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Sign problems in fermion quantum Monte Carlo (QMC) simulation appears to be an extremely hard problem.
Traditional lore passing around for years tells people that when there is a sign problem, the average sign in QMC
simulation approaches zero exponentially fast with the space-time volume of the configurational space. We,
however, analytically show this is not always the case and manage to find physical bounds for the average sign.
Our understanding is based on a direct connection between the sign bounds and a well-defined partition function
of the reference system and could distinguish when the bounds have the usual exponential scaling and when they
are bestowed on an algebraic scaling at the low-temperature limit. We analytically explain such algebraic sign
problems found in flat-band moiré lattice models at the low-temperature limit. At finite temperature, a domain-
size argument based on sign bounds also explains the connection between sign behavior and finite-temperature
phase transition. Sign bounds, as a well-defined observable, may have the ability to ease or even make use of the
sign problem.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) is a standard and unbiased
method for studying strongly correlated systems, widely used
in condensed-matter, high-energy, and quantum-material re-
search [1–4]. However, in reality, very often due to inadequate
choices of basis, QMC simulations suffer from the so-called
sign problem [5–7], in which configurational weights become
negative or even complex and can no longer be interpreted as
classical probabilities. It has been proven that if the nondeter-
ministic polynomial hard problem can be solved efficiently,
then the obtained scheme can be used to solve the sign prob-
lem [8], so many interesting and fundamental questions in
quantum many-body systems will be understood thereafter.
Unfortunately, this has not happened yet.

Even though lacking a general guiding principle, many
successful efforts have been done in finding systems without
sign problems [9–21], methods to alleviate sign problems
[22–37], origins of sign problems [8,38–45], and connection
of sign problems with phase transitions [46–48]. While there
have been some attempts for bosonic models in linking the av-
erage sign with the ratio of two partition functions [5,25,49],
at the zero temperature limit, the requirement that two ground
states are the same is too strict and the sign problem is also
either none or exponential. For fermionic systems, it is even
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harder to find a system with the same decoupled space and
ground states because of the involved determinant. Past expe-
rience and arguments from those case-by-case efforts tells us
if there is a sign problem in QMC simulation, then the average
sign will scale exponentially fast to zero with the space-time
volume. But in our recent attempts of model design and QMC
solutions for flat band moiré lattice models at integer filling
both for real [50], and momentum space [51], interesting out-
liers, where the average sign scales algebraically with system
size and is independent with temperature at low temperature
limit, were discovered. These results challenge conventional
thought and urge a new understanding on universal properties
of sign problems.

To understand the behavior of the average sign, we suggest
an observable called sign bounds which is basically the ratio
of two related well-defined partition functions. With this tool,
we may unveil bound behavior of the average sign analytically
by studying ground state degeneracy (GSD) and ground state
energy (GSE) and roughly estimate finite temperature phase
transition point.

We organize this paper as below: First, we review determi-
nant QMC and sign problem taking momentum space version
as example. Then, we introduce sign bounds as an observable
in sign bounds theory by suggesting two reference systems,
and identify the situation where they can be used, respectively,
by delivering two corollaries. We also give three cases related
with flat band moiré materials [50,52–55], where average
signs are all algebraic scaling with size at low temperature
and the decay behavior of sign bounds is achieved exactly
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for any given size. Raising operator construction and tensor
Young tableau method are used to derive the GSD analytically
(see Appendixes B and C for details), which of course can be
extended to count GSD for other SU(n) symmetry systems.
Numerical QMC results for computing small-size GSD as
shown in Fig. 3(a) affirmed our derivation. Next, we point
out sign bounds is also useful at finite temperature. Even
though we cannot derive this part analytically due to lacking
detailed knowledge of partition function at finite temperature,
an argument based on domain size can be used to roughly dis-
tinguish the finite temperature phase transition point. Finally,
we conclude our results and discuss the inspiration behind
sign bounds theory.

II. DETERMINANT QMC ALGORITHM AND SIGN
PROBLEM

First, we introduce the background of how determinant
QMC works by following the momentum space version in
Ref. [52] . The interaction Hamiltonian can be written as

H =
∑
q �=0

V (q)ρqρ−q,

ρq =
∑

k1,k2,m,n

(
λk1,k2,m,n(q)c†

k1,m
ck2,n − 1

2
μq

)
. (1)

Here, V (q) is the Fourier transformation of any real space
potential, λ is the unitary transformation form factor of
projecting interaction from the plane-wave basis to kinetic
term diagonalized band basis. μq can be any constant num-
ber from projecting chemical potential terms. k1, k2 are
used to label momentum and m, n are used to label bands
or any other freedom, e.g., spins or valleys. According
to the discrete Hubbard-Stratonovich (HS) transformation,
eαÔ2 = 1

