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We study geometrical responses of magnons driven by a temperature gradient in frustrated spin systems.
While Dzyaloshinskii-Moriya (DM) interactions are usually incorporated to obtain geometrically nontrivial
magnon bands, here we investigate thermal Hall responses of magnons that do not rely on the DM interactions.
Specifically, we focus on frustrated spin systems with sublattice degrees of freedom and show that a nonzero
Berry curvature requires breaking of an effective PT symmetry. According to this symmetry consideration, we
study the J1-J2-J ′

2 Heisenberg models on a honeycomb lattice as a representative example and demonstrate that
magnons in the spiral phase support the thermal Hall effect once we introduce a magnetic field and asymmetry
between the two sublattices. We also show that driving the magnons by a temperature gradient induces spin
current generation (i.e., magnon spin Nernst effect) in the J1-J2-J ′

2 Heisenberg models.

DOI: 10.1103/PhysRevB.106.035113

I. INTRODUCTION

A magnon is an elementary excitation of spin waves in
magnetic materials. Magnon transport is attracting growing
interest in both fundamental and technological aspects [1]. For
example, magnons can transfer spins without Joule heating
and are expected to play an essential role in spintronics as a
platform for low energy consumption devices. In particular,
antiferromagnetic spintronics is attracting a keen attention
because antiferromagnets have no leakage magnetic field in
contrast to conventional ferromagnets [2,3].

Since magnons are charge neutral quasiparticles, they can-
not be directly driven by electric fields, unlike electrons.
Instead, a temperature gradient can induce a magnon flow,
which leads to various thermal responses in magnets, includ-
ing the spin Seebeck effect [4], the magnon spin Nernst effect
[5–7], and the thermal Hall effect [8,9]. The thermal Hall
effect and the magnon spin Nernst effect are of particular
interest because they are related to a nontrivial geometry of
the magnon bands through the Berry curvature [5,6,10–13].

Most previous studies on such geometrical thermal re-
sponses of magnons rely on Dzyaloshinskii-Moriya (DM)
interactions to obtain geometrically nontrivial magnon bands
with nonzero Berry curvature. For example, the thermal Hall
effect has been studied in an antiferromagnetic Heisenberg
model with DM interactions on a kagome lattice [14–18] and
a honeycomb lattice [19]. Similarly, the magnon spin Nernst
effect has been studied in a Heisenberg model with a DM
interaction [5,6,13].

The DM interaction introduces a nontrivial geometry to
magnon bands in two fashions. First, the DM interaction acts
as a virtual magnetic field for magnons, leading to nonzero
Berry curvature [8,20]. In this case, there exists a condition
for the lattice geometry to support nonzero Berry curvature
because edge-shared lattices results in cancellation of such

virtual magnetic field between the neighboring plaquettes. For
example, a kagome lattice supports a thermal Hall response
with this mechanism. Second, the DM interaction can also
introduce an effective non-Abelian gauge field for magnons
with multiple internal degrees of freedom. In particular, when
we consider a bipartite lattice with AB sublattices, the DM
interaction can behave as an SU(2) gauge field for the sublat-
tice degree of freedom. This mechanism is advantageous over
the first one in that the lattice geometry is not restricted [21].
In both cases, however, the DM interaction is usually small
except for a few limited systems because the DM interaction
originates from the spin-orbit interaction [22,23]. Therefore,
geometrically nontrivial magnon bands that do not rely on the
presence of the DM interaction are desired for an enhance-
ment of thermal Hall responses in magnetic systems.

Such geometrical responses of magnons without DM inter-
actions were reported in a few studies. Scalar spin chirality is
shown to support the thermal Hall effect for the honeycomb
lattice by assuming a particular ground state spin configu-
ration [24], for the kagome lattice by incorporating a third
neighbor coupling [25,26], and for the trimerized triangular
lattice [27]. The scalar spin chirality has been also shown to
support the spinon thermal Hall conductivity of chiral spin
liquid in the honeycomb lattice [28]. Another previous study
reports that some organic materials [29–31] support geomet-
rical magnon responses driven by temperature gradient due to
special properties of dimers. Despite these previous studies, a
guiding principle for realizing geometrical thermal responses
of magnons without the DM interaction is still missing. In par-
ticular, the possibility of nontrivial magnon bands originating
from an SU(2) gauge field without DM interaction has not
been fully explored.

In this paper, we study geometrical thermal responses of
magnons that do not rely on the DM interaction. Specifically,
we focus on the antiferromagnetic Heisenberg model with AB
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sublattices. As the sublattice degrees of freedom enables to
introduce the SU(2) gauge field to the magnons, this model is
a suitable playground for pursuing the role of the non-Abelian
gauge field on the geometrically nontrivial magnon bands.
We first derive a general condition for generating nonzero
Berry curvature without the DM interaction. We find that an
effective PT symmetry should be broken for obtaining geo-
metrically nontrivial bands, and a noncollinear spin structure
is necessary to break this PT -symmetry. From this viewpoint,
frustrated spin systems are suitable for pursuing noncollinear
spin configurations [32–34]. Thus we consider geometrical
thermal responses in a frustrated honeycomb spin systems
as a simple example. Specifically, we study the J1-J2-J ′

2
Heisenberg model on the honeycomb lattice. The frustration
naturally leads to the spiral order in the ground state and
support the nonzero Berry curvature. Furthermore, we also
consider spin transport enabled by nontrivial magnon bands,
i.e., the magnon spin Nernst effect. In the noncollinear system,
the magnon spin Nernst effect is governed by a quantity that is
closely related to the Berry curvature [35,36]. We demonstrate
that the frustrated honeycomb Heisenberg model also supports
the magnon spin Nernst effect without DM interaction.

The rest of this paper is organized as follows. In Sec. II,
we study magnon excitations using the Holstein-Primakoff
transformation for the spiral phase with AB sublattices and
derive the symmetry condition that the Berry curvature and the
thermal Hall conductivity appear. In Sec. III, we consider the
J1-J2-J ′

2 model on the honeycomb lattice and study the thermal
Hall conductivity. In Sec. IV, we study the spin Nernst effect
of J1-J2-J ′

2 model. In Sec. V, we present a brief discussion.

II. MAGNON HAMILTONIAN IN SPIRAL PHASE

In this section, we consider the condition for the nonzero
Berry curvature and the thermal Hall conductivity in the AB
sublattice systems. First, to calculate the thermal Hall effect,
we review the magnon expansion in AB sublattice systems.
Then we introduce the formulation of the thermal Hall effect
of magnons. After these preparations, we derive a general
condition for generating nonzero thermal Hall effect.

A. Magnon Hamiltonian of AB sublattices

We study the magnon Hamiltonian of the system with AB
sublattices. To obtain the magnon Hamiltonian, we perform
the Holstein-Primakoff transformation for the spin S systems
[37],

S′+
i � √

2Sai, S′−
i � √

2Sa†
i , S′z

i = S − a†
i ai for i ∈ A

S′+
i � √

2Sbi, S′−
i � √

2Sb†
i , S′z

i = S − b†
i bi for i ∈ B,

(1)
where a†

i and b†
i are bosonic creation operators, S′ is a spin

operator along the spin configuration of the ground state, and
S′±

i = S′x
i ± iS′y

i . For a system in which the ground state is
not ferromagnetic, the magnon Hamiltonian contains α

†
i α

†
j

and αiα j terms with αi being ai or bi. Thus, after the Fourier
transformation, we obtain the magnon Hamiltonian as a 4 × 4
matrix:

H = 1

2

∑
k

�†(k)H (k)�(k). (2)

This type of Hamiltonian is called the Bogoliubov–de Gennes
(BdG) Hamiltonian [38]. Here, �(k) and H (k) are

�(k) = (a(k), b(k), a†(−k), b†(−k))T , (3)

H (k) =
(

�(k) �(k)

�∗(−k) �∗(−k)

