ReLU) neurons, i.e., with an activation function σ (x) =
max(0, x). We choose these numbers of neurons in or-
der to optimize the memory access in CUDA-based GPU
computation. The input layer, specified by a vector X =
(X1, X2, . . . , XM ), are given by the standard-scalar transforma-
tion, i.e., by removing the mean and scaling to unit variance,
of the power spectrum coefficients p
 and the relative phases
η
 . In addition, the Hubbard parameter U is also used as an
input to the NN; see Fig. 2. The neurons in the hidden layers
perform a series of nonlinear transformations described above
on the input data. The outcome is fed forward to be processed
by the output neuron with sigmoid activation function for n,
D, and g (whose domain is [0,1]) and linear activation function
for �. The mean squared error (MSE) is used as the loss
function:

L = 1

N

N∑
k=1

(Wn|nk − n̂k|2 + W�|�k − �̂k|2

+WD|Dk − D̂k|2 + Wg|gk − ĝk|2 + · · · ), (17)

where N is the number of training data, symbols with a hat
refer to the predicted values, and the various W denote the
weights of each output. The method of batch normalization is
used to avoid overfitting, with a minimum batch size of 32. We
use randomly mixed 36 × 256 × 4 × 5 = 184320 data sam-
ples as the training set. The Adam optimizer with learning rate
of 0.001 is applied for the training process. Once the training
process is successful, the trained neural network can rapidly
predict the 4 × 256 × 4 × 5 = 20480 test data samples. Equal
weights for the output are used in the current model.

It is worth noting that, instead of developing an indepen-
dent NN for each of the local quantities, here we adopt a
multitask ML framework [83,84]. As shown in Fig. 2, our
approach is to build one NN that can simultaneously and
consistently predict different local electronic properties. This
common NN is trained via a loss function L that includes
MSE from all four local quantities introduced in Eq. (11).
Such a multitask learning approach allows inductive bias to
be acquired via the training signals for related additional
tasks drawn from the same domain [83]. The benefit of
multitask learning is the additional constraints due to the

interdependences between the multiple outputs; what is
learned for each task can help other tasks to be learned better.

IV. RESULTS AND DISCUSSION

We first benchmark the trained ML model by comparing
its predictions against the results from VMC simulations for
all disorder configurations, including both the training and the
validation data sets. As shown in Fig. 4, for all four local quan-
tities, the ML predictions agree reasonably well with the VMC
calculations. More quantitatively, we plot the histograms of
the prediction error defined as δ = AML − AVMC in the insets
of Fig. 4. In all cases, the error is rather narrowly distributed
with a MAE, given by the width of the distribution, of the
order of less than one percent of the mean values.

It should be noted that the VMC data set is itself
noisy, since the quantities computed from VMC simula-
tions are based on Monte Carlo samplings, for example,
ni = 1

M

∑M
i=1〈�i|n̂i|�i〉/〈�i|�i〉 for local electron occupation

number, where |�i〉 is a trial wave function among the Markov
chain samplings. The values from VMC thus depend on the
number of samplings and other stochastic factors. Similarly,
as the optimization of variational parameters, such as local
energy renormalization �i and Gutzwiller parameter gi, are
based on derivatives which are computed stochastically, these
quantities are also not without uncertainty. The randomness
in the data sets thus partially contributes to the error δ in
the ML predictions. Of course, the error due to VMC can
be systematically reduced by increasing the number of Monte
Carlo samplings.

FIG. 4. Comparison of the ML predictions with references ob-
tained from the VMC simulations. (a) Local electron number n,
(b) on-site electron self-energy �, (c) local double-occupancy D, and
(d) the Gutzwiller variational parameter g. The blue and orange data
points denote predictions for training and test data sets, respectively.
The insets show the normalized count of the error δ = AML − AVMC

defined as the difference between prediction and reference values.
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FIG. 5. Distributions of local double-occupancy Di obtained by
applying the trained ML model to a large 100 × 100 square lattice at
various Hubbard parameters.