4

∑
l=±1,±2 γ (l )e

√
αη(l )Ô + O(α4), where α is a small

constant number, Ô can be any operator, γ (±1) = 1 +
√

6
3 , γ (±2) = 1 −

√
6

3 , η(±1) = ±
√

2(3 − √
6), and η(±2) =

±
√

2(3 + √
6). We can rewrite the partition function as

Z = Tr

{∏
τ

e−�τH (τ )

}

= Tr

{∏
τ

e−�τ
∑

q �=0
V (q)

2 [(ρ−q+ρq )2−(ρ−q−ρq )2]

}

≈
∑
{l|q|,τ }

∏
τ

[ ∏
|q|�=0

1

16
γ (l|q|1,τ )γ (l|q|2,τ )

]

× Tr

{∏
τ

[
∏
|q|�=0

eiη(l|q|1 ,τ )Aq (ρ−q+ρq )eη(l|q|2 ,t )Aq (ρ−q−ρq )]

}
.

(2)

Here τ is the imaginary time index with step

�τ , Aq =
√

�τV (q)
2 and {l|q|1,τ , l|q|2,τ } are the four-

component auxiliary fields. By defining P({l|q|,τ }) ≡∏
τ [

∏
|q|�=0

1
16γ (l|q|1,τ )γ (l|q|2,τ )] and D({l|q|,τ }) ≡

Tr{∏τ [
∏

|q|�=0 eiη(l|q|1 ,τ )Aq (ρ−q+ρq )eη(l|q|2 ,t )Aq (ρ−q−ρq )]}, one can

see partition function Z as a sample average for D({l|q|,τ })
with configuration weight P({l|q|,τ }):

Z =
∑
{l|q|,τ }

P({l|q|,τ })D({l|q|,τ }). (3)

Since P({l|q|,τ }) here comes from a continuous HS
transformation coefficient (i.e., 1√

2π
e− 1

2 x2
in eαÔ2 =

1√
2π

∫
e− 1

2 x2
e
√

2αxÔdx), it has already been normalized
and only depends on configuration. Even though there is
no sign problem for sampling this partition function as
all configuration weights P({l|q|,τ }) are non-negative, this
sampling is extremely time consuming since one can see the
weight here is just a Gaussian distribution and contains no
information for the physical system. But it is still useful, e.g.,
to determine small-size GSD to benchmark the analytical
method as shown in Fig. 3(a).

Now, we focus ourselves on how to compute an observable
by QMC. Ensemble average of any observable Ô can be
written as

〈Ô〉 = Tr(Ôe−βH )

Tr(e−βH )

=
∑
{l|q|,τ }

P({l|q|,τ })Tr[
∏

τ B̂τ ({l|q|,τ })] Tr[Ô
∏

τ B̂τ ({l|q|,τ })]
Tr[

∏
τ B̂τ ({l|q|,τ })]∑

{l|q|,τ } P({l|q|,τ })Tr[
∏

τ B̂τ ({l|q|,τ })]
.

(4)

Here B̂τ ({l|q|,τ }) = ∏
|q|�=0 eiη(l|q|1 ,τ )Aq (ρ−q+ρq )eη(l|q|2 ,τ )Aq (ρ−q−ρq ).

Now, we see Wl = P({l|q|,τ })Tr[
∏

τ B̂τ ({l|q|,τ })] as possibility

weight and 〈Ô〉l = Tr[Ô
∏

τ B̂τ ({l|q|,τ })]
Tr[

∏
τ B̂τ ({l|q|,τ })]

as sample value for con-

figuration {l|q|,τ }. Then the Markov chain Mento Carlo can
compute this 〈Ô〉. That is how determinant QMC works in
a sign problem free case (i.e., Wl is real and Wl � 0 for all
configurations). But this is not the case most of the time. With
the sign problem, one can still simulate according to QMC by
reweighting [5]:

〈Ô〉 =
∑

l Wl〈Ô〉l∑
l Wl

=

∑
l |Re(Wl )| Wl 〈Ô〉l

|Re(Wl )|∑
l |Re(Wl )|∑

l Wl∑
l |Re(Wl )|

≡ 〈Ô〉|Re(Wl )|
〈sign〉 . (5)

Here Re is taking the real part operator. One can see
|Re(Wl )| as a well-defined possibility weight and 〈Ô〉|Re(Wl )|
is the measurement result according to this weight. The ratio∑

l Wl∑
l |Re(Wl )| is the average sign 〈sign〉 we keep talking about.