)
, (4)

where �(k) and �(k) are 2 × 2 matrices that satisfy �†(k) =
�(k), �†(k) = �∗(−k). Using Pauli matrices, we can write
�(k) and �(k) as

�(k) = �0(k)σ0 + �x(k)σx + �y(k)σy + �z(k)σz, (5)

�(k) = �0(k)σ0 + �x(k)σx + �y(k)σy + �z(k)σz, (6)

with �i ∈ R and �i ∈ C (i = 0, x, y, z). The BdG Hamilto-
nian should be diagonalized using a paraunitary matrix T (k),
which satisfies

T †(k)σ3T (k) = σ3,

σ3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠, (7)

so as to retain the canonical commutation relation for the
transformed magnon operator T −1(k)�(k). The eigenvalues
have the following form due to the inherent particle-hole
symmetry as:

T †(k)H (k)T (k) = E (k)

= diag(E1(k), E2(k), E1(−k), E2(−k)).
(8)

Applying T (k)σ3 to Eq. (8), we obtain

σ3H (k)T (k) = T (k)σ3E (k), (9)

namely, we can obtain T (k) as eigenvectors of σ3H . If we
write the paraunitary matrix T (k) as

T (k) = (t1(k), t2(k), t3(k), t4(k)), (10)

we can write Eq. (9) in the form of an eigenvalue problem for
σ3H as

σ3H (k)tn(k) = (σ3E (k))nntn(k). (11)

B. Thermal Hall effect and Berry curvature

We calculate the thermal Hall conductivity by using the
linear response theory. The temperature gradient is written
as T (r) = T0(1 − χ (r)), where T0 is a constant temperature
and χ is a small parameter with a zero average. We write the
thermal Hall current JQ

μ as

JQ
μ = Lμν

(
T ∇ν

1

T
− ∇νχ

)
,

and the thermal Hall conductivity κμν as

κμν = Lμν

T
.
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From a continuity equation, we can calculate the thermal
current, and using the Kubo formula, we can write the thermal
Hall conductivity κμν as [12]

κμν = − k2
BT

h̄

∑
n=1,2

∫
BZ

dk2

(2π )2
�(k)n,μν

×
[

c2(ρ(En(k))) − π2

3

]
, (12)

with

c2(x) =
∫ x

0
dt

(
ln

1 + t

t

)2

= (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2Li2(−x),

and Lin(x) is polylogarithm function. �(k)n,μν is the Berry
curvature of the nth magnon band,

�n,μν (k) = −2Im

[
σ3

∂T †(k)

∂kμ

σ3
∂T (k)

∂kν

]
nn

, (13)

which measures a nontrivial band geometry.

C. Effective PT and T symmetries

Symmetry plays an important role in the emergence of
nontrivial magnon bands with Berry curvature. In particular,
we find that the Berry curvature of magnon bands vanishes
under an effective PT symmetry in a similar manner to the
Berry curvature in electronic systems. In this subsection, we
derive a symmetry condition for the nonzero Berry curvature
and thermal Hall conductivity.

Let us suppose that the system has a symmetry given by

P†H∗(k)P = H (k), (14)

with a paraunitary matrix P satisfying P†σ3P = σ3. By utiliz-
ing Eq. (14), we can rewrite Eq. (9) as

σ3H (k)P∗T ∗(k) = P∗T ∗(k)σ3E (k), (15)

which implies that P∗T ∗(k) satisfies the same Eq. (9) for T (k).
Thus, if there is no degeneracy, T (k) should satisfy

T (k) = P∗T ∗(k)Mk, (16)

where (Mk) j,l = δ j,l exp[iθ j,k] comes from the fact that we can
choose the overall phases of the eigenvectors arbitrarily.

We investigate how this symmetry operation affects the
Berry curvature. Considering the condition Eq. (16), the Berry
curvature Eq. (13) can be written as

�n,μν (k) = −2Im

[
σ3

∂T †(k)

∂kμ

σ3
∂T (k)

∂kν

]
nn

= −2Im

[
σ3

∂M†
k T †∗(k)

∂kμ

P∗†σ3P∗ ∂T ∗(k)Mk

∂kν

]
nn

= 2Im

[
σ3

∂T †(k)

∂kμ

σ3
∂T (k)

∂kν

]
nn

= −�n,μν (k). (17)

Therefore, the Berry curvature becomes zero under the sym-
metry Eq. (14).

Even if the Berry curvature takes nonzero value, the ther-
mal Hall conductivity can vanish in some cases when the
integral in Eq. (12) has a cancellation. Especially, when the
Hamiltonian satisfies the effective time-reversal symmetry
(effective TRS),

P̃†H∗(k)P̃ = H (−k), (18)

with a paraunitary matrix P̃, the paraunitary matrix T (k)
obeys the condition T (k) = P̃∗T ∗(−k)Mk and the Berry cur-
vature �n,xy(k) satisfies the relation �n,xy(k) = −�n,xy(−k)
[17]. The effective TRS also imposes En(k) = En(−k) and
c2(ρ(En(k))) = c2(ρ(En(−k))). From these, the integrand of
Eq. (12) is odd in k, and thus the thermal Hall conductivity
καβ vanishes.

D. Spiral phase

To obtain nonzero thermal Hall conductivity, we need to
break the effective PT and T symmetries. Here we consider
AB-sublattice systems in the spiral phase and discuss the
general condition for breaking the symmetries and specific
examples of symmetry-breaking interactions. To this end, we
consider the spin Hamiltonian

H = HJ + H� + Hh. (19)

Here, the first term

HJ =
∑
i �= j

Jαβ (r)Si · S j (20)

denotes the Heisenberg interaction between spins Si and S j

with the coupling Jαβ (r), where α, β = A, B represent the
sublattice to which i and j sites belong, respectively, and r
represents the distance between i and j sites. The second term
H� is the easy-axis anisotropy part:

H� =
∑

i

�α

(
Sz

i

)2
, (21)

= �A

∑
i∈A

(
Sz

i

)2 + �B

∑
i∈B

(
Sz

i

)2
. (22)

The last term Hh is a Zeeman coupling term:

Hh = h
∑

i

Sz
i . (23)

We assume that the spin configuration of classical ground
state is given by

Si = S(cos ψi cos (Q · Ri+φi ), cos ψi sin (Q · Ri+φi), sin ψi ),
(24)

where ψi ∈ [−π/2, π/2] describes the canting angle from the
xy plane and Q represents a pitch of the spiral. The canting
angle ψi is ψA (ψB) if i is in the A (B) sublattice. Similarly, we
assume that φi = φα for i ∈ α with α = A, B. The position Ri

denotes the center of the unit cell which contains site i.
Because the spin Hamiltonian is symmetric with respect to

the rotation of spin around the z axis, hereafter we set φA = 0,

φB = φ without loss of generality, with which φ describes an
in-plane angle between two spins in the same unit cell. This
ansatz generally describes noncollinear spin configurations
with single Q.
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For the present canted spins, a new spin coordinate S′ along the ground-state spin configuration can be written as [24,39]

Si = Rz(Q · Ri + φi )R
y(π/2 − ψi )S′

i

=

⎛
⎜⎝

sin ψi cos (Q · Ri + φi ) − sin (Q · Ri + φi) cos ψi cos (Q · Ri + φi )

sin ψi sin (Q · Ri + φi ) cos (Q · Ri + φi ) cos ψi sin (Q · Ri + φi )

− cos ψi 0 sin ψi

⎞
⎟⎠

⎛
⎜⎝

S′x
i

S′y
i

S′z
i

⎞
⎟⎠, (25)

where Rk (θ ) denotes a spin rotation operator with respect to
the k axis by θ . Further rewriting S′ with the magnon op-
erators using Holstein-Primakoff transformation Eq. (1) and
substituting it to the spin Hamiltonian Eq. (19), we obtain the
4 × 4 BdG Hamiltonian Eq. (4) for the present system. For the
detailed form of �(k) and �(k), see Appendix.

