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Competing emergent Potts orders and possible nematic spin liquids
in the kagome J1-J3 Heisenberg model
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The extreme frustration in the kagome antiferromagnet makes it possible to realize a large number of closely
competing magnetic phases either at the classical or the quantum level. Motivated by recent neutron scattering
study on the kagome antiferromagnet vesignieite BaCu3V2O8(OH)2, we have made systematic investigation
of the phase diagram of the classical and quantum J1 − J3 antiferromagnetic Heisenberg model defined on the
kagome lattice (KAFHM). While it is shown previously that a large antiferromagnetic exchange between the
third-neighboring spins can drive an emergent q = 4 Potts order through the order-by-disorder mechanism, it is
elusive what will happen in the region where the Luttinger-Tisza criteria fails to predict the classical ordering
pattern. Through extensive Monte Carlo simulation, we find that such a region is characterized by competing
emergent q = 3 and q = 4 Potts order, whose emergence are beyond the description of the conventional order-
by-disorder mechanism. Our Schwinger boson mean-field calculation suggests the existence of the Potts-3 order
in the ground state of quantum J1 − J3 KAFHM in such an extremely frustrated region. The predicted Potts-3
state is found to take two different forms distinguished by their projective symmetry group character (PSG or
quantum order), although they have exactly the same symmetry. The transition between these two quantum
orders is found to occur at a J3 value intriguingly close to the tricritical point in the Potts-3 phase of the classical
phase diagram of the model. A comparison with the exact diagonalization result on a 36-site cluster shows that
the intermediate region may indeed host a nematic spin liquid ground state featuring an anisotropic ring structure
around the q = 0 point in its spinon dispersion relation. We find that such an extremely frustrated region should
better be taken as the playground to study the rich competition between exotic emergent phases, rather than a
burden on their theoretical analysis.
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I. INTRODUCTION

The kagome antiferromagnetic Heisenberg model
(KAFHM) exhibits a very rich competition of magnetic
phases both at the classical and the quantum level as a result
of extreme geometric frustration on the kagome lattice. At
the classical level, the KAFHM with only first-neighboring
exchange possesses an extensive ground-state degeneracy,
setting the stage for the competition of a large number
of symmetry breaking phases when one turn on small
additional exchange couplings. Such a singular situation is
not fully resolved even if we include quantum fluctuation
correction. For example, while the ground state of the
spin– 1

2 KAFHM with first-neighboring exchange is widely
believed to be a quantum spin liquid state [1–6], its exact
nature is still under debate [7–19]. Accompanying this
debate is the mystery on the origin of the massive number
of spin singlet excitation below the tiny spin triplet gap as
found in exact diagonalization studies [20–24]. Such exotic
behaviors have motivated several theoretical suggestions that
the spin- 1

2 KAFHM with first-neighboring exchange may
sit at or be very close to a quantum critical point [25–27],
where two or even a massive number of phases meet. The
massive number of spin singlet excitation below the tiny
spin triplet gap may just serve as the bridge interpolating

between the closely competing phases. Thus, the study
of perturbation away from the spin- 1

2 KAFHM with
first-neighboring exchange can provide an illuminating
way to elucidate the exotic physics of this particular model
[28–33]. Such perturbation also appears naturally in various
material realization of the KAFHM such as kapellasite [34],
volborthite [35], haydeite [36,37], Ba-vesignieite [38–42],
and Sr-vesignieite [43] and is thus of great experimental
importance.

The consequence of the geometric frustration in a quantum
magnet can often be learned from an analysis of the corre-
sponding classical model. For a general Heisenberg model
of the form H = ∑

i, j Ji, jSi · S j defined on a simple Bra-
vais lattice, the semiclassical ordering pattern of the system
can be determined by the so-called Luttinger-Tisza criteria
[44]. More specifically, the ordering wave vector is given
by the momentum at which the Fourier transform of the
exchange couplings J (q) reaches its minimum. For system
with multiple minimum in J (q), the remaining degeneracy
in the semiclassical ground state can usually be lifted by
the conventional order-by-disorder mechanism from either
thermal or quantum fluctuations. Such fluctuation correction
usually favors collinear magnetic ordering pattern. The most
well-known example of such an order-by-disorder mechanism
being the emergence of stripy magnetic order in the J1 − J2
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antiferromagnetic Heisenberg model defined on the square
lattice (SAFHM).

For an non-Bravais lattice, namely a lattice with more than
one site per unit cell, J (q) becomes a matrix. We can still
use the eigenvalue of J (q) as an indicator of the semiclas-
sical ordering pattern [45]. More specifically, the minimum
with respect to q of the lowest eigenvalue of J (q) provides a
lower bound on the semiclassical ground-state energy. When
a trial spin configuration reaches this lower bound it is then
within the degenerate ground-state manifold. However, the
Luttinger-Tisza criteria is in general invalid as the eigenvec-
tors of J (q) usually violates the constraint of a uniform length
for the local moment. When the lower bound provided by
the Luttinger-Tisza analysis can not be reached by any trial
spin configuration, there will be no general way to determine
the classical ground state of the system. In the following we
will call such parameter region as “grey region” for brevity.
Obviously, the grey region is the most susceptible to the effect
of quantum fluctuation and thus holds the best opportunity
to realize the quantum spin liquid ground state, while in
many previous studies such strongly frustrated region is left
untouched for technical reason.

According to the Mermin-Wagner theorem, spontaneous
breaking of the continuous spin rotational symmetry is pro-
hibited at any finite temperature in two space dimension. Thus
a finite temperature transition can only occur through the
breaking of a discrete symmetry for a general two dimensional
frustrated magnet in a disordered spin background. The dis-
crete symmetry that can be spontaneously broken includes the
lattice translation symmetry, the lattice rotation or inversion
symmetry, the time reversal symmetry, and different combi-
nations of them. These discrete symmetry breaking orders can
be driven by the conventional order-by-disorder mechanism
when the Luttinger-Tisza criteria applies. As we will show in
this paper, such discrete symmetry breaking order can also
emerge in the grey region in which the Luttinger-Tisza crite-
ria does not apply. The emergence of the discrete symmetry
breaking order in such grey region is obviously beyond the
description of the conventional order-by-disorder mechanism
and thus contains much richer possibilities.

The discrete symmetry breaking of the classical model at
finite temperature may be inherited by the quantum model
at zero temperature with the spin of the system remaining
disordered, provided that the frustration is sufficiently strong,
for example, when the system is located in the grey region.
This will result in the valence bond crystal phase, the nematic
spin liquid phase, and the chiral spin liquid phase, depending
on which specific discrete symmetry (or combination there of)
is spontaneously broken. However, different from its classi-
cal counterpart, the quantum liquid phase can have different
quantum orders even if they exhibit exactly the same symme-
try breaking pattern. Such distinction in the quantum order
can be classified in the projective symmetry group (PSG)
scheme [25,46,47], which correspond to the difference in the
symmetry fractionalization pattern of the spinon excitation is
the resultant spin liquid phases. This adds an additional layer
of richness in the emergence phenomena in such strongly
frustrated models.