One can see if 〈sign〉 is exponentially small, fluctuation of
computing 〈Ô〉 from 〈Ô〉|Re(Wl )| will be exponentially large,
which causes the so-called sign problem. To understand the
sign behavior, one may interpret

∑
l |Re(Wl )| as an effective

partition function [5]. But most of time, this partition function
is not well-defined, which means we cannot write it back to
a physical system before decomposition, as shown in Fig. 1.
This is basically because we can hardly write the absolute
value for the real part of a determinant with another deter-
minant. Then the idea comes out that if we can find a bad
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FIG. 1. Schematical relationship between target system,
reweight system, and reference system. Average sign is ill-defined
observable because reweight system cannot recover to a physical
system, while bad reweight system corresponds to a physical system
so sign bounds is a well-defined observable.

reweight system which can be written back to the partition
function of a physical system (which we call a reference
system) and there is a certain relationship between this well-
defined partition function and the ill-defined partition function∑

l |Re(Wl )|, we find the bounds of 〈sign〉 as a new physical
observable which is defined as the ratio of two well-defined
partition functions for related interactive systems. At low tem-
perature, the exponential part with temperature can tell the
GSE difference for those two systems, while the polynomial
part with system size can tell GSD. Since we can measure
both sign bounds and reference system, we can extract infor-
mation for the target system where there is a sign problem. At
finite temperature, if those two systems have different phase
transition behaviors, e.g., 2D Ising and no finite temperature
phase transition, the sign bounds can roughly tell the phase
transition point according to a domain size argument. All of
these will be discussed in detail below.

III. SIGN BOUNDS THEORY

For a generic quantum many-body system with Hamil-
tonian H , we have partition function Z = Tr(e−βH ). Then,
as shown in Eq. (3), the partition function can be writ-
ten as the weighted average of fermion determinants after
the Trotter decomposition and HS transformation, ZD =∑

{l} P({l})D({l}) ≡ 〈D〉, where l represents different config-
urations, P({l}) is the configurational weight for determinant
D({l}). Since we only consider Hermitian system by de-
fault, ZD = Re(ZD) = 〈Re(D)〉. Now, imagine we can find
a bad reweight system with the same configuration space.
As a reweight system, it requires non-negative determinant
V ({l}) � 0 for any configuration l . Besides, we also require
〈V 〉 ≡ ∑

{l} P({l})V ({l}), corresponding to a partition func-
tion ZV of a physical Hamiltonian before HS decomposition.
We call this physical Hamiltonian the reference system V
and define the average sign bounds based on V as 〈sign〉V .
This sign bounds can give bounds behavior of 〈sign〉 based
on the inequality between 〈|Re(D)|〉 and f (〈V 〉). Here f
can be any function of 〈V 〉. For a concrete understanding,
we give two reference systems V = |D|2, V = |D|, which
satisfies 〈D〉 = 〈Re(D)〉 � 〈|Re(D)|〉 �

√
〈|D|2〉 and 〈D〉 =

〈Re(D)〉 � 〈|Re(D)|〉 � 〈|D|〉. One can see those reference

systems do give bounds as

ZD√
Z|D|2

≡ 〈D〉√
〈|D|2〉

� 〈sign〉 ≡ 〈D〉
〈|Re(D)|〉 � 1,

ZD

Z|D|
≡ 〈D〉

〈|D|〉 � 〈sign〉 ≡ 〈D〉
〈|Re(D)|〉 � 1. (6)

The logic is drawn schematically in Fig. 1. For now, the non-
negative requirement and inequality between 〈|Re(D)|〉 and
f (〈V 〉) are both trivial, which means it is true for any system.
Then the only nontrivial requirement for a reference system
is it must have a physical partition function so we can say
sign bounds is a well-defined observable. Below we give two
corollaries where two possible reference systems Z|D|2 , Z|D|
can apply separately on a large group of systems.

A. Corollary I

For a fermion Hamiltonian whose sign of QMC for every
configuration is real, we can introduce another U(2) freedom
s ∈ {+,−} such as spin or valley, to prepare a reference
system.

This is what we usually do to avoid sign problems when
designing a sign-problem-free model to study general effects
of certain interaction. But here we do not simulate this sign-
problem-free system as our target system. We extract physical
information of our target system with a sign problem from
sign bounds behavior ZD√

Z|D|2
. For example, if this ratio does

not change with temperature when temperature goes to zero,
the GSE E between reference system and target system must
have the certain relation ED = E|D|2/2. And the GSD g can be
derived from ZD√

Z|D|2
= gD√

g|D|2
. Here g|D|2 is the GSD with this

U(2) freedom. For a global discrete symmetry of the Hamilto-
nian, the ground states belong to finite-dimension irreducible
representation which contributes degeneracy independently
with system size. For global continuous symmetry such as
SU(n), degeneracy is determined by normal Young diagram
ground states belong to, which is polynomial with system
size. Then the polynomial average sign behavior with system
size will be seen. We will discuss this zero GSE and global
continuous symmetry case below.