Let us discuss the presence/absence of the effective PT
symmetry for the present case. Here, for simplicity, we as-
sume a lattice structure where the A and B sublattices are
interchanged upon spatial inversion (e.g., honeycomb lattice).
First, we note that the physical T and PT symmetries are
explicitly broken due to the Zeeman field term Hh. However,
this term is invariant under the combination of T or PT oper-
ation with π rotation of spin around the y axis. On the other
hand, the ground-state spin configuration typically has a lower
symmetry than the Hamiltonian, and indeed the spiral spin
order is not invariant under the above symmetry operation. We
here consider a symmetry operation X , which is obtained by
further combining φA + φB rotation of spin around the z axis
(to the PT operation and π rotation around the y axis). The
spin configuration is transformed under X as

S(cos ψi cos (Q · Ri + φi ), cos ψi sin (Q · Ri + φi ), sin ψi )

→ S(cos ψ−i cos (Q · Ri + φi ),

cos ψ−i sin (Q · Ri + φi ), sin ψ−i ),

where −i ∈ B(A) if i ∈ A(B). This implies that the ground
state does not change under X when ψA = ψB, and the
magnon Hamiltonian should have a corresponding symmetry
if the spin Hamiltonian is also symmetric with respect to X .

Now, let us consider how this symmetry operation X acts
on the magnon Hamiltonian. To this end, first we consider the
transformation for the spin operator:

Si → XSi = Ry(π )Rz(−φA − φB)(−S−i )

= −Ry(π )Rz(−Q · Ri − φi )R
y(π/2 − ψ−i )S′

−i.

On the other hand, the transformed spin operator can also
be expressed using the spin coordinate along the transformed
ground state XS′

i as

XSi = Rz(Q · Ri + φi )R
y(π/2 − ψi )(XS′

i ).

In other words, when ψi = ψ−i, S′
i is transformed as

XS′
i =

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠S′

−i

under X . Considering the fact that only the y component
S′y

i = i
√

S/2(α†
i − αi ) has the imaginary coefficient to the

magnon operators and that the sublattices are interchanged

upon spatial inversion, we can express the symmetry operation
X for the magnon Hamiltonian as H (k) → P†H∗(k)P with

P =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠. (26)

For the magnon Hamiltonian Eqs. (5) and (6), Eq. (14) is
satisfied if

�z = �z = 0, �i ∈ R. (27)

Let us discuss when the above condition can be broken,
based on the detailed form of the magnon Hamiltonian given
in the Appendix. For the Heisenberg interaction HJ , �z and
�z are nonzero when JAA �= JBB [Eqs. (A3d) and (A3h)]. Fur-
thermore, when ψA �= ψB, Im�x and Im�y are also nonzero
[Eqs. (A3f) and (A3g)]. For the anisotropy part H�, �z is
nonzero when �A �= �B [Eq. (A4d)]. Thus, when A sites and
B sites are inequivalent, the Berry curvature can be nonzero.

Furthermore, we consider the presence/absence of the ef-
fective TRS Eq. (18), since breaking the effective TRS is
necessary for nonzero thermal Hall conductivity. In particular,
we focus on the simplest case of P̃ = I (I: an identity matrix)
in the following. We need i cos k or sin k terms to break the ef-
fective TRS Eq. (18), and these terms of the BdG Hamiltonian
for the spiral phase depend on sin (Q · R + φ) or sin (Q · R).
Thus, effective TRS is broken when the spin configuration
satisfy sin (Q · R + φ) �= 0 or sin (Q · R) �= 0. These condi-
tions necessitate Q · R �= 0, π or φ �= 0, π . Hence, we need
spiral configuration or nontrivial in-plane canting angle φ for
nonzero thermal Hall conductivity besides the nonzero Berry
curvature.

E. SU(2) gauge fields in magnon bands

In previous studies on thermal Hall responses of mag-
netic systems [14–19], the DM interaction is incorporated to
generate nonzero Berry curvature of magnon bands. In this
subsection, we comment on the role of the DM interaction in
view of the symmetry condition [Eq. (14)] and the effective
SU(2) gauge field. Specifically, we show that the presence
of the DM interaction can break the symmetry Eq. (14), and
discuss how the similar SU(2) gauge field is obtained without
the DM interaction in the spiral phase with the sublattice
inequivalence.

First, we consider the out-of-plane DM interaction

HDM =
∑
i, j

Dαβ (Si × S j )z. (28)
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For this DM interaction, when DAA �= DBB, we can obtain
nonzero �z even if ψA = ψB (see Appendix). Thus, DM in-
teraction can break the symmetry Eq. (14) and generate the
nonzero Berry curvature [19]. In addition, �z can be nonzero
even if the spin configuration is the collinear and ψi is ±π/2.
In this case, the DM interaction can be taken into the Heisen-
berg coupling with a phase factor χ = arctan (D/J ),

JSi · S j + DSi × S j = Jeff(e
iχS+

i S−
j + e−iχ S−

i S+
j ), (29)

where Jeff is an effective Heisenberg coupling Jeff =√
J2 + D2. Thus, the DM interaction adds the phase factor

χ to the hopping and acts as the virtual magnetic field and
induce the nonzero �z.

On the other hand, in-plane DM interaction can also induce
a nonzero Berry curvature with a different mechanism. The in-
plane DM interaction can induce SU(2) gauge field in canted
spin systems, which is a non-Abelian gauge field with respect
to the sublattice degrees of freedom in the magnon repre-
sentation [21]. Now, we show that we can induce the SU(2)
gauge field even without the DM interaction in a system with
ψA �= ψB. For simplicity, we consider the antiferromagnetic
Heisenberg chain with nearest-neighbor coupling:

H =
∑
i∈A

(JSi · Si+1 + J ′Si · Si−1).

Here we assume the spiral spin configuration given by
Eq. (24). Again, we can set φA = 0 without loss of generality,
and we obtain

Si = S(cos ψA cos (Q · Ri ), cos ψA sin (Q · Ri ), sin ψA),
(30)

Si+1 = S(cos ψB cos (Q · Ri + φ),

× cos ψB sin (Q · Ri + φ), sin ψB) (31)

for i ∈ A.
The spin Hamiltonian in the S′ coordinate can be obtained

with Eq. (25) as follows:

H =
∑
i∈A

[
JX S′x

i S′x
i+1 + JY S′y

i S′y
i+1 + JZ S′z

i S′z
i+1

+ D0
(
S′x

i S′y
i+1 − S′y

i S′x
i+1

) + D1
(
S′x

i S′y
i+1 + S′y

i S′x
i+1

)
+ J ′

X S′x
i−1S′x

i + J ′
Y S′y

i−1S′y
i + J ′

Z S′z
i−1S′z

i

+ D′
0

(
S′x

i−1S′y
i − S′y

i−1S′x
i

) + D′
1

(
S′x

i−1S′y
i + S′y

i−1S′x
i

)]
,

where

JX = J (sin ψA sin ψB cos φ + cos ψA cos ψB),

JY = J cos φ,

JZ = J (cos ψA cos ψB cos φ + sin ψA sin ψB),

D0 = −J
sin ψA + sin ψB

2
sin φ,

D1 = J
sin ψB − sin ψA

2
sin φ,

J ′
X = J ′(sin ψA sin ψB cos (φ − Q · R) + cos ψA cos ψB),

J ′
Y = J ′ cos (φ − Q · R),

J ′
Z = J ′(cos ψA cos ψB cos (φ − Q · R) + sin ψA sin ψB),

D′
0 = J ′ sin ψA + sin ψB

2
sin (φ − Q · R),

D′
1 = J ′ sin ψB − sin ψA

2
sin (φ − Q · R),

with R = Ri+1 − Ri. In these terms, D1 and D′
1 are nonzero

only when the spin configuration satisfies ψA �= ψB, which
implies that these are the candidates for the (effective) PT
breaking term. Using the HP transformation Eq. (1), we can
write the D1 and D′

1 terms in terms of the magnon operators
as
∑
i∈A

i

2
[D1(a†

i b†
i+1 − aibi+1) + D′

1(a†
i b†

i−1 − aibi−1)]

=
∑
i∈A

−1

2

[
D1(a†

i , bi+1)σy

(
ai

b†
i+1

)
+D′

1(a†
i , bi−1)σy

(
ai

b†
i−1

)]
.