In this paper, we show that all these general considera-
tions are elegantly illustrated in the J1 − J3 KAFHM with

antiferromagnetic third-neighboring exchange J3 and ferro-
magnetic first-neighboring exchange J1. Such a model is
believed to be of direct relevance for the description of the
kagome antiferromagnet Ba-vesignieite [42]. When J3 domi-
nates, the model is essentially composed of three decoupled
sublattices of antiferromagnetic correlated spins (3sub-AF).
The effect of the first-neighboring exchange is exactly can-
celed at the classical level in such a 3sub-AF background.
This is just alike the situation in the J1 − J2 SAFHM with J2 >

J1/2. A collinear spin ordering pattern will be favored through
the order-by-disorder mechanism and as a result the lattice
symmetry will be spontaneously broken. More specifically,
for J3/|J1| > 1+√

5
4 ≈ 0.809, when the Luttinger-Tisza criteria

predicts the 3sub-AF ordering pattern in the classical ground
state, a finite temperature transition toward a phase with an
emergent q = 4 Potts order is found in recent Monte Carlo
simulation of the J1 − J3 KAFHM [48]. However, for smaller
value of J3, there appears a grey region [J3/|J1| ∈ ( 1

4 , 1+√
5

4 )]
in the phase diagram where the Luttinger-Tisza criteria fails to
predict the classical ordering pattern. Monte Carlo simulation
shows that there is also a finite temperature transition in this
grey region, toward a phase with an unidentified nature for
J3/|J1| < 0.69 and the q = 4 Potts phase for J3/|J1| > 0.69.
It seems that the q = 4 Potts order can penetrate smoothly
into the grey region. However, the exact nature of the phase
boundary between the q = 4 Potts phase and the phase with
the unidentified order for J3/|J1| < 0.69 remains elusive. In
particular, it is not clear what is the role of the upper boundary
of the grey region in the classical phase diagram.

With extensive Monte Carlo simulation adopting the heat
bath algorithm and the over relaxation technique [49,50],
we have mapped out the full classical phase diagram of
the J1 − J3 KAFHM. We find that the q = 4 Potts phase is
separated from an emergent q = 3 Potts phase in the grey
region by an almost vertical first order line at J3/|J1| ≈ 0.69.
The upper boundary of the grey region predicted by the
Luttinger-Tisza criteria thus plays no role in determining
the classical phase diagram of the system. We then use the
Schwinger boson mean-field theory (SBMFT) to work out the
ground-state phase diagram of the quantum J1 − J3 KAFHM
in the grey region. In accord with the classical phase diagram,
we find the “grey region” is split into the Potts-3 part and the
Potts-4 part in the ground-state phase diagram predicted by the
SBMFT. However, different from its classical counterpart, we
find that there are two nematic spin states in the Potts-3 region
with exactly the same symmetry but different PSG characters
(or different quantum orders). Intriguingly, we find that the
transition point between these two nematic spin states is very
close to the tricritical point along the phase boundary of the
Potts-3 phase in the classical phase diagram (J3/|J1| ≈ 0.4).
Our exact diagonalization calculation on a 36-site cluster
shows that only the nematic spin state below J3/|J1| ≈ 0.4
may be stabilized, while the nematic spin state above it may be
swallowed by the 3sub-AF phase as a result of the additional
quantum fluctuation correction not taken into account in the
semiclassical treatment. We propose the nematic spin state
realized in the grey region to be a possible nematic spin liquid
state featuring a spinon dispersion with an anisotropic ring
around the q = 0 point, namely, an anisotropic analog of the
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double spiral phase proposed for the doped t-J model three
decades ago [52].

The paper is organized as follows. In Sec. II, we will
introduce the J1 − J3 KAFHM and sketch its classical phase
diagram. In Sec. III, we will introduce the order parameters for
the emergent q = 3 and q = 4 Potts order in the grey region.
In Sec. IV, we will introduce the heat bath algorithm and the
over relaxation technique adopted in our Monte Carlo simu-
lation. We will then present the full classical phase diagram
of the J1 − J3 KAFHM, followed by a detailed analysis of
each phase in the phase diagram. In Sec. V, we will introduce
the Schwinger boson mean-field theory for the ground state of
the quantum J1 − J3 KAFHM and the unrestricted mean-field
search technique used to find the ground-state phase diagram
of the system. We then present the SBMFT phase diagram
of the model in the grey region. This is followed by a detailed
analysis of each quantum phase in the SBMFT phase diagram,
especially their PSG character and spinon dispersion. Finally,
we compare both the classical phase diagram and the SBMFT
phase diagram to the result of exact diagonalization calcula-
tion on a 36-site cluster, base on which we argue the existence
of a nematic spin liquid state in the grey region of the quantum
J1 − J3 KAFHM. In Sec. VI, we will summarize our study on
the J1 − J3 KAFHM and draw some general conclusions on
the study of frustrated magnet possessing a grey region.

II. THE J1 − J3 KAFHM AND A SKETCH
OF ITS CLASSICAL PHASE DIAGRAM

The model we focus on in this study is the J1 − J3 KAFHM
defined as

H = J1

∑
〈i, j〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j . (1)

Here 〈i, j〉 and 〈〈〈i, j〉〉〉 denote the first-neighboring and the
third-neighboring pairs of sites on the kagome lattice, as is
illustrated in Fig. 1. In the following, we will restrict to the
situation with J1 < 0 and J3 > 0, since the most interesting
grey region exists only in the second quadrant of the J1 − J3

plane. We will also set |J1| = 1 as the unit of energy.
The Fourier transform of the exchange coupling of the J1 −

J3 KAFHM is given by

J (q) = 2

⎛
⎝2J3

(
c2

1 + c2
2

)
J1c1 J1c2

J1c1 2J3
(
c2

1 + c2
2

)
J1c3

J1c2 J1c3 2J3
(
c2

1 + c2
2

)
⎞
⎠− 4J3,

(2)

in which ci = cos qi

2 and qi = q · δi. Here, δ1, δ2 denote the
two lattice vectors of the kagome lattice, δ3 = δ2 − δ1. For
J3 � 1

4 , the lowest eigenvalue of J (q) has the unique mini-
mum at q = 0, corresponding to a ferromagnetic ground state
of the system. Consistent with this ground state, Monte Carlo
simulation find no finite temperature transition in this region
[48]. For J3 � 1+√

5
4 ≈ 0.809, the lowest eigenvalue of J (q)

reaches its minimum at three degenerate momentum q1 =
(π, 0), q2 = (0, π ), and q3 = (π, π ). These three momen-
tums actually correspond to the antiferromagnetic ordering
wave vector on the three sublattices (sublattice B, C, and A
respectively) of the kagome lattice. In such a 3sub-AF state,

FIG. 1. The kagome lattice and the exchange couplings between
the first-neighboring and the third-neighboring sites, denoted here
as J1 and J3 respectively. δ1, δ2 are the two lattice vectors of the
kagome lattice, δ3 = δ2 − δ1. The light green area denotes a unit cell
of the kagome lattice. The lattice sites colored in red, green, and blue
belong to the three sublattices (namely, sublattice A, B, and C) of the
kagome lattice. In the 3sub-AF phase each of these three sublattices
will establish a conventional Neel order as for the SAFHM and the
effect of the first-neighboring exchange coupling is exactly canceled
at the classical level.

the effect of J1 is exactly canceled at the classical level, no
matter what is its sign. The Neel order on the three sublattices
can thus rotate freely from each other without any energy
penalty. This is alike the situation in the J1 − J2 SAFHM when
J2 � J1

2 , where the Neel order of the two antiferromagetic
sublattices can rotate freely from each other without any
energy penalty. Such a degeneracy can be lifted by the order-
by-disorder mechanism in the J1 − J3 KAFHM, just as what
happens in the J1 − J2 SAFHM. The collinear spin state then
selected will spontaneously break the point group symmetry.
In our case, such a symmetry breaking is characterized by
a q = 4 Potts order parameter [48]. Previous Monte Carlo
simulation indeed found a finite temperature transition to a
phase with nonzero q = 4 Potts order in this region [48].