B. Examples

We introduce two cases here, which are set in momentum
space, with a generic positive semidefinite (PSD) Hamiltonian
(e.g., describing the long-rangle Coulomb interaction in a flat-
band system),

H =
∑
q �=0

V (q)ρ−qρq =
∑
q �=0

V (q)ρ†
qρq, (7)

where ρq = ∑
i, j (λi, j (q)c†

i c j − 1
2μq), i, j are matrix indexes

with dimension N (e.g., the momentum grid in moiré
Brillouin zone (mBZ), N = 6 × 6, 9 × 9, · · · ), and the aver-
agely half-filled physical system requires V (q) = V (−q) > 0,
Tr(λi, j (q)) = μq. In our previous momentum space QMC
work [52], we proved that Tr(λi, j (q)) = μq guarantees the
sign for every configuration is real. Then one can require
zero-energy ground state for observing 〈sign〉 � gD/

√
g|D|2

behavior.
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FIG. 2. For three example cases, the average sign bounds, allowed region, QMC measurement 〈sign〉, and its polynomial fitting with fitting
lines are shown. The error bars in QMC data are smaller than the symbol size. (a) For momentum space case 1 model, bounds are determined
by 〈sign〉 � 2/

√
N + 3. QMC measurements for N = 18, 32, 50, 72, 98, 128, 162 are carried out at a 〈sign〉 converged temperature. Fitting

line ∝ N−0.23. (b) For momentum space case 2 model, bounds are determined by 〈sign〉 � 2/
√

(N + 1)2 + 2. QMC measurements for N =
9, 16, 25, 36, 49 are carried out at T = 0.91 meV. Fitting line ∝ N−0.70. (c) For real space model, bounds are determined by 〈sign〉 � 2/(N + 2)
and N = 18, 72, 162, 288, 450, 648, 882 are measured from QMC [50]. Fitting line ∝ N−0.98.

In our case 1, μq = 0 and λi, j (q) is set randomly. For μq =
0, one can easily check empty and full states are two ground
states with zero energy. Random λi, j (q) means there should
be no other symmetry, so no other degeneracy. Then we
have gD = 2. After, we introduce another freedom s ∈ {+,−},
which means now ρs,q = ∑

i, j (λi, j (q)(c†
i,+c j,+ + c†

i,−c j,−) −
μq). For computing degeneracy g|D|2 , one can define a raising
operator,

�† =
∑

i′
c†

i′,+ci′,−, (8)

by noticing [�†, ρs,q] = 0, and |ψ+,empty〉 ⊗ |ψ−,full〉 is a
ground state. We can apply �† at most N times on this
state, and this gives us N + 1 ground states with N particles.
Besides, we also have ground states with 0 and 2N par-
ticles (i.e., |ψ+,empty〉 ⊗ |ψ−,empty〉 and |ψ+,full〉 ⊗ |ψ−,full〉).
Together, g|D|2 = N + 3 for random λi, j (q) so 〈sign〉 �
gD/

√
g|D|2 = 2/

√
N + 3 as shown in Fig. 2(a). This means

at low temperature and large size limit, 〈sign〉 will decay no
faster than N− 1

2 . It is worth mentioning this derivation and the
tensor Young tableau method below should be exact and can

be checked for small size numerically as shown in Fig. 3(a)
unless there is accidental degeneracy.

In our case 2, μq �= 0 and there are two band labels
m, n ∈ {1,−1} for λi, j,m,n(q) = m · n · λi, j,m,n(q) (e.g., chi-
ral flat-band limit for spin-polarized and valley-polarized
TBG at half filling, following gauges chosen in Refs.
[56,57]). Now ρq = ∑

i, j,m,n(λi, j,m,n(q)c†
i,mc j,n − 1

2μq) and
there are two degenerate ground states with Chern num-
ber ±1, i.e., gD = 2. Again, after introducing free-
dom s ∈ {+,−}, ρs,q = ∑

i, j,m,n(λi, j,m,n(q) · (c†
i,m,+c j,n,+ +

c†
i,m,−c j,n,−) − μq). One can define two raising operators (see

Appendix B):

�
†
1 =

∑
j′

(c†
j′,1,+ + ic†

j′,−1,+)(c j′,1,− − ic j′,−1,−),

�
†
2 =

∑
j′

(c†
j′,1,+ − ic†

j′,−1,+)(c j′,1,− + ic j′,−1,−). (9)

Here i is the imaginary unit. It is straightforward to ver-
ify [�†

1, ρs,q] = [�†
2, ρs,q] = 0 and [�†

1,�
†
2] = [�†

1,�2] = 0.
This means �

†
1 and �

†
2 generate two groups of orthogonal
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FIG. 3. Finite-temperature results for three example cases. (a) For momentum space case 1 model, size N = 18, 32 are plotted. We measure
〈Re(D)〉, 〈|Re(D)|〉, and

