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An effective spin model for Mott insulators is determined by the symmetries involved among magnetic sites,
electron fillings, and their interactions. Such a spin Hamiltonian offers insight to mechanisms of magnetic
orders and magnetic anisotropy beyond the Heisenberg model. For a spin moment S bigger than 1/2, single-ion
anisotropy is in principle allowed. However, for d3 Mott insulators with large cubic crystal field splitting, the
single-ion anisotropy is absent within the LS coupling, despite S = 3/2 local moment. On the other hand,
preferred magnetic moment directions in d3 materials have been reported, which calls for a further theoretical
investigation. Here we derive the single-ion anisotropy interaction using the strong-coupling perturbation theory.
The cubic crystal field splitting including eg orbitals, trigonal distortions, Hund’s coupling, and spin-orbit
coupling beyond the LS scheme are taken into account. For compressed distortion, the spin-orbit coupling at
magnetic sites can favor either the easy-axis or the easy-plane while that of anions leads to easy-axis anisotropy.
We apply the theory on CrX3 with X = Cl and I, and show the dependence of the single-ion anisotropy on the
strength of the spin-orbit couplings of both magnetic and anion sites. Significance of the single-ion anisotropy
in ideal two-dimensional magnets is also discussed.
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I. INTRODUCTION

Two-dimensional (2D) magnets have been of great inter-
est in both fundamental and applied research communities
due to their intrinsic long-range order (LRO) and potential
application in spintronics, data storage, and sensing [1,2]. In
particular, recent progresses on 2D materials such as mono-
layer CrI3 [3] and bilayer Cr2Ge2Te6 [4] have generated
intense theoretical and experimental activities to understand
and control physical properties via pressure, strain, dop-
ing, and/or stacking into heterostructures [5–10]. These 2D
materials exhibit paramagnetic (PM) to ferromagnetic (FM)
transition at a critical temperature Tc. This immediately
implies that their effective spin model is beyond SU(2) sym-
metric Heisenberg interaction, because there is no LRO in 2D
Heisenberg magnets at any finite temperature due to thermal
fluctuations, i.e., celebrated Mermin-Wagner theorem [11].
Thus the magnetic anisotropy is crucial for 2D magnets to
hold the LRO at finite temperatures. Previous studies showed
that such anisotropy includes the single-ion anisotropy (SIA)
for spin S bigger than 1/2, XXZ model [12,13], and/or
bond-dependent interactions such as Kitaev and � interactions
[14,15], as they are allowed by the symmetry of crystal.

While the symmetry is a strong constraint to the effective
spin model, it is not sufficient to determine the pinning of
magnetic moment direction and the size of spin gap essen-
tial for a finite temperature LRO. To access the information
beyond the symmetry-allowed terms, the spin Hamiltonian
in relation to virtual hoppings between different magnetic
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sites is necessary. Such a model can be derived using the
standard strong coupling expansion theory starting from the
multi-orbital Kanamori-Hubbard interaction [16] and treating
inter- and intraorbital hoppings as perturbations. It is well
established that the magnetic anisotropy including popular
bond-dependent Kitaev and � interactions originates from
the interplay between spin-orbit coupling (SOC), crystal field
splitting, as well as Hund’s coupling [17–21].

For d3 Mott insulators such as Cr3+, there are three elec-
trons in six t2g orbitals in the limit when the cubic crystal
field splitting is infinite (i.e., ignoring the eg orbitals). This
maps to the half-filled t2g orbitals, where the total spin S =∑

i si = 3
2 and total angular momentum L = ∑

i li = 0 based
on the first and second Hund’s rule respectively. In this case,
the SIA is absent because L = 0 within the LS coupling
scheme (λL · S). This means that the spin anisotropy should
come from a finite trigonal crystal splitting and/or beyond
the LS coupling, i.e., sum of each atomic SOC, ξ

∑
i li · si.

In real solid-state materials, there is an additional crystal field
splitting from trigonal distortion, as 2D materials are grown
on substrates, which is crucial for a finite SIA in addition to
SOC. While the above arguments are expected, the analytical
expression of SIA for d3 systems has not been fully explored.