The situation becomes much more tricky in the intermedi-
ate region 1

4 � J3 � 1+√
5

4 , namely, the so called grey region.
In this region, the Luttinger-Tisza criteria fails to predict the
classical ordering pattern of the system. In fact, the lower
bound predicted by the Luttinger-Tisza criteria can never be
reached and there is no general way to determine the classi-
cal ordering pattern of the system in this region. The lowest
eigenvalue of J (q) reaches its minimum at multiple incom-
mensurate momentums that move continuously with the value
of J3 in the grey region. Nevertheless, Monte Carlo simulation
find that a finite-temperature transition toward some symme-
try breaking phase still exists inside the grey region. It is found
that the region 0.69 � J3 � 1+√

5
4 is characterized by the same

q = 4 Potts order as that of the 3sub-AF phase. On the other
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hand, the nature of the order for J3 � 0.69 is unclear. It is also
unclear how this unknown order is transformed into the q = 4
Potts order around J3 ≈ 0.69.

The frustration of classical ordering pattern in the grey
region will enhance the possibility of realizing quantum spin
liquid phase in the quantum version of the J1 − J3 KAFHM.
However, before discussing such a possibility it is important
to have a more thorough understanding of the classical phase
diagram.

III. THE ORDER PARAMETERS FOR THE FINITE
TEMPERATURE TRANSITIONS IN THE J1 − J3 KAFHM

A. General considerations

The key step to understand the classical phase diagram
of the J1 − J3 KAFHM is to find the appropriate order pa-
rameter for the various phases of the system. According to
the Mermin-Wagner theorem, spontaneous breaking of con-
tinuous spin rotational symmetry is prohibited at any finite
temperature in two dimensional systems. Thus for the J1 −
J3 KAFHM, a finite temperature transition can only occur
through the breaking of a discrete symmetry. To describe such
symmetry breaking orders, one should investigate the long
range correlation of some spin rotationally invariant object,
rather than that of spin variable directly.

The discrete symmetry of the J1 − J3 KAFHM that can
be broken at finite temperature includes the lattice translation
symmetry, lattice rotation, or inversion symmetry and the time
reversal symmetry, or the combinations of them. To detect
translation symmetry breaking in the spin rotational invariant
channel, one can study the long-range correlation between
local dimer degree of freedoms defined by

Cα,β (i, j) = 〈Di,αDj,β〉 − 〈Di,α〉〈Dj,β〉, (3)

in which Di,α = Si · Si+δα
, δα and δβ are lattice vectors con-

necting first-neighboring sites on the lattice [53]. Such dimer
correlations, when appropriately combined, can also be used
to detect rotation symmetry breaking. For example, the stripy
order of the J1 − J2 SAFHM with J2 � J1

2 can be detected
by calculating the correlation of the nematicity in local spin
correlation, namely,

N (i, j) = 〈(Di,x − Di,y) (Dj,x − Dj,y )〉
= Cx,x(i, j) − Cx,y(i, j) − Cy,x(i, j) + Cy,y(i, j). (4)

When the time reversal symmetry is spontaneously broken,
one can study the correlation of the scalar spin chirality de-
fined as

Qα,β;α′,β ′ (i, j) = 〈 χi,δα,δβ
χ j,δα′ ,δβ′ 〉, (5)

in which χi,δα,δβ
= Si · (Si+δα

× Si+δβ
) is the scalar spin chi-

rality on the triangle with vertex i, i + δα and i + δβ . As was
found in the previous study [48], our simulation shows that
there is no evidence for the spontaneous breaking of the time
reversal symmetry in the J1 − J3 KAFHM. We will thus dis-
card the chiral order parameter and concentrate on the dimer
correlation in the following.

B. The q = 4 Potts order in the 3sub-AF phase
and the higher half of the grey region

In the 3sub-AF phase, the local dimer is found to exhibit
long range correlation simultaneously at the three wave vector
q1 = (0, π ), q2 = (π, 0) and q3 = (π, π ), consistent with the
existence of the q = 4 Potts order proposed in Ref. [48]. More
specifically, the antiferromagnetic correlation within each of
the three sublattices (denoted as red, green, and blue sites in
Fig. 1) will endow the dimer in the δ1, δ2, and δ3 direction
a modulation wave vector of q1 = (0, π ), q2 = (π, 0), and
q3 = (π, π ) respectively. A q = 4 Potts order parameter �

can be defined on each elementary triangle of the kagome
lattice with such a staggered factor taken into account [48].
On the up-triangle of the μth unit cell, it is given by

��
μ =

⎛
⎝ (−1)μ2 Sμ,A · Sμ,B

(−1)μ1 Sμ,A · Sμ,C

(−1)μ1+μ2 Sμ,B · Sμ,C

⎞
⎠. (6)

Here μ = (μ1, μ2), with μ1 and μ2 the unit cell index in the
δ1 and δ2 direction. Similarly, the q = 4 Potts order parameter
on the down-triangle of the μth unit cell is given by

�
�

μ =
⎛
⎝ (−1)μ2 Sμ+(1,1),A · Sμ+(0,1),B

(−1)μ1 Sμ+(1,1),A · Sμ+(1,0),C

(−1)μ1+μ2 Sμ+(0,1),B · Sμ+(1,0),C

⎞
⎠. (7)

To detect the q = 4 Potts order, we can calculate the structure
factor of �� and �

�

defined as follows:

�4 =
∣∣∣∣∣ 1

2N

∑
μ

(��
μ + �

�

μ )

∣∣∣∣∣
2

. (8)

Here N denotes the number of unit cells in the system. In the
absence of the q = 4 Potts order we expect �4 to decrease
with N as 1

N in the large N limit, while in the ordered phase
we expect it to approach a constant value of order one. In
particular, if the system choose to order in an perfect collinear
pattern in the 3sub-AF phase we expect �4 = 3.

C. The q = 3 Potts order in the lower half of the grey region

Different from the 3sub-AF phase, we find that the lo-
cal dimer exhibits long range correlation only at q = 0
in the lower half of the grey region. As will be detailed
in the next section, we find that the point group symmetry of
the J1 − J3 KAFHM is spontaneously broken from 6mm down
to 2mm, leaving the dimer in the δ1, δ2, and δ3 direction not all
equivalent. A q = 3 Potts order will thus emerge, which can
be defined on the up-triangle as

ψ�
μ = Sμ,A · Sμ,B + ei 2π

3 Sμ,A · Sμ,C

+ e−i 2π
3 Sμ,B · Sμ,C . (9)

Different from �, which is a vector, here ψ is a complex
number. The q = 3 Potts order on the down-triangle can be
defined as

ψ
�

μ = Sμ+(1,1),A · Sμ+(0,1),B

+ ei 2π
3 Sμ+(1,1),A · Sμ+(1,0),C

+ e−i 2π
3 Sμ+(0,1),B · Sμ+(1,0),C . (10)
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To detect such a q = 3 Potts order, we can calculate the
structure factor of ψ�

μ and ψ
�

μ defined as follows:

�3 =
∣∣∣∣∣ 1

2N

∑
μ

(
ψ�

μ + ψ
�

μ

)∣∣∣∣∣
2

. (11)

In the absence of the q = 3 Potts order we expect �3 to
decrease with N as 1

N in the large N limit, while in the ordered
phase we expect it to approach a constant value of order one.