√
〈|D|2〉 according to Z = ∑

{l} P({l})D({l}). Stars are 〈sign〉 determined by 〈Re(D)〉
〈|Re(D)|〉 and lines without error bars are

sign bounds determined by 〈Re(D)〉√
〈|D|2〉

, dashed lines are low temperature limit bounds 2√
N+3

. Error bar lines are 〈sign〉 computed independently

with importance sampling QMC. (b) For momentum space case 2 model, we plot 〈sign〉 computed with importance sampling QMC for size
N = 9, 16, 25, 36. (c) For real space case 3 model, we plot 〈sign〉 computed with importance sampling QMC for size N = 12, 18, 24
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eigenstates with the same energy. By noticing |ψ+,empty〉 ⊗
|ψ−,full〉 is a ground state, applying �

†
1 or �

†
2 independently

will give (N + 1)2 orthogonal zero-energy states with zero
Chern number. Here N is dimension of label i, j in λi, j,m,n(q).
Besides, there are also two states with nonzero Chern number,
on which raising operators apply are equal to 0 so no other
states will be given, g|D|2 = (N + 1)2 + 2. This means for this
model, 〈sign〉 � 2/

√
(N + 1)2 + 2 as shown in Fig. 2(b).

C. Corollary II

For a Hamiltonian with a PSD interaction part
∑

A(A −
μA)2 and a kinetic part K , where A and K are the fermion bi-
linears and μA is real constant number. If for a certain group of
μA, there is no sign problem, then Z|D| can be used as partition
function of reference system (This can be seen by noticing
μA only contributes a phase in D({l}), so that the reference
system now is just the Hamiltonian with the sign-problem-
free μA). At low temperature, 〈sign〉 � gDe−β(ED−E|D| )/g|D|. If
ED = E|D|, 〈sign〉 � gD/g|D|.

D. Example

It is easy to notice this corollary can give a sign bounds
behavior for all kinds of repulsive Hubbard models (by seeing
μA as chemical potential or other on-site ionic potential),
where the usual exponential decay of average sign is com-
monly seen. Though QMC may say little about ED and gD, one
could expect with the improvement of constrained path QMC,
density matrix renormalization group, and tensor-network
type methods, GSE and GSD for a finite-size doped Hubbard
system can be obtained [58–62], so theoretical sign bounds
behavior gDe−β(ED−E|D| )/g|D| can be achieved and check with
the numerical one. Since there have been many discussions on
the sign problem therein [5,31,46,63–66], here we still focus
the application of this reference system on a PSD Hamiltonian
without kinetic part K . We study the Kang-Vafek’s real space
model [67], for twisted bilayer graphene at the flat-band limit
with 1/4 or 3/4 filling (ν = ±2), whose GSE E = 0 is equal
to that at half filling (ν = 0). In this example, we give an
explanation for algebraic average sign observed in Ref. [50],
and determine the sign bounds analytically. The model is
written below:

H = U
∑
�

(Q� + αT� − ν)2, (10)

where Q� = 1
3

∑
σ,τ

∑6
l=1 c†

R+δl ,σ,τ cR+δl ,σ,τ − 4, T� =∑
σ,τ

∑6
l=1[(−1)l c†

R+δl+1,σ,τ cR+δl ,σ,τ + H.c.], ν is used to
control filling, σ, τ are spin and valley indexes, R + δl

represents site l in a single R hexagon, and U, α are real
constants. Attention to the subtraction of a constant 4 in
the definition of operator Q� which moves the charge
neutrality point to ν = 0. We consider the infinite-U case
as studied in Ref. [50]. Fixing α, then the only parameter
is βU , and any finite β in the infinite-U limit corresponds
to the low-temperature limit. We consider the system with
linear system size L up to L = 21 and the total number
of sites is N = 2L2. This model is sign problem free at
charge neutrality [68,69], with partition function identical

to Z|D|, as when ν is away from charge neutrality, it only
introduces a phase to the weight [50]. As the real space
model is PSD, and one can construct a zero-energy ground
state both at charge neutrality and at ν = ±2 with GSD
gD = (N + 3)(N + 2)(N + 1)/6 for ν = ±2 [57,67] and
GSD g|D| = (N + 3)(N + 2)2(N + 1)/12 for ν = 0 [57], (see
Appendix C for the tensor Young tableau method in which the
GSD are obtained), therefore 〈sign〉 � gD/g|D| = 2/(N + 2).
Figure 2(c) shows the average sign presented in Ref. [50],
compared with the sign bounds we proposed.