In this paper, we study how the SIA depends on the SOC,
crystal field splitting, Hund’s coupling, and trigonal distortion
in d3 S = 3/2 systems. We present analytical expressions
for SIA in various limits. We find the SIA depends on the
relative strength of the cubic crystal field splitting and the
Hund’s coupling. The easy-axis versus easy-plane direction is
determined by the trigonal distortion when the eg contribution
is included, while they work against each other in the large
Hund’s coupling limit. For a compressed distortion, the SOC

2469-9950/2022/106(3)/035122(10) 035122-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8248-4461
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.035122&domain=pdf&date_stamp=2022-07-14
https://doi.org/10.1103/PhysRevB.106.035122


LIU, CHURCHILL, AND KEE PHYSICAL REVIEW B 106, 035122 (2022)

FIG. 1. (a) Crystal field splitting under cubic and trigonal fields.
The splitting between a1g and e′

g is 3δ where δ denotes the trigonal
field effect defined in Eq. (1). (b) An octahedral cage in MX3. The
local axis (x, y, z) is defined along the octahedral axis. The global
axis (X,Y, Z) is defined with Z along the (111) direction in the lo-
cal coordinate system, perpendicular to the edge-sharing octahedral
honeycomb.

at magnetic sites can either favor the easy-plane or -axis
depending on the p − d hybridization, while that of anions
leads to easy-axis single-ion anisotropy. We hope our result
will offer a useful guideline to estimate the SIA and enhance
Tc in d3 systems.

The paper is organized as follows. In Sec. II, we discuss the
on-site Hamiltonian and its spectrum under SOC and trigonal
distortions. In Sec. III, we discuss the spin model for d3 S
= 3/2, and the SIA from the strong-coupling perturbation
method. In Sec. IV, we discuss the SIA originated from the
p-orbital SOC. In Sec. V, we apply our theory on CrX3, with
X = Cl, I, and show how the total SIA from both the mag-
netic and anion sites depends on the relative strength of SOC
between them. A short summary and discussion are presented
in the last section.

II. THE ON-SITE HAMILTONIAN

MX3 where M a transition metal and X a halide is
composed of edge-sharing MX6 octahedra, forming a 2D hon-
eycomb structure. The octahedral coordination of the MX6

cages leads to a cubic crystal field splitting (CFS) Hcubic =∑
α∈eg

�c c†
αcα on the M site, as shown in Fig. 1(a). Beside the

cubic CFS, in van der Waals materials, the octahedral cages
are usually trigonally distorted, leading to a further trigonal
field splitting δ shown in Fig. 1(a) with

Htrig =
⎛
⎝0 δ δ

δ 0 δ

δ δ 0

⎞
⎠. (1)

The equation is written in basis (dxy, dyz, dzx), where the x,
y, and z are the local axes of the octahedron, as shown in
Fig. 1(b). It is equivalent to Htrig = δ(2 − 3L2

Z ) [22] with LZ

being the angular momentum along the Z direction, which
is perpendicular to the 2D honeycomb lattice, as shown in
Fig. 1(b). Compression of the octahedral cage prefers LZ = 0,
which is generally associated with positive δ.

Since we are interested in the effective spin model of multi-
orbital Mott insulators, we begin with the Kanamori-Hubbard

model [16],

HCoulomb = U
∑

α

nα↑nα↓ + U ′

2

∑
α �=β,σ,σ ′

nασ nβσ ′

− JH

2

∑
α �=β,σσ ′

c†
ασ c†

βσ ′cβσ cασ ′

+ JH

∑
α �=β

c†
α↑c†

α↓cβ↓cβ↑, (2)

where the U and U ′ are the intra and interorbital Coulomb in-
teractions, JH is the Hund’s coupling. c†

ασ and cασ are creation
and annihilation operators of α orbital with spin σ . nασ is the
density operator.

Here we use the simplified multiorbital model ignoring
3- and 4-orbital interaction terms, which become important
when eg orbitals are not well separated from t2g [23–25].
Since the cubic crystal field splitting is rather large, we expect
that the simplified Kanamori Hamiltonian Eq. (2) is a good
approximation. We indeed find including 3- and 4-orbital in-
teraction terms, which is denoted by full interaction model in
Appendix A, gives small corrections to the SIA.

Without SOC the spins do not have a preferred direc-
tion within spin space. To explain the (intrinsic) magnetic
anisotropy in MX3 systems, we include the SOC to entangle
the spin and orbitals defined on a lattice. The atomic SOC is
given by the summation of the SOC on each electron i,

HSOC = ξM

∑
i

li · si. (3)

Here the li and si are the angular momentum and spin mo-
mentum of each electron respectively. The SOC effect can
be approximated by HLS

SOC = λ(L, S)L · S as discussed earlier,
and we will consider the both cases and show how the results
of SIA differ between the two approaches.