IV. THE FULL CLASSICAL PHASE DIAGRAM
OF THE J1 − J3 KAFHM

A. The heat bath algorithm and the over relaxation technique

The classical J1 − J3 KAFHM is simulated with the Monte
Carlo method. In our simulation, we have adopted the heat
bath algorithm combined with the over relaxation technique
[49,50]. We find that such a choice is particularly convenient
for the simulation of the J1 − J3 KAFHM. It performs much
better than other local update algorithm that we have at-
tempted. We note that such an algorithm has been successfully
applied to simulate very large system [50].

In each heat bath update step, we draw randomly a lattice
site i and calculate the molecular field Hi acting on it from
the neighboring sites through the exchange coupling, which is
given by

Hi = − 1

T

∑
j

Ji, jS j . (12)

Si is then updated to a new direction according to the local
thermal distribution under the action of Hi, namely,

P(θ, φ) = 1

4π

|Hi|
sinh |Hi|e|Hi| cos θ , (13)

in which θ and φ are the polar and azimuthal angle of Si

relative to Hi. Such a distribution can be achieved by choosing
θ and φ as follows [49]:

cos θ = 1

|Hi|Ln[1 + R1(e2|Hi| − 1)] − 1

φ = 2πR2, (14)

in which R1 and R2 are two random number uniformly
distributed between 0 and 1. The advantage of the heat bath al-
gorithm over the conventional Metropolis algorithm lies in the
fact that each heat bath update is accepted with probability 1.

In between each step of heat bath update, we can insert a
number of over relaxation update steps with extremely low
computational cost. In each over relaxation update step, we
choose randomly a lattice site i and reverse the perpendicular
component of Si relative to the local molecular field Hi. Since
there is no change in the energy, the updated spin is accepted
with probability 1. In realistic simulation, we have inserted
nine over-relaxation steps between each pair of heat bath
update step.

FIG. 2. The point group symmetry of the J1 − J3 KAFHM is
spontaneously broken from 6mm down to 2mm in the q = 3 Potts
phase, leaving the dimer in the δ1, δ2, and δ3 direction not all
equivalent (denoted here with green and purple olives). Here the
long dashed-blue lines denote the reflection lines of the 2mm group.
Together with the short dashed-blue lines they form the reflection
lines of the 6mm group.

B. The classical phase diagram of the J1 − J3 KAFHM

The classical phase diagram of the J1 − J3 KAFHM can
be mapped out from the calculation of the specific heat of the
system, which is given by

CV = 1

NT 2
(〈E2〉 − 〈E〉2), (15)

in which E is the local energy of a spin configuration. The
phase boundary in the phase diagram manifests itself in the
form of a sharp peak at a finite temperature transition point.
For a first-order transition, the specific heat peak will evolve
into a δ-function peak with nonzero integrated area in the
thermodynamic limit, which corresponds to the latent heat
of the phase transition. Correspondingly, the internal energy
will exhibit a finite jump across the transition point. However,
on a finite system it is impossible to distinguish a broadened
δ-function peak of a first-order transition from the smeared
specific heat peak of a conventional second-order transition.
In such a case, evidence for the first-order nature of a phase
transition can instead be found in the bimodal distribution in
the histogram of local energy [48].

The classical phase diagram of the J1 − J3 KAFHM is pre-
sented in Fig. 3. The simulations are done on L × L × 3 lattice
with L = 24, 48, 96, 192. In most Monte Carlo runs, we have
used 2 × 109 local update steps to thermalize the system. The
expectation values are calculated using 4.8 × 106 samples,
with each sample drawn from 104 local update steps. To keep
good statistics in the result, our simulation is restricted to
T � 0.03.

There are three phases in the classical phase diagram,
namely the symmetric phase emanating from the ferromag-
netic ground state for J3 � Jc1 = 1

4 , the Potts-3 phase that
break the threefold rotation symmetry but remain translational
invariant and the Potts-4 phase that break the translational
symmetry and the K4 symmetry as defined in Ref. [48]. The
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FIG. 3. The classical phase diagram of the J1 − J3 KAFHM de-
termined from Monte Carlo simulation. Here J1 = −1 is set as the
unit of energy. Jc1 = 1

4 and Jc2 = 1+√
5

4 are the lower and the upper
boundary of the grey region in which the Luttinger-Tisza criteria fails
to predict the classical ground state of the model. TC1 and TC2 are
two tricritical point along the phase boundary. The phase transition
between TC1 and TC2 is first order, as evidenced by the bimodal
distribution of local energy. The phase transition below TC1 and
that above TC2 are found to be continuous. The doubled-red line
at J3 ≈ 0.69 denotes a first order transition between a q = 3 Potts
phase that break the threefold rotation symmetry but remain transla-
tional invariant and a q = 4 Potts phase that break the translational
symmetry and the K4 symmetry as defined in Ref. [48].

Potts-3 and the Potts-4 phase are connected by an almost
vertical first order phase transition line at J3 ≈ 0.69. From the
phase diagram it is clear that the Potts-4 phase is not restricted
to J3 � Jc2 = 1+√

5
4 and can penetrate substantially into the

grey region. Similarly, the ferromagnetic ground state may
survive slightly beyond the Luttinger-Tisza boundary Jc1 = 1

4 ,
although an accurate determination of the transition point is
challenging.

Along the phase boundary we find two tricritical points at
TC1 and TC2. TC1 ≈ 0.4 is located in the Potts-3 region and
TC2 ≈ 0.87 is located in the Potts-4 region [51]. The phase
transition line in between TC1 and TC2 is found to be first
order, as evidenced by the bimodal distribution of the local
energy at the transition point. The phase transition line below
TC1 and that above TC2 are found to be continuous. The
histogram of local energy at the transition point is plotted
in Fig. 4 at four representative points in the phase diagram,
namely at J3 = 0.38, 0.5, 0.75, and 1. The mechanism through
which such tricritical behavior emerge is now unknown
to us.

Different from the speculation made in Ref. [48], we
find no reentrance behavior for the Potts-4 order be-
tween J3 ≈ 0.69 and Jc2 = 1+√

5
4 . The phase boundary be-

tween the Potts-3 phase and the Potts-4 phase is found
to be first order and almost independent of tempera-
ture. The upper boundary of the grey region predicted by
the Luttinger-Tisza analysis plays no role in the phase
diagram.
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FIG. 4. The distribution of local energy at the transition temper-
ature for J3 = 0.38, 0.5, 0.75, and 1. The bimodal distribution in the
local energy at J3 = 0.5 and J3 = 0.75 is the clear signature of a
first-order transition at these two points. We note that the location of
the two tricritical points TC1 and TC2 are estimated from simulations
on a finite size cluster with Lmax = 96. The location of TC1 and TC2

in the thermodynamic limit may differ slightly from our estimates.