Then, after the Fourier transformation, we obtain

∑
k

[
−D1 + D′

1

4
cos k(a†

k, b−k )σy

(
ak

b†
−k

)

− i
D1 − D′

1

4
sin k(a†

k, b−k )σy

(
ak

b†
−k

)]
. (32)

Here, the second term contains iσy and this is the origin of the
nonzero Im�y for the BdG Hamiltonian. This term is the same
form as a Rashba spin-orbit term, since we can see (a†

k, b−k ) as
a pseudospinor operator [21]. This Rashba-like term contains
D1 − D′

1, supporting nonzero SU(2) gauge field when D1 �=
D′

1. The condition D1 �= D′
1 is satisfied when Q · R �= 0, π or

J �= J ′ and φ �= 0, π . Hence, we need spiral configuration or
nonzero canting angle φ and asymmetric bonds other than the
condition ψA �= ψB for the SU(2) gauge field.

In previous studies, the thermal Hall effect without DM
interactions is reported in a kagome lattice system [25,26],
a trimerized triangular lattice [27], and a honeycomb lattice
system with Im�i = 0 [24]. From the viewpoint of the above
discussion, the nonzero Berry curvature in these previous
studies is derived from the phase factor of hoppings as in the
case of the out-of-plane DM interaction. In contrast, the SU(2)
gauge field also induces nonzero Berry curvature as we have
clarified above and demonstrate for the J1-J2-J ′

2 models in the
following.

III. MAGNON HAMILTONIAN IN J1-J2-J′
2 MODEL

Now we demonstrate the thermal Hall effect without DM
interaction. As we have clarified in the above section, we need
inequivalent AB sublattices, and Q · R �= 0, π or φ �= 0, π for
the thermal Hall effect. J1-J2-J ′

2 model on the honeycomb
lattice is a simple example that satisfies above conditions.
In this model, the next-nearest-neighbor coupling J2 and J ′

2
induce frustration, which leads to a spiral order with Q �= 0
on the ground-state spin configuration. To make the A and B
sublattices inequivalent, we introduce the inequivalent next-
nearest-neighbor coupling J2 �= J ′

2 or inequivalent anisotropy
�A �= �B.
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FIG. 1. (a) The J1-J2-J ′
2 model on the honeycomb lattice. (b) Vec-

tors a1 and a2 of the honeycomb lattice. (c) Vectors a1 and a2 of
bilayer triangle lattices. The red lines and blue lines each represent
the top and bottom layers’ triangle lattices. (d) The reciprocal space
of the J1-J2-J ′

2 model on the honeycomb lattice. (e), (f) are the
spin configuration of model II with J1 = 1.0, J2 = 2.0, J ′

2 = 2.4,
�A = �B = 0.05. (e) h = 0 and the canting angle ψA = ψB = 0.
(f) h = 8 and the canting angle ψA �= ψB.

A. Spin Hamiltonian

We consider the Heisenberg model on the honeycomb lat-
tice depicted in Fig. 1(a). While the honeycomb lattice has
AB sublattices, we assume that these sublattices are inequiva-
lent (e.g., composed of two different atoms), so the coupling
constants may take different values for A and B sublattices,
namely, here we consider the J1-J2-J ′

2 Heisenberg model,
whose Hamiltonian is given by

H = HJ + H� + Hh, (33)

with

HJ = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉∈A

Si · S j

+ J ′
2

∑
〈〈i, j〉〉∈B

Si · S j, (34)

H� = �A

∑
i∈A

(
Sz

i

)2 + �B

∑
i∈B

(
Sz

i

)2
, (35)

and

Hh = −h
∑

i

Sz
i . (36)

Here the index i runs over all sites, and
∑

〈i, j〉 and
∑

〈〈i, j〉〉
mean the sum over the nearest neighbor and next-nearest

neighbor of the honeycomb lattice, respectively. The operator
Si is a spin at site i, and A and B are sublattices of honey-
comb lattice. Figure 1(b) shows the primitive lattice vectors
a1 = (

√
3a, 0) and a2 = (−√

3a/2,−3a/4) with the lattice
constant a (Hereafter, we set a = 1 for simplicity), namely,
A sites are located at r = ma1 + na2, while B sites are located
at r = ma1 + na2 + (0, a). Figure 1(d) shows the reciprocal
space of the J1-J2-J ′

2 model on the honeycomb lattice.
We note that this model can also be regarded as a bilayer

triangular lattice system by considering A (B) sites as the top
(bottom) layer [see Fig. 1(c)]. In this case,

∑
〈i, j〉 and

∑
〈〈i, j〉〉

indicate sums over nearest-neighbor interlayer and intralayer
couplings, respectively. In particular, we emphasize that it is
not necessarily unrealistic to consider a situation where J2 and
J ′

2 are much larger than J1.
In the case of h = 0 and J2 = J ′

2, the classical limit of
this model is studied. If J2/J1 > 1/6, the ground-state spin
configuration is given as [40–44]

Si = S(cos (Q · Ri ), sin (Q · Ri ), 0) for i ∈ A, (37)

Si = S(cos (Q · Ri + φ), sin (Q · Ri + φ), 0) for i ∈ B.

(38)

In the spiral phase, we can minimize the classical energy by
taking

Q =
(

2√
3a

cos−1

(
J1 − 2J2

4J2

)
, 0, 0

)
, (39)

φ = π. (40)

We note here that there are two other ground states rotated by
± 2π

3 in the honeycomb plane.
In the case of h �= 0 and J2 �= J ′

2, we assume that classical
ground states can be written as Eq. (24). Even for J2 �= J ′

2, we
assume φA = 0 and φB = π , which is the known result for the
J2 = J ′

2 case [42], namely, we write the classical ground states
as

Si = S(cos ψA cos (Q · Ri ),

cos ψA sin (Q · Ri ), sin ψA) for i ∈ A, (41)

Si = S(− cos ψB cos (Q · Ri ),

− cos ψB sin (Q · Ri ), sin ψB) for i ∈ B. (42)

Here, ψA and ψB are canting angles from the xy plane, and we
estimate Q, ψA, and ψB by minimizing the classical energy

E = NS2[−J1 cos ψA cos ψB(1 + cos (Q1 + Q2) + cos Q2)

+ (J2 cos2 ψA + J ′
2 cos2 ψB)

× ( cos Q1 + cos Q2 + cos (Q1 + Q2))

+ 3J1 sin ψA sin ψB + 3(J2 sin2 ψA + J ′
2 sin2 ψB)

+ �A sin2 ψA + �B sin2 ψB]

− NS(h sin ψA + h sin ψB), (43)

where N is the site number of A and B sites, and Q1 = √
3aQx,

Q2 = −√
3a/2Qx − 3a/4Qy. For the case of h = 0, due to the

(easy-plane) magnetic anisotropy, the canting angles ψA and
ψB are zero. Figure 1(e) shows the spin configuration of this
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FIG. 2. The energy band and the Berry curvature �xy of the model I with J1 = 1.0, J2 = 2.0, J ′
2 = 2.4, �A = �B = 0.05. (a)–(d) The

energy bands for (a) h = 0, (b) h = 2J1S, (c) h = 10J1S, and (d) h = 18J1S. (e)–(h) The Berry curvature �xy of the lower band for (e) h = 0,
(f) h = 2J1S, (g) h = 10J1S, and (h) h = 18J1S.

case. When h > 0, on the other hand, spins are canted from
the xy plane as shown in Fig. 1(f).