The total on-site Hamiltonian is the summation of the
above terms,

Htot = HCoulomb + Hcubic + HSOC + Htrig. (4)

When �c > U , the electrons on M3+ ions tend to stay on
t2g orbitals. When the Hund’s coupling is finite, the lowest
energy state is described by three electrons in t2g aligned to
form S = 3/2. The excited states depend on the strength of
the cubic CFS �c. When �c is infinite, where eg orbitals
are not taken into account, we will be limited to all excited
states within t3

2g configurations. Throughout this paper we will
use t3

2g for such a case where eg states are not considered,
while we will use d3 for three electrons in any d orbitals
in excited states. Without SOC and trigonal field splittings,
the spectrum of t3

2g is listed in the first part of Table I. The

lowest fourfold degenerate states have total spin S = 3
2 and

total angular momentum L = 0. The two sets of excited states
are 10-fold and sixfold with L = 2, S = 1

2 and L = 1, S = 1
2

respectively.
In the presence of SOC and trigonal field, couplings be-

tween the lowest states and the excited states are enabled.
Carrying out the numerical calculations for small SOC and
trigonal field, the spectrum under this circumstance as a
function of δ/ξM is shown in Fig. 2(a). When we zoom in
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TABLE I. Spectrum. Assume U ′ = U − 2JH .

Degeneracy Energy

t3
2g

4 3U − 9JH

10 3U − 6JH

6 3U − 4JH

d3, �c = 0
40 3U − 9JH

70 3U − 6JH

10 3U − 2JH

d3, JH = 0
20 3U
60 3U + �c

36 3U + 2�c

4 3U + 3�c

to the lowest states, we find the lowest fourfold degenerate
S = 3

2 states split into two doublets with SZ = ± 1
2 (blue) and

SZ = ± 3
2 (red), as shown in Fig. 2(b). For small positive δ

(corresponding to compression along Z direction), SZ = ± 1
2

doublets have lower energy, indicating a preference of spin
moment lying in-plane. Around δ ≈ ξM for a positive δ, the
two doublets cross again and SZ = ± 3

2 are preferred at large
positive δ, consistent with the earlier numerical result found
in [26].

The above finding is under the assumption of t3
2g configu-

ration. In real materials, excited states can have electrons in
any d orbitals including the eg orbitals, i.e., d3 configuration.
The exact spectrum of d3 configuration cannot be obtained
analytically, as the Hund’s coupling and the cubic CFS do
not commute with each other. Thus we present d3 spectrum
under two extreme conditions, as shown in the second and
third parts of Table I. In the limit �c = 0, there are 40-fold,
70-fold, and 10-fold degenerate states with energy 3U − 9JH ,
3U − 6JH , and 3U − 2JH respectively. On the other hand,
when JH = 0, there are 20-fold, 60-fold, 36-fold, and 4-fold
degenerate states with energy 3U , 3U + �c, 3U + 2�c and
3U + 3�c respectively, depending on the number of electrons
in eg orbitals.

For finite �c and JH , d3 spectrum as a function of �c/JH

is obtained numerically as shown in Fig. 3(a). With any finite

FIG. 2. (a) Spectrum of t2g with J = 0.2U , ξM = 0.15U . ξM is
enlarged to enlarge the splittings. (b) Lowest states with ξM = 0.01U .
See also [26].

FIG. 3. (a) Spectrum of d3 without SOC and trigonal distortions.
The fourfold degeneracy of the lowest states is labeled. (b) Splitting
of d3 lowest states. We set JH = 0.2U , �c = 0.3U , ξM = 0.01U .

�c, 40-fold degenerate states split and the lowest states are
given by fourfold S = 3/2 states as expected.

Similar to the above discussion, including SOC and trig-
onal distortions can also lead to couplings between S = 3/2
states and higher states, leading to splittings of the S = 3/2
quadruplets as shown in Fig. 3(b) for a given ratio of �c/U =
0.3 and JH/U = 0.2. The splitting between SZ = ± 3

2 and
Sz = ± 1

2 is larger than t3
2g case, while the tendency of having

SZ = ± 1
2 for positive δ is also found without crossing around

ξM ∼ δ. The larger splitting in d3 than t3
2g indicates that eg

orbitals in excited states are important and their contribution
dominates the SIA strength. Furthermore, for a positive δ,
Sz = ± 1

2 is always lower in energy, implying the easy-plane
SIA. Below we will perform the strong coupling perturbation
theory to obtain the analytic expressions of the SIA in two
cases, t3

2g and d3.