C. The structure of the symmetric phase

While a finite temperature phase transition is prohibited by
the Mermin-Wagner theorem in this region, it is still interest-
ing to investigate the evolution of the spin structure factor with
J3 at low temperature. For the J1 − J3 KAFHM, we can define
the spin structure factor of the system as the trace of the spin
correlation matrix, or

S(q) = 1

N

∑
i,μ

eiq·Ri〈Si,μ · S j,μ〉, (16)

in which μ = A, B,C denotes the sublattice index.
We have computed the spin structure factor at T = 0.05.

The result is shown Fig. 5 for a series of J3 value within the
symmetric phase. For small J3, S(q) is found to be essentially
indistinguishable from that of the ferromagnetic long range
ordered phase, namely, a sharp peak at q = 0. Starting from
J3 = 1

4 , the single peak at q = 0 evolves into a ring structure
around it. The radius of the ring increases rapidly with the
increase of J3. Such a ring structure is similar to that observed
in the double spiral phase of doped t-J model [52].

D. The structure of the Potts-3 phase

The evolution of the spin structure factor in the Potts-3
phase is presented in Fig. 6. The ring structure observed in
Fig. 5 now becomes increasingly anisotropic with the increase
of J3 and eventually evolves into six very sharp peaks. Such
anisotropy in the spin structure factor hints at spatial symme-
try breaking. However, we note that the sharp peaks in Fig. 6
should not be understood as Bragg peak, since spontaneous
breaking of the spin rotational symmetry can never happen at
finite temperature according to the Mermin-Wagner theorem.
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FIG. 5. The evolution of the spin structure factor in the sym-
metric phase with J3. T is fixed at 0.05. The calculation is done
on a L = 48 lattice. Note that T = 0.05 is still above the transition
temperature toward the Potts-3 phase for J3 = 0.3. q1 and q2 are
measured in unit of π .

To detect the spatial symmetry breaking in the Potts-3
phase, we have calculated the structure factor of the Potts-3
order parameter defined in Sec. III C. The result is presented
in Fig. 7. As can be seen from the plot, the Potts-3 order
parameter vanishes abruptly around J3 ≈ 0.69. It is also clear
that on the L = 48 lattice the Potts-3 order parameter is not a
smooth function of J3. To find the origin of such a nonsmooth-
ness behavior, we have compared the Potts-3 order parameter
for system with L = 24, 48, 96, and 192, the result of which
is shown in Fig. 8. We find while the transition temperature
is a quite smooth function of J3, the nonsmoothness in the
Potts-3 order parameter is rather significant on finite system.
It vanishes only on rather large system. Such a nonsmoothness
behavior is not at all surprising considering the incommensu-
rability in the Luttinger-Tisza momentum in the grey region.

E. The structure of the Potts-4 phase

The evolution of the spin structure factor in the Potts-4
phase at T = 0.05 is presented in Fig. 9. Just across the
phase boundary between the Potts-3 and the Potts-4 phase,
the spin structure factor features three small rings around the
momentum q1 = (π, 0), q2 = (0, π ), and q3 = (π, π ). With
the further increase of J3, the radius of these rings rapidly
shrinks and for J3 � 0.73 they evolves into three sharp peaks
at q1 = (π, 0), q2 = (0, π ), and q3 = (π, π ). The spin struc-
ture factor almost saturates for J3 � 0.85. Such evolution in

FIG. 6. The evolution of the spin structure factor in the Potts-3
phase with J3. T is fixed at 0.05. The calculation is done on a
L = 48 lattice. Note that T = 0.05 is slightly below the transition
temperature toward the Potts-3 phase for J3 = 0.32. q1 and q2 are
measured in unit of π .

FIG. 7. The evolution of (a) the Potts-3 order parameter �3,
(b) the specific heat, and (c) the internal energy of the J1 − J3

KAFHM with temperature at J3 = 0.5. The calculation is done on a
L = 48 lattice. In (d), we illustrate the full dependence of the Potts-3
order parameter �3 on J3 and temperature in color scale.
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FIG. 8. The evolution of Potts-3 order parameter with J3 for
system with L = 24, 48, 96, and 192. T is fixed at 0.08 in all the
calculations. To achieve good statistics in the result, we have used
5 × 1010 thermalization steps in the calculation of the L = 24, 48, 96
system, and used 2 × 1011 thermalization steps in the calculation of
the L = 192 system. The number of samples used to compute the ex-
pectation value is 107 for the L = 24, 48, 96 system and 4 × 107 for
the L = 192 system. Each sample is drawn from 104 local updates.

FIG. 9. The evolution of the spin structure factor in the Potts-4
phase with J3. T is fixed at 0.05. The calculation is done on a L = 48
lattice. q1 and q2 are measured in unit of π .

FIG. 10. The evolution of (a) the Potts-4 order parameter �4,
(b) the specific heat, and (c) the internal energy of the J1 − J3

KAFHM with temperature at J3 = 0.74. The calculation is done on a
L = 96 lattice. In (d), we illustrate the full dependence of the Potts-4
order parameter �4 on J3 and temperature in color scale.

the spin structure factor implies that the Potts-4 order can exist
before a commensurate antiferromagnetic correlation within
each of the three sublattices is establishes.

The results for the Potts-4 order parameter is presented in
Fig. 10. Different from the Potts-3 order parameter, we find
that the Potts-4 order parameter is a rather smooth function of
J3 at a fixed temperature.

F. Some general comments on the classical phase
diagram of the J1 − J3 KAFHM

We close the discussion on the classical phase diagram of
the J1 − J3 KAFHM with some general comments.

First, the Potts-4 order is found to penetrate substantially
into the grey region with no evidence of a phase transition at
the Luttinger-Tisza boundary Jc2 = 1+√

5
4 . The spin structure

factor of the system takes the form of small rings in a finite
region in the Potts-4 phase. This is quite different from the
situation in the J1 − J2 SAFHM, in which the stripy order
emerges only when strong and commensurate antiferromag-
netic correlation has already been established within each of
its two sublattices. Thus, the emergence of the Potts-4 order
in the J1 − J3 KAFHM can not be totally attributed to the
conventional order-by-disorder mechanism. This is even more
obvious for the Potts-3 order, which emerges entirely in the
grey region. In fact, both orders can be thought to be driven by
the preference of the system to resolve the strong frustration
in the grey region.

Second, we note that the spin structure factor of the sys-
tem is characterized by some anisotropic ring structure in the
whole grey region. In the Potts-3 phase, the ring is found to
be centered around q = 0. In the Potts-4 phase, the rings are
found to be centered around q1 = (π, 0), q2 = (0, π ), and
q3 = (π, π ). We note that the spin structure factor is calcu-
lated at T = 0.05 rather than at zero temperature. The region
where the ring structure is observed (0.27 � J3 � 0.72) is
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smaller than the grey region. We guess when the computation
is performed at exactly zero temperature these two regions
will coincide with each other. Thus, while the Luttinger-Tisza
boundary is not a real phase boundary, it determines the be-
havior of the spin structure factor of the system.

Third, while the evidence for the existence of the two
tricritical point TC1 and TC2 is rather strong, we have no
understanding on why they should appear. From our construc-
tion of the Potts-3 and Potts-4 order parameter, it seems that
the dimer degree of freedom is playing a dominating role in
the low energy physics. It is thus attempting to write down
an effective theory in terms of the dimer degree of freedom
by integrating out other rapidly fluctuating degree of freedom.
The origin of these two tricritical points may be more clearly
seen from the perspective of such low energy effective theory.
Interestingly, we find that the value of J3 at TC1(J3 ≈ 0.42) is
very close to a transition point in the Schwinger boson mean-
field phase diagram of the quantum J1 − J3 KAFHM, where
two nematic spin states with exactly the same symmetry but
different PSG characters meet.