B. Magnon band, Berry curvature, and Chern number

We apply Holstein-Primakoff transformation for the spin
Hamiltonian Eq. (33) and obtain the magnon Hamiltonian (for
details, see Appendix). In this model, there are two types
of inequivalence introduced by (I) inequivalent Heisenberg
coupling for two triangular lattices (J2 �= J ′

2) and (II) inequiv-
alent anisotropy for two triangular lattices (�A �= �B). Thus
we name model I J2 �= J ′

2, �A = �B and model II J2 = J ′
2,

�A �= �B. In the following, we first discuss the results for
model I with J2 �= J ′

2, and then proceed to the results for model
II with �A �= �B.

In Fig. 2, we show the energy band and the Berry curvature
of model I, which has inequivalent Heisenberg coupling for
two triangular lattices (J2 �= J ′

2). Here, the energy band is
plotted along the paths shown in Fig. 1(d).

Figures 2(a) and 2(e) show the energy band and the Berry
curvature in the absence of the external magnetic field, h =
0. From Fig. 2(a), we can see that the small gaps around K
and K ′ are energetically equivalent to each other. In this case,
band gaps open, and the Berry curvature is nonzero as shown
in Fig. 2(e), although the thermal Hall conductivity vanishes
because the magnon Hamiltonian satisfies the effective TRS
H∗(k) = H (−k).

We show the energy band of model I (J2 �= J ′
2) with

magnetic field h = 2J1S, h = 10J1S, and h = 18J1S in
Figs. 2(b)–2(d), respectively. If we turn on the magnetic field
h �= 0, the two small gaps around K and K ′ points become
energetically inequivalent, since the effective TRS is now
broken [H (k) �= H∗(−k)]. Figures 2(b)–2(d) show that the
energy around K ′ decreases when h �= 0 and energy around
K increases. These changes in the band structure produce
changes in the Berry curvature.

Figures 2(f)–2(h) show the Berry curvature with h = 2J1S,
h = 10J1S, and h = 18J1S. In the h = 2J1S case, the Berry
curvature satisfies �n,xy(k) � −�n,xy(−k) similarly to the
h = 0 case, as one can see from Fig. 2(f). As shown in
Figs. 2(c) and 2(d), as the magnetic field increases, the gap
around K becomes larger and, accordingly, the Berry curva-
ture around K becomes smaller as shown in Figs. 2(g) and
2(h).

From magnetic-field dependence of Berry curvatures, we
can predict that the Chern number is zero when the magnetic
field is small, while the nonzero Chern number is realized for
larger h. We show the magnetic-field dependence of the Chern
number and the thermal Hall conductivity in Fig. 3(a). From
the upper figure of Fig. 3(a), we see that the Chern number is
nonzero when the magnetic field h is large. The lower panel of
Fig. 3(a) shows the color plot of the thermal Hall conductivity,
while Fig. 3(b) shows the thermal Hall conductivity at several
temperatures. While the thermal Hall conductivity is related
to the Berry curvature via Eq. (12), unlike the Hall effect of
electron systems, the thermal Hall effect of magnons is not
quantized because the function c2(ρ(E ) in Eq. (12) is not the
function like a step function. Nonetheless, the thermal Hall
conductivity shows a behavior related to that of the Chern
number. To see this, first we remark that the Berry curvature
of the upper band �1,αβ and the lower band �2,αβ satisfies
�1,αβ ∼ −�2,αβ , and that −(c2(ρ(E )) − π2

3 ) in Eq. (12) is a
monotonously increasing function. These imply that the sign
of the thermal Hall conductivity corresponds to the sign of
the Chern number of the upper band. Especially, Figs. 3(a)
and 3(b) show that the sign of the thermal Hall conductivity
changes reflecting the sign change of the Chern number.

The thermal Hall effect also appears in model II, which has
inequivalent anisotropy for two triangular lattices (�A �= �B)
in a similar way to model I (J2 �= J ′

2) with some changes
in details. We show the energy band of h = 0, h = 8J1S,
h = 12J1S, and h = 20J1S in Figs. 4(a)–4(d), and the Berry
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FIG. 3. The Chern number ν and the thermal Hall conductivity
κxy of the model I with J1 = 1.0, J2 = 2.0, J ′

2 = 2.4, �A = �B =
0.05. Here, we calculate κxy with S = 1

2 . (a) The magnetic field
dependence of ν for each magnon band and the color plot of κxy.
ν1 is the Chern number of the upper band and ν2 is the Chern number
of the lower band. The lower panel is the color plot of κxy. The sign
of κxy almost coincides with the sign of ν1. In particular, κxy becomes
zero and shows a sign change around h ∼ 13J1S, where the sign of ν1

changes. (b) κxy plotted as a function of the magnetic field for several
temperatures.

curvature of h = 0, h = 8J1S, h = 12J1S, and h = 20J1S
in Figs. 4(e)–4(h). When the magnetic field is zero, the
Hamiltonian satisfies the effective TRS. Thus, the Berry cur-
vature �n,xy(k) satisfies �n,xy(k) = −�n,xy(−k) as shown in
Figs. 4(e), and the thermal Hall conductivity is zero, as in
model I (J2 �= J ′

2). Figures 4(b)–4(d) show that the energy
around K ′ decreases when h �= 0 while energy around K in-
creases, which is the same as model I (J2 �= J ′

2). We show the
magnetic-field dependence of the Chern number and the color
plot of thermal Hall conductivity in Fig. 5(a). Figure 5(b)
shows the thermal Hall conductivity in some temperatures.
The sign of the thermal Hall conductivity changes near the
magnetic fields h ∼ 9 and h ∼ 18. They are not directly as-
sociated with the behavior of the Chern number as the Chern
number does not show a sign change in model II (�1 �= �2),
contrasting to the case of model I (J2 �= J ′

2), where the sign
change of κ and ν takes place at almost the same h. Specif-
ically, around h ∼ 9, we can see in Figs. 4(f) and 4(g) that
positive contributions of the Berry curvature appear around

the K ′ point as increasing h, which cause a sign change of the
thermal Hall conductivity. Around h ∼ 18, the sign change
of the thermal Hall conductivity reflects the Berry curvature
around the � point where the energy gap becomes small. Since
the sign changes of the thermal Hall conductivity around
h ∼ 9 and h ∼ 18 are not accompanied by a sign change of the
Chern number, the magnetic field h where κ changes its sign
shows a large temperature dependence, as opposed to those
associated with the sign change of the Chern number in model
I (J2 �= J ′

2). Instead, the Chern number change at h ∼ 19 gives
rise to an abrupt jump of the thermal Hall conductivity at all
temperatures as seen in Fig. 5(b).

We note that our assumption for the ground state spin con-
figuration Eq. (24) becomes not so good in the large magnetic
field region. While Figs. 3(b) and 5(b) show that the thermal
Hall conductivity changes dramatically about h = 21J1S, this
region may be out of validity of our ansatz Eq. (24) because
ψA = π/2 and ψB < π/2 in this region. Specifically, when
ψA = π/2 and ψB < π/2, the classical energy is independent
of the angle Q · Ri of the A-site spins and the in-plane angle
of the A-site spins becomes arbitrary.

IV. SPIN NERNST EFFECT

In this section, we study spin current response induced by
thermal gradient in frustrated honeycomb magnets. In partic-
ular, we consider a transverse response called the spin Nernst
effect.

Because the spin Hamiltonian described as Eq. (33) com-
mutes with Sz, we can define spin current. However, a problem
arises when we approximate spin Hamiltonian as a bilinear
form of creation and annihilation operators of the magnon,
especially when we consider noncollinear systems. Specifi-
cally the magnon Hamiltonian itself does not commute with
spin operator Sz. In noncollinear systems, the spin operator
Sz is written by the S′ as Eq. (25), and Sz is not a bilinear
form of magnon operators unlike collinear systems. Thus,
in the noncollinear systems, the commutation of Sz and the
magnon Hamiltonian changes the order of creation and an-
nihilation operators of magnons. To overcome this issue, we
use a formulation of current associated with a general operator
before considering the spin operator. Specifically, we write the
general operator on the magnon space as

O(r) = 1
2�†(r)O�(r).