III. ANALYTICAL DERIVATION OF SINGLE ION
ANISOTROPY

Based on symmetry, the low-energy effective spin model
for S = 3/2 using the octahedra coordinate system x − y − z
is given by [21]

Hspin =
∑

〈i j〉∈αβ(γ )

JSi · S j + KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)

+�′(Sα
i Sγ

j + Sβ
i Sγ

j + Sγ

i Sα
j + Sγ

i Sβ
j

)
+ A(Si · Ẑ )2. (5)

Among them, it was shown that � is absent up to the fourth
order perturbation term, while �′ is introduced by the trigonal
distortion. Here in this paper we focus on the SIA term (last
term) of the above spin model. SZ

i is the spin component at
site i along Z , see Fig. 1(b). The coefficient A > 0 corre-
sponds to easy-plane and A < 0 easy-axis. In Sec. II, we have
shown how the energy spectra split due to the trigonal and
SOC numerically. In this section, we derive analytically the
expression of A by using strong-coupling perturbation theory
[21]. Both li · si and L · S SOC schemes are considered.

To derive the spin model, we start from eigenstates of
H0 = HCoulomb + Hcubic and treat HSOC and Htrig as perturba-
tion V ≡ HSOC + Htrig. The total Hamiltonian can be written
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in the subspace of lowest states of S = 3/2 and the subspace
of excited states as follows:

H =
(

H0

H1

)
+

(
V00 V01

V10 V11

)
, (6)

where the subscripts 0 and 1 refers to the lowest and excited
states, respectively. Using downfold technique, an effective
Hamiltonian is then given by

Heff = H0 + V01
1

E0 − H1 − V11
V10. (7)

When min(E0 − H1) is greater than V11, we can further expand
the fraction as

1

E0 − H1 − V11
= 1

E0 − H1
+ 1

E0 − H1
V11

1

E0 − H1
+ ....

(8)
Below we show the results of SIA for different limits.

A. t3
2g when �c → ∞

Without eg orbitals, the eigenspace of H0 and its energy
spectra are listed in Table I where 4, 10, and 6-dimensional
subspaces are classified by L and S within the LS coupling
scheme. The total Hamiltonian in these 4, 10, and 6 degenerate
basis is written as

H =
⎛
⎝0

3JH

5JH

⎞
⎠ +

⎛
⎝ 04×4 04×10 04×6

010×4 H ′
11(λ) H ′

12(δ)
06×4 H ′

21(δ) H ′
22(λ)

⎞
⎠,

(9)
where from the perturbation part, we find that the fourfold
lowest states are decoupled from the excited states. Thus
the SIA under LS coupling is zero as expected due to the
quenched angular momentum in t3

2g.
Beyond the LS coupling, consider the SOC given by

ξM
∑

i li · si, the perturbation part is

H ′ =
⎛
⎝ 04×4 04×10 H ′

02(ξM )
010×4 010×10 H ′

12(ξM, δ)
H ′

20(ξM ) H ′
21(ξM, δ) 06×6

⎞
⎠. (10)

The dependence of trigonal distortion is the same as Eq. (9)
as we write the Hamiltonian in the same basis. However,
contrary to Eq. (9), ξM dependent H ′

02 and H ′
12 are nonzero.

H ′
02(ξM ) connects the lowest fourfold subspace with the ex-

cited states. This matrix structure indicates that the SIA under
li · si coupling is finite.

We find that up to fourth order perturbation theory, the SIA
is given by

AM (t3
2g) = δξ 2

M (ξM − δ)

25J3
H

. (11)

The subscript M indicates that the SIA is induced by the SOC
of the M site. The sign of AM (t3

2g) is determined by the sign
of δ and the relative strength of δ and ξM . This behavior is
consistent with the numerical result shown in Fig. 2(b) where
the sign change of AM occurs around δ ∼ ξM . The difference
between these two SOC schemes is due to the fact that the
LS coupling is an approximation of li · si by treating the SOC
between the LS subspaces as a perturbation and keeping only
the diagonal elements with the lowest order [27].

TABLE II. Analytical expression for SIA.

λL · S ξM li · si

t3
2g 0

δξ2
M (ξM −δ)

25J3
H

d3 6δλ2

�2
c

2
3 δξ 2

M ( 1
�2

c
− 1

(�c+3JH )2 − 6
(10�c+21JH )2 )

B. d3 including eg orbitals

As shown in Sec. III, when the eg orbitals are included,
the spectrum of d3 is significantly different from t3

2g. The
spectrum of d3 is rather complicated with the presence of
both Hund’s coupling JH and cubic CFS �c. We obtained
the expression of SIA in the 120-dimensional d3 space by the
similar method described in the last subsection. We find that
within the LS coupling scheme, the SIA is given by

ALS
M = 6δλ2

�2
c

. (12)

On the other hand, using the ξM
∑

i li · si coupling, SIA is
found as

AM = 2
3δξ 2

M

(
1

�2
c

− 1

(�c + 3JH )2
− 6

(10�c + 21JH )2

)
.