The existence of ring structure in the low-energy spin ex-
citation spectrum will greatly enhance the fluctuation effect in
two-dimensional magnet [52]. We thus expect the grey region
to have good opportunity to realize some kind of quantum
spin liquid phase when we consider the quantum version of
the J1 − J3 KAFHM. In the next section, we will present a
Schwinger boson mean-field theory for the ground-state phase
diagram of the quantum J1 − J3 KAFHM in the grey region.

V. A BOSONIC RVB THEORY OF THE QUANTUM J1 − J3

KAFHM IN THE GREY REGION

A. The Schwinger boson mean-field theory
of a general quantum magnet

The Schwinger boson mean-field theory (SBMFT) is
widely used in the study of quantum magnet systems [54,55].
The SBMFT can describe the paramagnetic and the magnetic
ordered phase of a quantum magnet on an equal footing and
is thus especially convenient when we are concerned with
quantum spin liquid state in close proximity to a magnetic
ordered phase. Previous studies find that the SBMFT performs
rather well in describing ground-state property of spin- 1

2 an-
tiferromagnetic Heisenberg model on both the square and the
triangular lattice [56–58].

In the SBMFT, the spin operator is rewritten in terms of
bosonic spinon operator as

Si = 1

2

∑
α,β

b†
i,ασα,βbi,β . (17)

Here α, β = ↑,↓ is the spin index of the bosonic spinon
operator, σ is the usual Pauli matrix. The spinon operator
should satisfy the constraint of∑

α

b†
i,αbi,α = 1 (18)

to be a faithful representation of the spin algebra. In terms of
the Schwinger boson representation, the Heisenberg exchange

coupling term can be written as

Si · S j = B̂†
i, j B̂i, j − Â†

i, j Âi, j, (19)

in which

Âi, j = 1
2 (bi,↑b j,↓ − bi,↓b j,↑),

B̂i, j = 1
2 (b†

i,↑b j,↑ + b†
i,↓b j,↓). (20)

This form suggests the mean-field decoupling of the Heisen-
berg exchange interaction in terms of the RVB order
parameter Bi, j = 〈B̂i, j〉 and Ai, j = 〈Âi, j〉. These set of RVB
parameters are called an RVB mean-field ansatz. To enforce
the single occupancy constraint of the bosonic spinon on aver-
age, we should also introduce the boson chemical potential λ.
This results in the Schwinger boson mean-field Hamiltonian
of the following form:

HMF =
∑
i, j

Ji, j (B
∗
i, j B̂i, j − A∗

i, j Âi, j ) + H.c.

+ λ
∑
i,α

b†
i,αbi,α. (21)

B. Determination of the RVB mean-field ansatz
for the J1 − J3 KAFHM

The key step in the SBMFT description of the ground state
of a quantum magnet is the determination of the optimized
value of the RVB parameters. For a quantum magnet with
well-defined semiclassical ground state, an ansatz for the RVB
parameter Ai, j and Bi, j can be easily obtained by looking
at the semiclassical limit of the quantum model, in which
we can take the spin operator Si as a classical vector and
the boson operator bi,α as a conventional complex number
[58,59]. However, this approach fails badly in the grey region
for the J1 − J3 KAFHM.

We are left only with the possibility of numerical optimiza-
tion. In this approach, we write down a variational mean-field
Hamiltonian of the form of Eq. (21) with the RVB param-
eter Ai, j , Bi, j and the boson chemical potential λ treated as
the variational parameters. We then calculate the variational
ground-state energy of the system as a function a these vari-
ational parameters and optimize it subjected to the average
boson occupation constraint.

Such an optimization problem is in general very hard to
solve. However, it can be significantly simplified when we
enforce some symmetry requirement on the spin state we want
to describe. Here we note that the Schwinger boson repre-
sentation of the spin operator Eq. (17) has an intrinsic U (1)
gauge redundancy as a result of the no double-occupancy
constraint on the spinon operator (i.e., Si is unchanged under
the gauge transformation bi,α → bi,αeiφi ). Thus to describe
a spin state with certain symmetry, the gauge noninvariant
mean-field RVB parameter Ai, j and Bi, j should be invariant
under the symmetry operation only up to a U (1) gauge trans-
formation. It turns out that such symmetry conditions on the
RVB mean-field ansatz can be classified by the so called pro-
jective symmetry group (PSG) technique first developed by
Wen in the fermionic RVB theory [46]. It is then generalized
to bosonic RVB theory by some other authors [25,47].
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In our paper, we will enforce translational symmetry on
the spin state we want to describe. In the Schwinger boson
theory, the translational symmetry can be realized either by
a translational invariant RVB mean-field ansatz, or an RVB
mean-field ansatz with a doubled unit cell. In the latter situa-
tion, the translated ansatz differs from the original ansatz by a
U (1) gauge transformation. In the literature these two classes
of RVB ansatz are called the uniform-flux and π -flux state. We
find that throughout the phase diagram of the J1 − J3 KAFHM
the uniform-flux state always has a lower variational energy.
We will focus on such a state in the following.

In the Schwinger boson formalism, the mean-field pa-
rameter Ai, j and Bi, j describe respectively antiferromagnetic
and ferromagnetic local correlation. It is thus attempting to
assume a nonzero Bi, j between the first-neighboring sites
and a nonzero Ai, j between the third-neighboring sites for
the J1 − J3 KAFHM. However, in general we can also have
first-neighboring pairing term Ai, j and third-neighboring hop-
ping term Bi, j . Our numerical optimization indeed found such
terms, although the first-neighboring hopping term and the
third-neighboring pairing term are always the dominating
variational parameters. By the way, our numerical optimiza-
tion shows that the RVB parameters can always be chosen
real. This is consistent with the absence of time reversal sym-
metry breaking in this model.

C. SBMFT phase diagram of the J1 − J3 KAFHM
in the grey region

If we only enforce the translational symmetry, then there
will be six inequivalent first-neighboring bonds and six in-
equivalent third-neighboring bonds within each kagome unit
cell. We thus have 24 independent RVB parameters on these
bonds. As we mentioned above, we find all these RVB pa-
rameters can be chosen real as a result of the time reversal
symmetry. We are then left with 24 real variational param-
eters. Together with the boson chemical potential we will
have 25 real parameters to be optimized. The numerical op-
timization is done using the simulated annealing algorithm on
a kagome cluster with 8 × 8 unit cells. We first diagonalize
the Schwinger boson mean-field Hamiltonian by Bogolyubov
transformation at each of the 64 momentum and then calculate
the mean-field ground-state energy by the Wick decomposi-
tion of the model Hamiltonian, with the result [58]

E [Ai, j, Bi, j, λ] = − 3

8Ns

∑
i, j

Ji, j (|〈 Âi, j 〉|2 − |〈 B̂i, j 〉|2),

(22)
in which 〈Âi, j〉 and 〈B̂i, j〉 are the expectation value of the oper-
ator Âi, j and B̂i, j defined in Eq. (20) in the mean-field ground
state, Ns denotes the number of lattice site in the cluster,
which is 8 × 8 × 3 = 192 in our case. To enforce the aver-
age boson number constraint, we supplement the variational
ground-state energy with a penalty function and optimize the
following function:

f = E [Ai, j, Bi, j, λ] + C

(
1

Ns

∑
i,α

〈b†
i,αbi,α〉 − 1

)2

, (23)
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FIG. 11. The optimized Schwinger boson mean-field ground-
state energy of the J1 − J3 KAFHM as a function of J3. We find three
solutions in the grey region from our simulated annealing optimiza-
tion. These solutions are denoted as NSS-I, NSS-II, and 3sub-AF
respectively.

in which C is a large positive number. In our optimization we
have set C = 100.