Here, � is defined as Eq. (3) and O is the 4 × 4 matrix. Thus,
we can write the time differential of O(r) as the current jo part
and source So part [5,35],

∂O(r)

∂t
= i[H, O(r)] = −∇ · jo + So, (44)

where jo = 1
4 (Oσ3v + vσ3O), So = − i

2 (Oσ3H (k) −
H (k)σ3O), and v = i[H (k), r]. In the case of collinear
antiferromagnets, Szσ3 = 1 and So disappears, and jo clearly
describes the spin current. In our model, So �= 0 because
we consider noncollinear systems, but we still adopt Jo as a
definition of the spin current, following the discussions in
Ref. [35].

Hereafter, we focus on the spin Nernst effect and we set
O to be S̃z, which corresponds to the magnon spin density
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FIG. 4. The energy band and the Berry curvature �xy of model II with J1 = 1.0, J2 = J ′
2 = 2.0, �A = 0.05, �B = 0.1. (a)–(d) is the energy

band (a) at h = 0, (b) at h = 8J1S, (c) at h = 12J1S, and (d) at h = 20J1S. (e)–(h) show the Berry curvature of the lower band (e) at h = 0,
(f) at h = 8J1S, (g) at h = 12J1S, and (h) at h = 20J1S. The Berry curvature �xy is large where the energy gap is small.

operator given by

S̃z =

⎛
⎜⎜⎜⎝

sin ψA 0 0 0
0 sin ψB 0 0
0 0 sin ψA 0
0 0 0 sin ψB

⎞
⎟⎟⎟⎠.

Using the linear response theory for j, we obtain the expres-
sion for the spin Nernst effect as [35]

jμ = αμν∇νT

= 2kB

h̄

∑
n

∫
BZ

dk2

(2π )2
[�Sz (k)]n,μνc1(ρ(En(k))∇βT, (45)

where

[�Sz (k)]n,μν

=
∑
m �=n

(σ3)nn(σ3)mm

× 2Im[〈tn(k)| jμ(k)|tm(k)〉〈tm(k)|vν (k)|tn(k)〉]
[(σ3E (k))nn − (σ3E (k))mm]2

(46)

and

c1(ρ) = (1 + ρ) ln (1 + ρ) − ρ ln ρ.

While the formula for spin Nernst conductivity does
not contain the Berry curvature, breaking of the symmetry
Eq. (14) is also needed for the nonzero spin Nernst con-
ductivity. Specifically, if A and B sites are equivalent and
the symmetry Eq. (14) is satisfied, we have Pvμ(k)P =
P ∂H (k)

∂kμ
P = v∗

μ(k) and P jμ(k)P = j∗μ(k). Thus, similarly to

the Berry curvature, �Sz must be odd in k, �Sz (k)μν,n =
−�Sz (−k)μν,n.

Figure 6(a) shows the color plot of the spin Nernst con-
ductivity for model I (J2 �= J ′

2), and Fig. 6(c) shows that for

model II (�A �= �B). These figures show that the sign of the
spin Nernst conductivity is approximately corresponding to
the sign of the thermal Hall conductivity. Figures 6(b) and
6(d) show the spin Nernst conductivity for model I (J2 �= J ′

2)
and model II (�A �= �B) at several temperatures, respectively.
In both cases, the spin Nernst conductivity is small when
the magnetic field h is small. This is because 〈Sz〉 is small
for a small magnetic field h. Since the spin Nernst effect
in the present model requires nonzero 〈Sz〉, small h leads to
small spin Nernst effect through its dependence on 〈Sz〉. On
the other hand, when the magnetic field h/J1S is large, the
behavior of the spin Nernst conductivity resembles that of the
thermal Hall conductivity. While we can see a drastic change
in the spin Nernst conductivity in the large magnetic field
regime h > 20J1S, the ansatz Eq. (24) is not reasonable as we
have mentioned in Sec. III.

Finally, we show the edge modes of the magnon band. We
impose a periodic boundary condition to the x direction and
an open boundary condition to the y direction. This choice of
the boundary results in the zigzag edge. Figure 7(a) shows the
energy dispersion of the case when the A and B sites are equiv-
alent (J2 = J ′

2 and �A = �B), and Fig. 7(b) shows the case
when the A sites and the B sites are inequivalent (J2 �= J ′

2).
The band structures show that only when the A and B sites are
inequivalent, the edge modes appearing at the opposite edges
(red and blue lines) are energetically nondegenerate. Thus,
when the A and B sites are inequivalent, two edge states are
inequivalent and allow transverse responses of heat and spins.

V. DISCUSSIONS

We have established the condition of the magnon thermal
Hall effect without DM interaction in terms of the symmetry
of the BdG Hamiltonian. The symmetry argument shows that
the Berry curvature is nonzero when the A and B sites are
inequivalent. Furthermore, the canting angle from xy plane
ψA and ψB can induce the SU(2) gauge field when ψA �= ψB.
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FIG. 5. The Chern number ν and the thermal Hall conductivity
κxy of model II with J1 = 1.0, J2 = J ′

2 = 2.0, �A = 0.05, �B = 0.1.
Here, we calculate κxy with S = 1

2 . (a) The magnetic field dependence
of ν for each magnon band and the color plot of the thermal Hall
conductivity. ν1 is the Chern number of the upper band and ν2 is
the Chern number of the lower band. κxy becomes zero and shows a
sign change around h ∼ 18J1S, where the Chern number ν changes.
(b) The thermal Hall conductivity plotted as the function of the
magnetic field for several temperatures.

We also study the J1-J2-J ′
2 model to clarify the relation of the

thermal Hall conductivity and the Chern number.
Here, we consider materials such that the J1-J2-J ′

2 model on
the honeycomb lattice is feasible. Since we set the parameter
J2 > J1 in Sec. III, we can regard the J1-J2-J ′

2 model on the
honeycomb lattice as the bilayer triangular lattice. One of the
candidate materials of antiferromagnetic Heisenberg model
on the triangular lattice is Ba3XSb2O9 (X = Mn, Co, and Ni)
[45–51]. The materials Ba3XSb2O9 contain a stacked trian-
gular lattice, but these layers are equivalent. Thus, we need
to add inequivalence to each layer, for example, by adding an
electric field in the direction of the c axis. Another candidate
material is TMD. In particular, numerical calculations suggest
that the ground state of VX2 and MnX2 (X = Cr, Br, and I)
has a 120◦ antiferromagnetic spin configurations [52]. Thus,
we may create a J1-J2-J ′

2 model by heterostacking VX2 and
MnX2.

Let us estimate the thermal Hall conductivity in units of
W/Km, with the estimated interlayer distance d ∼ 14 Å and
intralayer coupling J2/kB ∼ 18 K for Ba3CoSb2O9 [45,46].
By using these parameters and assuming J1 ∼ J2/2 and the

FIG. 6. The spin Nernst conductivity. (a), (b) The spin Nernst
conductivity αxy of model I with J1 = 1.0, J2 = 2.0, J ′

2 = 2.2, �A =
�B = 0.05, S = 1

2 . (a) αxy as a function of the magnetic field at
several temperatures and (b) the color plot of αxy for model I.
(c), (d) The spin Nernst conductivity αxy of model II with J1 = 1.0,
J2 = J ′

2 = 2.0, �A = 0.05, �B = 0.1. (c) αxy as a function of the
magnetic field at several temperatures and (d) the color plot of αxy

for model II. (c), (d) indicate that the sign of the spin Nernst conduc-
tivity αxy approximately corresponds to the sign of the thermal Hall
conductivity.

temperature kBT ∼ 2J1 ∼ J2, the unit of the thermal Hall con-
ductivity κxy/(kB/h̄) approximately corresponds to κxy ∼ 0.03
W/Km. Therefore, the order of the thermal Hall conductivity
is 10−3 W/Km in our models. Experimentally, the thermal
Hall conductivity κ ∼ 10−3 W/Km has been observed from
magnons in an insulating ferromagnet with a pyrochlore
lattice structure [9]. Thus, the proposed thermal Hall conduc-
tivity in this paper is feasible for experimental detection.