(13)
There are several implications. Firstly, it is well known [27]

that the relation between coefficient of λ of L · S coupling
and coefficient ξM of li · si is λ = ±ξM/(2S) with positive
corresponding to less than half-filled and negative for more
than half filled. According to the above relation, λ = ξM/3 for
d3 configuration. Substituting this relation into Eq. (12), we
find it is exactly the first term of Eq. (13), while the second
and third terms are beyond the LS scheme.

Secondly, we notice that the dominant contribution to SIA
in Eq. (13) is the first term, which originates from the excita-
tions to eg orbitals. The details can be found in Appendix C.
The Hund’s coupling gives negative corrections, reducing the
SIA strength. When JH becomes tiny, AM becomes negative.
However, the local moment of S = 3/2 requires a finite JH

and we expect the positive AM favoring SZ = ± 1
2 when δ is

positive.
Lastly, comparing with the SIA of the t3

2g case where a
finite SIA occurs at the fourth order [see Eq. (11)], the SIA
for d3 is a third order term. Thus the contribution from eg

orbitals dominate the SIA strength. This is consistent with the
numerical results of the energy splittings between SZ = ± 3

2
and SZ = ± 1

2 shown in Fig. 2(b) and Fig. 3(b). Also the linear
dependence of δ is consistent with Fig. 3(b). For compres-
sion (positive δ), the SIA from the combination of SOC and
trigonal distortion at magnetic site always prefer easy-plane
anisotropy.

The SIA for t3
2g and d3 under different SOC coupling

schemes is summarized in Table II. These are shown to the
lowest order of SIA for each case.

The summary shown in Table II indicates that the SOC
at magnetic sites with positive trigonal distortion leads to an
easy-plane (positive A) SIA. On the other hand, several MX3

reports easy-axis (negative A) SIA, which should come from
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beyond the on-site contribution to SIA. Below we investigate
the contributions from the anions via hopping processes.

C. Contributions from anion SOC

Aside from the above on-site contribution to the SIA, the
SOC on anions also contributes to SIA through distortion
induced hoppings [21]. A rigorous derivation of A should
include full processes including hopping between M and X
sites involving charge configurations such as d4 p5. For sim-
plicity, here we use an effective hopping model derived from
integrating out the hopping to anions. Up to linear order of
distortion induced hoppings, we found the SIA is given by

AX = −
(

4

5JH
+ 16

5(10�c + 21JH )

)
tA
tπ

t2
eff

+ 6JH

�c(�c + 3JH )

tσ (tπ tB + tσ tC )

t3
π

t2
eff (14)

where the subscript X indicates SIA induced by SOC on an

X site. The effective hopping is given by teff = 2t2
π

3 ( 1
�pd − ξX

2

−
1

�pd +ξX
).

The distortion-induced hoppings are parameterized as
shown in the Appendix D and tA = −2δt1 + δt2 + δt3 + δt4 +
δt5 and tB = 1√

3
(δτ1 + 2δτ2 − √

3δτ3) as well as tC = δt6 +
δt7.

IV. APPLICATION TO CrX3 WITH X = Cl AND I

Here we apply our theory to 3d3 CrX3, since SOC
and trigonal distortion are smaller than other energy scales.
To determine all necessary parameters such as �c, δ, and
hopping parameters, we perform density functional theory
(DFT) calculations. DFT calculations are performed with Vi-
enna ab initio Simulation Package (VASP) [28] without the
Coulomb interaction and SOC. The projector augmented wave
(PAW) [29] potential and Perdew-Burke-Ernzerhof (PBE)
[30] exchange-correlation functional are used. The experi-
mental structures [31–33] are fully relaxed with SOC and
various values of Hubbard U ranging from 0 eV to 4 eV
until the force on each atom is less than 0.01 eV/Å. We
find the structures for different U values are very similar. In
the following discussion, we use the relaxed structure with
U= 4 eV as an example. For both the relaxation and static
calculation, we use an energy cutoff of 350 eV and a 7 × 7 × 7
k-point mesh. The tight-binding parameters are obtained from
Wannier90 code [34]. The Wannier parameters are listed in
Appendix D The atomic SOC parameters within DFT without
correlations are computed using the SOC matrix elements of
a single atom in a 20 Å × 20 Å × 20Å box by OPENMX
[35,36]. The atomic SOC for Cr, Cl, Br, and I are 31 meV,
82 meV, 326 meV, and 646 meV, respectively.