IV. SIGN BOUNDS AT FINITE TEMPERATURE

We will show how sign bounds can roughly imply a
finite-temperature phase transition point with a domain size
argument in this section.

It is worthwhile to notice when we are talking about the
low-temperature limit at finite temperature and finite-size sys-
tem simulation, we are actually considering the simulated
system size is covered by a single domain within which the
partition function can be well described by GSE and GSD,
that is, the low-temperature limit discussed above. For the
finite-temperature case, we generally cannot achieve partition
function explicitly. But we expect partition functions for the
target system and reference system should have different be-
haviors with temperature according to the different symmetry
or irreducible presentation their ground states belong to.

Taking our first two cases as an example, one can see the
target system has Z2 symmetry for double degenerated ground
states while the reference system has continuous SU(2) sym-
metry with continuous excitations. For the 2D system, we
know a Z2 symmetry ground state has a finite temperature
phase transition, while there is no finite temperature phase
transition for SU(2) symmetry. This difference causes a result
that, when increasing temperature from zero, the partition
function for target system ZD is almost unchanged because
the system is still in a single ground state domain as long as
below phase transition temperature, while continuous excita-
tions from SU(2) symmetry will contribute to ZV so long as
the temperature fluctuation suppresses this domain size below
the system size. This is the first step shown in Fig. 3(b)—more
states contributing to ZV will make 〈sign〉 decrease. Things
change when the energy scale of the temperature touches
excitation breaking Z2 symmetry. The correlation length of
the ground state begins to decrease linearly with the inverse
of temperature τ−1, which is faster than SU(2) symmetry. It
means domain size decreases faster for the target system. At
this time, excitations contribute more to ZD than ZV . This is
the second step in Fig. 3(b), 〈sign〉 begins to increase after
the phase transition of the target system. Finally, fluctuation
from temperature almost makes all freedom of Hamiltonians
contribute equally to partition function. That is the high-
temperature limit where 〈sign〉 ≈ 1 is well understood.

According to this argument, one can forecast the excitation
gap should enlarge with size for our case 1, since the lowest
point of sign bounds shift to high temperature with increas-
ing size as shown in Fig. 3(a). This behavior is unphysical
just because we use random matrix to construct our Hamil-
tonian. In our physical case 2, different sizes dip at similar
temperature, which indicates the phase transition temperature
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roughly. Besides, one can also forecast the domain size of
target systems decrease slower than reference systems at low
temperature in our case 3 so there is a reduction of 〈sign〉 when
increasing temperature as shown in Fig. 3(c), even though the
target system and reference system here almost have the same
symmetry. Stars and error bar lines match well in Fig. 3(a),
also indicating the way we compute Z = ∑

{l} P({l})D({l}) is
valid for finite size at finite temperature. And the converging
to dash line at the low-temperature limit shows our GSD
analysis is correct.

V. CONCLUSION AND DISCUSSION

We bridge a connection between the sign problem and
well-defined partition function properties of the target system
and reference system in interactive quantum many-body prob-
lems. At low temperature, the sign bounds depend on GSE and
GSD of the target system and the reference system. At finite
temperature, a domain size argument based on symmetry is
delivered. Our two corollaries give two groups of systems
where reference systems |D|2, |D| can apply separately, so
sign bounds theory can work. As applications of our two
corollaries at the low-temperature limit, we demonstrate the
algebraic scaling of average sign in a class of PSD models
which have a physical background with flat band quantum
morié materials. The sign bounds theory we proposed is a
generic criteria that could help find new quantum many-body
models that acquire the algebraic sign or mild exponential
sign.

Inspiration ideas can also be extended to projection ver-
sions of QMC [70–74]. Suppose we have a trial wave function
with |�T 〉 = ∑

n cn|�n〉, where |�n〉 is the eigenstate of H
with eigenvalue En. In the projection version of QMC, the
true wave function is achieved by projection, i.e., |�0〉 ∼
lim�→∞ e−�H |�T 〉. To keep a similar notation with the
finite-temperature case, we denote ZD = 〈�T |e−2�H |�T 〉 =
cDe−2�ED , where cD = ∑

n∈D |cn|2 is the ground-state compo-
nent in |�T 〉 and ED is the GSE. For the reference system,
we have ZV = cV e−2�EV , where cV is the reference-system
ground-state component in |�T 〉 and EV is the reference-
system GSE. Then the sign bounds are

〈sign〉V = cDe−2�ED

cV e−2�EV
. (11)

This implies that to alleviate the sign problem, it is important
to make the trial wave function have larger components of
the ground state and make the reference system have closer
GSE with the origin system, though this generally still cannot
remove the exponential part from the energy difference. This
may explain the recent proposed adiabatic method, where the
trial wave function is adiabatically improved and the closeness
of the reference GSE is well expected [37].