Finally, we comment on models other than the J1-J2-J ′
2

model on the honeycomb lattice, where the thermal Hall ef-
fect may occur without DM interaction. One candidate is the
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FIG. 7. The energy dispersion of zigzag edge with J1 = 1.0, h =
0. The red and blue line is edge modes. (a) The energy dispersion of
the AB equivalent model, J2 = J ′

2 = 2.0, �A = �B = 0.05. (b) The
energy dispersion and edge modes of model II, J2 = 2.0, J ′

2 = 2.2,
�A = �B = 0.05. Insets of (a) and (b) show the energy dispersion
around the edge. In (b), the edge modes are energetically separable,
while the edge modes are degenerate in (a).

J1-J2-J3 model on the square lattice (as illustrated in Fig. 8)
whose classical ground state exhibits a spiral phase [53–58].
The square lattice is a bipartite lattice and we can define A
and B sites. To support nonzero thermal Hall response, the in-
equivalence of two sublattices can be introduced by changing
the magnetic anisotropy or next-nearest-neighbor hopping of

FIG. 8. The J1-J2-J3 model on the square lattice. Solid, dashed,
and dotted lines represent J1, J2, and J3, respectively. For visibility,
the third-nearest-neighbor hopping J3 is depicted only partially on
the right edge.

A and B sites. This leads to the Hamiltonian written as

H =
∑
〈i, j〉

J1Si · S j +
∑

〈〈i, j〉〉∈A

J2Si · S j +
∑

〈〈i, j〉〉∈B

J ′
2Si · S j

+
∑

〈〈〈i, j〉〉〉∈A

J3Si · S j +
∑

〈〈〈i, j〉〉〉∈B

J ′
3Si · S j

+
∑
i∈A

�A
(
Sz

i

)2 +
∑
i∈B

�B
(
Sz

i

)2 + h
∑

i

Sz
i ,

where
∑

〈〈〈i, j〉〉〉 means that sum over third-nearest neighbor of
the square lattice. In this model, J2 �= J ′

2 or J3 �= J ′
3 or �A �=

�B will support the nonzero Berry curvature and thermal Hall
responses.
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APPENDIX: DETAILS OF THE MAGNON HAMILTONIAN
IN THE SPIRAL PHASE

In this Appendix, we show details of the calculation of the
magnon Hamiltonian Eq. (19) in the spiral phase and identify
the symmetry-breaking interactions based on the condition
Eq. (27) leading to the effective PT symmetry.

First, we rewrite the spin Hamiltonian Eq. (19) in the
rotated spin coordinate Eq. (25) as

H =
∑
i, j

Jαβ

[
(sin ψi sin ψ j cos θi j + cos ψi cos ψ j )S

′x
i S′x

j

+ cos θi jS
′y
i S′y

j + (cos ψi cos ψ j cos θi j

+ sin ψi sin ψ j )S
′z
i S′z

j

− sin ψi sin θi jS
′x
i S′y

j + sin ψ j sin θi jS
′y
i S′x

j

]
+

∑
i

[
h sin ψαS′z

i + �α

(
cos2 ψi(S

′x
i )2 + sin2 ψi(S

′z
i )2

)]

+ (
S′x

i S′z
j and S′y

i S′z
j terms

)
, (A1)

where α, β = A, B denote the sublattices to which i and j sites
belong, respectively, and θi j = Q · R j + φ j − Q · Ri − φi. To
this Hamiltonian Eq. (A1), we apply the HP transformation
Eq. (1) and obtain the magnon Hamiltonian in the form of

H (k) = H0 +
∑

R

H (k, R, r). (A2)

Here, H0 consists of the local terms, i.e., the easy-axis
anisotropy and the Zeeman term, while H (k, R, r) represents
the Heisenberg interaction part. The vector R denotes the dis-
tance between centers of unit cells R j − Ri and the summation
is taken over all the unit cells (with fixing Ri at the origin).
The vector r is a short-hand notation for the distance between
i site and j site, and takes r = R for the diagonal part (e.g., �0

and �z) and r = R + δ for the off-diagonal part (e.g., �x and
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�y) of 2 × 2 blocks in the following, where δ is defined as a
distance from the A site to the B site in the same unit cell.

Let us write the magnon Hamiltonian H (k, R, r) as

H (k, R, r) =
(

�(k, R, r) �(k, R, r)

�∗(−k, R, r) �∗(−k, R, r)

)
.

Using Pauli matrices, we expand �(k, R, r) and �(k, R, r) as

�(k, R, r) = �0(k, R, r)σ0 + �x(k, R, r)σx

+ �y(k, R, r)σy + �z(k, R, r)σz,

�(k, R, r) = �0(k, R, r)σ0 + �x(k, R, r)σx

+ �y(k, R, r)σy + �z(k, R, r)σz.

From the symmetry analysis, we show that nonzero
�z(k, R, r), �z(k, R, r), or Im�i(k, R, r) may lead to the
nonzero Berry curvature [see Eq. (27)]. Here, each coefficient
of the Pauli matrices for � is given as follows:

�0(k, R, r)

= −SJAB(r)[cos (R · Q + φ)

+ cos ψA cos ψB + sin ψA sin ψB]

− S

2
JAA(r)[sin (R · Q) sin ψA sin (k · r)

+ (cos2 ψA cos (R · Q) + sin2 ψA)

− 1

2
(cos (R · Q)(1 + sin2 ψA) + cos2 ψA) cos (k · r)]

− S

2
JBB(r)[sin (R · Q) sin ψB sin (k · r)

+ (cos2 ψB cos (R · Q) + sin2 ψB)

− 1

2
(cos (R · Q)(1 + sin2 ψB) + cos2 ψB) cos (k · r)],

(A3a)

�x(k, R, r) = S

2
JAB(r)[{cos (R · Q + φ)(1 + sin ψA sin ψB)

+ cos ψA cos ψB} cos(k · r)

− sin (R · Q + φ)(sin ψA + sin ψB) sin(k · r)],
(A3b)

�y(k, R, r) = − S

2
JAB(r)[{cos (R · Q + φ)(1 + sin ψA sin ψB)

+ cos ψA cos ψB} sin (k · r)

+ sin (R · Q + φ)(sin ψA + sin ψB) cos(k · r)],
(A3c)

�z(k, R, r) = − S

2
JAA(r)[sin (R · Q) sin ψA sin (k · r)

+ (cos2 ψA cos (R · Q) + sin2 ψA)

− 1

2
(cos (R · Q)(1 + sin2 ψA)

+ cos2 ψA) cos (k · r)]

+ S

2
JBB(r)[sin (R · Q) sin ψB sin (k · r)

+ (cos2 ψB cos (R · Q) + sin2 ψB)

− 1

2
(cos (R · Q)(1 + sin2 ψB) + cos2 ψB)

× cos (k · r)], (A3d)

where �z(k, R, r) = 0 if JAA = JBB and ψA = ψB. Similarly,
the coefficients for �(k, R, r) are written as

�0(k, R, r) = S

4
(cos (R · Q) − 1) cos (k · r)

(JAA(r) cos2 ψA + JBB(r) cos2 ψB), (A3e)

�x(k, R, r) = S

2
JAB(r)[(cos(R · Q + φ)(sin ψA sin ψB − 1)

+ cos ψA cos ψB) cos (k · r)

− i sin(R · Q + φ)(sin ψA − sin ψB)

× cos (k · r)], (A3f)

�y(k, R, r) = −S

2
JAB(r)[(cos(R · Q + φ)(sin ψA sin ψB − 1)

+ cos ψA cos ψB) sin (k · r)

−i sin(R · Q + φ)(sin ψA

− sin ψB) sin (k · r)], (A3g)

�z(k, R, r) = S

4
(cos (R · Q) − 1) cos (k · r)

× (JAA(r) cos2 ψA − JBB(r) cos2 ψB). (A3h)

Here we find that Im�x(k, R, r) and Im�y(k, R, r) depend on
sin ψA − sin ψB and sin (R · Q + φ). Thus, these are nonzero
only if ψA �= ψB and sin (R · Q + φ) �= 0. The expression for
�z indicates that �z(k, R, r) vanishes if ψA = ψB and JAA =
JBB is satisfied.