We note in passing that, for Hubbard-type models with
electron-lattice coupling through the deformation potential,
the ML prediction of the local electron number ni also pro-
vides the forces acting on the atomic displacements or lattice
distortions. Our approach is thus an alternative to the more
general Behler-Parrinello ML scheme [10]. These include
both the Holstein and Jahn-Teller lattice models. For exam-
ple, the electron-phonon coupling in the Holstein model is
described by Ĥel-ph = −g

∑
i n̂iQi, where Qi denotes the am-

plitude of local structural distortion. The lattice degrees of
freedom play an important role in the emergence of complex
electronic textures driven by electron correlation in Hubbard-
type models. In such applications, the lattice distortions Qi can
be treated as classical dynamical variables and the electronic
forces acting on Qi can be obtained from the Hellmann-
Feynman theorem: Fi = −〈∂Ĥel-ph/∂Qi〉 = g〈n̂i〉. The ML
model developed here thus can also be combined with the
Langevin dynamics method to enable large-scale dynamical
simulations of the Hubbard-Holstein model.

To demonstrate the scalability of our ML approach, we
apply the ML model, trained from VMC solutions on a small
16 × 16 lattice, to compute the real-space electronic proper-
ties of the AH model on a 100 × 100 lattice. Figure 5 shows
the profiles of local double-occupancy Di at various Hubbard
U for some random realizations of a large disorder with W =
18. Based on the locality of electronic systems, the ML model
only depends on on-site potentials of a fixed finite spatial
region, e.g., determined by the cutoff radius rc, independent of
the system size N . Consequently, the time complexity of the
ML method for computing local electronic properties scales
linearly with N . The efficiency is thus significantly improved
compared with the polynomial scaling O(Ns) of VMC, where
the exponent s ranges from 3 to 6 depending on the specific
optimization techniques [69].
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FIG. 6. (a) Double occupancy D, averaged spatially over sites
of the 100 × 100 lattice and averaged over 50 independent real-
izations of disorder, as a function of Hubbard parameter U . Panel
(b) shows the spatial standard deviation of the double-occupancy
σD = [

∑N
i=1(Di − D)2/N]1/2, averaged over 50 different disorder re-

alizations. The black dots are the VMC data, while the colored dots
are predictions by the trained ML model.

The results shown in Fig. 5 are also consistent with the
picture of disorder screening discussed previously [41,50,54].
At small U , the strong disorder results in a highly inho-
mogeneous distribution of electron double occupation, as
demonstrated in Fig. 5(a). With increasing U , in addition to
a reduced double occupancy due to Coulomb repulsion, the
spatial inhomogeneity of Di is also reduced due to the renor-
malization �i of the on-site potential by electron correlation.
By applying the ML model to independent realizations of
disorder, Fig. 6(a) shows the double-occupancy D, averaged
over all lattice sites and different disorder configurations, as a
function of U for different disorder strength W . Also shown
for comparison are the VMC results on a smaller 16 × 16
system. The ML predictions not only are consistent with the
VMC calculations, but also exhibit a consistent trend towards
Mott transition with increasing Hubbard parameter U . In the
presence of strong disorder, our results show a continuous
crossover from Anderson insulator to the Mott insulating
phase [55,62].

As shown in Fig. 5, the rather inhomogeneous states indi-
cate a rather wide distribution of the local double occupancy,
especially at small U . In addition to the mean value, our ML
model also captures this spatial inhomogeneity of the electron
state. To demonstrate this, we plot in Fig. 6(b) the spatial
variation of the double occupancy σD = [ 1

N

∑
i(Di − D)2]

1/2
,
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averaged over several independent disorder realizations, as a
function of U . The amount of variation computed from ML
predicted local double occupancy agrees very well with the
VMC simulations. The ML model also consistently predicts
the decrease of the dispersion σD as U is increased, which
is indicative of the screening of disorder induced by strong
electron correlation [41,50,54].

Finally, it is worth pointing out that the nontrivial U de-
pendence, which encapsulates the electron correlation effect,
can be incorporated in the ML model by simply adding
the Hubbard parameter U at the input node; see Fig. 2.
The feasibility of this approach can be partly attributed to the
smooth dependence of electronic properties on the Hubbard
U in the presence of disorder. Indeed, as discussed in previ-
ous works, the first-order Mott transition is smeared by the
strong disorder in 2D, leading to a continuous crossover to the
Anderson-Mott insulator [55,62]. Moreover, even through a
single input node, highly nonlinear dependence on U can be
achieved through the fully connected neurons with nonlinear
activations.