In a similar spirit, with further improvement of DMRG and
tensor-network-type approaches, where the low temperature,
GSE, and GSD on finite-size systems are expected to be

obtained with better accuracy, it will be natural to make use
of this information and perform the analysis with our theory
to provide (hopefully improved) bounds of QMC on systems
with conventional exponential sign problems, such as doped
Hubbard model or quantum spin systems with frustration.
Moreover, as our theorem directly relates the sign problem
to the physical properties of the system, it implies there may
be important information hidden inside configurations even
when the simulation has a sign problem. Therefore, machine
learning and related data mining of Monte Carlo data with
sign problems are encouraging [75].
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APPENDIX A: PARAMETERS FOR THREE CASES

For the first two cases, we take V (q) in the equation of
main text as single gate screened Coloumb potential used in
Ref. [52]:

V (q̄) ≈ 7.925
1√
Nkq̄

(
1 − e

−22.36 1√
Nk

q̄
)

meV. (A1)

Here, q̄ is the distance between momenta in mBZ by setting
two nearest k points with unit length and Nk is the number
of momentum points in mBZ. We take a cutoff for q̄ that the
longest q̄ is the length of reciprocal lattice vectors of the mBZ.
m, n in λi, j,m,n are two flat band indexes for TBG. Form factor
λ is the overlap between two flat band wave functions at mo-
mentum k1, k2 (i.e., λk1,k2,m,n = ∑

G′,X u∗
k1,m;G′,X uk2,n;G′,X ). For

case 1, we just take this 2Nk × 2Nk matrix λk1,k2,m,n randomly
with requiring Tr(λ) = 0 and maximum mode 1 for every
complex element. For case 2, we compute flat-band wave
functions at the chiral limit with Bistritzer-MacDonald (BM)
continuous model [76–81], parameters (θ, h̄vF /a0, u0, u1) =
(1.08◦, 2.37745 eV, 0 eV, 0.11 eV). For convenience, we put
BM continuous model Hamiltonian below:

H τ
k,k′ =

( −h̄vF (k − K1) · σδk,k′ U0δk,k′ + U1δk,k′+G1 + U2δk,k′+G1+G2

U †
0 δk,k′ + U †

1 δk,k′−G1 + U †
2 δk,k′−G1−G2 −h̄vF (k − K2) · σδk,k′

)
. (A2)

035121-6



FERMION SIGN BOUNDS THEORY IN QUANTUM MONTE … PHYSICAL REVIEW B 106, 035121 (2022)

Here, the explicit 2 × 2 matrix is labeled by the layer index,
and in each layer there is also an implied 2 × 2 matrix labeled
by sublattice index. σ is just a Pauli matrix for describing
Dirac cone of monolayer graphene. Twist angle θ is set as
a magic angle where two flat bands emerge. The θ will be
included in Hamiltonian by noticing moiré lattice constant is
determined by aM = a0/θ when θ is small. Interlayer tun-
neling between two Dirac cones located at K1 and K2 in the
same valley τ is described by matrices U0 = (u0 u1

u1 u0
), U1 =

( u0 u1e−i 2π
3

u1ei 2π
3 u0

) and U2 = ( u0 u1ei 2π
3

u1e−i 2π
3 u0

), where u0 and u1

are the intra-sublattice and intersublattice interlayer tunneling
amplitudes. a0 is the lattice constant of monolayer graphene,
G1 and G2 are reciprocal vectors of mBZ, and τ in H τ

k,k′ means
one only considers one valley τ Hamiltonian and ignores
intervalley tunneling.

For case 3, the model parameters used in Fig. 2 are the
same as the parameters used in Ref. [50]. We set α = 0.5,
and only have βU as an independent parameter. We divide
βU into Lτ slices βU = Lτ�τU , where Lτ scales with L,
Lτ = 10L. We then use the infinite-U projection scheme,
which corresponds to the zero-temperature limit. Therefore,
we have perfect scaling of average sign in Fig. 2(c). In Fig. 3,
we calculate system size 3 × 2, 3 × 3, and 3 × 4, as each unit
cell has two sites, we have a total number of sites N = 12, 18,
and 24. We do not allow Lτ to scale with L in this case, but
determine it through Lτ = βU/�τU , where βU ranges from
0.01 to 10 (for βU from 0.01 to 0.09, �τU = 0.001 is used;
for βU from 0.1 to 1, �τU = 0.01 is used; for βU from 2 to
10, �τU = 0.1 is used), and the infinite-U projection scheme
is not used, therefore it corresponds to a finite temperature
study.