Table III shows the effective δ and �c from the Wan-
nier model after downfolding into the d orbitals. Since the
cubic and trigonal crystal field splittings strongly depend
on the p − d hybridization and the underlying lattice struc-
tures, we first relax the bulk CrX3 structures. The values
listed in Table III are then obtained within LDA using the
relaxed structures without U and JH . The trend from X =
Cl to I is clear. While �c and δ decrease, ξX increases. It is

TABLE III. DFT parameters in meV. �c and δ are obtained from
the Wannier model with d orbitals, which takes into account p-orbital
hybridization. �pd is obtained from the pd Wannier model.

�pd �c δ ξX

CrCl3 2851 1481 2.45 82
CrBr3 2476 1329 0.80 326
CrI3 2080 1169 –0.96 646

important to note that δ changes sign for CrI3 after downfold-
ing, indicating the importance of p − d hybridization (before
the downfolding it is positive like Cl and Br; see the Ap-
pendix D for details). This means that both AM and AX are
negative for the I case, leading to easy-axis anisotropy, while
for Cl and Br, the opposite contributions to SIA from AM and
AX occur.

Since the M and X site SOC may have opposite contri-
butions and their strength can be enhanced by the electron-
electron correlations [19,37,38], we leave ξM and ξX as two
variables, and plot the SIA strength AM as a function of ξM

and similarly AX as a function of ξX for CrCl3 and CrI3 for a
fixed JH = 1 eV as shown in Fig. 4. We find AX being negative
for both, while AM is positive for CrCl3 but negative for CrI3.
The sign change in AM in CrI3 is due to the sign change of δ

via p − d hybridization as mentioned above.
Experiments [39,40] reported that CrCl3 has moments

lying in the plane, while CrI3 has moments out of plane
[33,41]. Given that the calculated AM is not large enough to

FIG. 4. SIA arises (a) from M-site SOC AM given by Eq. (13) and
(b) from X-site SOC AX given by Eq. (14) with respect to the relative
SOC strength. JH is chosen to be 1 eV. They are both quadratic in
SOC. The sign difference in AM for both materials is due to the sign
difference in total effective trigonal field δ given in Table III.
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compensate AX for CrCl3, we speculate that the effective
SOC at M site could be further enhanced by electron-electron
correlations [19,37,38], which remains for a future study. On
the other hand, for CrI3 due to the negative sign of δ, the total
SIA from both AM and AX is always negative leading to the
easy-axis anisotropy. Quantifying the trigonal field strength
is a challenging task, as it depends on the details of p- and
d-orbital hybridization and corresponding charge densities.
We note that the current paper does not aim to offer precise
values of SIA in CrX3, but to provide the understanding of the
SIA originated from the different combinations of SOC and
trigonal field in d3 systems.

V. DISCUSSION AND SUMMARY

The existence of ferromagnetic LRO in two-dimensional
(2D) systems with higher transition temperature Tc has at-
tracted intense studies. To achieve a higher Tc in ideal 2D
materials, it is essential to have a certain magnetic anisotropy
that opens up a spin gap, which allows the system to avoid
quantum fluctuations and set up a LRO at finite tempera-
ture. Thus understanding a microscopic origin of magnetic
anisotropy in two-dimensional single-layer will guide ways
to move towards a higher Tc. While the full analysis of factors
that determines Tc is beyond the scope of the current study,
as it requires a higher stiffness not only a finite spin gap,
our study will offer valuable inputs to the current efforts of
enhancing Tc.

In summary, we have studied a microscopic route to
the SIA for S=3/2 in d3 Mott insulator starting from the
Kanamori-Hubbard interaction including Hund’s coupling,
and take into account the CFS, SOC, and trigonal distor-
tion. We found that eg orbitals contribution is essential to
understand the SIA strength and that the tendency towards
easy-plane versus easy-axis is determined by two contri-
butions denoted by AM and AX . For compressed trigonal
distortion, the SOC at the magnetic sites can choose either
easy-plane or easy-axis depending on the sign of δ. When
δ > 0, it prefers the easy-plane, while δ < 0 easy-axis. The
sign of δ is determined by the metal-ligand hybridization, and
we found that for CrCl3, it takes a positive value, while for
CrI3, it is negative leading to the easy-axis anisotropy. On
the other hand, for AX , it prefers the easy-axis for both Cr
trihalides.