The optimized Schwinger boson mean-field ground-state
energy of the J1 − J3 KAFHM is plotted in Fig. 11. We
find three solutions in the grey region from our simulated
annealing optimization. These solutions are denoted as NSS-I,
NSS-II, and 3sub-AF respectively. Here NSS is short for ne-
matic spin state, which breaks the threefold rotation symmetry
of the system. In fact, both NSS-I and NSS-II phase have
the same 2mm symmetry (see Fig. 2 for an illustration). The
difference between them lies in the fact that their RVB mean-
field ansatz belong to different PSG classes. More specifically,
the RVB mean-field ansatz of the NSS-I phase is manifestly
invariant under the action of σy but requires an additional
gauge transformation of the form

φσx (i) = π

2
(24)

to recover its original form when acted with σx. On the other
hand, the RVB mean-field ansatz of the NSS-II phase is not
invariant under the action of either σx or σy. The gauge trans-
formation required to recover the original form of the RVB
mean-field ansatz in the NSS-II phase is given by

φσy (i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

2
f or i ∈ A

π

2
f or i ∈ B

−π

2
f or i ∈ C

(25)

for σy and by

φσx (i) =

⎧⎪⎨
⎪⎩

0 f or i ∈ A

0 f or i ∈ B

π f or i ∈ C

(26)
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FIG. 12. Illustration of the RVB parameters on the first-
neighboring bonds in the NSS-I phase. Note that the first-
neighboring pairing parameter along the horizontal direction is zero
as a result of the reflection symmetry of the RVB mean-field ansatz
under σy.

for σx. Such a difference in the symmetry property of
the mean-field ansatz between the NSS-I and the NSS-II
phase is best illustrated by the RVB parameters on the first-
neighboring bonds (see Figs. 12 and 13). In particular, the
first-neighboring pairing parameter in the NSS-I phase along
the horizontal direction is identically zero as a result of the
reflection symmetry of the RVB mean-field ansatz under σy.
On the other hand, the first-neighboring pairing parameter in
the NSS-II phase along the horizontal direction is nonzero as
a result of the nontrivial PSG of the RVB mean-field ansatz
under σy. The NSS-I phase thus has one less variational pa-
rameter than NSS-II phase (10 versus 11).

Different from the NSS-I and the NSS-II phase, the 3sub-
AF phase is fully symmetric. It is described by an RVB mean-
field ansatz with only third-neighboring pairing term, namely,

Ai, j = 0, Bi, j = 0first neighbor

Ai, j = ±A, Bi, j = 0third neighbor. (27)

Here the ± sign should be chosen so that no gauge flux is
enclosed in any third-neighboring plaquette. The three sublat-
tices are thus totally decoupled at the mean-field level in this
ansatz. Since the mean-field ground state is independent of J3

FIG. 13. Illustration of the RVB parameters on the first-
neighboring bonds in the NSS-II phase. Note that the first-
neighboring pairing parameter along the horizontal direction is now
nonzero as a result of the nontrivial PSG of the RVB mean-field
ansatz under σy.

in the 3sub-AF phase, the optimized mean-field ground-state
energy is found to be a strictly linear function of J3.

To have a better understanding on the physical difference
between these phases, in particular, the difference between the
NSS-I and the NSS-II phase, we have calculated the spinon
dispersion within each phase. Shown in Fig. 14 is the the dis-
persion of the lowest spinon branch in the NSS-I, NSS-II and
the 3sub-AF phase. While the spinon dispersion in the NSS-II
phase shows some similarity with that in the 3sub-AF phase,
the spinon dispersion in the NSS-I phase, which features an
anisotropic ring around the q = 0 momentum, is more close to
that of the ferromagnetic phase. This explains why the NSS-I
phase is favored over the NSS-II phase in the lower half of the
grey region.

We note that the transition point between the NSS-I phase
and the NSS-II phase (J3 ≈ 0.396) is surprisingly close to
the tricritical point TC1 in the classical phase diagram of the
model, which is located at J3 ≈ 0.42. This is indeed intriguing
if it is not a simple coincidence. It seems to imply an uncov-
ered relation between the tricritical behavior in the classical
model at finite temperature and the quantum phase transition
behavior related to the change of quantum order (or PSG) in
the ground state of the quantum model. It is interesting to see
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FIG. 14. Illustration of dispersion of the lowest spinon branch
in the NSS-I, NSS-II, and the 3sub-AF phase. The dispersion is
calculated with the optimized RVB parameter at J3 = 0.35 (NSS-I),
J3 = 0.5 (NSS-II), and J3 = 0.8 (3sub-AF). q1 and q2 are measured
in unit of π .

if similar behavior exist in more general frustrated magnetic
models.

At the same time, the phase boundary between the NSS-
II phase and the 3sub-AF phase is very close to the phase
boundary between the Potts-3 and the Potts-4 phase in the
classical phase diagram of the model. This is not totally
unexpected from the semiclassical limit of the Schwinger
boson representation. However, we note that the optimized
mean-field ansatz of the 3sub-AF phase describes three totally

FIG. 15. The 36-site cluster on which our exact diagonalization
calculation is performed.

decoupled antiferromagnetic sublattices and does not possess
the Potts-4 order. This may either imply the inadequacy of
the Schwinger boson mean-field theory in describing such a
phase, or the necessity to relax the translational symmetry on
the mean-field ansatz. This problem is left for future study.

D. Comparison with the exact diagonalization
result on a 36-site cluster

Motivated by the hope to find a quantum spin liquid state
in the strongly frustrated grey region, together with the in-
triguing closeness between the tricritical point TC1 in the
classical phase diagram and the transition point between the
NSS-I and the NSS-II phase in the SBMFT phase diagram
of the quantum model, we have carried out an exact diago-
nalization study of the ground state of the quantum J1 − J3

KAFHM on a 36-site cluster with the geometry illustrated in
Fig. 15. We have used the Lanczos algorithm to calculate the
lowest eigenvalue of the spin- 1

2 J1 − J3 KAFHM within the
fully symmetric subspace, which contains 31 527 894 basis
vectors.

The result of the ground-state energy as a function of J3

is shown in Fig. 16. The ground-state phase diagram of the
model on the 36-site cluster is characterized by two transitions
at J3 ≈ 0.28 and J3 ≈ 0.42. For J3 < 0.28, the ground state of
the system is found to be the fully polarized ferromagnetic
state. The ground-state energy as a function of J3 is thus
strictly linear in this region. For J3 > 0.42, the ground state
of the system evolves continuously into the ground state of
the J3-only model, which consists three decoupled sublattices
of antiferromagnetic correlated spins. We find that the en-
ergy gain from intersublattice coupling is quite substantial
even for J3 = 0.8 (as high as 4.5%). The quantum fluctua-
tion correction can thus substantially enhance the stability of
the 3sub-AF phase. This may explain why the region of the
intermediate phase is substantially suppressed as compared
to the Potts-3 phase in the classical phase diagram and the
nematic spin state in the SBMFT phase diagram. In particular,
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FIG. 16. The ground-state energy of the spin- 1
2 J1 − J3 KAFHM

as a function of J3 calculated on the 36-site cluster shown in Fig. 15.
The red line is the result when we discard the intersublattice coupling
J1. The energy gain from the quantum fluctuation correction is quite
substantial even for rather large J3.

the NSS-II phase in the SBMFT phase diagram may be totally
swallowed by the fluctuation-reinforced 3sub-AF phase.