Next, we write H0(k) as

H0 =
(

�0 �0

�∗
0 �∗

0

)

and expand �0 and �0 as

�0 = �0
0σ0 + �x

0σx + �
y
0σy + �z

0σz,

�0 = �0
0σ0 + �x

0σx + �
y
0σy + �z

0σz,

where each coefficient of the Pauli matrices is given as fol-
lows:

�0
0 = S

2
(�A(1 − 3 sin2 ψA) + �B(1 − 3 sin2 ψB))

+ h

2
(sin ψA + sin ψB), (A4a)

�z
0 = S

2
(�A(1 − 3 sin2 ψA) − �B(1 − 3 sin2 ψB))

+ h

2
(sin ψA − sin ψB), (A4b)

�0
0 = S

2
(�A cos2 ψA + �B cos2 ψB), (A4c)

�z
0 = S

2
(�A cos2 ψA − �B cos2 ψB), (A4d)

�x
0 = �

y
0 = �x

0 = �
y
0 = 0. (A4e)
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Here �z
0 is zero if ψA = ψB. The above terms imply that

if A and B sites are equivalent (i.e., JAA = JBB, �A = �B,
and θA = θB), �z(k, R, r) = �z(k, R, r) = Im�i(k, R, r) =
�z

0 = �z
0 = 0. Thus, the Hamiltonian satisfies the symmetry

Eq. (14) leading to the vanishing Berry curvature.
Now, we consider the effective TRS H (k) = H∗(−k). In

the above expressions, we can see that terms proportional
to sin k · r for the real part and cos k · r for the imagi-
nary part lead to the broken effective TRS. These terms
are proportional to sin (R · Q) sin ψi [see Eqs. (A3a) and
(A3d)], sin (R · Q + φ)(sin ψA + sin ψB) [see Eqs. (A3b) and
(A3c)], and sin (R · Q + φ)(sin ψA − sin ψB) [see Eqs. (A3f)
and (A3g)]. Thus, R · Q = 0 and R · Q + φ = 0 for all R or
sin ψA = sin ψB = 0 support the effective TRS. This condi-
tion is independent from that for the effective PT symmetry
and leads to the vanishing thermal Hall conductivity even
if we have the nonzero Berry curvature. For instance, when
R · Q + φ = 0 for all R or sin ψA = sin ψB = 0, we can still
break the effective PT symmetry with JAA �= JBB (or �A �=
�B), via nonzero �z(k, R, r) (nonzero �z

0).
The above expressions are applicable to the general BdG

Hamiltonians of AB sublattice systems in the spiral phase.
Once we consider the specific model, we assign a concrete
value to Jαβ ; For example, in J1-J2-J ′

2 model, JAB with |r| = a
is J1 for the nearest-neighbor i, j sites, and JAA (JBB) with
|r| = √

3a is J2 (J ′
2) for the next-nearest-neighbor sites.

Furthermore, we calculate the part of the magnon Hamil-
tonian for the DM interaction of the following form:

HDM =
∑
i, j

Dαβ (Si × S j )z.

Here, we again consider the spiral phase and rewrite HDM by
S′, which results in

HDM =
∑
i, j

Dαβ

[
cos θi j

(
sin ψiS

′x
i S′y

j − sin ψ jS
′x
j S′y

i

)

+ sin θi j
{

sin ψi sin ψ jS
′x
i S′x

j

+ S′y
i S′y

j + cos ψi cos ψ jS
′z
i S′z

j

}]
.

Using the HP transformation and the Fourier transformation,
we obtain the DM interaction of magnons. The DM interac-
tion term is also 4 × 4 BdG matrix of the form

HDM(k, R, r) =
(

�DM(k, R, r) �DM(k, R, r)

�∗
DM(−k, R, r) �∗

DM(−k, R, r)

)
.

Then, using Pauli matrices, we expand �DM(k, R, r) and
�DM(k, R, r) as

�DM(k, R, r) = �0
DM(k, R, r)σ0 + �x

DM(k, R, r)σx

+ �
y
DM(k, R, r)σy + �z

DM(k, R, r)σz,

�DM(k, R, r) = �0
DM(k, R, r)σ0 + �x

DM(k, R, r)σx

+ �
y
DM(k, R, r)σy + �z

DM(k, R, r)σz,

where each coefficient of the Pauli matrices is as follows:

�0
DM(k, R, r)

= −SDAB(r) sin (R · Q + φ) cos ψA cos ψB

+ S

2
DAA(r)[cos (R · Q) sin ψA sin (k · r)− cos2 ψA

× sin (R · Q) + 1

2
sin (R · Q)(1+ sin2 ψA) cos (k · r)]

+ S

2
DBB(r)[cos (R · Q) sin ψB sin (k · r) − cos2 ψB

× sin (R · Q) + 1

2
sin (R · Q)(1 + sin2 ψB) cos (k · r)],

(A5a)

�x
DM(k, R, r)

= S

2
DAB(r)[sin (R · Q + φ)(1 + sin ψA sin ψB) cos(k · r)

+ cos (R · Q + φ)(sin ψA + sin ψB) sin(k · r)], (A5b)
�

y
DM(k, R, r)

= S

2
DAB(r)[sin (R · Q + φ)(1 + sin ψA sin ψB) sin(k · r)

− cos (R · Q + φ)(sin ψA + sin ψB) cos(k · r)], (A5c)
�z

DM(k, R, r)

= S

2
DAA(r)[cos (R · Q) sin ψA sin (k · r)

− cos2 ψA sin (R · Q)

+1

2
sin (R · Q)(1 + sin2 ψA) cos (k · r)]

−S

2
DBB(r)[cos (R · Q) sin ψB sin (k · r)

− cos2 ψB sin (R · Q)

+1

2
sin (R · Q)(1 + sin2 ψB) cos (k · r)], (A5d)

�0
DM(k, R, r)

= −S

4
sin (R · Q) cos (k · r)

× (DAA(r) cos2 ψA + DBB(r) cos2 ψB), (A5e)
�x

DM(k, R, r)

= S

2
DAB(r)[sin(R · Q + φ)(sin ψA sin ψB − 1)

× cos (k · r) + i cos(R · Q + φ)

× (sin ψB− sin ψA) cos (k · r)], (A5f)

�
y
DM(k, R, r)

= S

2
DAB(r)[sin(R · Q + φ)(sin ψA sin ψB − 1)

× sin (k · r) + i cos(R · Q + φ)

× (sin ψB− sin ψA) sin (k · r)], (A5g)

�z
DM(k, R, r)

= −S

4
sin (R · Q) cos (k · r)

× (DAA(r) cos2 ψA − DBB(r) cos2 ψB). (A5h)

Here �z
DM(k, R, r) and �z

DM are nonzero if ψA �= ψB or
DAA �= DBB, while Im�x

DM(k, R, r) and Im�
y
DM(k, R, r) are

nonzero only if ψA �= ψB. We note that Im�x
DM(k, R, r)

and Im�
y
DM(k, R, r) are nonzero even if sin(R · Q + φ) is
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zero, in contrast to the Heisenberg term [Im�x(k, R, r) and
Im�y(k, R, r)].

From these terms, we can see that DAA �= DBB break the
symmetry Eq. (14). Furthermore, �z

DM(k, R, r) contains the

sin (k · r) terms, which can be nonzero even in the collinear
phase where ψA = ±ψB = π/2 and Q = 0. In these cases, the
DM interaction acts as the virtual magnetic field and generate
nonzero Berry curvature (see Sec. II E).
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