APPENDIX B: RAISING OPERATOR CONSTRUCTION

Here we introduce the way we look for raising opera-
tors. First, for random λi, j , ρq = ∑

i, j (λi, j (q)c†
i c j − 1

2μq) and

ρs,q = ∑
i, j (λi, j (q) · (c†

i,+c j,+ + c†
i,−c j,−) − μq). If we want

to find a two-fermion operator �† commuting with ρs,q, we
only need to find a matrix commuting with ρs,q in single-
particle basis. The total dimension of ρs,q can be written into
i, j space direct products s ∈ {+,−} space noted by K ⊗ S.
Since generally λi, j in K space does not have any symmetry,
one needs a unit operator in this space to commute with ρs,q.
While in S space, one can see ρs,q,i, j looks like

ρs,q,i, j =
(

λi, j (q) 0
0 λi, j (q)

)
, (B1)

which means actually any 2 × 2 matrix will commute with
ρs,q,i, j . We choose a raising operator which makes charge flip
from − to + space:

�
†
i, j =

(
0 1
0 0

)
. (B2)

As a direct product those two parts of �†, we achieve the
raising operator we want:

�† =
∑

i′
c†

i′,+ci′,−. (B3)

Then, with similar spirit, we can derive �
†
1, �

†
2 in case 2. The

only difference is now we have another band space 1,−1. At
chiral limit, ρs,q,i, j,+,− in band space looks like

ρs,q,i, j,+,− =
(

λi, j,1,1(q) λi, j,1,−1(q)
−λi, j,1,−1(q) λi, j,1,1(q)

)

= λi, j,1,1(q)σ0 + iλi, j,1,−1(q)σy. (B4)

Here σ0 is a unit matrix and σy is the Pauli matrix. For
commuting with this matrix, the 2 × 2 matrix can only be in
the form of ασ0 + βσy. For now, any choosing of α, β can
generate one reasonable raising operator. If one also would
like two different raising operators with different choices of
α, β satisfying [�†

1,�2] = 0 means they are two groups of in-
dependent operators commuting with each other, and (α1σ0 +
β1σy)(α2σ0 + β2σy) = 0 must be satisfied. One simple choice
is (σ0 + σy)(σ0 − σy) = 0. Then we achieve �

†
1,�

†
2 we used

in case 2 in the main text:

�
†
1 =

∑
j′

(c†
j′,1,+ + ic†

j′,−1,+)(c j′,1,− − ic j′,−1,−),

�
†
2 =

∑
j′

(c†
j′,1,+ − ic†

j′,−1,+)(c j′,1,− + ic j′,−1,−). (B5)

APPENDIX C: TENSOR YOUNG TABLEAU METHOD

For self-consistency, we introduce another useful way,
which is also used in Refs. [53,57,82], to compute the GSD
besides raising operator construction. This method works for
models whose degeneracy is introduced by SU(n) symmetry.
gD = (N + 3)(N + 2)(N + 1)/6 for ν = ±2 and GSD g|D| =
(N + 3)(N + 2)2(N + 1)/12 for ν = 0 in Kang-Vafek’s real
space model are calculated in this way.

In Kang-Vafek’s real space model case, degeneracy is
introduced by SU(4) symmetry, where spin and valley con-
tribute two SU(2). One can easily see any m-particle wave
function can always be described by a four-dimension rank-m
tensor like Ta1,a2,...,am , where different ai ∈ {1, 2, 3, 4}, with
four spin-valley dimensions label particles. SU(4) transfor-
mation for spin-valley space and Sm permutation for particle
index are independent and will only change tensor T to an-
other tensor T ′ in tensor space, which means T is well-defined
for decomposition according to irreducible representation. By
noticing the number of the same ai must be less than lat-
tice size N , the Young diagram must have rows less than
4 and columns less than N . The Young diagram to which
fulfilling one spin-valley flavor ground state for ν = ±2
belongs is

Assume only this irreducible representation contributes to
ground states. Then, counting the degeneracy is equal to
counting a normal Young tableau of this Young diagram,
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which can be calculated by hook length formula:

d[N](SU(4)) =
∏

j

4 + j − 1

j
=

(N+3)!
3!

N!

= (N + 3)(N + 2)(N + 1)

6
, (C1)

while the Young diagram to which fulfilling the two spin-
valley flavors ground state for ν = 0 belongs is just

The number of the normal Young tableau calculated by
hook length formula is

d[N,N](SU(4)) =
∏
i, j

4 + j − i

hi, j
=

(N+3)!(N+2)!
3!2!

(N + 1)!N!

= (N + 3)(N + 2)2(N + 1)

12
. (C2)

The numerical way to compute the GSD by QMC accord-
ing to Z = ∑

{l} P({l})D({l}) also confirms the assumption
that only one irreducible representation contributes to ground
states in this case.
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