Since we have used both SOC and trigonal distortion
smaller than Hund’s coupling, this theory is more applicable
to 3d3 than 5d3 systems, where Jeff = 3/2 may be a better
starting point than S = 3/2 spin states. Recent papers [42–44]
of 5d3 have shown that in these systems there is a large spin
gap. We propose that this may be relevant to the atomic SOC
discussed in this paper. However cubic materials have very
little distortions, implying possible bond-dependent interac-
tions generated by SOC. Extending the current theory to the
stronger SOC may explain the anisotropy observed in these
systems, which is a project for future studies.
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APPENDIX A: COULOMB INTERACTION WITH 3- AND
4-ORBITAL EFFECT

To include the missing 3- and 4-orbital interaction terms,
we compared our Eq. (2) with Eq. (20) of [24]. We find by
setting �J = 0, the latter reduces to the former. The spectra
of 3-electron many-body states for both cases are compared in
Fig. 5. Here we set the crystal field splitting �c = 1.5 eV to be
consistent with our DFT results. Though they are different in
high energy range, they have similar lower excited states. The
energy splittings of SZ = ± 3

2 and SZ = ± 1
2 with and without

3- and 4-orbital interactions are compared in Fig. 6. The full
form, the simplified one and the analytical result [Eq. (13)]
are all very consistent with each other very well. This shows
that the 3- and 4-orbital effects only have minor quantitative
corrections to our results.

APPENDIX B: DOWNFOLDING

The perturbation process in Sec. III can also be written in
another way of infinite expansion. If we write the Hamiltonian
in more than two subspaces

H =
⎛
⎝H0

H1

...

⎞
⎠ +

⎛
⎝V00 V01 ...

V10 V11 ...

... ... ...

⎞
⎠, (B1)
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FIG. 6. Energy splitting between the S = ± 3
2 doublets and S =

± 1
2 doublets under full multi-orbital Hamiltonian and simplified

Hamiltonian as well as the analytical expression from Eq. (13).

the effective Hamiltonian can be expanded as

He f f =
∑

i

V0i
1

E0 − Hi − Vii
Vi0

+
∑
i �= j

V0i
1

(E0 − Hi − Vii )
Vi j

1

(E0 − Ej − Vj j )
Vj0

+ ...

=
∑

i

V0i
1

E0 − Hi
Vi0

+
∑

i j

V0i
1

(E0 − Hi )
Vi j

1

(E0 − Hj )
Vj0 + ...

=
∑

i �= j, j �=k

H ′
0iH

′
i jH

′
jkH ′

k0

(E0 − Ei )(E0 − Ej )(E0 − Ek )
.

(B2)
This expansion is equivalent to Eq. (7).

APPENDIX C: A ANALYSIS

For d3 configuration, keeping only the excited states with
energy �c and 2�c (in other words we work in the 40-fold
subspace where �c → 0). The Hamiltonian is

H =
⎛
⎝0

�c

2�c

⎞
⎠

+

⎛
⎜⎝

04×4 H ′
01(ξM ) 04×12

H ′
10(ξM ) H ′

11(ξM, δ) H ′
12(ξM )

012×4 H ′
21(ξM ) H ′

22(ξM, δ)

⎞
⎟⎠. (C1)

Up to third-order perturbation theory, we have

Ac = 2δξ 2
M

3�2
c

. (C2)

This gives the first term in Eq. (13) and is dominant as dis-
cussed in the main text.

APPENDIX D: WANNIER MODELS

We have two ways of building Wannier tight-binding mod-
els. One with only the d orbitals and the other with both d
and p orbitals. The former is effectively integrating out the
p orbitals in the latter due to the strong p − d hybridization
in this material. This strong hybridization can dramatically
change the cubic CFS �c as well as the trigonal CFS δ as
can be read out from the following parameters.

1. d-only wannier model

The on-site Hamiltonians are (written in sequence of
dx2−y2 , d3z2−r2 , dyz, dxz, dxy and in unit meV):

HCrCl3

=

⎛
⎜⎜⎜⎜⎜⎝

3790.08 0 −4.01 3.43 0.58

0 3790.09 1.64 2.64 −4.34

−4.01 1.64 2309.22 2.44 2.45

3.43 2.64 2.44 2309.22 2.45

0.58 −4.34 2.45 2.45 2309.17

⎞
⎟⎟⎟⎟⎟⎠

,

(D1)

HCrBr3

=

⎛
⎜⎜⎜⎜⎜⎝

3255.98 0 −8.17 9.54 −1.36

0 3255.98 6.28 3.92 −10.27

−8.17 6.28 1926.85 0.79 0.81

9.54 3.92 0.79 1926.84 0.8

−1.36 −10.27 0.81 0.8 1926.81

⎞
⎟⎟⎟⎟⎟⎠

,

(D2)

HCrI3

=

⎛
⎜⎜⎜⎜⎜⎝

5141.62 0 −12.43 10.31 2.12

0 5141.61 4.72 8.38 −13.17

−12.43 4.72 3972.61 −0.96 −0.96

10.31 8.38 −0.96 3972.61 −0.95

2.12 −13.17 −0.96 −0.95 3972.59

⎞
⎟⎟⎟⎟⎟⎠

.