V. SUMMARY AND OUTLOOK

To summarize, we present a comprehensive ML framework
for the predictions of local electronic properties of disordered
Hubbard models. By exploiting the universal approximation
capability of neural networks, a ML model is developed to
encode the complex dependence of local quantities, such as
electron number and double occupancy, on the local envi-
ronment. Based on the group-theoretical method, a descriptor
is proposed to represent the neighborhood random potentials
with the lattice symmetry properly taken into account. We
use the AH model as an example to demonstrate our ML
framework. By training the NN with data sets from small-
scale VMC simulations, we show that consistent results are
obtained by applying the ML model to large systems with
approximately 104 lattice sites.

Our approach emphasizes the scalability and transferability
of the ML model, which are essential in order to achieve
the goal of multiscale modeling of correlated electron sys-
tems. The fact that most electronic structure methods and
many-body techniques for solving strongly correlated models
have a polynomial complexity O(Nα ) with α > 1 signifi-
cantly restricts the accessible size and time scales. On the
other hand, as pointed out by Kohn [28,29], the locality
nature of most electronic systems, namely, local physical
observables are determined by the immediate environment,
underpins the possibility of linear-scaling electronic struc-
ture methods. The ML approach proposed in this work takes
advantage of this feature to enable linear-scaling calcula-
tions for local electronic properties of correlated electron
systems.

The assumption of locality also means that long-ranged in-
teractions such as Coulomb or dipolar interactions are beyond
the proposed ML approach. Nonetheless, such slowly decay-
ing long-range interactions are often of classical origin and
can be described by explicit analytical formulas. Their effect
can thus be included independent of the ML model, which is
designed to model the effects of electrons. Moreover, efficient
methods such as Ewald summation have been developed to

deal with such long-range interactions (Coulomb or dipolar).
However, the presence of such long-range interactions does
increase the overall computational complexity and, as a result,
exact linear scaling might not be possible.

It should also be noted that, despite the generality of the
nearsightedness of many-electron systems [28,29], the effec-
tive range of influence could be rather large, especially for
electronic systems close to criticality. The prediction accuracy
of the proposed ML approach then depends crucially on the
cutoff radius of the local environment. One thus needs to
strike a balance between accuracy and feasibility in practical
implementations. Nonetheless, the ML model is developed
with the main purpose of modeling spatially inhomogeneous
electronic states, of which the electron correlation decays
exponentially with a short correlation length. This is because
even the electron wave functions are short ranged due to, e.g.,
Anderson localization effect, in such disordered systems. We
thus expect the ML model should perform well for highly
inhomogeneous electron systems.

As discussed in Sec. I, similar approaches have been
employed to develop ML force-field models for quantum
MD simulations. However, in most prior works [10–22], the
ML models are derived from electronic structure methods
that are based on self-consistent single-particle calcula-
tion, such as DFT or Gutzwiller approximation. Our work
demonstrates that NN can successfully learn variational
Monte Carlo simulation, which is a many-body method
beyond effective single-particle or mean-field type approxi-
mations.

Finally we note that a similar ML framework has also been
applied to enable large-scale dynamical simulations of some
correlated electron systems, including the double-exchange
and Falicov-Kimball models [24–26]. These electronic mod-
els are characterized by dynamical classical degrees of
freedom coupled to free electrons described by a tight-binding
Hamiltonian. ML models are constructed for the general-
ized force fields acting on the dynamical classical fields.
As there are no direct electron-electron interactions in these
models, the electronic structure problems can be solved by
exact diagonalization. For correlated electron systems with
Hubbard-type interactions, sophisticated many-body methods
are required for an accurate solution of the electronic struc-
ture problems. As mentioned above, our ML model can be
readily combined with Langevin method to enable large-scale
dynamical simulations of the Hubbard-Holstein model. Our
work paves the way toward multiscale dynamical model-
ing of strongly correlated systems such as Hubbard or t-J
models.
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