We note that the transition point between the 3sub-AF
phase and the intermediate phase is surprisingly close to the
vanishing point of the NSS-I phase in the SBMFT phase
diagram, and is even closer to the tricritical point TC1 in the
classical phase diagram of the J1 − J3 KAFHM. We think
such closeness in the phase boundaries may not be simple
coincidence. Of course, calculation on cluster of larger size
or with different geometry is needed to check if Fig. 16 in-
deed represent the intrinsic behavior of the quantum J1 − J3

KAFHM. A tensor network simulation of the model can also
be very helpful to resolve the situation [19].

A comparison of Fig. 16 with the classical phase diagram
shown in Fig. 3 and the SBMFT phase diagram shown in
Fig. 11 strongly suggests the identification of the intermediate
phase in Fig. 16 as the nematic spin state NSS-I. Such a
spin state is characterized by a Potts-3 order and a spinon
dispersion with an anisotropic ring structure around the q = 0
momentum (see Fig. 14). Such an anisotropic ring structure
will also be inherited by the spin structure factor of the system.
This phase can actually be understood as an anisotropic gen-
eralization of the double spiral phase proposed in Ref. [52], in
which the low-energy fluctuation along the ring in the spinon
dispersion can easily disorder the long-range correlation in
the spin channel. With these considerations in mind, we think
it is very possible that the J1 − J3 KAFHM can realize a
nematic spin liquid state in the intermediate region of J3. It
is interesting to see if a nematic spin liquid with the same
quantum order as the NSS-I phase can be verified in more
accurate study of the model in the future.

VI. DISCUSSIONS

In this paper, we have mapped out the complete classi-
cal phase diagram of the J1 − J3 KAFHM through extensive
Monte Carlo simulation. We find that in the most strongly

frustrated region of the model, namely the grey region ( 1
4 �

J3 � 1+√
5

4 ) in which the Luttinger-Tizsa criteria fails to pre-
dict the classical ordering pattern of the system, competing
q = 3 Potts order and q = 4 Potts order emerge. We find
that while the q = 4 Potts phase evolves continuously into
the 3sub-AF phase in the large J3 limit, the Potts-4 order
in general can not be understood as the consequence of the
conventional order-by-disorder effect with preexisting anti-
ferromagnetic ordered sublattices. This becomes especially
clear if one note how deeply the Potts-4 phase has penetrated
into the grey region. In fact, we find no evidence for any
phase transition at the upper boundary of the grey region. The
Potts-4 phase meets the Potts-3 phase within the grey region
with a first-order transition between the two. We thus feel it is
better to take the Potts-4 order, rather than the antiferromag-
netic correlation within each of the three sublattices of the
kagome lattice as the most fundamental structural signature
of this phase. The emergence of the Potts-3 order, which
occurs entirely within the grey region, is certainly beyond the
description of the order-by-disorder mechanism. We think it is
the strong preference of the system to resolve the frustration
in the grey region that drive the emergence of both the Potts-3
and the Potts-4 order in this region.

Our simulation indicates that while the Luttinger-Tisza cri-
teria fails to predict the phase boundary of the system in the
strongly frustrated grey region, it is very useful in predicting
the behavior of the spin structure factor of the system. On
general ground, this is just what we should expect from the
Luttinger-Tisza criteria since the spontaneous breaking of the
spin rotational symmetry at finite temperature is prohibited
by the Mermin-Wagner theorem in two dimension systems.
We find that the spin structure factor of the system in the
grey region is characterized by some anisotropic ring structure
centered either around q = 0, or around the three momentum
q1 = (π, 0), q2 = (0, π ), and q3 = (π, π ). The existence of
such ring structure will greatly enhance the fluctuation effect
and encourage the emergence of exotic phases at both classi-
cal and quantum level.

Tricritical points are found along the phase boundary of
both the Potts-3 and the Potts-4 phase in the classical phase
diagram of the J1 − J3 KAFHM. It is almost impossible to
see why these tricritical points should emerge from the be-
havior of the spin degree of freedom directly. To understand
the mechanism by which these tricritical point emerge, a
low-energy effective description of the system in terms of
the dimer degree of freedom seems to be necessary. Such an
effective description may be achieved by a careful integration
of the fast fluctuating single spin degree of freedom.

Our Schwinger boson mean-field theory calculation sug-
gests the existence of the Potts-3 order in the ground state of
the quantum J1 − J3 KAFHM in the grey region. However,
such a nematic spin state is found to take two different forms
distinguished by their projective symmetry group character
(or quantum order), although they have exactly the same sym-
metry. The nematic spin state in the lower half of the grey
region, namely NSS-I, is found to support a spinon dispersion
featuring an anisotropic ring structure around the q = 0 and
can be understood as the anisotropic generalization of the dou-
ble spiral phase proposed for doped t-J model three decades
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ago. We find that the transition point between the NSS-I state
and the NSS-II state is intriguingly close to the tricritical point
TC1 in the classical phase diagram of the model. Further work
to check if this is just a simple coincidence is obviously of
interest.

Our Schwinger boson mean-field theory fails to produce
the Potts-4 order, even though the predicted phase boundary
between the NSS-II phase and the 3sub-AF phase is very close
to the phase boundary between the Potts-3 and the Potts-4
phase in the classical phase diagram. This may either imply
the inadequacy of the Schwinger boson mean-field theory in
describing such a phase, or the necessity to relax the transla-
tional symmetry on the mean-field ansatz. A further study on
this issue is obviously necessary.

Finally, we have compared the classical phase diagram and
the Schwinger boson mean-field phase diagram with the result
obtained from exact diagonalization on a 36-site cluster. It
turns out that the quantum fluctuation correction from first-
neighboring exchange coupling can substantially reinforce the
3sub-AF phase. However, an intermediate phase does exist in
between the 3sub-AF phase at higher J3 and the ferromagnetic
phase at lower J3. We propose this intermediate phase to be
a nematic spin liquid phase with the same quantum order as
the NSS-I phase. Intriguingly again, the intermediate phase
is found to terminate at a point very close to the tricritical

point TC1 in the classical phase diagram of the model. Fur-
ther numerical study is obviously needed to decide if such a
nematic spin liquid state indeed exist and if there is indeed any
deep implications in all these intriguing closeness in phase
boundaries.

In all, we find that rich competition of emergent orders of
classical or quantum nature can occur in the grey region of
the J1 − J3 KAFHM, in which the system lost its preferred
semiclassical ordering pattern. We think this a general trend
in frustrated magnets. The grey region generated by strong
frustration effect should be better taken as an opportunity to
discover more exotic phases, rather than a burden on theoreti-
cal analysis on such frustrated models.
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