(D3)

The difference between diagonal terms of eg and t2g orbitals
gives �c listed in Table III.

2. pd wannier model

The Hamiltonian in this pd model can be written as

H =
(

HM TMX

T T
MX HX

)
. (D4)

Here the HM is the on-site Hamiltonian of Cr atom, HX is on-
site Hamiltonian of ligand atoms. TMX is the hopping matrix
between M site and X site. For CrX3, the 6 ligand X atoms can
be related by symmetry. We only present one of the hopping
matrices TMX1 , as shown in Fig. 1(b).
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The hopping matrix HMX1 can be parametrized as

TMX =

⎛
⎜⎜⎜⎝

t1 δτ1 δτ2

−t2 δτ3 δτ4

δt1 δt2 δt3
δt4 δt6 ta0

δt5 tb0 δt7

⎞
⎟⎟⎟⎠. (D5)

This is written in the basis of d orbitals with sequence dx2 , dz2 , dyz, dxz, dxy, and p orbitals with sequence px, py, pz. The hoppings
starting with δ are distortion induced hoppings and should be zero for an ideal octahedron.

From Wannier90 calculation, we have

HCrCl3
M =

⎛
⎜⎜⎜⎜⎜⎝

2262.08 −0.02 −11.92 11.61 0.33

−0.02 2262.48 6.72 7.27 −13.88

−11.92 6.72 1710.62 15.46 15.14

11.61 7.27 15.46 1710.65 15.15

0.33 −13.88 15.14 15.15 1710.82

⎞
⎟⎟⎟⎟⎟⎠

, (D6)

HCrBr3
M =

⎛
⎜⎜⎜⎜⎜⎝

1778.06 0.01 −9.36 9.84 −0.49

0.01 1778.36 6.1 5.27 −11.29

−9.36 6.1 1380.58 9.86 9.66

9.84 5.27 9.86 1380.56 9.65

−0.49 −11.29 9.66 9.65 1380.7

⎞
⎟⎟⎟⎟⎟⎠

, (D7)

HCrI3
M =

⎛
⎜⎜⎜⎜⎜⎝

3781.78 −0.01 −5.89 5.33 0.57

−0.01 3781.9 2.84 3.81 −6.57

−5.89 2.84 3493.5 4.81 4.7

5.33 3.81 4.81 3493.51 4.7

0.57 −6.57 4.7 4.7 3493.61

⎞
⎟⎟⎟⎟⎟⎠

, (D8)

HCrCl3
X =

⎛
⎜⎝

−1140.48 75.56 −15.88

75.56 −1139.88 −13.67

−15.88 −13.67 −503.56

⎞
⎟⎠, (D9)

HCrBr3
X =

⎛
⎜⎝

−1095.96 53.85 −13.78

53.85 −1094.1 −15.86

−13.78 −15.86 −478.33

⎞
⎟⎠, (D10)

HCrI3
X =

⎛
⎜⎝

1415.99 36.19 −11.97

36.19 1411.57 −9.43

−11.97 −9.43 1952.06

⎞
⎟⎠, (D11)

T CrCl3
MX =

⎛
⎜⎜⎜⎜⎝

−1229.15 125.02 −46.19

698.08 −61.12 37.92

0.24 23.36 −35.49
−66.75 5.03 725.57
121.75 718.61 2.26

⎞
⎟⎟⎟⎟⎠, (D12)

T CrBr3
MX =

⎛
⎜⎜⎜⎜⎜⎝

−1098.54 91.48 −39.8

624 −45.81 31.18

1.7 19.23 −26.56

−56.48 2.76 644.53
91.77 641.93 2.23

⎞
⎟⎟⎟⎟⎟⎠

, (D13)
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T CrI3
MX =

⎛
⎜⎜⎜⎜⎜⎝

−939.04 48.7 −31.06

533.92 −36.11 21.24

1.4 14.77 −14.06

−44.83 1.61 556.07
41.72 547.73 0.35

⎞
⎟⎟⎟⎟⎟⎠

. (D14)

From the above parameters, we can obtain �pd , �0
c , δ0, tpdπ , tpdσ as shown in Table III, and distortion induced hoppings in

Eq. (D5).
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